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Abstract We prove that every separable Banach space containing an isomorphic copy of `1 can be
equivalently renormed so that the new bidual norm is octahedral. This answers, in the separable case,

a question in Godefroy [Metric characterization of first Baire class linear forms and octahedral norms,
Studia Math. 95 (1989), 1–15]. As a direct consequence, we obtain that every dual Banach space, with a

separable predual and failing to be strongly regular, can be equivalently renormed with a dual norm to

satisfy the strong diameter two property.
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1. Introduction

The existence of isomorphic copies of `1 in a Banach space has been a central topic
in Banach space theory; in fact, there are well-known isomorphic characterizations
independent of the considered norm in the space, as the one given by H. Rosenthal
in [16]. Also, there are purely geometrical characterizations in terms of the considered
norm in the space. For example, in [15] B. Maurey shows a celebrated characterization of
separable Banach spaces containing isomorphic copies of `1, as those separable Banach
spaces X , satisfying that there exists a x∗∗ ∈ X∗∗ \ {0} such that

‖x + x∗∗‖ = ‖x − x∗∗‖ for all x ∈ X .
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Note that this characterization is valid for all equivalent norms. The proof of Maurey’s
theorem is quite involved; however, an elementary approach, which works in the
important special case of subspaces of weakly sequentially complete Banach lattices,
is contained in [18]. Maurey’s theorem is closely related to the study of `1-types (also
studied by Kadets, Shepelska and Werner in [11]) and fails in the non-separable case
[15]. Later, octahedral norms were introduced in an unpublished paper by Godefroy and
Maurey [8] (see [6]), and this kind of norms was used by Godefroy and Kalton in [7] around
the study of the ball topology in Banach spaces, with applications to the existence of
unique preduals.

We recall that the norm ‖ · ‖ on a Banach space X (or X) is called octahedral if, for
every finite-dimensional subspace E of X and every ε > 0, there is a y ∈ SX such that

‖x + y‖ > (1− ε)
(
‖x‖+‖y‖

)
for all x ∈ E .

In [7, Lemma 9.1] it is proved that a separable Banach space X is octahedral if, and only
if, there exists a x∗∗ ∈ X∗∗ \ {0} such that

‖x + x∗∗‖ = ‖x‖+‖x∗∗‖ for all x ∈ X .

It is clear that `1 (as L1 or C([0, 1])) is octahedral, and also it is easy to find
non-octahedral equivalent norms in `1. However, if we allow the space to be renormed,
then G. Godefroy proved the following general characterization.

Theorem (see [6, Theorem II.4]). Let X be a Banach space. The following assertions are
equivalent:

(i) X contains a subspace isomorphic to `1.

(ii) There exists an equivalent norm | · | in X such that (X, | · |) is octahedral.

(iii) There exists an equivalent norm ||| · ||| in X and x∗∗ ∈ X∗∗ \ {0} such that

|||x + x∗∗||| = |||x ||| + |||x∗∗||| for all x ∈ X .

It is known that a Banach space X is octahedral whenever X∗∗ is. However, the converse
is not true in general. The natural norm of C([0, 1]) is octahedral, but its bidual norm
is not octahedral because the characteristic function of a singleton is a point of Fréchet
smoothness of the bidual norm to the natural norm of C([0, 1]). Therefore, a natural
problem was posed by G. Godefroy in [6]:

Question 1 (see [6, p. 12]). If X contains an isomorphic copy of `1, does there always
exist an equivalent norm on X such that the bidual X∗∗ is octahedral?

The main goal of this note is to give a positive answer, in the separable case, to the
above question.

Currently, it is known that there is a close relationship between octahedral norms and
other geometrical properties in Banach spaces, for example, the Daugavet property [12]
or the diameter two properties. A Banach space X has the strong diameter two property
if every convex combination of slices in BX , the unit ball of X , has diameter two. It is
known that a dual Banach space X∗ is octahedral if, and only if, X satisfies the strong
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diameter two property [1], which gives a complete duality relation between these two
properties.

Recall that a Banach space is said to be strongly regular if every closed, bounded, and
convex subset of X contains convex combinations of slices with diameter arbitrarily small.
Strong regularity is a weaker isomorphic property than the well-known Radon–Nikodym
property in Banach spaces (see [5] for background). It is known that X∗ is strongly
regular if and only if X does not contain isomorphic copies of `1 [5, Corollary VI.18].
Hence, Question 1 is a particular case (a dual case in fact) of the general open question:

Question 2 (see [2]). Can every Banach space failing to be strongly regular be equivalently
renormed such that it has the strong diameter two property?

Let us now describe the organization of the paper. After some notation and
preliminaries, we start Section 2 with the definition of an octahedral set in a Banach space,
which tries to be a localization of octahedrality for subsets in a Banach space, giving local
octahedrality properties in the bidual. Such a set can be obtained in a dual Banach space,
whenever the predual satisfies the strong diameter two property, exploiting the dual
relation between octahedrality and the strong diameter two property. In Proposition 2.4,
we give a general result which produces an octahedral bidual norm in a Banach space from
another Banach space with an octahedral set. Section 3 studies the properties of a subset
with the strong diameter two property constructed by Talagrand [17] in the dual of C(1),
the space of continuous functions on the Cantor set 1, which will be crucial to achieve
our main goal. The initial interest of this set was to answer affirmatively to the question
posed by J. Diestel and J. Uhl, about the relation between w∗-dentability of w∗-compact
subsets of a dual Banach space and the existence of `1-copies in the predual. Finally, we
conclude in Lemmas 3.3 and 3.4 the existence of an isometric `1-sequence in C(1) which
is an octahedral set in some subspace of C(1) equipped with a different norm. Section 4
implements the general results of Section 1 for the space C(1) and the octahedral set
obtained in Section 3 to get in Theorem 4.1 an equivalent norm in C(1) with octahedral
bidual norm. Finally, using the good embedding of C(1)∗ in the dual of every separable
Banach space with `1-copies, we get from Theorem 4.2 that every separable Banach space
with isomorphic copies of `1 has an equivalent norm with octahedral bidual norm, which
answers Question 1 in the separable case. Also, some partial answer in the non-separable
setting will be obtained. As a direct consequence, we obtain in Corollary 4.4 that every
dual Banach space, with a separable predual and failing to be strongly regular, can be
equivalently renormed with a dual norm to satisfy the strong diameter two property,
which is a partial answer to Question 2 (in fact, an answer to the dual case). We finish
with other consequences around the ball topology on Banach spaces and questions.

We pass now to introduce some notation. We consider only real Banach spaces. For a
Banach space X , X∗ denotes the topological dual of X , BX and SX stand for the closed
unit ball and unit sphere of X , respectively, and w, respectively w∗, denotes the weak
and weak-star topology in X , respectively X∗. For a subspace Y of X , Y⊥ := { f ∈ X∗ :
f (Y ) = {0}}, which is a subspace of X∗. Then Y⊥⊥ (the perp of Y⊥) is a subspace of X∗∗.
By lin A, we denote the linear span of the subset A of X . A slice of a set C in X is a set
of X given by

S(C, x∗, α) := {x ∈ C : x∗(x) > sup x∗(C)−α},
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where x∗ ∈ S∗X and α > 0. A w∗-slice of a set C of X∗ is a slice of C determined by

elements of X . By j , we will denote the canonical embedding of X into X∗∗. If Y is a

subspace of X∗, then X |Y will denote the set of functionals in j (X) restricted to Y, that

is, X |Y := {x|Y : x ∈ X ⊂ X∗∗}.

2. Previous results

From [10, Proposition 2.1], we know that a Banach space X is octahedral if, and only if,

for every n ∈ N, ε > 0, and for every x1, . . . , xn ∈ SX , there is a y ∈ SX such that

‖xi + y‖ > 2− ε for every i ∈ {1, . . . , n}.

It would be natural to call then a subset A of SX to be X -octahedral if it satisfies that

for every n ∈ N, ε > 0, and for every x1, . . . , xn ∈ SX , there is a ∈ A such that

‖xi + a‖ > 2− ε for every i ∈ {1, . . . , n}.

In the case X is separable and octahedral, it is essentially proved in [11], using `1-type

techniques, that it is possible to choose an X -octahedral subset as an `1-sequence.

In the case X∗∗ is octahedral, then the w∗-lower semicontinuity of the norm in X∗∗

gives that it is possible to choose an X∗∗-octahedral set A in such way that A ⊂ X . The

next easy lemma shows different ways to get the octahedrality of X∗∗.

Lemma 2.1. Let X be a Banach space. The following are equivalent:

(i) X∗∗ is octahedral.

(ii) For every n ∈ N, x∗∗1 , . . . , x∗∗n ∈ SX∗∗ , and ε > 0, there is y∗∗ ∈ SX∗∗ such that

‖x∗∗i + y∗∗‖ > 2− ε for every i ∈ {1, . . . , n}.

(ii’) For every n ∈ N, x∗∗1 , . . . , x∗∗n ∈ SX∗∗ , and ε > 0, there is y ∈ SX such that

‖x∗∗i + y‖ > 2− ε for every i ∈ {1, . . . , n}.

(iii) For every r > 1, n ∈ N, x∗∗1 , . . . , x∗∗n ∈ r BX∗∗ , and ε > 0, there is y∗∗ ∈ BX∗∗ \ {0}
such that

‖x∗∗i + y∗∗‖ > (1− ε)(‖x∗∗i ‖+ 1) for every i ∈ {1, . . . , n}.

(iii’) For every r > 1, n ∈ N, x∗∗1 , . . . , x∗∗n ∈ r BX∗∗ , and ε > 0, there is y ∈ BX \ {0} such

that

‖x∗∗i + y‖ > (1− ε)(‖x∗∗i ‖+ 1) for every i ∈ {1, . . . , n}.

Proof. The equivalence between (i) and (ii) is done in [10]. Obviously, (ii’) ⇒ (ii), (iii’)

⇒ (iii), and (i) ⇒ (iii).

(iii’)⇒(ii’). Let n ∈ N, x∗∗1 , . . . , x∗∗n ∈ SX∗∗ , and ε > 0. By (iii’), there is a y ∈ BX \ {0}
such that

‖x∗∗i + y‖ >
(

1−
ε

4

)
(1+ 1) = 2−

ε

2
for every i ∈ {1, . . . , n}.
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Therefore, ‖y‖ > 1− ε
2 and∥∥∥∥x∗∗i +

y
‖y‖

∥∥∥∥ > ‖x∗∗i + y‖−
∥∥∥∥y−

y
‖y‖

∥∥∥∥ > 2−
ε

2
− (1−‖y‖) > 2− ε

for every i ∈ {1, . . . , n}.
(iii)⇒(iii’). Let r > 1, n ∈ N, x∗∗1 , . . . , x∗∗n ∈ r BX∗∗ , and ε > 0. By (iii), there is a y∗∗ ∈

BX∗∗ \ {0} such that

‖x∗∗i + y∗∗‖ > (1− ε)(‖x∗∗i ‖+ 1) for every i ∈ {1, . . . , n}.

By Goldstine’s theorem, there is a net {yλ} ⊂ BX \ {0} such that yλ weak∗ converges to

y∗∗. Finally, by the weak∗ lower semicontinuity of the norm in X∗∗, we deduce that there

is a λ0 such that

‖x∗∗i + yλ0‖ > (1− ε)(‖x∗∗i ‖+ 1) for every i ∈ {1, . . . , n}.

The equivalence between (i) and (iii’) in Lemma 2.1 motivates the following definition.

Definition 2.2. Let X be a Banach space and fix B as a closed, convex, and bounded

subset of X∗∗. A subset A ⊂ BX \ {0} is called an octahedral set for B if for every n ∈ N,

x∗∗1 , . . . , x∗∗n ∈ B, and ε > 0, there is an element a ∈ A such that

‖x∗∗i + a‖ > (1− ε)(‖x∗∗i ‖+ 1) for every i ∈ {1, . . . , n}.

In the case B = BX∗∗ , we will say that A is an octahedral set for X∗∗, without

mentioning BX∗∗ .

Observe that an octahedral set for X∗∗ is a subset of X giving the octahedrality in X∗∗

and so in X .

As we say in the introduction, there is a complete duality relation between octahedrality

and strong diameter two property. In fact, a Banach space X satisfies the strong diameter

two property (SD2P in short) if, and only if, X∗ is octahedral. The next lemma uses this

dual relation to get octahedral subsets from SD2P subsets.

Lemma 2.3. Let X be a Banach space. Assume that there is A ⊂ BX \ {0} such that for

every n ∈ N, 0 < ε < 2, and every average of slices of BX∗ ,
1
n
∑n

i=1 S(BX∗ , x∗∗i , ε), there

exist x∗i , y∗i ∈ S(BX∗ , x∗∗i , ε) and x ∈ A such that(
1
n

n∑
i=1

x∗i −
1
n

n∑
i=1

y∗i

)
(x) > 2− ε.

Then for every n ∈ N, x∗∗1 , . . . , x∗∗n ∈ SX∗∗ , and ε > 0, there exists y ∈ A such that

‖x∗∗i + y‖ > 2− ε for every i ∈ {1, . . . , n},

and so A is an octahedral set for X∗∗.

https://doi.org/10.1017/S1474748019000264 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748019000264


574 J. Langemets and G. López-Pérez

Proof. Let n ∈ N, x∗∗1 , . . . , x∗∗n ∈ SX∗∗ , and ε > 0. Consider now the convex combination

of slices 1
n
∑n

i=1 S(BX∗ , x∗∗i ,
ε

2n ), then by our assumption there are x∗i , y∗i ∈ S(BX∗ , x∗∗i ,
ε

2n )

and a x ∈ A such that (
1
n

n∑
i=1

x∗i −
1
n

n∑
i=1

y∗i

)
(x) > 2−

ε

2n
.

Then x∗i (x)− y∗i (x) > 2− ε
2 for every i ∈ {1, . . . , n} and so x∗i (x) > 1− ε

2 for every i ∈
{1, . . . , n}.

Finally, we obtain that

‖x∗∗i + x‖ > x∗∗i (x
∗

i )+ x∗i (x) > 1−
ε

2n
+ 1−

ε

2
> 2− ε.

Therefore, by the equivalence between (ii’) and (iii’) in Lemma 2.1, A is an octahedral

set for X∗∗.

Our strategy will be to renorm a Banach space with a bidual octahedral norm, starting

from another Banach space with a good octahedral subset. The next proposition is a

stability property under renorming, in this direction.

Proposition 2.4. Let (X, ‖ · ‖X ) be a Banach space. Assume that there exists a Banach

space (Y, ‖ · ‖Y ) and a bounded linear operator S : X → Y such that the following

conditions hold:

(A1) there exists an octahedral set B ⊂ BY for Y ∗∗;

(A2) there exists Z , a subspace of X , such that S|Z : (Z , ‖ · ‖X )→ (B̂, ‖ · ‖Y ) is an onto

isomorphism, where B̂ denotes the closed linear span of B.

Then there is an equivalent norm in X such that the bidual X∗∗ is octahedral.

Proof. As the restriction of S to Z is an isomorphism, we can renorm Z so that S is an

isometry from Z onto B̂. Now, we can extend the above norm to an equivalent norm ‖ · ‖

on X . Define a new norm on X by

p(x) = ‖Sx‖Y +‖x + Z‖ for all x ∈ X .

It is clear that p is a seminorm. As S|Z is one to one, then p is a norm. Denote

r := ‖S‖. In order to see that p and ‖ · ‖ are equivalent norms, we show that 1
r+2‖x‖ 6

p(x) 6 (r + 1)‖x‖ for every x ∈ X . The upper estimate is clear. For the lower estimate,

assume that x ∈ X with ‖x‖ = 1. If ‖x + Z‖ > 1
r+2 , then it is clear that p(x) > ‖x‖

r+2 .

Assume now that ‖x + Z‖ < 1
r+2 , then there is a z ∈ Z with ‖x − z‖ < 1

r+2 . Hence, ‖z‖ >
‖x‖−‖x − z‖ > r+1

r+2 and

p(x) > ‖Sx‖Y > ‖Sz‖Y −‖S(x − z)‖Y

> ‖z‖− r‖x − z‖ >
r + 1
r + 2

−
r

r + 2
=
‖x‖

r + 2
.

Note that (X, p) is isometric to a subspace of Y ⊕1 X/Z ; thus, its bidual (X, p)∗∗ is

isometric to a subspace of Y ∗∗⊕1 X∗∗/Z⊥⊥. Denote by p̃ the bidual norm of (X, p)∗∗,
that is,

p̃(x∗∗) = ‖S∗∗x∗∗‖Y ∗∗ +‖x∗∗+ Z⊥⊥‖ for all x∗∗ ∈ X∗∗.
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Finally, we prove that (X∗∗, p̃) has an octahedral norm. Let n ∈ N, x∗∗1 , . . . , x∗∗n in X∗∗

with p̃(x∗∗i ) = 1, and ε > 0. By assumption (A1), B is an octahedral set for Y ∗∗; thus, we

can find b ∈ B such that ‖S∗∗x∗∗i + b‖Y ∗∗ > ‖S∗∗x∗∗i ‖Y ∗∗ + 1− ε for every i ∈ {1, . . . , n}.
Find now an element z ∈ Z such that b = Sz. Since S∗∗z = Sz = b, we have now

p̃(x∗∗i + z) = ‖S∗∗x∗∗i + S∗∗z‖Y ∗∗ +‖x∗∗i + z+ Z⊥⊥‖

> ‖S∗∗x∗∗i ‖Y ∗∗ + 1− ε+‖x∗∗i + Z⊥⊥‖

= p̃(x∗∗i )+ 1− ε = 2− ε

for every i ∈ {1, . . . , n}.

The next proposition gives a dual Banach space Y from a weak∗ compact and convex

set C inside another dual Banach space X∗ such that the unit ball of Y is conv(C ∪−C).
This result is essentially known, but we give the proof here for the sake of completeness.

Proposition 2.5. Let X be a Banach space, C ⊂ BX∗ a weak∗ compact and convex set,

and Y be the linear span of C. Then there is a (non-necessarily equivalent) dual norm

| · | in Y satisfying | · | > ‖ · ‖Y such that B(Y,|·|) = conv(C ∪−C). Furthermore, if i is the

inclusion map from (Y, | · |) into X∗ and i∗ is the adjoint operator from X∗∗ into (Y, | · |)∗,
then i∗(X) is a dense subspace of (Y, | · |)∗, the predual of (Y, | · |), with ‖i∗‖ 6 1. Finally,

if Y is closed in X∗, then Y is w∗-closed and | · | and ‖ · ‖Y are equivalent norms.

Proof. Define K := conv(C ∪−C). Now, for every ε > 0, we define an equivalent norm

‖ · ‖ε in X∗ whose new unit ball is the set B(X∗,‖·‖ε) = K + εBX∗ .

Denote

Z :=
{

x∗ ∈ X∗ : sup
ε>0
‖x∗‖ε <∞

}
and define a norm on Z by |x∗| := supε>0 ‖x

∗
‖ε for every x∗ ∈ Z . Observe that B(Z ,|·|) ⊂

(1+ ε)BZ for every ε and thus | · | > ‖ · ‖Z . Note that (Z , | · |) is isometric to the diagonal

subspace of the `∞-sum of the family of Banach spaces {(X∗, ‖ · ‖ε) : ε > 0}. Then Z is a

Banach space.

Now B(Z ,|·|) = K , that is, K =
⋂
ε>0(K + εBX∗). Indeed, clearly K ⊂ K + εBX∗ for

every ε > 0. For the converse, if x∗ ∈
⋂
ε>0(K + εBX∗), then there are kε ∈ K and

x∗ε ∈ BX∗ such that x∗ = kε + εx∗ε for every ε > 0. Hence, ‖x∗− kε‖ = ε‖x∗ε ‖ 6 ε for every

ε > 0. Thus, d(x∗, K ) = 0 and x∗ ∈ K because K is closed.

From the equality B(Z ,|·|) = K , we get that Z = lin B(Z ,|·|) = lin K = Y . Then (Y, | · |) is

a Banach space whose unit ball is compact in a locally convex and separated topology in

Y, the weak-star topology of X∗ on Y, and so (Y, | · |) is a dual space whose predual is the

closure in (Y, | · |)∗ of X |Y := {x|Y : x ∈ X ⊂ X∗∗} (see [13]). Now it is clear that i∗(X) is a

dense subspace of (Y, | · |)∗ and ‖i∗‖ 6 1 since ‖i‖ 6 1. In the case Y is closed in X∗, we

have that | · | is an equivalent norm in Y = Z since Y is closed in X , (Z , | · |) is complete,

and | · | > ‖ · ‖Z , and so Y is w∗-closed, applying the Banach–Dieudonné theorem.
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3. Talagrand set

We start introducing some notations and results from [17, Theorem 4.6], where a “good”

subset in C(1)∗ is constructed with the SD2P. This construction, completed by M.

Talagrand, will be crucial to get our main results.

Consider a natural number s > 3 and let (Ns)s>3 be a partition of N into disjoint

infinite sets. Now fix s > 3. For I ⊂ N, i ∈ N, define on the ith copy of {0, 1}, denoted by

{0, 1}i , a measure

ν
(i)
s,I =


1
s
δ
(i)
0 +

s− 1
s
δ
(i)
1 if i ∈ I

s− 1
s
δ
(i)
0 +

1
s
δ
(i)
1 if i /∈ I.

Now for J ⊂ N, I ⊂ J , and p ∈ J , define

µJ
s,I =

⊗
i∈J

ν
(i)
s,I ,

µ̄
J,p
s,I = δ

(p)
0 ⊗

 ⊗
i∈J\{p}

ν
(i)
s,I

 , ¯̄µ
J,p
s,I = δ

(p)
1 ⊗

 ⊗
i∈J\{p}

ν
(i)
s,I

 ,
and

ρ J
I =

⊗
s>3

µ
J∩Ns
s,I∩Ns

.

If J = N, then we will use the notation ρI := ρ
N
I .

We also consider the operator TJ : C(1J )→ C(1J ) defined by TJ ( f )(I ) = ρ J
I ( f ), for

every I ⊂ J , where we have identified 1J with the power set P(J ). One can easily check

that T ∗J :M(1J )→M(1J ) satisfies T ∗J (δ
J
I ) = ρ

J
I , where δ J

I is the Dirac measure at I on

1J , and then T ∗J (θ) = w
∗-
∫
1J
ρ J

I dθ(I ). If J = N, then we will use the notation T := TN.

Note that the identification between 1 and P(N) is done in the following way: if

x ∈ {0, 1}N, then we see x as the element in 1 given by Ix = {n ∈ N : x(n) = 1}; if I ⊂ N
then we can see I as the element x I ∈ 1 given by x I (n) = 1 if n ∈ I and x I (n) = 0
otherwise. In this way, we have

ν
(i)
s,I∩Ns

=


1
s
δ
(i)
0 +

s− 1
s
δ
(i)
1 if x I (i) = xNs (i) = 1

s− 1
s
δ
(i)
0 +

1
s
δ
(i)
1 otherwise.

Denote by P1 the set of probability measures on 1. In [17, Theorem 4.6], it was shown

that C := T ∗(P1) is a convex w∗-compact set of P1 with the property that every convex

combination of weak slices of C has diameter two.

The next lemma and proposition are part of the proof of [17, Theorem 4.6] and give one

of the tools to find a key octahedral set. We include it here for the sake of completeness.

Lemma 3.1 (see [17, Lemma 4.8]). For every s > 3 and every δ > 0, there exists k = k(s, δ)
such that:
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For every n ∈ N, every J ⊂ N, |J | > kn, and every (ϕi )i∈{1,...,n} ∈M(1J )
∗, ‖ϕi‖ 6 1,

there exists p ∈ J such that

sup
I∈{∅,J }

sup
i∈{1,...,n}

|ϕi (µ̄
J,p
s,I −

¯̄µ
J,p
s,I )| < δ.

Proposition 3.2 (see the proof of [17, Theorem 4.6]). Let n ∈ N and S1, . . . , Sn be slices

of C. Then for every s > 3, there exist J ⊂ N, |J | > n, and p ∈ J such that

σ1 :=
1
n

 l∑
i=1

µJ
s,J ⊗ γ̄i +

n∑
i=l+1

µJ
s,{p}⊗ γ̄i

 ∈ 1
n

n∑
i=1

Si ,

σ2 :=
1
n

 l∑
i=1

µJ
s,J\{p}⊗ γ̄i +

n∑
i=l+1

µJ
s,{∅}⊗ γ̄i

 ∈ 1
n

n∑
i=1

Si ,

where l ∈ {1, . . . , n} and γ̄i is a probability measure for every i ∈ {1, . . . , n}.

Proof. Observe first that for every J ⊂ N, |J | <∞, every σ ∈ C is a convex combination

of elements of C of the form ρ J
I ⊗ γI , where I runs through the subsets of J and γI =

T ∗N\J (θI ) for some probability measure θI on 1N\J .

Let n ∈ N, δ > 0, ϕ1, . . . , ϕn ∈M(1)∗ with ‖ϕi‖ = 1, and consider

S(C, ϕi , δ) = {σ ∈ C : ϕi (σ ) > Mi − δ},

where Mi = supσ∈C ϕi (σ ).

For every s > 3, let J0 ⊂ Ns , |J0| = n2nk, where k = k(s, δ/2) is given by Lemma 3.1. For

every i ∈ {1, . . . , n}, choose σi ∈ C such that ϕi (σi ) > Mi − δ/2. By the above observation

(applied to σi ) and a convexity argument, we may find Ii ⊂ J0 such that ϕi (ρ
J0
Ii
⊗ γi,Ii ) >

Mi − δ/2.

By a cardinality argument, there exists J ⊂ J0, |J | > nk(s, δ/2), which satisfies either

J ⊂ Ii or J ⊂ J0 \ Ii for every i ∈ {1, . . . , n}. If we put γ̄i = µ
J0\J
s,Ii\J ⊗ γi,Ii , we have, since

J0 ⊂ Ns , that ρ
J0
Ii
⊗ γi,Ii = µ

J
s,J∩Ii

⊗ γ̄i .

Define now elements ψi ∈M(1J )
∗ by ψi (σ ) = ϕi (σ ⊗ γ̄i ), and apply Lemma 3.1 to find

a p ∈ J such that

sup
I∈{∅,J }

sup
i∈{1,...,n}

ψi (µ̄
J,p
s,I −

¯̄µ
J,p
s,I ) < δ/2.

Without loss of generality, we can suppose that J ⊂ Ii for i ∈ {1, . . . , l} and J ⊂ J0 \ Ii
for i ∈ {l + 1, . . . , n}. By a convexity argument, we deduce that

{µJ
s,J ⊗ γ̄i , µ

J
s,J\{p}⊗ γ̄i } ⊂ Si for i ∈ {1, . . . , l}

and

{µJ
s,{p}⊗ γ̄i , µ

J
s,∅⊗ γ̄i } ⊂ Si for i ∈ {l + 1, . . . , n}.
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Let p ∈ N and, in the following, denote by fp : 1→ R the function

fp(x) =

−1 if x(p) = 0

1 if x(p) = 1,

where x ∈ 1. Note that fp ∈ C(1) with ‖ fp‖ = 1 for every p ∈ N.

In the following, we denote by Y the linear span of C and | · | the norm on Y given by

Proposition 2.5. Recall that Y is a dual Banach space satisfying B(Y,|·|) = K = co(C ∪−C).
Denote by (Y∗, | · |∗), the predual of (Y, | · |).

Lemma 3.3. The set { fp |Y : p ∈ N} is an octahedral set for (Y∗, | · |∗)∗∗. In particular,

(Y, | · |) has the strong diameter two property.

Proof. Note first that BY = K = {λa− (1− λ)b : λ ∈ [0, 1], a, b ∈ C}. By Lemma 2.3, it is

enough to prove that C satisfies the following property:

(•) for every n ∈ N, ε > 0, and every average of slices of C, 1
n
∑n

i=1 S(C, x∗∗i , ε), there

exist x∗i , y∗i ∈ S(C, x∗∗i , ε) and p ∈ N such that

1
n

n∑
i=1

(x∗i − y∗i )( fp |Y ) > 2− ε.

Indeed, assume that { fp |Y }p∈N satisfies (•) and let us show that { fp |Y : p ∈ N} is an

octahedral set for (Y∗, | · |∗)∗∗. Fix n ∈ N, ε > 0, and S1, . . . , Sn slices in K. Observe that

every slice Si has non-empty intersection with C or −C since K = co(C ∪−C). Let I :=
{i ∈ {1, . . . n} : Si ∩ C 6= ∅} and J := {1, . . . n} \ I . We consider

A :=
1
n

∑
i∈I

Si ∩ C+
1
n

∑
i∈J

Si ∩ (−C) ⊂
1
n

n∑
i=1

Si .

Observe that

A− A =
1
n

∑
i∈I

Si ∩ C+
1
n

∑
i∈J

Si ∩ (−C)−
1
n

∑
i∈I

Si ∩ C−
1
n

∑
i∈J

Si ∩ (−C)

=
1
n

∑
i∈I

Si ∩ C+
1
n

∑
i∈J

(−Si )∩ C−
(

1
n

∑
i∈I

Si ∩ C+
1
n

∑
i∈J

(−Si )∩ C
)

= B− B,

where B := 1
n
∑

i∈I Si ∩ C+ 1
n
∑

i∈J (−Si )∩ C is an average of slices in C. Since A− A =
B− B and as we are assuming (•), we have that

sup
p∈N

sup
z∗∈A−A

z∗( fp |Y ) = sup
p∈N

sup
z∗∈B−B

z∗( fp |Y ) > 2− ε/2.

Therefore, there are x∗i , y∗i ∈ Si ∩ C ⊂ Si for every i ∈ I ,x∗i , y∗i ∈ Si ∩ (−C) ⊂ Si for every

i ∈ J , and p ∈ N such that

1
n

n∑
i=1

(x∗i − y∗i )( fp) > 2− ε,
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which, by Lemma 2.3, proves that { fp |Y : p ∈ N} is an octahedral set for (Y∗, | · |∗)∗∗.
Let us now prove that { fp |Y }p∈N is an octahedral set for (Y∗, | · |∗)∗∗. For this, we will

apply again Lemma 2.3.

Let n ∈ N, S1, . . . , Sn be slices of C, and ε > 0. Find s > 3 such that 4/s < ε. By

Proposition 3.2, there exist J ⊂ N, |J | > n, and p ∈ J such that

σ1 :=
1
n

 l∑
i=1

µJ
s,J ⊗ γ̄i +

n∑
i=l+1

µJ
s,{p}⊗ γ̄i

 ∈ 1
n

n∑
i=1

Si ,

σ2 :=
1
n

 l∑
i=1

µJ
s,J\{p}⊗ γ̄i +

n∑
i=l+1

µJ
s,{∅}⊗ γ̄i

 ∈ 1
n

n∑
i=1

Si ,

where l ∈ {1, . . . , n} and γ̄i is a probability measure for every i ∈ {1, . . . , n}.
Therefore,

〈σ1− σ2, fp〉

=

〈
1
n

 l∑
i=1

µJ
s,J ⊗ γ̄i +

n∑
i=l+1

µJ
s,{p}⊗ γ̄i


−

1
n

 l∑
i=1

µJ
s,J\{p}⊗ γ̄i +

n∑
i=l+1

µJ
s,{∅}⊗ γ̄i

 , fp

〉

=
1
n

〈
(µJ

s,J −µ
J
s,J\{p})⊗

( l∑
i=1

γ̄i

)
+ (µJ

s,{p}−µ
J
s,∅)⊗

 n∑
i=l+1

γ̄i

 , fp

〉

=
s− 2

s

〈
(δ
(p)
1 − δ

(p)
0 )⊗

[
l
n

(
µ

J\{p}
s,J\{p}⊗

(
1
l

l∑
i=1

γ̄i

))

+
n− l

n

µJ\{p}
s,∅ ⊗

 1
n− l

n∑
i=l+1

γ̄i

 , fp

〉

= 2
s− 2

s
> 2− ε.

In the last equality, we use the Fubini theorem, and the fact that the measure which

appears between brackets l
n

(
µ

J\{p}
s,J\{p}⊗

(
1
l

l∑
i=1

γ̄i

))
+

n− l
n

µJ\{p}
s,∅ ⊗

 1
n− l

n∑
i=l+1

γ̄i


is a probability measure since it is a convex combination of probability measures.

From the dual relation of an octahedral norm and the strong diameter two property [1],

we get that (Y, | · |) is a dual Banach space with the strong diameter two property.
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Denote by j the canonical embedding of C(1) into C(1)∗∗. Observe now that from

Proposition 2.5, we have for every f ∈ C(1) that

f|Y ∈ Y∗ and | f|Y |∗ 6 ‖ f|Y‖(Y,‖·‖C(1)∗ )∗ .

In the following lemma, we will collect some of the properties of fp. In particular, the

linear spans of fp in C(1), j (C(1))|Y , and Y∗ are all isomorphic to `1.

Lemma 3.4. The functions fp satisfy the following:

1. 1 = ‖ fp‖C(1) > ‖ fp|Y‖(Y,‖·‖C(1)∗ )∗ > | fp |Y |∗ for every p ∈ N.

2. For every n ∈ N, α1, . . . , αn ∈ R∥∥∥ n∑
i=1

αi fpi

∥∥∥
C(1)
=

n∑
i=1

|αi |.

3. For every n ∈ N, α1, . . . , αn ∈ R
n∑

i=1

|αi | >
∥∥∥ n∑

i=1

αi fpi

∣∣
Y

∥∥∥
(Y,‖·‖C(1)∗ )∗

>
∣∣∣ n∑

i=1

αi fpi |Y

∣∣∣
∗

>
1
3

n∑
i=1

|αi |.

Proof. (1) This is clear from the preceding comment.

(2) Let n ∈ N, α1, . . . , αn ∈ R \ {0}, and p1, . . . , pn ∈ N. Since ‖ fpi ‖C(1) = 1, we clearly

have that ‖
∑n

i=1 αi fpi ‖C(1) 6
∑n

i=1 |αi |. For the other inequality, choose an x0 ∈ 1

such that

x0(pi ) =

0 if αi < 0

1 if αi > 0.

Hence, ∥∥∥ n∑
i=1

αi fpi

∥∥∥
C(1)

>
n∑

i=1

αi fpi (x0) =

n∑
i=1

|αi |.

(3) Let n ∈ N, α1, . . . , αn ∈ R \ {0}, and p1, . . . , pn ∈ N. Find s1, . . . , sn > 3 such that

pi ∈ Nsi . Observe that the inequalities

n∑
i=1

|αi | >
∥∥∥ n∑

i=1

αi fpi

∣∣
Y

∥∥∥
(Y,‖·‖C(1)∗ )∗

>
∣∣∣ n∑

i=1

αi fpi |Y

∣∣∣
∗

are clear because ‖ fpi ‖C(1) = 1 and ‖ · ‖(Y,‖·‖C(1)∗ )∗ > | · |∗ on j (C(1)|Y . For the lower

estimate, choose I ⊂ N such that pi ∈ I if αi > 0 and pi /∈ I if αi < 0. Consider the

measure

ρI =
⊗
s>3

⊗
i∈Ns

ν
(i)
s,I∩Ns

and denote

µk :=
⊗
s>3

⊗
i∈Ns\{pk }

ν
(i)
s,I∩Ns

.

https://doi.org/10.1017/S1474748019000264 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748019000264


Bidual octahedral renormings and strong regularity 581

Note that µk is a probability measure for every k ∈ {1, . . . , n}. By the Fubini theorem,

we have ∣∣∣∣ n∑
i=1

αi fpi

∣∣∣∣
∗

>

∣∣∣∣ n∑
i=1

αi

∫
1

fpi dρI

∣∣∣∣
=

∣∣∣∣ n∑
i=1

αi

∫
1

fpi d
(
ν
(pi )
si ,I∩Nsi

⊗µi

)∣∣∣∣
=

∣∣∣∣ n∑
i=1

αi

∫
{0,1}N\{pi }

∫
{0,1}pi

fpi dν
(pi )
si ,I∩Nsi

dµi

∣∣∣∣
=

∣∣∣∣ ∑
αi>0

αi

∫
{0,1}N\{pi }

∫
{0,1}pi

fpi d
( 1

si
δ
(pi )
0 +

si − 1
si

δ
(pi )
1

)
dµi

+

∑
α j<0

α j

∫
{0,1}N\{p j }

∫
{0,1}p j

f p j d
( s j − 1

s j
δ
(p j )

0 +
1
s j
δ
(p j )

1

)
dµ j

∣∣∣∣
=

∣∣∣∣ ∑
αi>0

αi

(
si − 1

si
−

1
si

)
+

∑
α j<0

α j

(
1
s j
−

s j − 1
s j

)∣∣∣∣
=

∑
αi>0

|αi |
( si − 2

si

)
+

∑
α j<0

|αi |
( s j − 2

s j

)

>
1
3

n∑
i=1

|αi |.

4. Main results

Let us summarize the key properties proved in the above sections.

(1) (Proposition 2.5) There is a (non-closed) subspace Y of C(1)∗ and a dual norm

| · | in Y such that ‖ · ‖C(1)∗ 6 | · | on Y. Furthermore, the restriction to Y of every

element of C(1) is an element in Y∗, the predual of (Y, | · |).
(2) (Lemmas 3.3 and 3.4) There is an isometric `1-sequence { fp} in C(1) such that

{ f p |Y } ⊂ Y∗ is an octahedral set for (Y∗, | · |∗)∗∗ and also it is an isomorphic

`1-sequence.

The results of the above sections allow us to get now the bidual octahedral renorming

for C(1).

Theorem 4.1. The Banach space C(1) admits an equivalent norm such that its bidual

norm is octahedral.

Proof. Denote by jY the natural bounded linear map from C(1) to

j (C(1))|Y := {x|Y : x ∈ C(1) ⊂ C(1)∗∗}
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and by i the inclusion map from j (C(1))|Y to Y∗. Hence, S := i ◦ jY is a bounded linear

map from C(1) to Y∗. Let Z (respectively, Z∗) be the subspace given by the closed linear

span of fp in C(1) (respectively, by { fp |Y } in (Y∗, | · |∗)).
By Lemma 3.4, S|Z is an onto isomorphism from Z ⊂ C(1) onto (Z∗, | · |∗) and { fp |Y }

is an octahedral set for (Y∗, | · |∗)∗∗ by Lemma 3.3. Now, applying Proposition 2.4, we

are done.

As a consequence, we get the main announced result, which answers Question 1 in the

separable case.

Theorem 4.2. If X is a separable Banach space containing a subspace isomorphic to `1,

then there is an equivalent norm in X such that the bidual X∗∗ is octahedral.

Proof. Assume that X contains a subspace isometric to `1. From [4, Theorem 2] (see

also [9]), we know that there is a closed subspace Y of X such that C(1) is isometric to

X/Y . Denote by π the quotient map from X to X/Y . By the proof of Theorem 4.1, there

is an equivalent norm | · | on X/Y such that its bidual norm is octahedral; moreover, there

exists an octahedral set {wp : p ∈ N} ⊂ B(X/Y,|·|) whose linear span W is isomorphic to `1.

Since π(B◦X ) = B◦X/Y , there is a bounded sequence {z p} ⊂ X such that π(z p) = wp for

every p ∈ N. Denote by Z the closed linear span of {z p}. From the boundedness of π and

{z p}, we conclude the existence of K , L ,M > 0 such that for every n ∈ N and α1, . . . ,

αn ∈ R we have that

K
n∑

i=1

|αi | 6
∣∣∣ n∑

i=1

αiwpi

∣∣∣ 6 L
∥∥∥ n∑

i=1

αi z pi

∥∥∥ 6 M
n∑

i=1

|αi |.

Thus, π |Z : Z → (W, | · |) is an onto isomorphism. Now, applying Proposition 2.4, we

are done.

Note that the separability assumption is only used in the above proof to assure that for

every separable Banach space X with `1-copies, there is a linear and bounded operator

from X onto C(1). This last assertion is false in the non-separable case, for example, it

is known to be false if X = `∞ since every separable quotient of `∞ is reflexive (see [9]).

Then the above proof does not work in the general case. However, our techniques can be

applied to some non-separable Banach spaces. Indeed, assume that X is a Banach space

with the separable complementation property, that is, for every separable subspace Y of

X , there is a complemented separable subspace Z of X such that Y ⊂ Z . If, moreover, X
contains an isomorphic copy of `1, then there is a complemented separable subspace Z of

X containing `1-copies. Hence, the existence of a linear and continuous operator from X
onto C([0, 1]) is clear, and the proof of Theorem 4.2 works. Then we have the following.

Corollary 4.3. Let X be a Banach space with the separable complementation property

containing isomorphic copies of `1. Then there is an equivalent norm in X such that the

bidual X∗∗ is octahedral.

The above corollary can be applied, for example, to the family of weakly countably

determined Banach spaces since a member of the above family satisfies the separable

complementation property (see [3, Chapter VI, Lemma 2.4]).
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Recall that a Banach space is said to be (w∗-)strongly regular if every closed, bounded,

and convex subset of X contains convex combinations of (w∗-)slices with diameter

arbitrarily small. It is known that X∗ is strongly regular if and only if X does not

contain isomorphic copies of `1, and also it is known that strong regularity and w∗-strong

regularity are equivalent properties in dual Banach spaces [5, Corollary VI.18].

The next consequence collects the different characterizations of octahedrality, strong

diameter two property, and strong regularity through the existence of isomorphic copies

of `1 and it is a dual answer to Question 2, in the setting of separable predual.

Corollary 4.4. Let X be a separable Banach space. The following are equivalent:

(i) X contains a subspace isomorphic to `1.

(ii) X∗ fails to be strongly regular.

(iii) X∗ fails to be w∗-strongly regular.

(iv) X has an equivalent octahedral norm.

(v) X has an equivalent norm such that every convex combination of w∗-slices in BX∗

has diameter two.

(vi) For every ε > 0, there is an equivalent norm in X such that every convex

combination of slices in BX∗ has diameter, at least, 2− ε.

(vii) There exists an equivalent norm in X such that X∗ has the strong diameter two

property.

(viii) There exists an equivalent norm in X such that X∗∗ is octahedral.

Proof. The equivalences among the assertions (i)–(vi), and between (vii) and (viii), were

written in [1]. The equivalence between (i) and (viii) is Theorem 4.2.

A dual Banach space X∗ is said to have the w∗-strong diameter two property (w∗-SD2P)

if every convex combination of w∗-slices in BX∗ has diameter two. Observe that the

above result gives, in particular, that SD2P and w∗-SD2P in X∗ are equivalent under

renorming, whenever X is separable. However, these two properties are not equivalent

(see [1] and [14]).

Note that Corollary 4.4 establishes a dichotomy: either every convex bounded subset

of the dual space has arbitrarily small convex combinations of w∗-slices or there exists a
dual unit ball such that every convex combination of weak slices has diameter 2.

Recall that the ball topology b(X) on a Banach space X is the coarsest topology on

X so that the norm closed balls of X are b(X)-closed. If X does not contain isomorphic

copies of `1, then for every equivalent norm in X , the ball topology of X∗∗ coincides

with the weak-star topology on the bidual unit ball (see [7]). Another consequence of

Theorem 4.2 is the following (see [7]).

Corollary 4.5. Let X be a separable Banach space and denote by b(X∗∗)1 the ball topology

in X∗∗ restricted to BX∗∗ . If X contains a subspace isomorphic to `1, then there is an

equivalent norm in X so that not only b(X∗∗)1 fails to be Hausdorff, but every pair of

non-empty b(X∗∗)1-open subsets of BX∗∗ has non-empty intersection.
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Proof. The fact that b(X∗∗)1 is not Hausdorff, under the hypotheses of the above

corollary, is a consequence of [7, Theorem 9.3]. The last conclusion in the above corollary

is a consequence of Theorem 4.2 joint to the equivalence between (1) and (3) in [7,

Lemma 9.1], which is valid in the non-separable case with the same proof.

It is worth saying that in [7, Question F], it is asked if b(X∗∗)1 fails to be Hausdorff

for every equivalent norm in X , whenever X contains a subspace isomorphic to `1.

We will end this note with a couple of questions for the non-separable case. We do not

know whether Question 1 is separably determined or whether it is possible to renorm `∞
such that its bidual is octahedral.
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