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ASYMPTOTIC INFERENCE FOR
NONSTATIONARY GARCH

SOREN TOLVER JENSEN AND ANDERS RAHBEK
University of Copenhagen

Consistency and asymptotic normality are established for the highly applied quasi-
maximum likelihood estimator in the GARGH 1) model Contrary to existing
literature we allow the parameters to be in the region where no stationary version
of the process existF his has the important implication that the likelihood-based
estimator for the GARCH parameters is consistent and asymptotically normal in
the entire parameter region including both stationary and explosive behavior
particular there is no “knife edge result like the unit root case” as hypothesized
in Lumsdaing(1996 Econometricab4, 575-596.

1. INTRODUCTION

This paper considers the asymptotic behavior of the likelihood-based estima-
tors in the generalized autoregressive conditional heterosked@&ARCH)
model or better the “workhorse of the industril’ee and Hanserl994). The
GARCH(1,1) or simply the GARCH model is given by

Yt = \]ht(‘g)zt» (1)

h(6) = o + ay?, + Bh_1(6), 2

with t = 1,...,T andz an independent and identically distributed.d.) (0,1)
sequenceAs to initial values the analysis is conditional on the observed value
Vo, Whereas the unobserved varianbg(6), is parametrized by, hy(0) = y.

The parametef of the GARCH model is therefore

0= (a,B,o,7y) (3

with «, B, w, andy all positive Denote henceforth the positive true parameter
values by, = (ag, Bo, wo, Yo)-

The GARCH model was introduced by Bollerslgh®86), extending the auto-
regressive conditional heteroskedasA®CH) model of Englg(1982. Asymp-
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totic inference for the ARCH and GARCH type models has been studied in
e.g., Kristensen and RahbdR002, Lee and Hanse(1994), Lumsdaing1996),

and Weisg1986. Common to these is the assumption that (B8ARCH pro-
cessy, is suitably ergodic or stationary such that appropriate laws of large num-
bers apply Moreover the generic assumption for asymptotic normality is that
the squared error procesg, has a finite(conditiona) variance k = V(z?) =

E(z? — 1) < oo. In the case of.i.d. innovationsz the results in Lee and
Hansen(1994) establish asymptotic normality essentially under the assumption
that

Elog(agz2 + By) < 0. (4)

This condition is necessary and sufficient for stationarity of the GARCH pro-
cess as argued in Nels@h990 and Bougerol and Picar(l992. Recall that
the assumption iri4) is implied by the well-known sufficient conditioa, +
Bo = 1, which includes the much studied case of integrated GARCH where
agt+ Bo=1

Our contribution is to relax this and work under the following assumption
which permits explosive and nonstationary behavior of the GARCH process

Assumption 1 Assume that witte, i.i.d.(0,1), the true parameters satisfy
Elog(aezf + Bo) = 0. (5)

Clearly this extends the parameter region for which asymptotic normality
holds Our results show that whether or not the parameters are such that the
process is ergodjdntegrated or even explosiveasymptotic normality of the
likelihood-based estimators applieBhus there is no “knife edge result like
the unit root case” when entering the parameter region in Assumption 1 as
hypothesized in Lumsdaind996 p. 580). Indeed our results impJyn partic-
ular, that requirements for existence of moments and stationarity for the GARCH
process can be ignored when reportiag., standard deviations and test statis-
tics involving the likelihood-based estimators hesbich until now has caused
concern in the literature on GARCH inferend® this end unreported simula-
tions indicate that in fact the convergence of the estimators to the Gaussian
distribution is faster in the explosive case than in the statiofdote that Jensen
and Rahbek2004) relax the condition about stability of thg process in the
ARCH(1) mode] whereg = 0, and allow the ARCH process to be nonstation-
ary and to have no momentBhe added complexity here due to the parameter
B and hence lagged variandg_,(60), in (2) implies that results regarding infer-
ence require different types of arguments when compared to the ARCH model
This is also noted by Lee and Hans€t®94 p. 35 for the stationary case
where it is emphasized that inference with respeg? ie the most difficult

The paper is structured as followSection 2 presents the two main theorems
of the paperTheorem 1 establishes asymptotic normality when the parameter

https://doi.org/10.1017/50266466604206065 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466604206065

NONSTATIONARY GARCH 1205

that parametrizes the initial unobserved variahg@) = v is set equal to the
true valug y = vy, and furthermore the scale parameter equals its true value
w = wg. Theorem 2 shows that the asymptotics hold independently of this ghoice
that is independently of the initial valueSections 3 and 4 establish the proofs
of Theorems 1 and,2espectively

2. MAIN THEOREMS

As in Lee and Hanse(1994 and most of the literaturave consider the like-
lihood estimators based on minimization of

() = = 3 loghy () + 2 (6)
== 0
TP e

with h;(0) defined in(2). Throughout this is referred to as thguasijlikelihood
function and likewise the first and second derivatives are referred to as the
score and observed informatiorespectively Note that it is the true log-
likelihood function(multiplied by minus twgif z is indeed Gaussia®ur first

main result is the following

THEOREM 1 With (w, y) fixed at their true values(wo, v,), consider the
model given by the (quasi-)likelihood functién(a, B8) := €1(«, B, wg,yo) @S
given by (6). Assume that at the true parametgr= (o, Bo, wg, Vo), Y: given
by (1) satisfies Assumption 1 such that no stationary version exists. Assume
further that for the i.i.d.(0,1) process,2/(z?) = k < oo.

Under these assumptions there exists a fixed open neighborhoed U
U (ag, Bo) Of (g, Bo) such that with probability tending to one as-% oo,
{+(a, B) has a unique minimum poirﬁt&T,,éT) in U. Furthermore,(ar, Br) is
consistent and asymptotically Gaussian,

\/T[(&TvﬁT) - (ao’ﬁo)]’ £> N(O, ).

HereQ > 0 and is given by = «3 %, with u; = E(Bo/(agz? + Bo))', i = 1,2,

and
1 oM

s = aé aoBo(l— pq) . 7
M1 1+ p)pp

aoBo(l— uq) g(l — )= uy)

Remark 1 The covariance matri® in Theorem 1 provides a lower bound
for the implicitly given variance in the stationary and ergodic case analyzed in
Lee and Hansef1994 Theorem 3. This follows by the fact that the informa-
tion matrix provides an upper bound as seen by the proof of Lemma 6 in Sec-
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tion 3.3, which applies the inequalities in Lemma #Bhese inequalities hold
independently of whether the procegds stationary or notSimilarly for the
two-dimensional information discussed in Sectioh. 3

Remark 2 Note that ifz, is Gaussian explicit expressions fef andu, can
be computed for the covariance matrix in Theorem 1

Next, we state the result that the valuestgfd) = y andw (gnd also the
initial valuey,) are asymptotically negligibldn particular (&1 , 87) is a min-
imum point inU of €+(0) = ¢1(a, B, w,v) for any arbitrary values ob andvy.

THEOREM 2 Assume that Bbg(aq,z? + Bo) > 0. Then the results in Theo-
rem 1 hold for any arbitrary values of > 0 andw > 0.

Theorem 2 states thé&, 8) can be estimated consistently by taking any arbi-
trary values ofw and+y and that the asymptotic distribution of the estimator
does not depend on the arbitrary valuesvodindy. After the parametefa, 8)
has beer(consistently estimatedone may estimatéw, y), but the estimator
would not be consistenand hence there is no need to reestimate the parameter

(a,B).

Remark 3 Note that the results in Theorem 2 exclude the boundary case in
Assumption 1 o log(ayzZ + Bo) = 0. We do not know whether there exists a
consistent estimator fav or if the asymptotic distribution o and3 does not
depend orw in this case

3. PROOF OF THEOREM 1

The proof of Theorem 1 is based on applying Lemmavhich follows Note

that conditiongA.1)—(A.3) are similar to conditions stated in the literature on
asymptotic likelihood-based inferentsee e.g., Lehmann 1999 BasawaFei-

gin, and Heyde1976. The difference is thatA.1)—(A.3) explicitly exploit the

fact that(the negativielog-likelihood function is three times continuously dif-
ferentiable in the parametdturthermoreLemma 1 establishes uniquenéssn-
vexity) in addition to existence of the consistent and asymptotically Gaussian
estimator

LEMMA 1. Considert+(¢), which is a function of the observationg, X., X
and the parametep € ® C R Introduce furthermorep,, which is an interior
point of ®. Assume thaf;(-) : R* — R is three times continuously differentia-
ble in ¢ and that

(A.1) As T—> oo, \T ol (po)/de = N(0,Qsg), Qg > 0.
(A.2) As T— o0, 020+(¢o)/dpde’ —> O, > 0.
(A.3) maX, i j—1 . kSURen(ey) |0 T (@)/0ende; de;| = Cr,
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where N ¢g) is a neighborhood o, and0 = ¢y 5 ¢,0< ¢ < . Then there
exists a fixed open neighborhood &h) C N(¢g) of ¢g such that

(B.1) With probability tending to one as F oo, there exists a minimum
point ¢t of €+(¢) In U(gy) and €+(¢) is convex in Weg). In particu-
lar, @1 is unique and solvedt+(¢t)/de = 0.

(B.2) As T— o, ¢1 > ¢o.

(B.3) As T— o0, VT (1 — ¢p) - N(0,0Q;10s07Y).

The proof of Lemma 1 is given in the Appendix

Next, with ¢ := (a,8)" and €+(¢) = ¢1(a, B) defined in Theorem ,1the
results in Theorem 1 follow by establishing conditigAs1)—(A.3) in Lemma 1
For exposition only we initially focus on the GARCH paramefein Sec-
tions 31-34. The first; second;and third-order derivatives of the likelihood
function with respect t@ are given in Section.3. Upon some initial results in
Section 31, the behavior of the score and observed information evaluated at
the true valugd = 6,, are studied in Section.3 In Section 34 it is shown that
the third derivative is uniformly bounded by a suitably integrable majorant
The derivations concerning the ARCH parametare simple when compared
with the ones with respect {8 and are outlined in Section3 It is also there
that the asymptotic results for the joint paraméter3) are given Note finally
that(A.1)—(A.3) hold by Lemmas 56, and 10 in Sections.3 and 34, together
with the comments in Section3 It follows thatQs = x> in (A.1) (see Lemma5
and (38)), whereas in(A.2), O, = 3 (see Lemma 6 and39)). Finally, X is
given by (40).

3.1. Variation with Respect to 8

In this section we derive the firstsecond; and third-order derivatives of the
likelihood function with respect t@.
The likelihood function is given by6) in terms of6, and it follows that

% (6) = %é_l— htytha) hy.(6), (8)
I S D
; %121 2[1 3 hty(‘; } h2,(6). (10)
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Herg applying simple recursions

_oh(e)/op L - he(0)
N YO -
92h,(6)/0B2 Lo . h_;(6)
hy(0) 1= — P oS (g2~ and 12
: ol T e 2
_eheyegr & he(0)
()= G =3R A DG -2 (19

3.2. Some Initial Results

For the asymptotic likelihood analysis in the following discussion the first and
the second derivatives of the likelihood function are evaluated at the true value
0o, and we introduce therefore the notation

0y 9y ,
h, := h(6,), hy := hy(6,) and 6_,8' = 8_,8' (6) fori =1,2,3.

(14)

Underlying parts of the asymptotics is first of all the following observation
from Nelson(199Q Theorem 2.

LEMMA 2. Under Assumption 1, as-b oo,
hy 225 oo,

Next, to study the asymptotics of the central quantitigeg h,, and hs; in
(12)—(13) it is useful to introduce the stationary processg§) fori =1,...,4
defined in terms of the.iid. innovationsz,. Note that the processes and their
properties are well defined for the entire parameter redioparticular Assump-
tion 1 is not required in the lemma

LEMMA 3. Define the processes

Une(8,b) = mZa' ”‘H(]—n)H (15)

1(10 k+b

for m = 1,...,4 and with the notational convention thﬂﬂzl = 1. For all
p=1and m=1,...,4, Uy ‘= Un(Bo, Bo) is ergodic and

Eub, < 0. (16)
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Furthermore, for each p= 1 there existB, and By with 8, < B¢ < By such
that Un(Bo, BL) and un(Bu, Bo) are ergodic and

Elumi(Bo,BL)]P <o and E[un(By,Bo)]P < co. (17)
Proof of Lemma 3 Without loss of generality consider the casenot= 2.
Define
Bo P
=El——— ) <1 18
% (ao zZ + 30) (18)
asz; is nondegeneratéJsing Minkowski's inequality (16) follows by
arr <23 L ole(n 2 )T
[E(uz) 7P =2 (I—-DI|E )
* Bs : k=1 @z k+ Bo
2q2/P

= ZE(J— )qj/p_z(l—ql/p)z<oo

Next, considey say U, (B0, BL):

Uz (Bos BL) = 22 2(1_ )H

OZt «tBL
Then as beforeE[u,(Bo, BL)]P < oo, provided
p
E(B—> <1
apzi + B
which is the case for som@ < B, (as the innovationg, are nondegenerate
Likewise for ux(Buy, Bo), Which ends the proof |

Next, we show how thén; andu;, are related

LEMMA 4. Consider h; and hy defined by (11) and (12), respectively, with
the notational convention in (14). Then fori1,2,

0=nh; =uy, (19)

where the y are defined in Lemma 3. Furthermore, under Assumption 1, for
i =1,2, then as t— oo,

hie — Uy —— 0, (20)

.
2 (g~ uz) =50 (21)

—||H

.
2 (hf — u3,) +%50 and
t=1

=~

forallp = 1.

https://doi.org/10.1017/50266466604206065 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466604206065

1210 SOREN TOLVER JENSEN AND ANDERS RAHBEK

It is important that the inequality ifl9) holds independently of Assumption 1
Proof of Lemma 4 From the recursions ifil1) note that
E Bt H h (22)
t— k+1
Next, use that
Bohy i _ B
wo+ (aoZf + Bo)Nk @zl + Bo

to establish the desired inequality

=1 (23)

L1 Bohi—« 1
il =3 = =< Uy.
; Bo k=1 o + (g Z& + Bo) ey ngﬁokgla zy k+:30 u
Likewise,
22(1—1)BJ ZHh (24)

t— k+l

which shows(19).
Turn tohy; again By (23) and Lemma 2then ast — oo,

Bo B Bohe—k
(aozx+ Bo)  wo+ (agzZy + Bo)he_y

and therefore

] :80 :8(% ht—j as.
H 1 (ap Zt x+ Bo) he 0 (23)

By dominated convergence al&d convergence holds i25). Now lett, <t
be arbitrary and consider

a.s. O,

to i j -
lim sup E(uy, — hy,) < lim sup >, ﬁi E[lj_[ ( Bo ) _ oht—J:|

t—sco too =1 Bo | ke1\ @oZE + Bo he
1 J Bo
+ lim sup Z [HE( ——5 )
to0 j=to+1 30 k=1 agZi; + Bo

With t, fixed, then ast — oo the first term equals zero by the just established
L! convergence The second term equal&l/B,)(gle™t/(1 — a,)) with g,
defined in(18). As t, was arbitrarythe second term then tends to zerdgass co
becausey;, < 1. HenceE(uy — hy) tends to zero as— co. Next, note that

U = (Ug — hyp)®
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implies that the latter is uniformly integrable because the distribution,pf
does not depend dnThe just established® convergence implies convergence
in probability of (u;; — hy)P and hence by the uniform integrability

E(Ult - hlt)p - 0.

Likewise for u,, andh,,, which establishe$20). Finally, the claimedLP con-
vergence in21) follows by
P>1/D

g7t

T
2 (E(uy(uy = hy)P)¥P = = (Euftp)l/zp 2 (E(uy = hy)2P) V2P,
t=1 t=1

.
2 (uy + hy) (Ug — hyy)

il 1
uz, — h =
2, (uf;—hgy) =

—|||—\

—|||\)

which tends to zero a&(uy; — hy;)?P in particular tends to zerd his ends the
proof of Lemma 4 u

3.3. Asymptotics of the Score and Observed Information

This section establishes asymptotic normality of the score and convergence of
the observed information in probability under the true valigeAs noted the
idea is asymptoticallyto replace thé, terms with the corresponding, terms
in the expression&8) and(9), respectively see also Lemma.4
Consider first the score

LEMMA 5. Under Assumption 1 the score given by (8) evaluatef &at6,
is asymptotically Gaussian,

El4 y2
ﬁa_;;_ TE{ ]hn—m(oKw),
t=1 t
1+
@ = EU = A+ pa)ps and «=V(z?),

Bg(l — ) (1= pp)
where y, is given by (15) ang; = E(Bo/(agz? + Bo)), i = 1,2.
Proof of Lemma 5 Evaluated atl = 6, the score is given by

s

1
B T

-
Z Ut
t=1

—A| =

.
Z —z¢]hy =
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such thaE(v;| /1) = 0, where & = 0 (z;, z_1,...). Applying the central limit
theorem for martingale differences in Browh971), consider first

T

1 17
?E (Wé| R 1)—K Ehlt ?E(hlt ult)+K Eun
=1

—kE(3)>0

in probability (and L) as T — oo, using Lemma 4 and the ergodic theorem
Turning to the Lindeberg conditiomshy; = uy;,

T T
% E E@l{|v?] > SNTYH = -Il- 2 E((1— z2)2u1{|(1 — z?)%u%,| > SNTY
t=1 t=1

= E((1-z)%ufl{|(1 - z})%uf| > SNTH—0

for all § asT — oo becausel;; (and alsaz?) is stationary and has finite second-
order moments n

Next we establish the asymptotic limit of the observed information

LEMMA 6. Under Assumption 1 the observed information given by (9) eval-
uated atd = 6, converges in probability,

2€T
6,82

wherew is given in Lemma 5.

Bw= Eu? > 0,

Proof of Lemma 6 For § = 6, the observed information is given by

0%y }T‘, 21h,, + ! }T)[z 2_1]h2
== -z = Zi —
aBZ T = t 2t T = t 1t
17 17
= = D [1—22](hy — Uy) + = > [222 — 1](h% — u%)
T T
17 1T
?2 th]u2t+ 1—_2[225—1]Uft.
t=1 t=1

The last two terms on the right-hand side converge by the ergodic theorem to
E[2z? — 1]Eué, = EUZ, using the independence of andz. As E|1 — z?| and
E|2z2 — 1| are finite constantd. emma 4 implies that the first two terms on the
right-hand side converge ifL* and henceprobability to zero |

Remark 4 Note that the arguments for the score and information in Lem-
mas 5 and 6 carry over to the stationary case by using the ergodic theorem for
the observed information as in Lee and Han&E994 and Lumsdain€1996).
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3.4. Third Derivative of the Likelihood Function

In this section the third derivative of the likelihood function is shown to be
uniformly bounded in a neighborhood around the true value

Introduce lower and upper values for each paramete; s, < ag < ay,
BL < Bo < Bu, o < wg < wy, andy, < yo < vy, and in terms of thesethe
neighborhood\(6,) around the true valué, defined as

N(bp) ={0la, =a=ay, BL=B =Py, 0 =w=oy,andy =y =yy}.
(26)

The next lemma establishes that the individual terms of the third derivative
(0%€+/0B3)(#) in (10) are uniformly bounded in the neighborhodtif,) by
the corresponding terms as a functionfélone With

O(B) = (aO’B’wO’YO) (27)

introduce the notatiom,(B) and h;.(8) for h,(6(8)) and h,(6(8)), respec-
tively, with i = 1,2,3. Then the following lemma holds

LEMMA 7. With N(6,) defined in (26), then for any ¢

h.(0) h(B)
su =k , 28
s hy(8) = ", P h(B) (28)
1 _ 1 (29)

su =k, Sup ———,

9€N(go) h,(6) ZBLSBEBU h.(B8)

and, furthermore,

sup hi(#) =k, sup hy(B) fori=123 (30)

HEN(6o) BL=B=By

where the constantg;, are given by,

ay Yu Wy
max{ —, —,—

Qg Yo @o . o Y. W
Ky = and k,=min[ —,—,— |].

b
oL YL W
min[ —, —, —
ap Yo @Wo

ay’ Yo wo
Proof of Lemma 7 Note that withhy = y then by simple recursign

t t
h(6) =w > B+ a > BT+ yB.
j=1 j=1
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Hence
mm<ﬂ, o )h (B)=h <e><max<ﬂ N @>h (B), (31)
Qo 70 wWo g Yo Wo

which implies(28) and(29). Next, (30) follows by applying(28) to the defini-
tion of hy(#) in (11)—(13). [ ]

To establish bounds fdr,(8) andh; (8) in Lemma 9 we start with two fun-
damental identities concernirg andh,(3).

LEMMA 8.
t
h(B) =he+ (B = Bo) zﬂs_lhm, (32)
t
he = h(B) + (Bo—B) %B(ﬁilht—s(ﬂ)' (33)

Proof of Lemma 8 Rewriting the equations fdn,(8) andh, gives
h(B) — Bh_1(B) = hy — Bohi_1,
and the results follow immediately by noting that= ho(8)(= vo). |

Next turn to Lemma 9which holds independently of Assumption 1

LEMMA 9. With 8. < Bo < Bu,

(i) ht {1 for B, =B =By
1+ (Bo— BL)Us(Bo, BL) for B =< B = B,
(”) hlt(ﬂ) {Ult(BU’BO) + = ( BO)UZt(BU’BO) for BO = B = BU
U1 (Bo, BL) for B =< B = B,
(i) h,(B) = {uZt('BU’ﬂO) + % (Bu = Bo)Uz(Bu,Bo)  for Bo=pB =By
Uzt (Bo, Br) forB . =B=p,
(V) hy(B) = {Um(ﬂu,ﬁ’o) + - (,BU — Bo)Ux(Bu,Bo) forBe=pB=8y
Ut (Bo, BL) for B =B =,

where the y(-) are defined in (15).
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Proof of Lemma 9 Consider firsth,/h(#). For Bo = B < By, using(32)

he h,
= T
ht(ﬁ) ht + (B - Bo) Zlﬁylht—s

=1

For the case 0B, < B = By, use(33) to see that

ht(ﬁ) + (Bo - B) Z:LBCS)_lhtfs(B)

ht t s(ﬂ)
= — 1 s—1 _t7> "7
h(8) h(B) + (B B) ; e g
Then similar to the proof of Lemma, 4
h «(B) 5 hw(B) S h_«(B)
h(B) B |<1:[1 ht—k+1(/3) k[[ ot aoYt k + Bhy k(ﬁ)
S 1 S 1
= = 34
kHlaothk he +B |<1;[1010212—k+/3L (34)
e k(B)
becausé,_/h,_(B) =1 for B = B,. Inserting it follows that
h;
—BL) E H =1+ (Bo— BL)uw(Bo,BL),

ht(,B) & Bo ko1 apZe k+BL

where the right-hand side is independentBofThis establishes the inequality
in (i). The inequalitiedii)—(iv) hold by identical argumentsand we give the
proof only for (iv), which is the most complicated of thed®y definition,

t ](ﬁ)
h(B)

ha (B) = 3213‘ (j-1(j—2

and the inequality foB, < B8 = By holds by(34). Next, for 8o = B8 < By, hy =
h,(6y) = h{(B), and using this in addition t@32) gives
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4 he—;(B)
h

t

hs (B) = 323(] —D(j-2p
ic

t ~_he
=33 (j-D(i-2p°
j=3

t

t—j—s

t t—j
+3(8 — Bo) 23(] —1(j—2p° Zlﬁ“
i= s=

to _ . ht—j
=3>(j-1(j—2B°—
= h

t o he
+(ﬁ_,30)_24(j—1)(j—2)(j_3)31—4h_J
a t

1

agzZ « + Bo

53_23<j—1><j 2)/3631_[
P

+ (Bu—Bo) 2 (I —D(j—2)(j —3BY H
j=4

ko1 @zl k+:80

where the last inequality follows as {B84). This shows(iv) and completes the
proof of Lemma 9 u

We are now in a position to address the third derivative of the likelihood
function, (0%¢+/08°%)(#), as given by(10). We show thatindependently of
Assumption 1it is uniformly bounded in a region around the true vaRe

LEMMA 10. There exists a neighborhood(#) given by (26) for which

sup
0EN(0,)

Bs (0)‘ ;121% (35)

where w is stationary and has finite moment, Ew M < oo. Furthermore,
=D W — 36
= tzl t (36)

Proof of Lemma 10 Noting that by definitiony?/h,(8) = z2(h,/h(6)), the
expression fo(a3€T/aB3 )(6) in (10) implies that

3€T

983

(6)

h,
W (0) = < +2z h (6)>h3t(6) <22t2m + 1) h1 (0)hy (6)

+211+3 h h3.(6
< Zth(@)) 2(0).

? 2 w,(6), where
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Lemma 7 implies that

sup w(0) =c sup w(B)
OEN(6p) BL=B=Bu
with ¢ a constant By Lemma 9 the quantitiesh;;(8), i = 1,...,3, and
h,/h:(B) are bounded by functions that by Lemma 3 have any desired moments
Hence sup; g5, W:(8) = W, as desiredThe convergence if86) follows by
the ergodic theorepwhich ends the proof of Lemma 10 u

3.5. Introducing «

The arguments with respect &g and hence the joint variation in terms of both
a and B, are completely analogous to the ones in Sectiods-34, and we
emphasize only the important stef@mple computations lead to

0€+(6 17
—;C(Y ) = —t=21<1— ™ (0)) 5(6), where
j—1y,2
« (g) = u(0)/3a _,-;B o
Y L)
Hence

he_
hi = hi(6p) = Zzt JBJ ' ]

which as in Lemma 3 leads to the definition of the ergodic pracess

d 1 Bo
upi=222 — Il —————. (37)
u 2:1 B kE[1 agZi + Bo
As in the proofs of Lemmas 4-6 it follows that
€+ (0)
VT2 2 N,0,43) (38)
N B) |ggy -
and
1 9%+(0) P
- —3>0, 39
T 9@ B0 B |yg 9

wherex = V(z?) and

< E(ui)?  E(ujuy)
E(ujuy)  E(uy)? '
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We note the surprisingly simple relationship

* o 1 C(OZ»(Z_]- it BO
uj = > —
j=1

2 2
1 Qg Ao Z{j + Bo k=1 @ Z{_« + Bo

§i< Bo )ﬁ Bo

2 2
i=1 %o agZij + Bo Jk=1 @oZik t Bo

SE(f o)

2
S ag \kc1 aoZi+t Bo ko1 @oZik T Bo

.
1
lim > —

1
]1—[ 180 _ ﬁ BO
Tooo =1 @ \ ko1 @oZik+ Bo k=1 @oZik + Bo

1 T 1
lim —(1— H ZB—O =—,
T—oo Qg k=1 @ Z{_k T Bo (&%)

which implies

1 oM
2
1_
5 — ab aoBo(l— puq) , (40)
1 (1+ pa)pp

aoBo(l— pq) Bg(l =)A= uy)

wherew; = E(Bo/(aoz? + Bo))’, i = 1,2.

Finally, straightforward differentiation shows that inequalities completely anal-
ogous to(35) in Lemma 10 hold for the third derivativeé$t+(0)/0a 93¢+(0)/
0a:20B, and 936+ (0)/0cdB2.

Remark 5 Note that the nonstationary condition in Assumption 1 is not
needed to establish these bouitsise also Lemma 10and hence the uniform
bounds can be applied in the stationary case. &sothermorethe bounds of
the third derivatives establish inequalities of the forlErsugeN(eo)|a3€T(0)/
da'oBl| < oo fori +j =3, i,j =0,1,2,3, whereN(6,) denotes a neighbor-
hood of the true parameter valye, (see also the conditiotA.3) in
Lemma 1. Observe that the proofs in Lee and Hang&894 p. 51, 1.13-14
from below regarding stochastic equicontinuityand Lumsdaine(1996
p. 594 apply we believe different insufficient inequalities of the form
SURyepena) EI03€(0)/0a'9B1| < oo.
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4. PROOF OF THEOREM 2

We address here the asymptotic independence of the initial values j.

Recall that in the proof of Theorem llemma 1 was applied with := («a, 8)’
and{(¢) = ¢1(a, B) defined in Theorem 1If there is an extra paramete,
say in the likelihood function as in Theorem 2 follows that the results are
unchanged in Theorem 1 provided the conditions in Lemma 13 in Section 4
are fulfilled. To see this note first that in the proof of Lemma 1 in the Appen-
dix, D€+ (¢o) can be replaced bR{+ (¢, w) on the right-hand side of equation
(A.2) using (44) in Lemma 13 Likewise in equationA.2), D%¢+(¢*) can be
replaced byD?¢(¢* w) using (45) in Lemma 13 In equation(A.3), on the
left-hand side \'T Dé;(¢,) can be replaced by T Dé;(¢q, w) using (44) in
Lemma 13 and on the right-hand side; A (é1)v, = v1(D26(03) — Q))v,
can be replaced by;(D?¢+(¢3, w) — Q)v, using(45) in Lemma 13

The derivations that follow are given in detail for whereas for the case of
v we provide one lemma and note that the proof follows as irutltase but is
simpler For presentational purposes we focus on the variation with respect to
B in addition tow andvy, respectivelywhich as in the proof of Theorem 1 in
Section 3 is without loss of generalityo emphasize which parameters vary
the following notation is adopted

0([3,(1)) = (C(o,,B, wv’YO)-

Similarly 0(8,v) = (ag, B,wg,v); see also(27). We further emphasize the
dependence qre.g., o by adopting the notatiodi;(8,w) := €+(0(B,w)) for
the likelihood function and also for other functions previously defined

Section 41 states an initial general lemma that is useful in the derivations
Section 42 addresse® and Section 8 v.

4.1. An Initial Lemma

The following lemma addresses the average of products of stochastic processes

LEMMA 11. Let (X)i=1.2
for which

be stochastic processes @n

........

EIX| <o EIVI? <t

where g, c,, a, and d are positive constants afel < 1. Then withé > 0 and
as T— oo,

.
= XY, > 0.
T° &5
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Proof of Lemma 11 We establishL® convergence fos = a/(1 + a) < 1.
First ass < 1,

1
52X1Y1

s 1
T s6

.
S_Z EIX YIS

Next, withp =1+ a> 1 andg = p/(p — 1) > 1 apply Holder’s inequality to
get that this is bounded by

1 T
Z5 2 (EIX[EIY, 7)o
t=1

T55 Z(E|Xt|)1/q(E|Y|a)l/p
.
<= i&s 2 1/q l/ptd/ppt/p - — Cx/qcl}/pc
which tends to zero a§ — oo and wherec = X2, tYPp'P < oo, [ |

4.2. The Role of the Scale Parameter o

Initially we provide upper bounds for the terms appearing in the score and
observed information in8) and (9). To this end we need the following
proposition

PROPOSITION 1 Assume that Assumption 1 holds with strict inequality and
with B84 < 1. Then, for some p> O,

E(OZOZtZ + ﬁo)ip < 1.

Proof of Proposition 1 Sety, = a,z? + B and note thab, = B,. Define the
function f,(v) = (vP — 1)/p = (exp(—plogv) — 1)/p - —logv asp — 0.
Note that onA; = [Bo,1](= D if By > 1), 0 = f,(v) = (1/Bo — 1) for 0 =
p = 1, whereas oA, = (1,00), —f,(v) = 0 and increasing ip asp — 0. Fi-
nally, Ef,(v;) = E[ f,(v;)1a, ()] — E[~f,(v1)1a,(v,)], which by dominated
and monotone convergence respectivedgnverge toE[—logv,1a (v,)] —
E[logv;1a,(v;)] = —Elogu;, which is negative by Assumption Hence forp
small enough the result holds |

Next consider individual terms appearing in the likelihood functior(Gh
and also terms of the score and observed informatiof@)irand (9) and their
variation with respect te.
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LEMMA 12. Assume that Assumption 1 holds with strict inequality. Then
for anyw > 0, there exisiB,. < By < By such that

t—1
Bi
aht(ﬂ’ w)/aw Z)
BL=B=Buy t BL=B=PBu t
t—2
(i+1)p
92h,(B, w)/Bow 26
h h
BL=B=Buy t BL=B=Buy t
t—3
i +1)(i + 28!
a*h(B, w)/9B%dw izzo( : A
= sup =rg,t2
h h
BL=B=Bu t BL=B=PBuy t
Here, with i=1, 2, and 3,
1 ‘ Bu
- forBy=1
1] (By—D kglaozawﬁo °
riwt = (41)
Yo 1 !
for By < 1,

(1-Bu) ic1 @zik + Bo
[Erign]l/p = Pit,
wherep; < 1 and p> 1 for By = 1, whereas p> 0 for 8o < 1.

Proof of Lemma 12 We give only the proof foii = 1 as the other cases
follow analogouslyNote thath, = H}:O(ao z2., + Bo)vo and hence

t—1 ) t—1 )
EBI E’Bb t 1
i=0 i=0

<
= 5 )
hy Yo j=0 ®%Z—jt+ Bo

Consider first the case @, = 1, which impliesB, > 1 and in particular

t—1
N R G SR
he Yo(Bu =1 j=o @oZZ; + Bo  Yo(Bu — 1) j=o aozl; + Bo

This function has exponentially decreasing absopiteorder momentp = 1,
provided

E('B—U>p <1, (43)

2
agZf + Bo

(42)

which is the case for som@, > Bo; see Lemma 3
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Next turn to the case @, < 1. In this casewithout loss of generalityit can
be assumed that, < 1, and we find

t—1 ) t—1 )
28 2B
i=0 i=0

1 _ 1 ¢ 1
he v j“o@ziit+Bo  Yol—Bu)i<oaezii+Bo
Applying Proposition 1 finishes the proof of Lemma.12 u

Next, turn to the main lemma

LEMMA 13. Assume that Assumption 1 holds with strict inequality. Then

for any arbitrary w > 0, there exis{B,. and By, B. < Bo < Bu, such that

d1(Bo, w) _ % P
(et i) 1, @
9247 (B, ) B 62€T(:8’w0)) P
BLE/[;EBU( IB? p* —0 o

Proof of Lemma 13 Given the arbitrary value, (= w) > 0, definew, =
MiN(wg, @) and oy = Max(wg, wap). By Taylor expansions(44) and (45)
follow by showing that

32€T(Bo,w) p

T 0 46

w;fgwu\/— Bow (46)
03¢+ (B,

sup  sup | B e g )
BL=B=PLy v =w=wy aﬁ Jw

Simple computations give

1 t2
i<_ E [1_ y—]hlt(ﬁo,w)>

a0 \NT &7 h(Bo,o)

L ye oh,(Bo, w)/dw
E [ h,(Bo, w) ]( he(Bo, ®) > 1t(Bo, w)

a2€T(Ba Cl))
VT BIw

B=Bo

[1 ve }azht(ﬁo,w)/aﬁ&o )

" hy(Bo, @) he(Bo, @)
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Likewiseg,

9% (B, ») 1
B%0w TS

{_ y2 }aSht(ﬁ,wwﬂ%w
ht(B’w)

O e ohy(B,w)/dw
T - ht , —
M i “’)< h(,0) )
L l 92h,(B, w)/8Biw
3|4 -2|h TP )P
" T 21_4 h(B,w) 2_ 1t('8’w)( h: (B, w) )
150 ] (B, w)/0w
M Xl ( (B,0) ) @)

All the preceding terms are bounded as they are all of a form that can be
expressed in the form described in Lemma aXypical term in(48) and(49)

is given by
li{z ¥ _1}1 " )<aht<ﬁ,w>/aw>
T& hBo PN B
_lg]p¥( ahy(B. )/
=72%h (h(m))“”hw )‘hz‘('g“’) |
(50)

By Lemma 12 SUp, —g=p, SUR,, =w=u, | (0N (B, w)/dw)/h| has exponentially
decreasing momentand this factor plays the role of in Lemma 11 Using
Lemmas 7 and ,&%he remaining three factors are bounded by varighldgsch
by Lemma 3 have finite moments of any desired oréence the product of
these variables plays the role Xfin Lemma 11 This ends the proof of Theo-
rem 2 regarding the role @b. u

4.3. The Role of the Initial Value hy(6) =

As mentionedthe proof although simplerfollows exactly the outline of the
proof of the independence on the scale parametgiven in Section £. Recall
that to emphasize the dependence+gnwe adopt the notatiod+(B,y) =
€+(6(B,v)) for the likelihood function and other function$o establish the
results in Lemma 13 witlw replaced byy we need only the following lemma
which corresponds to Lemma 12
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LEMMA 14. Under Assumption 1, for any > 0 there existB, and By,
BL < Bo < By such that

gy B L

= Ty
BL=B=Py h, po=p=p, e~ vo
9%h.(B,y)/9Bdy Bt t
- . = sup = Iy
BL=B=By h, B=p=p, Mt YoBo
9°h(B, v)/aB>ay t(t-1p% _tt-1
h = SUp h = hyt
BL=B=Buy t BL=B=By t YoBo
with
t
Bu
Myt = — (51)
S @02+ Bo
[Erg:]%? = p' wherep < 1. (52)
Proof of Lemma 14 The results follow as in the proof of Lemma 12 for the
case offy > 1. [ |
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APPENDIX: PROOF OF LEMMA 1

Note first that by conditiorfA.3) in Lemma 1 it follows that for any vectors,,v, €
Rk, and anye € N(¢0)9

‘Ui(DzeT(GD) - D2€T(§00))U2| = HU:L” ”02” le — €00”5Ta (A1)

whereD{1 (@) = db1(p)/dp, D2l1(@) = 0241 (@)/dpde’, ander = k¥?cr. To see this
note that the left-hand side of expressi@nl) is | f(1) — f(0)| = |af (A*)/9A| for some
0 = A* =1, wheref(A) = v;[D%¢+(@o — A(@ — @0))]vs, 0 = A = 1. By Taylor’s for-
mula and conditiofA.3) in Lemma 1

K
|8f()\*)/8/\| = 2 Uy Uz,j(% - €00,|)33€T(€00 = X(@ — @)/, 3€0j e

ij.1=1
Kk K Kk

=cr X lvail 2 lvail 2 e = @0l = Crlvall ool e — @ol.
i=1 j=1 =1

Next, by definition the continuous functiofi:(¢) attains its minimum in any compact
neighborhooK (¢o, ) = {¢| [¢ — ¢oll = r} € N(go) of @o. With v, = (¢ — o), and
¢* on the line fromg to ¢, Taylor’s formula gives

1
tr(¢) — (o) = D€T(¢O)v¢ + E U;DzeT(QD*)%

1
= D€T(¢O)U¢ + EU;»[Q + (D2€-|—(<p0) —-)

+(D?(7(¢") — D2t1(¢o))lv,. (A-2)

Denote bypr andp, p > 0, the smallest eigenvalues [dD 26+ (¢o) — Q, ] andQ,, respec-
tively. Note thatpt 50 by condition(A.2) in Lemma 1 and the fact that the smallest
eigenvalue of & X k symmetric matrixM, inf,,cgk ), ;-1 v'Mo, is continuous inM.
Then conditiongA.1) and(A.3) in Lemma 1 with ¢ = k¥?2c, and equatior{A.2) imply
thatinf,., _ [€+(¢) — €r(@o)] is greater than or equal to

1 ,p 1 )
~ [IDE(go)lr + S Lo+ pr—Crrlr® = Slp—cerjr®

Thereforeif r < p/¢, the probability that'+(¢) attains its minimum on the boundary of
K (o, ) tends to zeroNext, for ¢ € K(go,r) andv € R, rewritingv'D?¢1(¢)v as in
equation(A.2), v'D%t(¢)v = |v|?(p + pr — r&r), which tends in probability to
[v]|?(p — r&). Hence if r < p/¢ the probability thatf+(¢p) is strongly convex in the
interior of K(¢o, r) tends to ongand therefore it has at most one stationary polis
establishes conditio(B.1) in Lemma 1 if r < p/¢ andK(go,r) C N(¢p), there is with
a probability tending to one exactly one solutign to the likelihood equation in the
interior U(¢pg) = int K(¢gg, ). It is the unique minimum point of+(¢) in U(¢g) and as

it is a stationary pointit solvesD¢+(¢) = 0.
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By the same argumeyfor any§, 0 < 6 < r there is with a probability tending to one
a solution to the likelihood equation iK(¢g,8). As ¢t is the unique solution to the
likelihood equation irK (¢, r), it must therefore be it (¢, §) with a probability tend-
ing to one Hence we have proved thét is consistentThat is for any 0< § <, the
probability thatgr is a unique solution t®€¢1(¢) = 0 in K(gg,r) and|ér — ¢o| = 6
tends to ongwhich establishe$B.2).

That g+ is asymptotically Gaussian follows from conditi¢h.1) in Lemma 1 and by
Taylor’s formula for the functiongfr(¢)/de;,j =1,...,k:

\/TDfT“Do) = (Ql + AT(S‘A’T))\/T(ﬁaT - €00)- (A.3)

Here the elements in the matri:(¢1) are of the formw](D26+(¢%) — Q)v, with
v1,v, UNit vectors inR¥ and g3 a point on the line frompg to ¢1. Note thate; depends
on the first vectow;. Next, by expressionA.1),

‘Ui(DZeT(EDT*) - )U2| = |Ui(D2€T(§Do) - )Uz| + Hvl\l ”02” ”QDT' - §OOHCT~

Becausep; RN ¢o and ¢y 5 ¢ < oo it follows from condition(A.2) in Lemma 1 that
the right-hand side tends in probability to zeHenceAr (o) 50, and condition(B.3)
follows by expressiorA.3) using condition(A.1) in Lemma 1 n
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