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Consistency and asymptotic normality are established for the highly applied quasi-
maximum likelihood estimator in the GARCH~1,1! model+ Contrary to existing
literature we allow the parameters to be in the region where no stationary version
of the process exists+ This has the important implication that the likelihood-based
estimator for the GARCH parameters is consistent and asymptotically normal in
the entire parameter region including both stationary and explosive behavior+ In
particular, there is no “knife edge result like the unit root case” as hypothesized
in Lumsdaine~1996, Econometrica64, 575–596!+

1. INTRODUCTION

This paper considers the asymptotic behavior of the likelihood-based estima-
tors in the generalized autoregressive conditional heteroskedastic~GARCH!
model or better the “workhorse of the industry”~Lee and Hansen, 1994!+ The
GARCH~1,1! or simply the GARCH model is given by

yt 5 Mht ~u!zt , (1)

ht ~u! 5 v 1 ayt21
2 1 bht21~u!, (2)

with t 5 1, + + + ,T andzt an independent and identically distributed~i+i+d+! ~0,1!
sequence+ As to initial values the analysis is conditional on the observed value
y0, whereas the unobserved variance, h0~u!, is parametrized byg, h0~u! 5 g+
The parameteru of the GARCH model is therefore

u 5 ~a,b,v,g! (3)

with a,b,v, andg all positive+ Denote henceforth the positive true parameter
values byu0 5 ~a0,b0,v0,g0!+

The GARCH model was introduced by Bollerslev~1986!, extending the auto-
regressive conditional heteroskedastic~ARCH! model of Engle~1982!+ Asymp-
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totic inference for the ARCH and GARCH type models has been studied in,
e+g+, Kristensen and Rahbek~2002!, Lee and Hansen~1994!, Lumsdaine~1996!,
and Weiss~1986!+ Common to these is the assumption that the~G!ARCH pro-
cessyt is suitably ergodic or stationary such that appropriate laws of large num-
bers apply+ Moreover the generic assumption for asymptotic normality is that
the squared error process, zt

2, has a finite~conditional! variance, k 5 V~zt
2! 5

E~zt
2 2 1! , `+ In the case of i+i+d+ innovationszt the results in Lee and

Hansen~1994! establish asymptotic normality essentially under the assumption
that

E log~a0 zt
2 1 b0! , 0+ (4)

This condition is necessary and sufficient for stationarity of the GARCH pro-
cess as argued in Nelson~1990! and Bougerol and Picard~1992!+ Recall that
the assumption in~4! is implied by the well-known sufficient conditiona0 1
b0 # 1, which includes the much studied case of integrated GARCH where
a0 1 b0 5 1+

Our contribution is to relax this and work under the following assumption,
which permits explosive and nonstationary behavior of the GARCH process+

Assumption 1+ Assume that withzt i+i+d+~0,1!, the true parameters satisfy

E log~a0 zt
2 1 b0! $ 0+ (5)

Clearly this extends the parameter region for which asymptotic normality
holds+ Our results show that whether or not the parameters are such that the
process is ergodic, integrated, or even explosive, asymptotic normality of the
likelihood-based estimators applies+ Thus there is no “knife edge result like
the unit root case” when entering the parameter region in Assumption 1 as
hypothesized in Lumsdaine~1996, p+ 580!+ Indeed our results imply, in partic-
ular, that requirements for existence of moments and stationarity for the GARCH
process can be ignored when reporting, e+g+, standard deviations and test statis-
tics involving the likelihood-based estimators here, which until now has caused
concern in the literature on GARCH inference+ To this end unreported simula-
tions indicate that in fact the convergence of the estimators to the Gaussian
distribution is faster in the explosive case than in the stationary+ Note that Jensen
and Rahbek~2004! relax the condition about stability of theyt process in the
ARCH~1! model, whereb 5 0, and allow the ARCH process to be nonstation-
ary and to have no moments+ The added complexity here due to the parameter
b and hence lagged variance, ht21~u!, in ~2! implies that results regarding infer-
ence require different types of arguments when compared to the ARCH model+
This is also noted by Lee and Hansen~1994, p+ 35! for the stationary case,
where it is emphasized that inference with respect tob is the most difficult+

The paper is structured as follows+ Section 2 presents the two main theorems
of the paper+ Theorem 1 establishes asymptotic normality when the parameter

1204 SØREN TOLVER JENSEN AND ANDERS RAHBEK

https://doi.org/10.1017/S0266466604206065 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466604206065


that parametrizes the initial unobserved varianceh0~u! 5 g is set equal to the
true value, g 5 g0, and, furthermore, the scale parameter equals its true value,
v 5 v0+ Theorem 2 shows that the asymptotics hold independently of this choice,
that is, independently of the initial values+ Sections 3 and 4 establish the proofs
of Theorems 1 and 2, respectively+

2. MAIN THEOREMS

As in Lee and Hansen~1994! and most of the literature, we consider the like-
lihood estimators based on minimization of

,T~u! 5
1

T (
t51

T Flog ht ~u! 1
yt

2

ht ~u!G (6)

with ht~u! defined in~2!+ Throughout this is referred to as the~quasi-!likelihood
function, and likewise the first and second derivatives are referred to as the
score and observed information, respectively+ Note that it is the true log-
likelihood function~multiplied by minus two! if zt is indeed Gaussian+ Our first
main result is the following+

THEOREM 1+ With ~v,g! fixed at their true values,~v0,g0!, consider the
model given by the (quasi-)likelihood function,T~a,b! :5 ,T~a,b,v0,g0! as
given by (6). Assume that at the true parameteru0 5 ~a0,b0,v0,g0!, yt given
by (1) satisfies Assumption 1 such that no stationary version exists. Assume
further that for the i.i.d.(0,1) process zt, V~zt

2! 5 k , `.
Under these assumptions there exists a fixed open neighborhood U5

U~a0,b0! of ~a0,b0! such that with probability tending to one as Tr `,
,T~a,b! has a unique minimum point~ [aT , ZbT! in U. Furthermore,~ [aT , ZbT! is
consistent and asymptotically Gaussian,

MT @~ [aT , ZbT ! 2 ~a0,b0!# ' D
&& N~0,V!+

HereV . 0 and is given byV 5 kS21, with m i 5 E~b00~a0 zt
2 1 b0!! i , i 5 1,2,

and

S 5 1
1

a0
2

m1

a0 b0~12 m1!

m1

a0 b0~12 m1!

~11 m1!m2

b0
2~12 m1!~12 m2!

2 + (7)

Remark 1+ The covariance matrixV in Theorem 1 provides a lower bound
for the implicitly given variance in the stationary and ergodic case analyzed in
Lee and Hansen~1994, Theorem 3!+ This follows by the fact that the informa-
tion matrix provides an upper bound as seen by the proof of Lemma 6 in Sec-
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tion 3+3, which applies the inequalities in Lemma 4+ These inequalities hold
independently of whether the processyt is stationary or not+ Similarly for the
two-dimensional information discussed in Section 3+5+

Remark 2+ Note that ifzt is Gaussian explicit expressions form1 andm2 can
be computed for the covariance matrix in Theorem 1+

Next, we state the result that the values ofh0~u! 5 g and v ~and also the
initial valuey0! are asymptotically negligible+ In particular, ~ [aT , ZbT! is a min-
imum point inU of ,T~u! 5 ,T~a,b,v,g! for any arbitrary values ofv andg+

THEOREM 2+ Assume that Elog~a0 zt
2 1 b0! . 0. Then the results in Theo-

rem 1 hold for any arbitrary values ofg . 0 and v . 0.

Theorem 2 states that~a,b! can be estimated consistently by taking any arbi-
trary values ofv and g and that the asymptotic distribution of the estimator
does not depend on the arbitrary values ofv andg+ After the parameter~a,b!
has been~consistently! estimated, one may estimate~v,g!, but the estimator
would not be consistent, and hence there is no need to reestimate the parameter
~a,b!+

Remark 3+ Note that the results in Theorem 2 exclude the boundary case in
Assumption 1 ofE log~a0 zt

2 1 b0! 5 0+We do not know whether there exists a
consistent estimator forv or if the asymptotic distribution of[a and Zb does not
depend onv in this case+

3. PROOF OF THEOREM 1

The proof of Theorem 1 is based on applying Lemma 1, which follows+ Note
that conditions~A+1!–~A+3! are similar to conditions stated in the literature on
asymptotic likelihood-based inference~see, e+g+, Lehmann, 1999; Basawa, Fei-
gin, and Heyde, 1976!+ The difference is that~A+1!–~A+3! explicitly exploit the
fact that~the negative! log-likelihood function is three times continuously dif-
ferentiable in the parameter+ Furthermore, Lemma 1 establishes uniqueness~con-
vexity! in addition to existence of the consistent and asymptotically Gaussian
estimator+

LEMMA 1 + Consider,T~w!, which is a function of the observations X1, + + + ,XT

and the parameterw [ F # Rk. Introduce furthermorew0, which is an interior
point of F. Assume that,T~{! :Rk r R is three times continuously differentia-
ble in w and that

(A.1) As Tr `, MT],T~w0!0]w D
&& N~0,VS!, VS . 0.

(A.2) As Tr `, ]2,T~w0!0]w]w ' P
&& VI . 0.

(A.3) maxh, i, j51, + + + , k supw[N~w0! 6]3,T~w!0]wh]wi ]wj 6 # cT,

1206 SØREN TOLVER JENSEN AND ANDERS RAHBEK

https://doi.org/10.1017/S0266466604206065 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466604206065


where N~w0! is a neighborhood ofw0 and0 # cT
P
&& c, 0 , c , `. Then there

exists a fixed open neighborhood U~w0! # N~w0! of w0 such that

(B.1) With probability tending to one as Tr `, there exists a minimum
point [wT of ,T~w! in U~w0! and ,T~w! is convex in U~w0!. In particu-
lar, [wT is unique and solves],T~ [wT!0]w 5 0.

(B.2) As Tr `, [wT
P
&& w0.

(B.3) As Tr `, MT ~ [wT 2 w0! D
&& N~0,VI

21VSVI
21!.

The proof of Lemma 1 is given in the Appendix+
Next, with w :5 ~a,b!' and ,T~w! 5 ,T~a,b! defined in Theorem 1, the

results in Theorem 1 follow by establishing conditions~A+1!–~A+3! in Lemma 1+
For exposition only we initially focus on the GARCH parameterb in Sec-
tions 3+1–3+4+ The first-, second-, and third-order derivatives of the likelihood
function with respect tob are given in Section 3+1+ Upon some initial results in
Section 3+1, the behavior of the score and observed information evaluated at
the true value, u 5 u0, are studied in Section 3+3+ In Section 3+4 it is shown that
the third derivative is uniformly bounded by a suitably integrable majorant+
The derivations concerning the ARCH parametera are simple when compared
with the ones with respect tob and are outlined in Section 3+5+ It is also there
that the asymptotic results for the joint parameter~a,b! are given+ Note finally
that ~A+1!–~A+3! hold by Lemmas 5, 6, and 10 in Sections 3+3 and 3+4, together
with the comments in Section 3+5+ It follows thatVS5 kS in ~A+1! ~see Lemma 5
and ~38!!, whereas in~A+2!, VI 5 S ~see Lemma 6 and~39!!+ Finally, S is
given by~40!+

3.1. Variation with Respect to b

In this section we derive the first-, second-, and third-order derivatives of the
likelihood function with respect tob+

The likelihood function is given by~6! in terms ofu, and it follows that

],T

]b
~u! 5

1

T (
t51

T F12
yt

2

ht ~u!Gh1t ~u!, (8)

]2,T

]b2 ~u! 5
1

T (
t51

T F12
yt

2

ht ~u!Gh2t ~u! 1
1

T (
t51

T F2 yt
2

ht ~u!
2 1Gh1t

2 ~u!, (9)

]3,T

]b3 ~u! 5
1

T (
t51

T F12
yt

2

ht ~u!Gh3t ~u! 1
1

T (
t51

T

3F2 yt
2

ht ~u!
2 1Gh1t ~u!h2t ~u!

1
1

T (
t51

T

2F12 3
yt

2

ht ~u!Gh1t
3 ~u!+ (10)
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Here, applying simple recursions,

h1t ~u! :5
]ht ~u!0]b

ht ~u!
5 (

j51

t

b j21
ht2j ~u!

ht ~u!
, (11)

h2t ~u! :5
]2ht ~u!0]b2

ht ~u!
5 2 (

j51

t

~ j 2 1!b j22
ht2j ~u!

ht ~u!
, and (12)

h3t ~u! :5
]3ht ~u!0]b3

ht ~u!
5 3 (

j51

t

b j23~ j 2 1!~ j 2 2!
ht2j ~u!

ht ~u!
+ (13)

3.2. Some Initial Results

For the asymptotic likelihood analysis in the following discussion the first and
the second derivatives of the likelihood function are evaluated at the true value
u0, and we introduce therefore the notation

ht :5 ht ~u0!, hit :5 hit ~u0! and
] i,T

]b i
:5

] i,T

]b i ~u!*
u5u0

for i 5 1,2,3+

(14)

Underlying parts of the asymptotics is first of all the following observation
from Nelson~1990, Theorem 2!+

LEMMA 2 + Under Assumption 1, as tr `,

ht
a+s+

&& `+

Next, to study the asymptotics of the central quantitiesh1t , h2t , and h3t in
~11!–~13! it is useful to introduce the stationary processesuit ~{! for i 5 1, + + + ,4
defined in terms of the i+i+d+ innovationszt + Note that the processes and their
properties are well defined for the entire parameter region+ In particular,Assump-
tion 1 is not required in the lemma+

LEMMA 3 + Define the processes

umt~a,b! 5 m(
j51

`

a j2m )
n51

m21

~ j 2 n! )
k51

j 1

a0 zt2k
2 1 b

(15)

for m 5 1, + + + ,4 and with the notational convention that)n51
0 5 1. For all

p $ 1 and m5 1, + + + ,4, umt :5 umt~b0,b0! is ergodic and

Eumt
p , `+ (16)
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Furthermore, for each p$ 1 there existbL and bU with bL , b0 , bU such
that umt~b0,bL! and umt~bU ,b0! are ergodic and

E @umt~b0,bL !# p , ` and E @umt~bU ,b0!# p , `+ (17)

Proof of Lemma 3+ Without loss of generality consider the case ofm 5 2+
Define

qp :5 ES b0

a0 z1
2 1 b0

Dp

, 1 (18)

aszt is nondegenerate+ Using Minkowski’s inequality, ~16! follows by

@E~u2t
p !#10p # 2 (

j52

` 1

b0
2 ~ j 2 1!FES)

k51

j b0

a0 zt2k
2 1 b0

DpG10p

5
2

b0
2 (

j52

`

~ j 2 1!qp
j0p 5

2qp
20p

b0
2~12 qp

10p!2 , `+

Next, consider, say, u2t~b0,bL!:

u2t ~b0,bL ! 5 2 (
j51

` 1

b0
2 ~ j 2 1! )

k51

j b0

a0 zt2k
2 1 bL

+

Then as before, E @u2t~b0,bL!# p , `, provided

ES b0

a0 z1
2 1 bL

Dp

, 1,

which is the case for somebL , b0 ~as the innovationszt are nondegenerate!+
Likewise for u2t~bU ,b0!, which ends the proof+ n

Next, we show how thehit anduit are related+

LEMMA 4 + Consider h1t and h2t defined by (11) and (12), respectively, with
the notational convention in (14). Then for i5 1,2,

0 # hit # uit , (19)

where the uit are defined in Lemma 3. Furthermore, under Assumption 1, for
i 5 1,2, then as tr `,

hit 2 uit
Lp

&& 0, (20)

1

T (
t51

T

~h1t
2 2 u1t

2 ! Lp

&& 0 and
1

T (
t51

T

~h2t 2 u2t !
Lp

&& 0 (21)

for all p $ 1.
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It is important that the inequality in~19! holds independently of Assumption 1+

Proof of Lemma 4+ From the recursions in~11! note that

h1t 5 (
j51

t

b j21 )
k51

j ht2k

ht2k11

+ (22)

Next, use that

b0ht2k

v0 1 ~a0 zt2k
2 1 b0!ht2k

#
b0

a0 zt2k
2 1 b0

# 1 (23)

to establish the desired inequality,

h1t 5 (
j51

t 1

b0
)
k51

j b0ht2k

v0 1 ~a0 zt2k
2 1 b0!ht2k

# (
j51

t 1

b0
)
k51

j b0

a0 zt2k
2 1 b0

# u1t +

Likewise,

h2t 5 2 (
j52

t

~ j 2 1!b j22 )
k51

j ht2k

ht2k11

, (24)

which shows~19!+
Turn to h1t again+ By ~23! and Lemma 2, then ast r `,

b0

~a0 zt2k
2 1 b0!

2
b0ht2k

v0 1 ~a0 zt2k
2 1 b0!ht2k

a+s+
&& 0,

and therefore

1 $ )
k51

j b0

~a0 zt2k
2 1 b0!

2
b0

j ht2j

ht

a+s+
&& 0+ (25)

By dominated convergence alsoL1 convergence holds in~25!+ Now let t0 , t
be arbitrary and consider

lim sup
tr`

E~u1t 2 h1t ! # lim sup
tr`

(
j51

t0 1

b0

EF)
k51

j S b0

a0 zt2j
2 1 b0

D2
b0

j ht2j

ht
G

1 lim sup
tr`

(
j5t011

` 1

b0
)
k51

j

ES b0

a0 zt2j
2 1 b0

D+
With t0 fixed, then ast r ` the first term equals zero by the just established
L1 convergence+ The second term equals~10b0!~q1

t0110~1 2 q1!! with q1

defined in~18!+As t0 was arbitrary, the second term then tends to zero ast0 r `
becauseq1 , 1+ HenceE~u1t 2 h1t ! tends to zero ast r `+ Next, note that

u1t
p

$ ~u1t 2 h1t !
p
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implies that the latter is uniformly integrable because the distribution ofu1t

does not depend ont+ The just establishedL1 convergence implies convergence
in probability of ~u1t 2 h1t !

p and hence by the uniform integrability,

E~u1t 2 h1t !
p r 0+

Likewise for u2t andh2t , which establishes~20!+ Finally, the claimedLp con-
vergence in~21! follows by

SE* 1

T (
t51

T

~u1t
2 2 h1t

2 !*
pD10p

5 SE* 1

T (
t51

T

~u1t 1 h1t !~u1t 2 h1t !*
pD10p

#
2

T (
t51

T

~E~u1t ~u1t 2 h1t !!
p!10p #

2

T
~Eu1t

2p!102p (
t51

T

~E~u1t 2 h1t !
2p!102p,

which tends to zero asE~u1t 2 h1t !
2p in particular tends to zero+ This ends the

proof of Lemma 4+ n

3.3. Asymptotics of the Score and Observed Information

This section establishes asymptotic normality of the score and convergence of
the observed information in probability under the true value, u0+ As noted, the
idea is, asymptotically, to replace thehit terms with the correspondinguit terms
in the expressions~8! and~9!, respectively; see also Lemma 4+

Consider first the score+

LEMMA 5 + Under Assumption 1 the score given by (8) evaluated atu 5 u0

is asymptotically Gaussian,

MT
],T

]b
5

1

MT (
t51

T F12
yt

2

ht
Gh1t

D
&& N~0,kÃ!,

Ã 5 Eu1t
2 5

~11 m1!m2

b0
2~12 m1!~12 m2!

and k 5 V~zt
2!,

where u1t is given by (15) andm i 5 E~b00~a0 zt
2 1 b0!! i, i 5 1,2.

Proof of Lemma 5+ Evaluated atu 5 u0 the score is given by

],T

]b
5

1

T (
t51

T

@12 zt
2#h1t 5

1

T (
t51

T

vt
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such thatE~vt 6Ft21! 5 0, whereFt 5 s~zt , zt21, + + + !+ Applying the central limit
theorem for martingale differences in Brown~1971!, consider first

1

T (
t51

T

E~vt26Ft21! 5 k
1

T (
t51

T

h1t
2 5 k

1

T (
t51

T

~h1t
2 2 u1t

2 ! 1 k
1

T (
t51

T

u1t
2

r kE~u1t
2 ! . 0

in probability ~and L1! as T r `, using Lemma 4 and the ergodic theorem+
Turning to the Lindeberg condition, ash1t # u1t ,

1

T (
t51

T

E~vt21$6vt26 . dMT %! #
1

T (
t51

T

E~~12 zt
2!2u1t

2 1$6~12 zt
2!2u1t

2 6 . dMT %!

5 E~~12 zt
2!2u1t

2 1$6~12 zt
2!2u1t

2 6 . dMT %! r 0

for all d asT r ` becauseu1t ~and alsozt
2! is stationary and has finite second-

order moments+ n

Next we establish the asymptotic limit of the observed information+

LEMMA 6 + Under Assumption 1 the observed information given by (9) eval-
uated atu 5 u0 converges in probability,

]2,T

]b2
P
&& Ã 5 Eu1t

2 . 0,

whereÃ is given in Lemma 5.

Proof of Lemma 6+ For u 5 u0 the observed information is given by

]2,T

]b2 5
1

T (
t51

T

@12 zt
2#h2t 1

1

T (
t51

T

@2zt
2 2 1#h1t

2

5
1

T (
t51

T

@12 zt
2# ~h2t 2 u2t ! 1

1

T (
t51

T

@2zt
2 2 1# ~h1t

2 2 u1t
2 !

1
1

T (
t51

T

@12 zt
2#u2t 1

1

T (
t51

T

@2zt
2 2 1#u1t

2 +

The last two terms on the right-hand side converge by the ergodic theorem to
E @2zt

2 2 1#Eu1t
2 5 Eu1t

2 using the independence ofuit andzt + As E61 2 zt
26 and

E62zt
2 2 16 are finite constants, Lemma 4 implies that the first two terms on the

right-hand side converge in~L1 and hence! probability to zero+ n

Remark 4+ Note that the arguments for the score and information in Lem-
mas 5 and 6 carry over to the stationary case by using the ergodic theorem for
the observed information as in Lee and Hansen~1994! and Lumsdaine~1996!+
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3.4. Third Derivative of the Likelihood Function

In this section the third derivative of the likelihood function is shown to be
uniformly bounded in a neighborhood around the true valueu0+

Introduce lower and upper values for each parameter inu, aL , a0 , aU ,
bL , b0 , bU , vL , v0 , vU, andgL , g0 , gU , and, in terms of these, the
neighborhoodN~u0! around the true valueu0 defined as

N~u0! 5 $u6aL # a # aU , bL # b # bU , vL # v # vU , andgL # g # gU %+

(26)

The next lemma establishes that the individual terms of the third derivative
~]3,T0]b3!~u! in ~10! are uniformly bounded in the neighborhoodN~u0! by
the corresponding terms as a function ofb alone+ With

u~b! 5 ~a0,b,v0,g0! (27)

introduce the notationht~b! and hit ~b! for ht~u~b!! and hit ~u~b!!, respec-
tively, with i 5 1,2,3+ Then the following lemma holds+

LEMMA 7 + With N~u0! defined in (26), then for any t,s

sup
u[N~u0!

ht ~u!

hs~u!
# k1 sup

bL#b#bU

ht ~b!

hs~b!
, (28)

sup
u[N~u0!

1

ht ~u!
# k2 sup

bL#b#bU

1

ht ~b!
, (29)

and, furthermore,

sup
u[N~u0!

hit ~u! # k1 sup
bL#b#bU

hit ~b! for i 5 1,2,3, (30)

where the constantski are given by,

k1 5

maxSaU

a0

,
gU

g0

,
vU

v0
D

minSaL

a0

,
gL

g0

,
vL

v0
D and k2 5 minSaL

a0

,
gL

g0

,
vL

v0
D+

Proof of Lemma 7+ Note that withh0 5 g then by simple recursion,

ht ~u! 5 v (
j51

t

b j21 1 a (
j51

t

b j21yt2j
2 1 gb t+
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Hence,

minSaL

a0

,
gL

g0

,
vL

v0
Dht ~b! # ht ~u! # maxSaU

a0

,
gU

g0

,
vU

v0
Dht ~b!, (31)

which implies~28! and~29!+ Next, ~30! follows by applying~28! to the defini-
tion of hit ~u! in ~11!–~13!+ n

To establish bounds forht~b! andhit ~b! in Lemma 9 we start with two fun-
damental identities concerninght andht~b!+

LEMMA 8 +

ht ~b! 5 ht 1 ~b 2 b0! (
s51

t

bs21ht2s, (32)

ht 5 ht ~b! 1 ~b0 2 b! (
s51

t

b0
s21ht2s~b!+ (33)

Proof of Lemma 8+ Rewriting the equations forht~b! andht gives

ht ~b! 2 bht21~b! 5 ht 2 b0ht21,

and the results follow immediately by noting thath0 5 h0~b!~5 g0!+ n

Next turn to Lemma 9, which holds independently of Assumption 1+

LEMMA 9 + With bL , b0 , bU,

(i)
ht

ht ~b!
# H1 for b0 # b # bU

11 ~b0 2 bL !u1t ~b0,bL ! for bL # b # b0

(ii) h1t ~b! # Hu1t ~bU ,b0! 1
1

2
~bU 2 b0!u2t ~bU ,b0! for b0 # b # bU

u1t ~b0,bL ! for bL # b # b0

(iii) h 2t ~b! # Hu2t ~bU ,b0! 1
1

3
~bU 2 b0!u3t ~bU ,b0! for b0 # b # bU

u2t ~b0,bL ! for bL # b # b0

(iv) h3t ~b! # Hu3t ~bU ,b0! 1
1

4
~bU 2 b0!u4t ~bU ,b0! for b0 # b # bU

u3t ~b0,bL ! for bL # b # b0

where the uit ~{! are defined in (15).
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Proof of Lemma 9+ Consider firstht 0ht~u!+ For b0 # b , bU , using~32!

ht

ht ~b!
5

ht

ht 1 ~b 2 b0! (
s51

t

bs21ht2s

# 1+

For the case ofbL , b # b0, use~33! to see that

ht

ht ~b!
5

ht ~b! 1 ~b0 2 b! (
s51

t

b0
s21ht2s~b!

ht ~b!
5 1 1 ~b0 2 b! (

s51

t

b0
s21

ht2s~b!

ht ~b!
+

Then, similar to the proof of Lemma 4,

ht2s~b!

ht ~b!
5 )

k51

s ht2k~b!

ht2k11~b!
5 )

k51

s ht2k~b!

v0 1 a0 yt2k
2 1 bht2k~b!

# )
k51

s 1

a0 zt2k
2

ht2k

ht2k~b!
1 b

# )
k51

s 1

a0 zt2k
2 1 bL

(34)

becauseht2k0ht2k~b! $ 1 for b # b0+ Inserting, it follows that

ht

ht ~b!
# 11 ~b0 2 bL ! (

s51

` 1

b0
)
k51

s b0

a0 zt2k
2 1 bL

5 1 1 ~b0 2 bL !u1t ~b0,bL !,

where the right-hand side is independent ofb+ This establishes the inequality
in ~i!+ The inequalities~ii !–~iv! hold by identical arguments, and we give the
proof only for ~iv!, which is the most complicated of these+ By definition,

h3t ~b! 5 3 (
j53

t

b j23~ j 2 1!~ j 2 2!
ht2j ~b!

ht ~b!
,

and the inequality forbL , b # b0 holds by~34!+ Next, for b0 # b , bU , ht 5
ht~u0! # ht~b!, and using this in addition to~32! gives
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h3t ~b! 5 3 (
j53

t

~ j 2 1!~ j 2 2!b j23
ht2j ~b!

ht

5 3 (
j53

t

~ j 2 1!~ j 2 2!b j23
ht2j

ht

1 3~b 2 b0! (
j53

t

~ j 2 1!~ j 2 2!b j23 (
s51

t2j

bs21
ht2j2s

ht

5 3 (
j53

t

~ j 2 1!~ j 2 2!b j23
ht2j

ht

1 ~b 2 b0! (
j54

t

~ j 2 1!~ j 2 2!~ j 2 3!b j24
ht2j

ht

# 3 (
j53

t

~ j 2 1!~ j 2 2!bU
j23 )

k51

j 1

a0 zt2k
2 1 b0

1 ~bU 2 b0! (
j54

t

~ j 2 1!~ j 2 2!~ j 2 3!bU
j24 )

k51

j 1

a0 zt2k
2 1 b0

,

where the last inequality follows as in~34!+ This shows~iv! and completes the
proof of Lemma 9+ n

We are now in a position to address the third derivative of the likelihood
function, ~]3,T 0]b3!~u!, as given by~10!+ We show that, independently of
Assumption 1, it is uniformly bounded in a region around the true valueb0+

LEMMA 10+ There exists a neighborhood N~u0! given by (26) for which

sup
u[N~u0!

* ]3,T

]b3 ~u!* #
1

T (
t51

T

wt , (35)

where wt is stationary and has finite moment, Ewt 5 M , `. Furthermore,

1

T (
t51

T

wt
a+s+

&& M+ (36)

Proof of Lemma 10+ Noting that by definitionyt
20ht ~u! 5 zt

2~ht 0ht ~u!!, the
expression for~]3,T0]b3!~u! in ~10! implies that

* ]3,T

]b3 ~u!* #
1

T (
t51

T

wt ~u!, where

wt ~u! 5 S11 zt
2

ht

ht ~u!Dh3t ~u! 1 3S2zt
2

ht

ht ~u!
1 1Dh1t ~u!h2t ~u!

1 2S11 3zt
2

ht

ht ~u!Dh1t
3 ~u!+
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Lemma 7 implies that

sup
u[N~u0!

wt ~u! # c sup
bL#b#bU

wt ~b!

with c a constant+ By Lemma 9, the quantitieshit ~ b!, i 5 1, + + + ,3, and
ht 0ht~b! are bounded by functions that by Lemma 3 have any desired moments+
Hence, supbL#b#bU

wt ~b! # wt as desired+ The convergence in~36! follows by
the ergodic theorem, which ends the proof of Lemma 10+ n

3.5. Introducing a

The arguments with respect toa, and hence the joint variation in terms of both
a and b, are completely analogous to the ones in Sections 3+1–3+4, and we
emphasize only the important steps+ Simple computations lead to

],T~u!

]a
5

1

T (
t51

T S12
yt

2

ht ~u!Dh1t
* ~u!, where

h1t
* ~u! 5

]ht ~u!0]a

ht ~u!
5

(
j51

t

b j21yt2j
2

ht ~u!
+

Hence

h1t
* 5 h1t

* ~u0! 5 (
j51

t

zt2j
2 b0

j21
ht2j

ht

,

which as in Lemma 3 leads to the definition of the ergodic process,

u1t
* :5 (

j51

`

zt2j
2

1

b0
)
k51

j b0

a0 zt2k
2 1 b0

+ (37)

As in the proofs of Lemmas 4–6 it follows that

MT
],T~u!

]~a,b!' *u5u0

D
&& N2~0,kS! (38)

and

1

T

]2,T~u!

]~a,b!]~a,b!' *u5u0

P
&& S . 0, (39)

wherek 5 V~zt
2! and

S 5 S E~u1t
* !2 E~u1t

* u1t !

E~u1t
* u1t ! E~u1t !

2 D+
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We note the surprisingly simple relationship,

u1t
* 5 (

j51

` 1

a0

a0 zt2j
2

a0 zt2j
2 1 b0

)
k51

j21 b0

a0 zt2k
2 1 b0

5 (
j51

` 1

a0
S12

b0

a0 zt2j
2 1 b0

D)
k51

j b0

a0 zt2k
2 1 b0

5 (
j51

` 1

a0
S)

k51

j21 b0

a0 zt2k
2 1 b0

2 )
k51

j b0

a0 zt2k
2 1 b0

D
5 lim

Tr`
(
j51

T 1

a0
S)

k51

j21 b0

a0 zt2k
2 1 b0

2 )
k51

j b0

a0 zt2k
2 1 b0

D
5 lim

Tr`

1

a0
S12 )

k51

T b0

a0 zt2k
2 1 b0

D5
1

a0

,

which implies

S 5 1
1

a0
2

m1

a0 b0~12 m1!

m1

a0 b0~12 m1!

~11 m1!m2

b0
2~12 m1!~12 m2!

2 , (40)

wherem i 5 E~b00~a0 zt
2 1 b0!! i, i 5 1,2+

Finally, straightforward differentiation shows that inequalities completely anal-
ogous to~35! in Lemma 10 hold for the third derivatives]3,T~u!0]a3, ]3,T~u!0
]a2]b, and]3,T~u!0]a]b2+

Remark 5+ Note that the nonstationary condition in Assumption 1 is not
needed to establish these bounds~see also Lemma 10!, and hence the uniform
bounds can be applied in the stationary case also+ Furthermore, the bounds of
the third derivatives establish inequalities of the form, E supu[N~u0! 6]3,T~u!0
]a i]b j 6 , ` for i 1 j 5 3, i, j 5 0,1,2,3, whereN~u0! denotes a neighbor-
hood of the true parameter values, u0 ~see also the condition~A +3! in
Lemma 1!+ Observe that the proofs in Lee and Hansen~1994, p+ 51, l+13–14
from below, regarding stochastic equicontinuity! and Lumsdaine~1996,
p+ 594! apply, we believe, different insufficient inequalities of the form,
supu[u[N~u0! E6]3,T~u!0]a i]b j 6 , `+
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4. PROOF OF THEOREM 2

We address here the asymptotic independence of the initial values of~v,g!+
Recall that in the proof of Theorem 1, Lemma 1 was applied withw :5 ~a,b!'

and,T~w! 5 ,T~a,b! defined in Theorem 1+ If there is an extra parameterv,
say, in the likelihood function as in Theorem 2, it follows that the results are
unchanged in Theorem 1 provided the conditions in Lemma 13 in Section 4+2
are fulfilled+ To see this note first that in the proof of Lemma 1 in the Appen-
dix, D,T~w0! can be replaced byD,T~w0,v! on the right-hand side of equation
~A+2! using ~44! in Lemma 13+ Likewise in equation~A+2!, D2,T~w*! can be
replaced byD2,T~w*,v! using ~45! in Lemma 13+ In equation~A+3!, on the
left-hand side, MT D,T~w0! can be replaced byMT D,T~w0,v! using ~44! in
Lemma 13, and on the right-hand side, v1'AT~ [wT !v2 5 v1' ~D2,T~wT

* ! 2 VI !v2
can be replaced byv1' ~D2,T~wT

* ,v! 2 VI !v2 using~45! in Lemma 13+
The derivations that follow are given in detail forv, whereas for the case of

g we provide one lemma and note that the proof follows as in thev case but is
simpler+ For presentational purposes we focus on the variation with respect to
b in addition tov andg, respectively, which as in the proof of Theorem 1 in
Section 3 is without loss of generality+ To emphasize which parameters vary
the following notation is adopted:

u~b,v! 5 ~a0,b,v,g0!+

Similarly u~b,g! 5 ~a0,b,v0,g!; see also~27!+ We further emphasize the
dependence on, e+g+, v by adopting the notation,T~b,v! :5 ,T~u~b,v!! for
the likelihood function and also for other functions previously defined+

Section 4+1 states an initial general lemma that is useful in the derivations+
Section 4+2 addressesv and Section 4+3 g+

4.1. An Initial Lemma

The following lemma addresses the average of products of stochastic processes+

LEMMA 11+ Let ~Xt !t51,2, + + + and ~Yt !t51,2, + + + be stochastic processes onR
for which

E6Xt 6 , cx, E6Yt 6a , cy t dr t,

where cx, cy, a, and d are positive constants and6r6 , 1. Then withd . 0 and
as Tr `,

1

T d (
t51

T

Xt Yt
P
&& 0+
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Proof of Lemma 11+ We establishLs convergence fors 5 a0~1 1 a! , 1+
First, ass , 1,

E* 1

T d (
t51

T

Xt Yt*
s

#
1

T sd (
t51

T

E6Xt Yt 6s+

Next, with p 5 1 1 a . 1 andq 5 p0~ p 2 1! . 1 apply Hölder’s inequality to
get that this is bounded by

1

T sd (
t51

T

~E6Xt 6sq!10q~E6Yt 6sp!10p

5
1

T sd (
t51

T

~E6Xt 6!10q~E6Yt 6a!10p

#
1

T sd (
t51

T

cx
10qcy

10pt d0pr t0p #
1

T sd cx
10qcy

10pc,

which tends to zero asT r ` and wherec 5 (t51
` t d0pr t0p , `+ n

4.2. The Role of the Scale Parameter v

Initially we provide upper bounds for the terms appearing in the score and
observed information in~8! and ~9!+ To this end we need the following
proposition+

PROPOSITION 1+ Assume that Assumption 1 holds with strict inequality and
with b0 , 1. Then, for some p. 0,

E~a0 zt
2 1 b0!2p , 1+

Proof of Proposition 1+ Setvt 5 a0 zt
2 1 b0 and note thatvt $ b0+ Define the

function fp~v! 5 ~v2p 2 1!0p 5 ~exp~2p log v! 2 1!0p r 2log v as p r 0+
Note that onA1 5 @b0,1# ~5 B if b0 . 1!, 0 # fp~v! # ~10b0 2 1! for 0 #
p # 1, whereas onA2 5 ~1,`!, 2fp~v! $ 0 and increasing inp asp r 0+ Fi-
nally, Efp~vt ! 5 E @ fp~vt !1A1

~vt !# 2 E @2fp~vt !1A2
~vt !# , which by dominated

and monotone convergence respectively, converge toE @2log vt 1A1
~vt !# 2

E @ log vt 1A2
~vt !# 5 2E log vt , which is negative by Assumption 1+ Hence forp

small enough the result holds+ n

Next consider individual terms appearing in the likelihood function in~6!
and also terms of the score and observed information in~8! and ~9! and their
variation with respect tov+
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LEMMA 12+ Assume that Assumption 1 holds with strict inequality. Then
for any v . 0, there existbL , b0 , bU such that

sup
bL#b#bU

]ht ~b,v!0]v

ht

5 sup
bL#b#bU

(
i50

t21

b i

ht

# r1vt ,

sup
bL#b#bU

]2ht ~b,v!0]b]v

ht

5 sup
bL#b#bU

(
i50

t22

~i 1 1!b i

ht

# r2vt t,

sup
bL#b#bU

]3ht ~b,v!0]b2]v

ht

5 sup
bL#b#bU

(
i50

t23

~i 1 1!~i 1 2!b i

ht

# r3vt t
2+

Here, with i5 1, 2, and 3,

rivt 5
1

g0 5
1

~bU 2 1! i )
k51

t bU

a0 zt2k
2 1 b0

for b0 $ 1

1

~12 bU ! i )
k51

t 1

a0 zt2k
2 1 b0

for b0 , 1,

(41)

@Erivt
p #10p 5 ri

t ,

whereri , 1 and p. 1 for b0 $ 1, whereas p. 0 for b0 , 1+

Proof of Lemma 12+ We give only the proof fori 5 1 as the other cases
follow analogously+ Note thatht $ ) j50

t ~a0 zt21
2 1 b0!g0 and hence

(
i50

t21

b i

ht

#

(
i50

t21

bU
i

g0
)
j50

t 1

a0 zt2j
2 1 b0

+ (42)

Consider first the case ofb0 $ 1, which impliesbU . 1 and in particular,

(
i50

t21

b i

ht

#
bU

t

g0~bU 2 1! )
j50

t 1

a0 zt2j
2 1 b0

5
1

g0~bU 2 1! )
j50

t bU

a0 zt2j
2 1 b0

+

This function has exponentially decreasing absolutepth-order moment, p $ 1,
provided

ES bU

a0 zt
2 1 b0

Dp

, 1, (43)

which is the case for somebU . b0; see Lemma 3+
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Next turn to the case ofb0 , 1+ In this case, without loss of generality, it can
be assumed thatbU , 1, and we find

(
i50

t21

b i

ht

#

(
i50

t21

bU
i

g0
)
j50

t 1

a0 zt21
2 1 b0

#
1

g0~12 bU ! )
j50

t 1

a0 zt21
2 1 b0

+

Applying Proposition 1 finishes the proof of Lemma 12+ n

Next, turn to the main lemma+

LEMMA 13+ Assume that Assumption 1 holds with strict inequality. Then
for any arbitrary v . 0, there existbL and bU , bL , b0 , bU, such that

MTS ],T~b0,v!

]b
2

],T

]b
D P

&& 0, (44)

sup
bL#b#bU

S ]2,T~b,v!

]b2 2
]2,T~b,v0!

]b2 D P
&& 0+ (45)

Proof of Lemma 13+ Given the arbitrary valuevarb~5 v! . 0, definevL 5
min~v0,varb! and vU 5 max~v0,varb!+ By Taylor expansions, ~44! and ~45!
follow by showing that

sup
vL#v#vU

MT
]2,T~b0,v!

]b]v
P
&& 0, (46)

sup
bL#b#bU

sup
vL#v#vU

* ]3,T~b,v!

]b2]v * P
&& 0+ (47)

Simple computations give

MT
]2,T~b,v!

]b]v *
b5b0

5
]

]vS 1

MT (
t51

T F12
yt

2

ht ~b0,v!Gh1t ~b0,v!D
5

1

MT (
t51

T F2 yt
2

ht ~b0,v!
2 1GS ]ht ~b0,v!0]v

ht ~b0,v! Dh1t ~b0,v!

1
1

MT (
t51

T F12
yt

2

ht ~b0,v!G ]2ht ~b0,v!0]b]v

ht ~b0,v!
+ (48)
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Likewise,

]3,T~b,v!

]b2]v
5

1

T (
t51

T F12
yt

2

ht ~b,v!G ]3ht ~b,v!0]b3]v

ht ~b,v!

1
1

T (
t51

T F2 yt
2

ht ~b,v!
2 1Gh2t ~b,v!S ]ht ~b,v!0]v

ht ~b,v! D
1

1

T (
t51

T F4 yt
2

ht ~b,v!
2 2Gh1t ~b,v!S ]2ht ~b,v!0]b]v

ht ~b,v! D
1

1

T (
t51

T F2 2 6
yt

2

ht ~b,v!G~h1t ~b,v!!2S ]ht ~b,v!0]v

ht ~b,v! D+ (49)

All the preceding terms are bounded as they are all of a form that can be
expressed in the form described in Lemma 11: a typical term in~48! and ~49!
is given by

* 1

T (
t51

T F2 yt
2

ht ~b,v!
2 1Gh2t ~b,v!S ]ht ~b,v!0]v

ht ~b,v! D*
#

1

T (
t51

T

*2
yt

2

ht
S ht

ht ~b,v!D1 1** ht

ht ~b,v! * *h2t ~b,v! * * ]ht ~b,v!0]v

ht
*+

(50)

By Lemma 12, supbL#b#bU
supvL#v#vU

6~]ht ~b,v!0]v!0ht 6 has exponentially
decreasing moments, and this factor plays the role ofYt in Lemma 11+ Using
Lemmas 7 and 9, the remaining three factors are bounded by variables, which
by Lemma 3 have finite moments of any desired order+ Hence the product of
these variables plays the role ofXt in Lemma 11+ This ends the proof of Theo-
rem 2 regarding the role ofv+ n

4.3. The Role of the Initial Value h0(u) = g

As mentioned, the proof, although simpler, follows exactly the outline of the
proof of the independence on the scale parameterv given in Section 4+2+ Recall
that to emphasize the dependence ong, we adopt the notation,T~b,g! 5
,T~u~b,g!! for the likelihood function and other functions+ To establish the
results in Lemma 13 withv replaced byg we need only the following lemma,
which corresponds to Lemma 12+
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LEMMA 14+ Under Assumption 1, for anyg . 0 there existbL and bU ,
bL , b0 , bU such that

sup
bL#b#bU

]ht ~b,g!0]g

ht

5 sup
bL#b#bU

b t

ht

#
1

g0

rhgt ,

sup
bL#b#bU

]2ht ~b,g!0]b]g

ht

5 sup
bL#b#bU

tb t21

ht

#
t

g0 b0

rhgt ,

sup
bL#b#bU

]3ht ~b,g!0]b2]g

ht

5 sup
bL#b#bU

t~t 2 1!b t22

ht

#
t~t 2 1!

g0 b0

rhgt

with

rhgt 5 )
k51

t bU

a0 zt2k
2 1 b0

, (51)

@Erhgt
2 #102 5 r t wherer , 1+ (52)

Proof of Lemma 14+ The results follow as in the proof of Lemma 12 for the
case ofb0 . 1+ n
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APPENDIX: PROOF OF LEMMA 1

Note first that by condition~A+3! in Lemma 1, it follows that for any vectorsv1, v2 [
Rk, and anyw [ N~w0!,

6v1' ~D2,T~w! 2 D2,T~w0!!v26 # 7v177v27 7w 2 w07 IcT , (A.1)

whereD,T~w! 5 ],T~w!0]w, D2,T~w! 5 ]2,T~w!0]w]w ', and IcT 5 k302cT + To see this,
note that the left-hand side of expression~A+1! is 6 f ~1! 2 f ~0!65 6]f ~l*!0]l 6 for some
0 # l* # 1, wheref ~l! 5 v1' @D2,T~w0 2 l~w 2 w0!!#v2, 0 # l # 1+ By Taylor’s for-
mula and condition~A+3! in Lemma 1,

6]f ~l* !0]l 6 5 * (
i, j, l51

k

v1, i v2, j ~wl 2 w0, l !]
3,T~w0 2 l*~w 2 w0!!0]wi ]wj ]wl*

# cT (
i51

k

6v1, i 6(
j51

k

6v2, j 6(
l51

k

6wl 2 w0, l 6# IcT7v177v277w 2 w07+

Next, by definition the continuous function,T~w! attains its minimum in any compact
neighborhoodK~w0, r ! 5 $w6 7w 2 w07 # r % # N~w0! of w0+ With vw 5 ~w 2 w0!, and
w* on the line fromw to w0, Taylor’s formula gives

,T~w! 2 ,T~w0! 5 D,T~w0!vw 1
1

2
vw' D2,T~w* !vw

5 D,T~w0!vw 1
1

2
vw' @VI 1 ~D2,T~w0! 2 VI !

1 ~D2,T~w* ! 2 D2,T~w0!!#vw + (A.2)

Denote byrT andr, r . 0, the smallest eigenvalues of@D2,T~w0! 2 VI # andVI , respec-
tively+ Note thatrT

P
&& 0 by condition~A+2! in Lemma 1 and the fact that the smallest

eigenvalue of ak 3 k symmetric matrixM, inf$v[Rk 6 7v751% v 'Mv, is continuous inM+
Then conditions~A+1! and~A+3! in Lemma 1, with Ic 5 k302c, and equation~A+2! imply
that infw:vw5r @,T~w! 2 ,T~w0!# is greater than or equal to

2 7D,T~w0!7r 1
1

2
@ r 1 rT 2 IcT r #r 2 P

&&
1

2
@ r 2 Icr#r 2+

Therefore, if r , r0 Ic, the probability that,T~w! attains its minimum on the boundary of
K~w0, r ! tends to zero+ Next, for w [ K~w0, r ! andv [ Rk, rewriting v 'D2,T~w!v as in
equation~A+2!, v 'D2,T~w!v $ 7v72~r 1 rT 2 r IcT !, which tends in probability to
7v72~r 2 r Ic!+ Hence, if r , r0 Ic the probability that,T~w! is strongly convex in the
interior of K~w0, r ! tends to one, and therefore it has at most one stationary point+ This
establishes condition~B+1! in Lemma 1: if r , r0 Ic andK~w0, r ! # N~w0!, there is with
a probability tending to one exactly one solution[wT to the likelihood equation in the
interior U~w0! 5 int K~w0, r !+ It is the unique minimum point of,T~w! in U~w0! and, as
it is a stationary point, it solvesD,T~w! 5 0+
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By the same argument, for anyd, 0 , d , r there is with a probability tending to one
a solution to the likelihood equation inK~w0,d!+ As [wT is the unique solution to the
likelihood equation inK~w0, r !, it must therefore be inK~w0,d! with a probability tend-
ing to one+ Hence we have proved that[wT is consistent+ That is, for any 0, d , r, the
probability that [wT is a unique solution toD,T~w! 5 0 in K~w0, r ! and7 [wT 2 w07 # d
tends to one, which establishes~B+2!+

That [wT is asymptotically Gaussian follows from condition~A+1! in Lemma 1 and by
Taylor’s formula for the functions],T~w!0]wj , j 5 1, + + + , k:

MT D,T~w0! 5 ~VI 1 AT~ [wT !!MT ~ [wT 2 w0!+ (A.3)

Here the elements in the matrixAT~ [wT! are of the formv1' ~D2,T~wT
* ! 2 VI !v2 with

v1, v2 unit vectors inRk andwT
* a point on the line fromw0 to [wT + Note thatwT

* depends
on the first vectorv1+ Next, by expression~A+1!,

6v1' ~D2,T~wT
* ! 2 VI !v26 # 6v1' ~D2,T~w0! 2 VI !v261 7v177v277wT

*2 w07 IcT +

BecausewT
* P

&& w0 and IcT
P
&& Ic , ` it follows from condition~A+2! in Lemma 1 that

the right-hand side tends in probability to zero+ HenceAT~ [wT! P
&& 0, and condition~B+3!

follows by expression~A+3! using condition~A+1! in Lemma 1+ n
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