
J. Fluid Mech. (2013), vol. 727, pp. 30–55. c© Cambridge University Press 2013 30
doi:10.1017/jfm.2013.230

Mode C flow transition behind a circular
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The three-dimensional transition of the flow behind a circular cylinder with a
near-wake wire disturbance has been investigated experimentally. The asymmetric
placement of a wire in the near-wake region of the cylinder causes an unnatural
mode of shedding to occur, namely mode C. We performed flow visualization and
particle image velocimetry (PIV) experiments to investigate the influence of the wire
on various properties of the flow, such as the dynamics of the streamwise secondary
vortices. Experiments were performed at the Reynolds number range of Re= 165–300.
From these experiments, it can be concluded that mode C structures are formed as
secondary streamwise vortices around the primary von Kármán vortices. The spanwise
wavelength of those mode C structures is determined to be approximately two cylinder
diameters. The presence of the wire also triggered the occurrence of period doubling
in the wake. Each new set of mode C structures is out of phase with the previous
set, i.e. doubling the shedding period. This period-doubling phenomenon is due to a
feedback mechanism between the consecutively shed upper vortices.
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1. Introduction
Due to its simple geometry, the flow around circular cylinders has become a central

topic in much research. A lot of effort has been made to explain the physics of circular
cylinder wake dynamics by Gerrard (1966, 1978) and Green & Gerrard (1993). They
showed that vortex shedding for low Reynolds numbers can be characterized by vortex
splitting and high shear stress occurring in the near wake. Unal & Rockwell (1988)
investigated the near-wake vortex formation in the context of absolute instability
and showed that the shear layer separating from the cylinder shows an exponential
variation of fluctuating kinetic energy with distance downstream of the cylinder.

However, the above-mentioned studies were limited to the two-dimensional aspects
of the flow. The three-dimensional aspects of wake flows behind circular cylinders
are thoroughly reviewed and discussed by Williamson (1996a,b). The laminar vortex
shedding regime extends from a Reynolds number of 49 to 140–194, and the flow
regime between Re= 190 and 260 is denoted as the three-dimensional wake transition
regime. This regime is associated with two modes of shedding, modes A and B.

† Email address for correspondence: c.c.m.rindt@tue.nl
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The stability characteristics of mode A and B transitions have been investigated by
Williamson (1992, 1996a), Leweke & Williamson (1998) and Thompson, Leweke &
Williamson (2001). They noted that the origin of the instability arises from an elliptic
instability of vortex cores for mode A and from a hyperbolic instability in the braid
region for mode B. Another approach to describing the onset of the vortex loops
is provided by Brede, Eckelmann & Rockwell (1996). They identified a centrifugal
instability of the braid region between the primary vortices using the analysis of
particle image velocimetry (PIV) data. The conclusion of Brede et al. (1996) was that
the interaction of the primary vortices in this braid region is the main amplification
mechanism. They concluded that mode B vortices originate from the instability of the
separating shear layer in the near wake, which results in a different topology of the
mode B vortices compared with those in mode A. The stability characteristics of these
modes have been thoroughly investigated numerically by Barkley & Henderson (1996),
Henderson (1996, 1997) and Barkley, Tuckerman & Golubitsky (2000).

It is shown in various studies that under the influence of ‘disturbances’, cylinder
wake flows exhibit different flow structures. For example, Ren, Rindt & van
Steenhoven (2006) showed that by heating the cylinder, a different transition regime
can be found, denoted as mode E. Strykowski & Sreenivasan (1990) studied the
mechanism of suppression of vortex shedding by proper placement of a second, much
smaller, cylinder in the near wake of the main cylinder for low Reynolds numbers in
the laminar, two-dimensional periodic flow regime. The configuration at low Reynolds
numbers was further studied by Mittal & Raghuvanshi (2001), Dipankar, Sengupta
& Talla (2007), Kuo, Chiou & Chen (2007) and Marquet, Sipp & Jacquin (2008).
Yildirim, Rindt & van Steenhoven (2010) studied the effect of a thin control wire on
the wake properties for laminar two-dimensional wake flow, investigating its vortex
dynamics and vortex shedding process. Zhang et al. (1995) studied the influence of
the presence of a wire in the vicinity of a cylinder on transition, also the focus of the
present study, and characterized the wake transition regime as mode C, which shows
different properties compared to modes A and B.

The first evidence of mode C appeared in the computations and experiments of
Zhang et al. (1995), when a tiny wire was placed close to a circular cylinder. In
their flow visualization experiments, they observed that mode C transition takes place
over a Reynolds number range of 170< Re< 270. Numerical simulations at Re= 210
displayed a spanwise periodicity of 1.8 cylinder diameters. Another flow type in
which mode C transition takes place is the flow behind circular rings. Using Floquet
stability calculations, Sheard, Thompson & Hourigan (2003) identified this mode as
the primary transition mode in the aspect ratio (AR) range of 3.9 . AR . 8, with
a spanwise wavelength of approximately 1.7 ring cross-section diameters. Further
nonlinear characterization of mode C was undertaken by Sheard, Thompson &
Hourigan (2004), using direct numerical simulations. They showed that for the flow
past a ring with AR = 5, mode C instability produces a period doubling in the wake
through supercritical and non-hysteretic transition. Subsequently, Sheard et al. (2005b)
provided additional computational results and first experimental observations about the
existence of the subharmonic mode C. Later, Sheard, Thompson & Hourigan (2005a)
showed that the period-doubling nature of the wake is maintained by a cycle of
convection of the perturbation vorticity from the near wake.

Carmo et al. (2008) also found mode C in the wake transition of the flow
around staggered arrangements of equi-diameter circular cylinders for different relative
positions. The structure and onset characteristics of mode C were analysed using
linear and nonlinear stability analyses as well as direct numerical simulations. They
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showed that mode C appears in the near wake of the downstream cylinder, with an
intermediate spanwise wavelength between modes A and B that has a period-doubling
character.

Detailed numerical investigations on mode C transition date back for more than
two decades. One of the first studies using a high-order accurate direct numerical
simulation of the Navier–Stokes equations was by Karniadakis & Triantafyllou
(1992), who observed a mode C–like scenario by forcing a π/2D periodicity in
spanwise direction. Noack & Eckelmann (1994) employed a low-dimensional Galerkin
method and found that the periodic solution becomes unstable at Re = 170 due to a
perturbation with a spanwise wavelength of 1.8 diameters. However, relatively little
attention has been devoted to the experimental investigation of the period-doubling
nature of a wire-disturbed circular cylinder wake in mode C transition. The motivation
behind the present study is to investigate the wake flow for the wired-cylinder case in
the transition regime, verifying mode C type transition, examining its period-doubling
character and establishing a physical explanation for the existence of period doubling.

First, the general characteristics of mode C transition at Re > 180 are determined
in various ways. The flow visualization experiments illustrate the global picture of
the phenomena and provide a global view of the physics of wake transition. The
point velocity analysis provides information about the local flow characteristics and the
period-doubling nature of the wake. Processing the point velocity data leads to several
other characteristic properties of the mode C wake, such as phase plots, power spectra
and Strouhal numbers.

Secondly, to understand the physical mechanism of the period-doubling character of
the wake, the instantaneous vorticity patterns of the primary and secondary vortices
are shown using the PIV vector fields of the near wake. Image sequences from flow
visualization experiments are used to analyse the time evolution of secondary vortices.
The overall analysis of the physics of the wake and the feedback mechanism of the
vortices provides an insight into the origin of the period-doubling character of the
mode C transition.

The plan of this paper is as follows. The experimental set-up is described in
§ 2. Section 3 describes the general characteristics of mode C transition in a wire-
disturbed circular cylinder wake. In § 4, the evolution of near-wake vorticity patterns
is presented and the period-doubling nature of the vortex shedding is shown. The
physical formation mechanism for period doubling in the mode C wake is then
presented in § 5. Finally, § 6 summarizes the findings and the discussion.

2. Experimental methodology
The experiments are performed in a towing tank with dimensions of L × W × H =

500 cm × 50 cm × 75 cm (Kieft et al. 2003). The towing tank walls are made of
15 mm thick single-piece glass, which provides optical accessibility from all directions.
The test model is mounted on a moving carriage system, which is placed on the top of
the sidewalls.

The experimental model is a circular cylinder with a diameter of D = 15 mm and
a length of L = 48 cm. It is placed between circular end plates in order to force
parallel shedding. In order to trigger mode C instability, a wire with a diameter of
d = 0.15 mm is placed in the near wake. The ratio of the diameter of the cylinder to
that of the wire is D/d = 100. The position of the wire is chosen in accordance with
the work of Zhang et al. (1995), and is (x/D, y/D)= (0.75, 0.75) relative to the centre
of the cylinder, as shown in figure 1.
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FIGURE 1. (Colour online) The measurement configurations. (a) The three-dimensional flow
visualization configuration. (b) The side-view configuration. (c) The back-view configuration.

Figure 1 shows the three different measurement configurations that are used
throughout the experiments. The first configuration is used for the three-dimensional
flow visualization experiments (see figure 1(a)). The flow field behind the cylinder is
illuminated using a slide projector. A camera is placed at the top of the set-up to
record the images.

Figure 1(b) illustrates the second configuration, which is used for the investigation
of the evolution of the primary, i.e. spanwise, vortices. This configuration is used
for both flow visualization experiments and PIV measurements. The flow field is
illuminated by a vertical laser sheet in the XY-plane, with a thickness of 3 mm. In
the PIV experiments, the images are recorded synchronously with two side-by-side
cameras to cover a larger field of view. The data obtained from the two-camera
configuration are combined in the post-processing stage.

The third configuration is used for the investigation of the evolution of the
secondary, i.e. streamwise, vortices. The layout of this configuration is shown in
figure 1(c). The laser plane is located in the YZ-plane, with a thickness of 3 mm and
its downstream position indicated as xl. The images are recorded through a mirror
placed downstream of the wake. The size of the mirror is 100 mm× 100 mm and it is
placed at an angle of 45◦ with respect to the free-stream direction. The effect of the
mirror on vortex shedding is evaluated using top-view flow visualization experiments.
The results show that when the mirror centre is located xm = 16D downstream of
the cylinder, clear parallel shedding is seen and at this position, the generation of
secondary vortices is not affected by the mirror.
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For the flow visualization experiments, the electrolytic tin-precipitation method was
used (Honji, Taneda & Tatsuno 1980). This method is based on the generation of
insoluble small particles on the surface of the model (Maas, Rindt & van Steenhoven
2003). Those particles are illuminated by a light source and their images are recorded
by a camera. In the current set-up, the cylinder was covered by very thin tin-foil
(70 µm) and that tin-foil was connected to an electrolysis set-up as the anode end. The
cathode was placed at a downstream position where it did not disturb the flow. Very
small tin hydroxide particles (O(1 µm)) were then generated on the surface of the tin
sheet by applying a voltage difference between the anode and the cathode. When the
cylinder was pulled through the water, those particles detached from the surface and
followed the flow.

The quantitative evaluation of the flow was done by using PIV. For this purpose,
the water in the towing tank was seeded with Polyamid particles having a diameter
of 20 µm. The flow was illuminated by using a Nd–Yag laser and the images were
captured by an 12 bit camera with 1600 × 1200 pixels resolution and a 30 Hz frame
rate. The camera fields of view in both the side-view and the back-view experiments
were close to each other and corresponded to approximately (Sx, Sy) ≈ (7.3D, 5.5D)
and (Sy, Sz) ≈ (5.2D, 6.9D) in terms of cylinder diameters, respectively. However, in
the side-view experiments two cameras in a side-by-side arrangement were used to
cover a larger field of view, which resulted in a field of view of approximately
(Sx, Sy) ≈ (14.1D, 5.5D). The remaining recording parameters were the same in both
types of experiment.

The water temperature was measured before every experiment to accurately calculate
the kinematic viscosity value. This kinematic viscosity value, along with the desired
Reynolds number, were used to calculate the corresponding free-stream velocity.
The experiments were conducted at flow velocities ranging from 6 to 16 mm s−1,
corresponding to Reynolds numbers of 100–250 based on the diameter of the cylinder.

3. The general characteristics of mode C transition
3.1. An overview by means of flow visualization experiments

As a first step, the influence of a wire on the cylinder wake flow was investigated by
three-dimensional flow visualizations, which revealed the general physics of the mode
C structures in the transition regime. The global effects of a wire on the laminar wake
transition of a circular cylinder are shown in figure 2, which contains snapshots taken
with the camera placed on top of the set-up (see figure 1(a)). The free-stream velocity
is in the positive X-direction and the camera axis is in the negative Y-direction in
the global coordinate system. The original images were recorded by a digital camera
and subsequently processed by image processing software. Each snapshot in the figure
represents the vortex shedding phase at which the upper von Kármán vortex starts
to form. In the snapshots, von Kármán vortices, i.e. primary vortices, are aligned
along the cylinder axis, while the mode C vortices, i.e. secondary vortices, are formed
between the primary vortices aligned in the streamwise direction.

The results in figure 2 clearly show the wake transition structure in the case
of a wire-disturbed circular cylinder wake. No apparent three-dimensional vortical
structures are present for Re = 165. However, for Re > 180, fine-scale dye structures
appear in the wake connecting upper and lower primary vortices, indicating the
presence of three-dimensional vortical structures. It is obvious that the critical
Reynolds number for the transition, Recrit, lies between Re = 165 and Re = 180.
The Reynolds number for the onset of mode C instability is given as Re = 170
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FIGURE 2. Top-view visualizations of the circular cylinder wake flow under the influence
of a near-wake wire. Each picture is an instantaneous snapshot of the flow state taken at the
corresponding Reynolds number. The flow direction in the pictures is from left to right.
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Guide line

2D

FIGURE 3. A top-view visualization of mode C structures at Re= 195. The flow direction in
the pictures is from top to bottom.

by Zhang et al. (1995). However, the experimental set-up and methods used in this
study did not allow an accurate determination of Recrit.

The snapshots in figure 2 show that the formed three-dimensional structures are
actually secondary streamwise vortices around the primary von Kármán vortices. These
secondary structures indicate the presence of mode C type instability in the wake
transition regime (see Zhang et al. 1995). They are uniformly distributed along the
span of the cylinder, with a spanwise wavelength of λz ≈ 2D. They are formed in the
near wake and continue to exist in the far wake too.

The Reynolds number range of the experiments covers both the mode A and B
regions of natural vortex shedding. Therefore, the results presented in figure 2 indicate
the replacement of natural shedding modes with a forced shedding mode (mode C)
in the Reynolds number range of 180–300. In this range, mode C structures get
more disordered with increasing Reynolds number. However, unlike the natural wake
transition, there is no drastic change in the vortex structure with increasing Reynolds
number. When compared to the other shedding modes (Williamson 1996a; Ren et al.
2006), the differences in the wake structures suggest that the physical mechanism of
formation is also altered by the wire.

Figure 3 shows the image sequence taken during the experiments for Re= 195. The
cylinder is positioned at the top and the flow direction is from top to bottom. The
time difference between each successive snapshot from left to right in the figures
is one shedding period, which is denoted as Tshed. Examination of the instantaneous
image sequence in figure 3 reveals an interesting feature of the mode C transition.
In both the left and middle snapshots, the wake behind the cylinder has the same
three-dimensional structures, but with a shift of approximately one cylinder diameter
in spanwise position. The structures that appear on the line in the left snapshot appear
on the line again after two shedding periods. So, effectively, the period of mode C has
become two shedding cycles. This is an indication that the mode C transition has a
period-doubling character, with each set of secondary vortices out of phase with the
previous set. Period-doubling behaviour is observed in all of the flow visualization
experiments in the wired-cylinder transition regime. However, this behaviour has been
observed neither in non-wired-cylinder nor in heated-cylinder wake transitions.
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FIGURE 4. (Colour online) The time trace of the cross-stream velocity component v in
two different experiments. (a) XY-plane PIV experiments, Re = 180; the data probe point
is (x/D, y/D) = (4.5, 1), (b) YZ-plane PIV experiments, Re = 180; the data probe point is
(x/D, y/D) = (4.5, 1). The Z-coordinate of the data point is selected to be between two
secondary vortices. The time axis is non-dimensionalized with the corresponding shedding
periods of each experiment.

3.2. Point velocity characteristics
Further analysis of the mode C wake transition is carried out by examining point
velocity data in the near wake. The velocity data are obtained from PIV experiments
by placing data probes at specific locations and tracing the data through consecutive
vector fields. The velocity fluctuations in the wake identify the distinct characteristic
properties of the mode C transition.

Figure 4 shows two cross-stream velocity signals at Re = 180, but obtained from
different PIV experiments. Figure 4(a) represents data from XY-plane and figure 4(b)
from YZ-plane measurements. The locations of the data probes are shown next to the
corresponding graphs. In both cases, the flow needs time to develop to a more or less
periodic state. The periodic states are indicated by the long braces.

3.2.1. ‘High-peak–low-peak’ velocity signal
Figure 4 presents the typical ‘high-peak–low-peak’ velocity–time signal. This pattern

is much more clear in figure 4(b) than in figure 4(a) due to the data probe locations
between the two secondary vortices, where their effect on the cross-stream velocity is
at a maximum.

The physical explanation for this ‘high-peak–low-peak’ pattern can be understood by
considering the vorticity of the secondary vortices concentrated in point vortices, as
shown in figure 5. If a point, p, lies on the mid-line of a vortex pair, as shown in
figure 5(a), then the velocity at point p, vp, can be calculated as the total velocity vi
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FIGURE 5. (Colour online) An analysis of the ‘high-peak–low-peak’ velocity profile in the
mode C wake. (a) The point vortex model. (b) The upwards induced velocity, vi > 0, due to
secondary vortices. (c) The downwards induced velocity, vi < 0, due to secondary vortices.
vVK is the vertical velocity component induced by von Kármán vortices and vVK > 0. The
blue (solid line) and red (dashed line) denote the positive and negative streamwise vorticities,
respectively: (a) vp = vi; (b) vp = vVK + vi; (c) vp = vVK − vi.
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FIGURE 6. (Colour online) The downstream variation of the vertical velocity v in the upper
half of the wake at Re= 180.

induced by the two counter-rotating point vortices of equal strength, Γ − and Γ +.
Assuming now that point p lies between two secondary vortices in the mode C wake,
as shown in figure 5(b,c), vp contains two components; the induced velocity of the
primary von Kármán vortices, vVK , and that of the secondary vortices, vi. At the vortex
shedding time t = nTshed, when the secondary vortices are at their uppermost position,
vVK is always positive, vVK > 0.

As seen in figure 5(b,c), the vorticity of the secondary vortices changes sign after
every period Tshed, which also affects the direction of the induced velocity vi at point
p. Hence, vp = vVK + vi at t0 corresponds to the ‘high peak’ in the velocity signal and
vp = vVK − vi at t0 + Tshed to the ‘low peak’.

The above discussion shows that the difference between the ‘high’ and ‘low’ peaks
in the velocity signal is due to the induced velocity of the secondary vortices, which
changes sign in every shedding cycle. Figure 6 shows that this difference is decreasing
in the streamwise direction. This suggests that the induced velocity vi, and hence
the vortex strengths of the secondary vortices, is decreasing and that the cross-stream
velocity component is converging to the value of vVK .

3.2.2. Phase plots
The analysis of the point velocity data showed that the mode C transition regime

exhibits a unique repetitive ‘high-peak–low-peak’ velocity signal pattern due to the
secondary mode C vortices, which change sign every vortex shedding cycle. The time
difference between the consecutive high peaks (or low peaks) is twice the period
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FIGURE 7. (Colour online) The phase plot of the velocity data in mode C transition. (a)
Temporal variation of the u velocity. (b) Temporal variation of the v velocity. (c) The
phase plot of the velocity data, which is shown in dashed boxes in plots (a) and (b).
The velocity data are from XY-plane PIV experiments at Re = 180. (d) The phase plot
for laminar two-dimensional flow at Re = 100. The data probe point in all experiments is
(u, v)(x/D, y/D)= (4.5, 1.5).

of the signal, which indicates that the signal has a period-doubling character. Period
doubling can also be demonstrated in the phase plots of the velocity components.

Figure 7 presents the time variation of the u and v velocities and their plots for
mode C transition, as well as the phase plot for Re = 100 for comparison. It can
be seen that the u velocity signal also demonstrates the typical ‘high-peak–low-peak’
velocity pattern. The two velocity components are plotted against each other to obtain
the phase plot of figure 7(c). There is a clear difference between the phase plots of
mode C transition flow and the laminar two-dimensional flow at Re = 100. The latter
demonstrates a clear single phase cycle. On the other hand, mode C flow shows two
phase cycles, one within the other.

3.2.3. Power spectra
Spectrum analysis was also used to capture the frequency content and to identify

the periodicity in the velocity signal of mode C transition. Figure 8 shows the power
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FIGURE 8. (Colour online) The spanwise variation of the v velocity spectra at Re= 180. The
streamwise and transverse coordinates of the data probe points are (x/D, y/D)= (4.5, 1.5).

spectra of cross-stream velocity signals obtained from YZ-plane PIV measurements.
The Reynolds number is Re= 180 and the measurement plane is located at x/D= 4.5.
The transverse coordinate of the data probe is y/D = 1.5. The spanwise coordinate
was varied from (a) to (e) in figure 8 to evaluate the effect of spanwise location.
The horizontal frequency axis is non-dimensionalized so that it represents the Strouhal
number St = fD/U∞.

A clear peak at the von Kármán vortex shedding frequency, f0 ≈ 0.19, is seen
in all spectra. It is evident from graphs (a), (c) and (e) that there is a second
frequency component, f1 ≈ 0.09, which is approximately half of the von Kármán
shedding frequency. The signals that have sharp peaks at f1 in their spectra belong
to the data probe locations that are halfway between the two secondary vortices. In
conjunction with the discussion of velocity characteristics, the secondary frequency
component f1 can be thought as the reflection of the ‘high-peak–low-peak’ velocity
profile of figure 4 in the frequency domain. Therefore, it indicates that the period
of the secondary vortices in mode C transition is twice the shedding period of von
Kármán vortices, Tsecondary = 2Tshed.

The effect of the cross-stream location of the data probe point on the spectral
characteristics is demonstrated in figure 9, which contains the two spectra from the
upper and lower halves of the wake. Both spectra show clear peaks at the von Kármán
shedding frequency, but only the upper spectra indicate a secondary subharmonic peak.
Figure 9 also shows that the frequency ratio of the primary and secondary frequencies
is approximately equal to 2 for the upper half of the wake. This suggests the existence
of secondary vortices with a period-doubling nature.
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FIGURE 9. (Colour online) A comparison of the velocity spectra of the upper (y/D = 1.5)
and lower (y/D=−1.5) halves of the wake. Re= 180. The streamwise coordinate of the data
point is x/D= 4.5.

3.3. Shedding frequency

The vortex shedding frequency in mode C transition is calculated by determining the
corresponding peaks in the power spectra of different experiments. Figure 10 shows
the Strouhal number values at different Reynolds numbers. The results were plotted
using the values of mode A and B transitions that were reproduced from Williamson
(1996a) for comparison. Figure 10(a) shows the scatter of St values in the different
experiments for mode C transition. The Strouhal numbers for mode C transition are
calculated by simply averaging the values at the corresponding Reynolds number and
the results are shown in figure 10(b).

Figure 10(b) shows a comparison of the Strouhal numbers for the non-wired and
wired experiments with literature values. It is obvious that there is a deviation from the
literature values in the measured Strouhal numbers for the non-wired case. When the
literature values of Zhang et al. (1995) and the measurements are compared, the order
of magnitude of this deviation is the same for the wired-cylinder case. Besides, one
can see that the error bars indicated in figure 10(b) are relatively large, which is also
reflected in the scatter of the Strouhal values as presented in figure 10(a). The Strouhal
values are based on the frequencies determined from the power spectra, as presented
in figure 8. A possible reason for the relatively large error bars is the limited number
of shedding cycles in one experiment due to the finite length of the towing tank.
However, the present experimental data for the non-wired and wired-cylinder cases are
both internally consistent and consistent with the trend in the literature, showing that
there is a reduction in the shedding frequency in mode C transition.

Therefore, one may conclude that the trend of the mode C experiments is in good
agreement with the values of Zhang et al. (1995). Apparently, the wire changes the
frequency characteristics of von Kármán vortices and it is likely that it suppresses
the instability mechanisms that cause the discontinuities in the St–Re graph for the
non-wired-cylinder flow.
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FIGURE 10. A comparison of the Re–St relationships for the single cylinder and the wired
cylinder. The data for parallel shedding, oblique shedding and modes A and B are reproduced
from Williamson (1996a). The St number for mode C transition is obtained from back-view
and side-view PIV measurements. (a) The scatter of the St numbers of different mode C
experiments. (b) A comparison of the non-wired and averaged St numbers of the wired
experiments with literature values. The error bars indicate the frequency resolution of each
corresponding spectrum.

3.4. Breaking of symmetry

The placement of a wire in the near wake of a cylinder obviously acts as a symmetry-
breaking mechanism in the wake structure. This is evident in figure 11, where the time-
averaged streamline topology Ψ for two Reynolds numbers is given. The streamlines
are calculated using the time-averaged velocity components u and v.

The Ψ patterns for the non-wired case indicate two symmetric swirl patterns in the
near wake for both Reynolds numbers. From figure 11, it is clear that the size of these
swirl patterns is decreasing with increasing Reynolds number. There is also a saddle
point S located at the wake centreline at the downstream edge of the swirl patterns.
The location of the saddle point actually corresponds to the most downstream point of
the recirculation region.

In the wired cases, the two-symmetric-swirl-pattern topology is no longer seen.
For Re = 180, the upper swirl region appears with a smaller size than its non-
wired (Re = 185) counterpart. The same topology is seen for Re = 225, but with a
swirl region slightly larger in size than for the non-wired (Re = 230) case. Another
difference is that for the wired cases there is no apparent saddle point to identify.
However, the major difference is in the lower part of the wake, where there is no clear
time-averaged swirl pattern. It appears for the wired case that the upper swirl region is
related to the diverted vorticity that extends beyond the wake centreline and smears the
vorticity concentration of the lower shear layer. This mechanism seems to prevent the
formation of a lower time-averaged swirl pattern during mode C transition. It needs to
be remarked that the spanwise position of the measuring plane relative to the mode C
structures is not known in these side-view experiments (see figure 1(b)). However,
the aforementioned symmetry-breaking mechanism is observed in all experiments.
Figure 14 shows the instantaneous spanwise vorticity patterns for two shedding cycles,
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FIGURE 11. Time-averaged streamlines in the near wake of the cylinder.
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FIGURE 12. The time variation of the streamwise vorticity on the line x/D = 4.5 from
back-view PIV experiments of the non-wired-cylinder wake at Re = 185 and Re = 215 for
modes A and B, respectively. The time axis is non-dimensionalized with the corresponding
shedding periods: (a) mode A; (b) mode B.

and clearly shows the difference in strength and structure between the upper and lower
vortices during one shedding cycle and over two shedding cycles.

The symmetry-breaking effect of the wire can also be seen by comparing figures 12
and 13, which represent the streamwise vorticity component ωx as a function of time
for the non-wired and wired-cylinder wakes in mode A/B and mode C transition,
respectively. In both figures, the streamwise vorticity component is evaluated along a
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FIGURE 13. Time variation of the streamwise vorticity on the line x/D= 4.5 from back-view
PIV experiments of the mode C wake at Re= 180. Time axis is non-dimensionalized with the
corresponding shedding period.

vertical cross-stream line placed at downstream location x/D = 4.5 and through the
centre of the secondary vortices. Therefore, contrary to the side-view experiments, in
these back-view experiments (see figure 1(c)) the spanwise position relative to the
mode C structures is exactly known. A similar approach has been employed by Carmo
et al. (2008) to investigate the symmetry of transition modes in cylinder–cylinder
interacting flows.

Figure 12 shows the symmetry characteristics of the non-wired-cylinder wake in
the transition regimes associated with modes A and B at Re = 185 and Re = 215,
respectively. The symmetry nature of the mode A wake is clearly seen in figure 12(a).
The positive and negative vorticity appear in a symmetric manner, with a period of
Tshed. From the colour contrast of the figure, one can also conclude that both the upper
and lower streamwise vortices have almost equal vorticity contents. Hence, mode A
can be characterized by

ωx(x, y, z, t)=−ωx(x,−y, z, t + T/2). (3.1)

The symmetry of mode B can be observed in figure 12(b). The spanwise vorticity in
mode B has the same sign on both sides of the wake during the vortex shedding cycle.
Mode B is also T-periodic and can be characterized by

ωx(x, y, z, t)= ωx(x,−y, z, t + T/2). (3.2)

For the wired-cylinder case, figure 13 clearly demonstrates that the wake undergoing
a mode C transition is no longer symmetric with respect to the wake centreline and the
vorticity field is 2T-periodic, unlike modes A and B. Actually, the streamwise vorticity
patterns change sign at every shedding period. In mode C transition, the temporal
symmetry of the streamwise vorticity can therefore be described by

ωx(x, y, z, t)=−ωx(x, y, z, t + T). (3.3)

A lot of studies have been performed on the effect of symmetry breaking of two-
dimensional time-periodic wakes such as the von Kármán vortex street. For example,
Blackburn, Marques & Lopez (2005) have investigated the effect of symmetries on
three-dimensional transition modes in detail, using a Floquet stability analysis. From
their study, it appears that an up–down symmetry breaking, and hence violation

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

23
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.230


Mode C transition 45

2

1

0

–1

–2

2

1

0

–1

–2

2

1

0

–1

–2

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Data probe point

Time

Phase from 
data probe point

(a)

(a)

(b)

(b)

(d)

(d)

(c)

(c)

(e)

(e)

FIGURE 14. (Colour online) Instantaneous non-dimensional spanwise vorticity patterns
ωzD/U∞ in the near wake of the cylinder. The contour levels are |ωz|D/U∞ = 0.4, 0.8, . . . , 4.
The solid line and dashed line contours indicate positive and negative vorticity, respectively.
The top right figure shows the phases of the vorticity fields with respect to the cross-stream
velocity from the data probe point (x/D, y/D) = (4.5, 1) at Reynolds number Re = 180.
(a) t = 0; (b) t = Tshed/2; (c) t = Tshed; (d) t = 3Tshed/2; (e) t = 2Tshed.

of (3.2) as induced by the positioning of a thin wire in the vicinity of the cylinder, is a
necessary prerequisite for period doubling as expressed in (3.3).

4. Vorticity patterns in the near wake
4.1. Spanwise vorticity

Figure 14 shows the evolution of spanwise vorticity in the near wake of the cylinder
through two shedding periods for Reynolds number Re = 180. It demonstrates the
period-doubling nature of mode C using the instantaneous spanwise vorticity ωz

snapshots. The phase information of the vortex shedding is obtained from the time
signal of the vertical velocity component at point (x/D, y/D)= (4.5, 1.5).
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The image sequence starts with figure 14(a), which corresponds to the phase at
which the upper vortex UV1 is shedding. UV1 is stretched and has two long vorticity
braids. Meanwhile, the lower vortex LV1 has a rather circular shape and is rolling up
across the wake to cut the vorticity supply of UV1. At this stage, the negative vorticity
from the upper shear layer is directed into the base region. This accumulated vorticity
later forms the subsequent upper vortex UV2, indicated by an arrow in figure 14(b).

Figure 14(c) shows the vorticity patterns one shedding cycle after figure 14(a).
Despite the similarities in the major vortical structures, some differences are still
noticeable. First, the upper vortex UV2 does not have long vorticity braids and is
more compact than the preceding vortex UV1. Secondly, the lower vortex LV2 has a
rather elliptic shape compared to LV1. Finally, after a comparison of the snapshots
figure 14(a,c), it looks as though the vorticity accumulation of the following upper
vortex UV3 uses a wider space in the base region than the preceding UV2. At phase
t = 3Tshed/2, the upper vortex UV3 shows a clear vorticity concentration at around
x/D ≈ 1.75, with stretched vorticity braids around it. In this sense, UV3 differs from
its predecessor UV2, which shows a vorticity spreading during the development stage
(figure 14(b)). These observations show that the formation of primary von Kármán
vortices in the mode C wake is not T-periodic but 2T-periodic, as demonstrated in
figure 14(a,c,e) for the upper vortices UV1, UV2 and UV3, respectively.

4.2. Streamwise vorticity
To understand the temporal characteristics of the secondary vortices, instantaneous
patterns of streamwise vorticity ωx at cross-stream planes x/D = 1.5 and x/D = 2.5
are shown in figure 15, along with the corresponding von Kármán vortex shedding
states for three independent experiments. The link between them is the phase
relationship obtained from the vertical velocity signals at the intersection line of
the two perpendicular planes, namely the XY-plane and the YZ-plane.

It is evident from the vorticity concentrations in the cross-stream planes that the
secondary vortices are present in the wake, and that they originate from the very
near wake of the cylinder. During the formation of the upper vortex at phase t = 0,
there are two arrays of concentrated ωx in the x/D = 1.5 plane. These vorticity arrays
are aligned with the upper and lower shoulders of the cylinder and are out of phase
with each other. Due to the stretching in the braid shear region, where the vorticity
content of the secondary vortex is amplified, the mode C vortices are more clear in
the x/D = 2.5 plane. The same vorticity structure is seen after 2Tshed in figure 15(e).
At phase t = Tshed, similar vorticity arrays are seen, but the negative and positive
vorticity structures are interchanged. The 2T-periodic nature of the secondary vortices
is apparent in the comparison of the vortex arrays at phases t = 0,Tshed and 2Tshed.
The wake state at t = 0 is out of phase with the t = Tshed state and in phase with the
t = 2Tshed state.

5. The development of period doubling in mode C transition
5.1. The time evolution of the mode C vortices

The formation process of mode C structures for a Reynolds number of Re = 195
throughout two shedding periods is illustrated in figures 17 and 18, which show
top-view and side-view flow visualization sequences, respectively. The snapshots are
synchronized qualitatively so that they represent the same vortex shedding phase and
lead to the reconstruction of the feedback mechanism of mode C shedding. The
illustration of the synchronization procedure is presented in figure 16. The main
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FIGURE 15. (Colour online) Instantaneous patterns of non-dimensional streamwise vorticity
ωxD/U∞ in the near wake of the cylinder, measured at cross-stream planes xl/D = 1.5
(middle column) and xl/D = 2.5 (right column) at corresponding von Kármán vortex
shedding phases (left column). The contour levels are |ωz|D/U∞ = 0.4, 0.8, . . . , 4 and
|ωx|D/U∞ = 0.2, 0.4, . . . , 2. The blue (solid line) and red (dashed line) contours indicate
positive and negative vorticities, respectively, at Re = 180. (a) t = 0; (b) t = Tshed/2; (c)
t = Tshed; (d) t = 3Tshed/2; (e) t = 2Tshed.

cylinder diameter D is used as the reference length scale in the process. First,
the images from the side-view experiments are scaled down in order to make the
cylinder diameter equal in both experiments. Secondly, guide lines are drawn from the
vortex locations in the top-view images. Thirdly, the corresponding side-view image is
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FIGURE 16. The synchronization of two independent flow visualization experiments. In the
top figure, the probable location of the laser plane is shown. Guide lines are used to scale and
synchronize the images.

determined using those guide lines for each top-view image. Finally, on the basis of
the location of the vortex loop tails, the probable location of the laser plane of the
side-view experiments is estimated in the top-view images.

The period-doubling nature of the process is illustrated in the phase diagram that is
shown at the top right corner of figure 17. In this phase diagram, the letters correspond
to the image numbers and indicate the vortex shedding phase. The initial image of
the process, figure 17(a), is chosen such that it represents the approximate formation
moment of the lower side von Kármán vortex, denoted as L1. Likewise, the previously
shed upper side von Kármán vortex is marked as U1. This vortex U1 shows spanwise
waviness, which is the signature of the vortex loops originating from the upper vortex.
Figure 18(a–d) reveals that the vortex loops are parts of the upper vortex, which
are torn from it and stay in the base region. Figure 18(a–d) also show that these
vortex loops originating from the upper vortex stay between the upper and lower
vortices, affecting the near-wake dynamics. Moreover, these vortex loops are further
stretched in the braid region, as seen in figure 18(c–d), and roll up to form streamwise
vortex pairs from the sides of the loops, as shown in figure 17(a–d). During this half
shedding period, the vortex loop tails of U1 stay at a fixed position of approximately
∼0.5 − 0.7D from the rear end of the cylinder, while the rest of the vortex moves
downstream.

The vortex loop tails of U1 (see figure 18(d)), are apparently affecting the newly
forming upper von Kármán vortex U2 by initiating a spanwise waviness at the initial
formation stage (see figure 17(d)). This wavy deformation in U2 is amplified further
in the recirculating region (see figure 17(d–g)) and forms vortex loops that are seen
in figure 17(g). These vortex loop tails of U2 appear at the spanwise position of the
vortex loop heads of U1 in the previous cycle. Therefore, figure 18(g) does not show
any sign of an emerging vortex loop, as the laser plane is located at the vortex loop
head instead of at a vortex loop tail.
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FIGURE 17. The formation and evolution of mode C structures in the wake of a wire-
disturbed circular cylinder wake at a Reynolds number of Re = 195. The letters U and L
indicate the upper-side and lower-side primary von Kármán vortices, respectively, and the
subscripts show the indices of the corresponding vortices. The upper right diagram represents
the vortex shedding cycles to which the representative images belong. (a) 0; (b) (1/6)Tshed;
(c) (2/6)Tshed; (d) (3/6)Tshed; (e) (4/6)Tshed; (f ) (5/6)Tshed; (g) Tshed; (h) (7/6)Tshed;
(i) (8/6)Tshed; (j) (9/6)Tshed; (k) (10/6)Tshed; (l) (11/6)Tshed; (m) 2Tshed.
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FIGURE 18. Side-view visualization snapshots showing the evolution of mode C structures
at a Reynolds number of Re = 195. The snapshots represent approximately the same
vortex shedding phase as in figure 17. (a) 0; (b) (1/6)Tshed; (c) (2/6)Tshed; (d) (3/6)Tshed;
(e) (4/6)Tshed; (f ) (5/6)Tshed; (g) Tshed; (h) (7/6)Tshed; (i) (8/6)Tshed; (j) (9/6)Tshed;
(k) (10/6)Tshed; (l) (11/6)Tshed; (m) 2Tshed.
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In the first shedding period, the lower vortex L1 has formed in a parallel way to
the cylinder (see figure 17(a,b)), and preserves its shape until its encounter with the
vortex loop tails of U1, as shown in figure 17(c). Afterwards, L1 continues to shed in
a slightly wavy pattern. However, despite this waviness, the lower vortex L1 does not
develop any vortex loops and hence streamwise vortex pairs. Its waviness is initiated
after approximately 1/3 periods – unlike, for example, the upper vortices U2 and U3,
in which the waviness has started during the initial stages of formation.

The same physical process discussed above is also seen for the second part of the
vortex shedding process in figure 17(g–m). The vortex loops of U2 grow and form
spanwise vortex structures, which in turn initiate the formation of vortex loops in
U3. The vortex loop tails of U3 appear at the spanwise position of the vortex loop
heads of U2. Hence, the vortex loop tails of U1 and U3 occur at the same spanwise
location: see figure 17(a,m), respectively. This type of occurrence effectively doubles
the shedding period. Hence, an overall examination of the process suggests that the
mode C instability is a self-sustaining process with a period of T = 2Tshed.

5.2. The feedback mechanism between von Kármán vortices
After the above discussion about the physical process of shedding, one may conclude
that the period doubling is due to the feedback mechanism of streamwise vortices
between two consequent upper vortices. In this section, this feedback process is
discussed further using figure 19. The figure shows three instants from figure 17,
each half a shedding period apart from each other and each zoomed into the near
wake.

The growth of spanwise waviness and the formation of vortex loops can be
illustrated as though a vortex line is being torn away from the primary von Kármán
vortex and left to deform and stretch. The sketch on the left of figure 19 depicts vortex
loop 1, which originates from the previously shed upper vortex U1 and extends up
to the cylinder. As shown in figure 18(d), vortex loop 1 lies in between the upper
and lower vortices. The upstream convection of the vortex line, i.e. vortex loop 1, has
different effects on the primary vortices L1 and U2.

First, the tails of vortex loop 1 induce a negative streamwise velocity on the lower
vortex L1 via Biot–Savart induction, as illustrated in figure 19. This perturbation makes
the segments of L1, which face the tails of vortex loop 1, move more slowly than
the neighbouring segments, causing a wavy pattern along the lower vortex L1. The
slow-moving segments are at the same spanwise position as the perturbation source,
i.e. the tails of vortex loop 1.

The second effect is on the newly forming upper vortex U2. The tails of vortex
loop 1 have already extended up to the cylinder, where they apparently effects the
formation of U2 at the initial formation stage by inducing a positive streamwise
velocity perturbation (see the illustration in figure 19). Due to this perturbation, the
segments of U2 move slightly faster at the position of the vortex loop tails of U1. The
segments that are between the vortex loop tails move slowly and, at a later stage, form
the new tails of vortex loop 2, as shown in the middle sketch of figure 19. At the
later stage of the vortex shedding, the sides of the vortex loops will roll up and form a
streamwise vortex array of mode C instability.

The middle sketch of figure 19 also represents the effects of the vortex loops on
the formation of lower vortex L2. Although the vortex loops of U1 are still present in
the near wake, they do not affect the L2 at its initial formation stage. Considering that
approximately 1.5 shedding periods have passed since the formation of vortex loop 1,
it is likely that they are not strong enough to do so. The waviness of L2 is initiated
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FIGURE 19. Sketches of the feedback mechanism of mode C vortex formation. The vortex
line sketches are presented with the corresponding flow visualization snapshots at a Reynolds
number of Re = 195. The flow visualization snapshots are zoomed into the formation region
to make the near-wake vortex structures clear.

when it meets the tails of the following vortex loop 2, as presented in the sketch on
the right of figure 19.

As discussed by Williamson (1996a), during the natural transition regime mode A,
the feedback mechanism is set between the consecutive primary vortices, and this
mechanism is the reason for the self-sustaining mode A vortex loops at the same
spanwise position. On the other hand, for the mode C case, it is shown that the vortex
loops of U2 are not close enough to induce a perturbation on L2 at the initial stage
of the formation process. L2 sheds parallel to the cylinder and does not show any
spanwise waviness until it encounters the vortex loops of U2. This encounter takes
place when it is too late for the lower vortex to generate strong enough vortex loops
within the next half-cycle. Therefore, L2 cannot override the effect of vortex loop 2 on
U3. This process breaks the natural feedback mechanism of two consecutive primary
vortices (lower and upper) in mode C transition and establishes a new feedback
mechanism, which is apparently between the consecutive upper vortices only.

6. Concluding remarks
In conclusion, the current investigation aims to provide additional knowledge about

the flow physics of the cylinder wake under the disturbance of a very thin wire. The
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major consequence of placing a wire in the near wake of a cylinder is the triggering
of mode C transition in the cylinder wake. Therefore, the flow behind a circular
cylinder with a wire in the near wake has been investigated for Reynolds numbers
of Re = 165–300 in the three-dimensional transition regime. The information about
the flow physics has been obtained by flow visualization and PIV experiments. The
experiments revealed that by placing a small control wire parallel to the cylinder
at x/D = 0.75 and y/D = 0.75, the shedding pattern behind the cylinder changed
dramatically and mode C transition appeared in the wake. Flow visualization images at
Re> 180 revealed that mode C structures are found to have a spanwise wavelength of
λz ≈ 2D and to appear at the same spanwise location at every two shedding periods.

The investigation of velocity–time signals, which are obtained from PIV
experiments, revealed that they contain a W-shaped ‘high-peak–low-peak’ velocity
profile. The reason for having this velocity profile is that secondary vortices change
sign every shedding period. Due to this type of velocity profile, the u–v phase plot
shows two phase cycles instead of one, indicating the period-doubling nature of the
velocity signal.

Spectrum analysis showed that the ‘high-peak–low-peak’ velocity profile is reflected
as a subharmonic frequency component in the frequency domain. Naturally, this
subharmonic component is associated with the secondary mode C vortices, while the
primary frequency peak is associated with von Kármán vortices. Primary frequency
peaks in the spectrum denote the corresponding Strouhal numbers of mode C
transition. In the experiments, when compared with mode A and B transitions, the
Strouhal numbers for mode C are slightly lower than for modes A and B.

Investigation of both symmetry characteristics and instantaneous vorticity patterns
showed that the mode C transition is 2T-periodic rather than T-periodic. An analysis
of the time evolution of the streamwise vorticity field revealed that the period of
formation of von Kármán vortices does not change. However, due to the interaction
with secondary vortices, their formation cycle shows a 2T-periodic nature. That is, two
shedding periods have to elapse for the same von Kármán vortex to be at the same
location. Despite their T-periodic nature, the interaction mechanism of the upper and
lower vortices during formation changes every period. The 2T-periodic nature of the
mode C wake is clearer when the time evolution of secondary vortices is analysed.
The streamwise vorticity and rotation direction of the secondary vortices change sign
every shedding period, causing the whole unsteady wake to become 2T-periodic.

The secondary vortices in mode C transition are actually the vortex loops that
originate from the upper vortex. These vortex loops are further stretched in the braid
region and roll up to form streamwise vortex pairs from the sides of the loops. They
are located between the upper and lower vortices and affect the near-wake vortex
shedding process. Besides, it is shown that mode C instability exhibits feedback of
streamwise vortices between the upper primary vortices only, which is contrary to
the natural instability modes A and B. In mode C, the vortex loops are generated at
the same spanwise position every two cycles. Therefore, it is concluded that period
doubling in this type of flow is due to the feedback mechanism that appears between
two upper vortices.

The present contribution mainly focuses on the general characteristics of mode C
transition using top- and side-view visualization experiments, showing that in the
Reynolds number range of Re = 180–300, the natural transition modes A and B are
suppressed by the presence of a wire, and showing the formation and evolution of
the mode C structures in the wake of a wire-disturbed cylinder flow for a Reynolds
number of Re = 195. Side- and back-view PIV experiments are used to explore the
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symmetry-breaking effect of the wire compared to the natural transition modes A and
B, and to show the development of the streamwise vortices as a function of time. As
indicated above, the secondary streamwise vortices in mode C transition originate from
the primary upper vortices only, resulting in the typical 2T-periodic nature of mode C.
The energy transfer from the primary to the secondary vortices is analysed in detail
elsewhere (see Yildirim, Rindt & van Steenhoven 2013). The origin of the instability
for the natural transition modes A and B arises from an elliptic instability of the vortex
cores for mode A and from a hyperbolic instability in the braid region for mode B
(Williamson 1992, 1996a; Leweke & Williamson 1998; Thompson et al. 2001). The
different spatial scales of the vortex cores and the braid regions are coupled to the
typical wavelengths exhibited in mode A and B transitions. For mode C, this still
remains an open question to be answered.
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