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Abstract We study cohomology-free (c.f.) diffeomorphisms of the toftis A diffeo-
morphism is c.f. if every smooth functioff on 7" is cohomologous to a constant
fo, 1.e. there exists &> function & so thath —ho o = f — fo. We show that
the only c.f. diffeomorphisms of”, 1 < n < 3, are the smooth conjugations of
Diophantine translations. For = 4, we prove the same result for cdrientation-
preservingdiffeomorphisms.

0. Introduction
Let M be aC* manifold andg a smooth diffeomorphism o#. All the objects we
consider here ar€>. We say thaty is cohomology-fredc.f.) if every smooth function
on M is cohomologous to a constant, i.e. for every functfoan M there exists a smooth
function on M and a constanfp so thath —hop = f — fo.

Katok [13, Problem 17] proposes the following.

Problem.For a given manifold what are the cohomology-free diffeomorphisms?

In this generality very little is known. We first observe that c.f. diffeomorphisms are
uniquely ergodic and in fact the space of invariant distributions is one-dimensional. We
show in Proposition 1.2 that a c.f. diffeomorphigmof an orientable manifold/ leaves
invariant a volume fornf2 in the sense that

¢*Q = (degyp)L,

where dew is the degree of. So¢ is minimal.
The aim of this article is to give an answer to Katok’s question when the manifold is
a low-dimensional torus. We prove the following.
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THEOREM A. The cohomology-free diffeomorphisms of the toftis 1 < n < 3, are C*
conjugate to Diophantine translations

THEOREM B. The only cohomology-free orientation-preserving diffeomorphisms of the
torus 7* are the C* conjugations of Diophantine translations

Theorem A is proved irg§52 and 3 and Theorem B is proved §4. §85 and 6 are
auxiliary results. The cohomology of the foliation given by the fibres of a torus bundle
is discussed irg5. In §6 we adapt to our needs the isotopy theorem for volume forms
due to Moser 19].

In Example 1.9 we give an example of an analytic, minimal and uniquely ergodic
diffeomorphism of 72 that reverses orientation. This shows the crucial role of the
cohomological triviality of the diffeomorphism in Theorem A.

In the proof of our results, the analogue for the tofdof the so-called ‘last geometric
theorem of Poinc&' as conjectured by Arnold ir?] and [3] and proven by Conley and
Zehnder in 7] plays an important role. It says that if an area-preserving diffeomorphism
of 72 is homotopic to the identity and has mean translation 0, then the diffeomorphism
has at least three fixed points.

1. On the cohomology-free diffeomorphisms

1.1.We use c.f. as an abbreviation for cohomology-free. For a closed orientable manifold
we have the following.

ProPOSITION1.2. Let M be a closed orientabl€*> manifold and letp be a cohomology-
free diffeomorphism of M. Then there exists a smooth volume $bon M so that

¢*Q = (degy)Q2, (1.1)
wheredegy denotes the degree of

Proof. Fix a volume formg on M with total volume 1. Notice that
n—1 )
Dy" = HD(pO(p/.
j=0
From this we get
1 Soo1A 4
=(log| detDg"|) = = "log| detDg| o ¢/, (1.2)
n n =0

where deDy is defined by the identity
QO*QQ = (detDg) Q2.

Let 1 be the uniquep-invariant normalized probability measure ah

Now, following an idea of Denjoyq], we see from (1.2) and the unique ergodicityof
that log| detDg"|/n converges uniformly tac(log | detDg|) and sincefM detDg" Qg =
dege” = £1 we haveu(log|detDg|) = 0. As ¢ is c.f. the functional equation
h —h oo = log|detDg| has a uniqueC® solution z such thath Qo =1. Itis
easy to see that 2 = ¢"Qo, theny*Q = (degyp)2, proving the Proposition. O
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It follows from the above proposition that preserves the Lebesgue measureVof
and sincep is uniquely ergodic thew is minimal (i.e. every orbit ofy is dense).
We say that a 1-formwg is almost g-invariant if ¢*we = wo + df .

Remark 1.3Let ¢ : M — M be a c.f.C* diffeomorphism and leiwy be an almost
p-invariant 1-form. Then there exists a uniqudnvariant 1-formw cohomologous to
wo (wo need not to be closed).
This holds sincep is c.f. so that the functional equatidn— h o ¢ = f has aC*
solutionk : M — R, wheref is as above. Now = wq+dh is theg-invariant 1-form.
We restrict ourselves to the study of the c.f. diffeomorphisms of the tBfus

Remark 1.4Let ¢ be the diffefomorphism given on the coveri®f by ¢ = A + F,
where A is an integral matrix with determinant of absolute value 1 &hdR" — R" is
Z"-periodic, i.e. F(x +¢) = F(x) for all x € R" and¢ € Z". The Lefschetz number of
@ is given by

L(p) = det( — A). (1.3)

We will denote byo(A) the spectrumof A. Thus by the Lefschetz fixed point
theorem, 1e o (A) if ¢ has no fixed point. Choose a vectoe= (my, ..., m,) in Z" so
that’Av = v and g.c.d.(my, ..., m,) = 1. By [20, Theorem Il.1]Jv extends to a basis
B ={v,vq,...,v,_1} of Z" so that

1 *...*
-1t _ 0
ptap=|. , (1.4)
: tAn_l
0

where P is the matrix whose columns are the vectorsBofind detP = 1. Of course,
detA, _; = degep.

Now if o (A) = {1}, then B can be chosen so that,_; is triangular. This can be
proved by induction om.

A translation 7, of 7" is Diophantine [5,12] if « € R" satisfies a Diophantine
condition

k- al > C,B>0 (1.5)

|ke|+B”
forall k = (kq,...,k,) € 2" — {0}, where|x| = inf{|x — £|, £ € Z"} defines a metric
onT", |x| =sup |x;| andk - & = ki + - - + kp .

The following result is probably knowrL§].

THEOREM 1.5. The only cohomology-free affine diffeomorphisms of the t@tuare the
Diophantine translations.

Proof. Let T, be a Diophantine translation and Iétbe a smooth function o” whose
average ovefl” is zero. Using Fourier series, one can see that the solutitm the
equations — h o T, = f must satisfy|(k)| < (|k|"*#/c)| f(k)| for all k € 2", which
shows that: is smooth. Thud, is c.f. Now, if A+« induces a c.f. affine diffeomorphism
of T", then it is minimal. Thusr(A) = {1} [11] and A = I + N, whereN is nilpotent.
We show that ifN £ 0 there is a countable family of invariant distributions which are
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not measures, and thus the affine diffeomorphism is not c.f. To kacl£”, ‘Nk +# 0,
we associate an invariant distribution by

pe(f) =Y POk fAmK) (1.6)

meZ

for every C* function f : 7" — C wheref denotes, as usual, the Fourier transform

of f.

To show thato, is a-invariant observe that

pk(f oa) = Z ezni[alyy(o)+Am“71(0)]k f(lAm—lk)

mez

anda™(0) + A”a~1(0) = a”1(0). Thusa is a Diophantine translation byl?] and [5],
finishing the proof. O

A closed ordered coframef 7" is an orderedi-tuple {ws, ..., w,} of closed 1-forms
which are linearly independent at every pointTof.

LEMMA 1.6.Let ¢ be a C> diffeomorphism off” and letw = {wi,...,w,} be a
closed coframe cohomologous to the canonical cofrafme = {dxi,...,dx,}, i.e.
w; = dx; +dhj, 1 < j < n. Theng is conjugate to an affine diffeomorphismof
T", induced byA + «, and the conjugating diffeomorphisgnis homotopic to the identity
if and only if*w = ‘Aw (in matrix notation).

Proof. Clearly, if o ¢ = a o ¢ thengp*w = 'Aw, wherey*dx; = w;, 1 < j < n.
Now sincew anddx are closed cohomologous coframes then @iytliere exists aC>
diffeomorphismy, homotopic to the identity such thét*dx = w. Thusa = Yooyt
is an affine diffeomorphism, sine&dx = 'Adx.

COROLLARY 1.7. Let ¢ be a c.f. diffeomorphism df” such that the only eigenvalue of
¢, - Hi(T", R) < is 1. Thengy is conjugate to a Diophantine translation by &
diffeomorphism.

Proof. By Remark 1.4 we may assume thatis given on the coveringr” by a
diffeomorphism of the form
p=A+F+a, 2.7)

where A is triangular, i.e.A;; = 0 if i < j, F has Lebesgue measure zeroTifi and

a € R". By Lemma 1.6 and Theorem 1.5 it suffices to construct a closed coframe
w = {ws,...,w,} of T" cohomologous to the canonical coframie and such that
e*w = "Aw in matrix notation. We construab inductively using the cohomological
triviality of ¢. Let wy = dx1 + dhy, wherehy — hio ¢ = Fy,

wy = dxz +dhy, wherehy, —hoop = Fo — Ay (1.8)

andw; = dx; + dh;, whereh; —hj o = F; — Y/ L Ajihy, 1 < j < n. It follows
that p*w = 'Aw and by the minimality ofp we see thatw is a coframe, proving the
corollary. O
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We now show that a c.f. diffeomorphisgof 7" is quasi-unipotent on homology.

PROPOSITION1.8. Letg be a c.f. diffeomorphism of the tor@$. Then all the eigenvalues
of the induced mapping, : H1(T", R) < are roots of unity and 1 is an eigenvalue.

Proof. By a theorem of Manning in1[g] the spectral radius $p.) of ¢, : Hi(T"; R) <
is bounded above by the exponential of the topological entfapy of ¢, i.e.

h(p) > log sp(e.). (1.9)

Now, by a theorem communicated to us by A. Katok, after reading a preliminary version
of this paper, the topological entropy of a c.f. diffeomorphism of an orientable manifold
is zero. Thus

sp(gx) = 1. (1.10)

Since the characteristic polynomial @f is a monic over the integers, then by a well-
known result of algebra all the eigenvaluesgfare roots of unity. Of course, by the
Lefschetz fixed point theorem, 1 is an eigenvaluepof O

The above proposition is not sharp as is shown by the following.

Example 1.9.We construct an analytic, minimal and uniquely ergodic orientation-
reversing diffeomorphism of the tord&. On the coveringr? it is of the form

90(3@ )’) = (.X +a, -y + f(-x))v (111)

wherex is a special Liouville number and is a Z-periodic function. It is sufficient to
choosex and f so that

P2, y) = (x + 20,y — f(x) + f(x + ) (1.12)

is minimal and uniquely ergodic.
By a well-known result of Furstenber@][if the functional equation

X)) —x(x4+20)=—fx)+ f(x + ) (1.13)

has no measurable solution, thefis minimal and uniquely ergodic. By a theorem of
Krygin [16] if the numberg8 = 2« has a sequence of convergepisg, such that

P bh
P Gn 21 g2’

(1.14)

where|6,| is a bounded sequence, then there exists an andyfieriodic function such
that the diffeomorphism induced by

Y, y)=@+B8,y+gx) (1.15)

is uniquely ergodic. The functiop is constructed by a uniformly convergent series
g(x) — ch(e2ﬂibe + e—Zﬂika) (116)
k=1

with positive coefficients,. The b, are selected as some subsequenciy,gf
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We construct the numbex inductively by a continued fraction [@y, ap,...] as
follows. Observe first that the partial quotieatsand the convergents to must satisfy
Pn=0nPn-1+pn2 po=0, p1=1

and
dn = Qnqn-1+ qn-2, qo = 1, q1 = ai, for n = 2.

So define inductively the odd numbers
app1 = 3%, (1.17)

where pi/qr = (0, as, ..., a;) is thekth convergent otx. As thea, are odd integers,
then ps,,» = 2r, — 1 are odd integers and

qani2 = 2, are even (1.18)

We claim that(2r, — 1)/1, are convergents of the numbgr= 2«.
This holds since from (1.18) and a well-known property of the converg@3swe

have
2r, — 1

21]‘[
and from (1.17) and (1.18) we get

1 1
< < : (1.19)
G3n+393n+2 ~ G3n+3ln

o —

q3n+3 > 3q3"+2q3n+2 > 2]nln' (120)

Now from (1.19) and (1.20) we get

2r, — 1 1
g —

5 121
ln < 21,,[3 ( )

whereg = 2«. Thus by a well-known result of Legendr2j (r, —1)/1, are convergents
of B proving our claim. Hence condition (1.14) is satisfied for the above sequence and
(2.15) and (1.16) hold.

We claim that

[+ fx+a) =gx), (1.22)

where f is an analyticZ-periodic function. This holds since

00 00
f(x) — § :dkeZmbkx + § :dke—erlbkx7
k=1 k=1

where .
k
di = Ty (1.23)
and by = [, is a subsequence df,. So f defines an analytic function since

iMoo I, Bl = % Thus from (1.12), (1.17) and (1.22) = ¢? is minimal and
uniquely ergodic.

Theorem A follows immediately from Proposition 1.8 and Corollary 1.7 if the manifold
is the circle.
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Let M be a compact metric spage, M <= andf : M — R be continuous mappings.
Consider the series

> fogl (1.24)
j=0
the partial sums
k—1
Sc(fop) =) fo¢
j=0
and the Cesro sums
1 n
ou(f.0) ==Y Su(f. ).
=
We say that the series (1.24) ¢&°-Cesiro convergentto s if the sequence,(f, ¢) is

uniformly convergent to.

ProPOSITION1.10. Let M be a compact metric spage; M < be a continuous uniquely
ergodic mappingu be the normalizeg-invariant probability measure and : M — R
be a continuous function. Then the functional equation

x—xop=f n(f)=0 (1.25)
has a continuous solutian: M — R, u(s) =0 & Z;iofo(pj is C%-Cesiro convergent
tos.

Proof.Lets : M — R, u(s) = 0 be a continuous solution to (1.25). An easy computation
shows that

l n
on(fp)=s—=-3 so¢t (1.26)
k=1

and asyp is uniquely ergodic, them, (f, ¢) converges uniformly ta.
Consider the identity

1 n .
on(f.9) —on(fp)op=f—=3 foyl. (1.27)
j=1

Now if o,(f, ¢) converges uniformly t& : M — R, thens is a continuous solution
to equation (1.25) becau§neZ}’:1f o ¢/ converges uniformly tqi(f) = 0 sinceg is
uniquely ergodic. Moreoven(s) = O. O

COROLLARY 1.11.Let F — M —=> N be a fibre bundle and let : M < be a c.f. fibre
preserving diffeomorphism. Then the induced diffeomorphiisniv < is also c.f.

Proof.Let f : N — R be aC® function, u(f) = 0. Asg is c.f. then there exists @>
solutionz : M — R to the equation

h—hop=fon. (1.28)
Now observe that the Cam sums ofy_ ", f o 7 o ¢/ satisfy
on(fom, @) =0u(f,@)om (1.29)

since, by assumptiony o ¢ = @ o . Thuso,(f, ¥) o & converges uniformly tad:.
Thereforeh = h o m whereh : N <= is a C* solution to the equatioh —hop = f
andy is c.f. O
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2. The cohomology free diffeomorphismsrof

We show that theonly c.f. diffeomorphisms off? are the differentiable conjugations
of Diophantine translations Let ¢ be aC> c.f. diffeomorphisms off’2. Theng is
minimal and by Proposition 1.8 (¢,) C {—1,1}. Now by Corollary 1.7 to show that
¢ is conjugate to a Diophantine translation Bf we have to show that-1 is not an
eigenvalue. Supposel € o(¢,). Then by Remarks 1.3 and 1.4,is, on the covering
spacer?, of the form

Qﬂ(x,)’):(x‘i‘a»”lx_)"f‘f(x’y)), (21)

wheren is an integer.

Now by a theorem of Moserlp], see Corollary 6.2, we may assume thgd{dx A
dy) = —dx A dy which implies thatf, = 0 and f does not depend on.

We claim that7, (x) = x + « induces a Diophantine rotation ¢it. By Theorem 1.5
it is sufficient to show thaf, is c.f. To show this, lefz be aC> Z-periodic function
on R. Sinceg is c.f., the functional equation

h—hop=gom (2.2)

has aC* solution, wherer is the projection on the first factor. Differentiating (2.2) we
get
hy +hyop=0.

Soh, = 0 sincey is minimal. Thush is a solution to the equatioin(x) — A(x + ) =
g(x), showing thatT, is c.f. We note that since is a Diophantine number, then we also
have aC* solutionk to the equation

k(x) +k(x +a) = —f(x). (2.3)
Now ¢*w = ndx —w, wherew = dy+d(kom), and asp*dx = dx, then by Lemma 1.6
¢ is differentiably conjugate to the affine mapping

a(x,y) =(x+ao, —y+nx)

which by Theorem 1.5 shows thatis not c.f. Thusp is not c.f., giving a contradiction.

3. The cohomology free diffeomorphisms of the tdfds
We show thathe only c.f. diffeomorphisms df2 are smooth conjugations of Diophantine
translations
We see from 1.4 that a minimal diffeomorphismof 73 is given, on the covering
R3, by
p=A+F,

where the integral matrix is of the form

1 0 0
ny B
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with detB = degy and F : R" — R" is Z"-periodic. By Proposition 1.8 all the
eigenvalues oB are roots of unity. Now since* dx = dx + d F; then, by Remark 1.3,
if ¢ is c.f. so we have g-invariant 1-formw = dx + dh. Hence, by the isotopy
theorem 17] there exists aC* diffeomorphism+s isotopic to the identity such that
V*w = dx. S0y o ¢ oyt leavesdx invariant and we may, in addition, assume that
¢ leavesdx invariant. Now by Proposition 1.2 there exists a volume fdensuch that
¢*Q = (degyp)Q2. Thus by an adapted version of a theorem of Moser, see Corollary 6.2,
we may assume th& = dx A dy A dz.

We need the following lemma.

LEMMA 3.1. Let B be a unipotent x n real matrix, i.e.B™ = I for some positive integer
m, and letT;, be a Diophantine translation of the tord%’. Letr : T? — R" be anyC*®
function with Haar measure zero. Then there exists a un@tesolutions : T? — R"
to the functional equation

h—BhoT, =r.

Proof. The formal solution in Fourier transform of the above equation is
(I — &% BYh(k) = 7 (k)

and as the eigenvalues 8f are roots of unity and - « ¢ Z for all k € Z? — {0}, then
we can solve for and get

hk) = (I — &% BY 17 (k).

Since B is unipotent, an easy computation gives

(k)| < IF(k)|, Vk e ZP — {0}

for some constant. > 0 and allk # 0. As« is Diophantine, then
h(k)] < CLIKIPP 170
showing thath is a C* function. (|

We now distinguish two cases.

3.2. The diffeomorphism preserves orientationBy Corollary 1.7 we have to show
o(B) = {1}. Suppose 1¢ o(B). The idea of the proof is to show the existence of
a free actiomy of ST on T3 which is invariant unde, i.e. ¢ o ¥, = ¥, o ¢ for all
t € SL. Thus¢ gives a morphism¢, ) of a circle bundles! — 73 — T2. Now
by Corollary 1.11 the diffeomorphism of T2 is c.f. and by§2 we conclude thap is
conjugate to a Diophantine translation Bf. Thus 1 is an eigenvalue @, giving a
contradiction.

We may, as before, assume thateaves invariant the 1-formx and the canonical
volume elemenf2 = dx A dy A dz. Thusg has, on the covering, the form

0(x,v,2) = (x + @, G) whereG(x,y,z) = B (i) +F (3.2)
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andF : R® — R? is a Z3-periodic function.

The main difficulty lies in proving the existence ofgainvariant free action of?* as
above. Instead of determining the actigndirectly we first look for ap-invariant closed
2-form © so that

dx A O = Q. (3.3)

Now the g-invariant volume formQ will convert ® into a divergence-freg-invariant
vector field X, i.e.

®=ixQ and ¢.X =X. 3.4

We show using a fixed point theorem due to Conley and Zehrigeh@t X generates
the desired action.
To find ® we first start with the integral linear closed 2-form

0o =dy ANdz + midx Ady + madx Adz (3.5)
which is g*-invariant in H2(T3, R), i.e.
dx NOp=Q and ¢*0g =00+ dx A7, (3.6)

wheredx A n = d& is an exact 2-form.

Let F be the foliation given by the submersign: 73 — S, p(x,v,z) = «x.
Observing that the 1-form is dy-closed andix A7 is exact we may, by Proposition 5.4,
choosen to be of the form

n=ri(x)dy +ry(x)dz + df. 3.7)
Now, sinceg preserves orientation, the matri in (3.1) is either unipotent or is the
matrix
-1 0
(o 5). 3.8
m integer.

Let 2 be given as in Lemma 3.1 B is unipotent. IfB is the matrix in (3.8), it is
easy to see that we also have a smooth solution to the equation

h—BhoT, =r, r:<r1>. (3.9)

r2
Now if 6 = 6y + dhi A dy + dhy A dz, then from (3.9) one can see that
©*0 =0 +dx ANdg,

where
g=f+hioT)F1+ (hyoT,)F,

and F is the mapping given in (3.2). Singeis c.f. there exists a smooth solutiénto
the equatiork — k o ¢ = g. An easy computation shows that the closed 2-form

® = 0+ dh1 Ady +dhy Adz +dx A dk (3.10)
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is invariant undekp. SinceQ and ® are g-invariant, then the vector field in (3.4) is
also invariant, i.e¢.X = X sincei, x2 = ixQ2. Actually, one can see from (3.10) that

3 ) 3 3
X=a—(m2+h2+kz)5+(m1+h’1+ky)a—z. (3.11)

The flow v, of X is given, on the covering®, by
Yi(x,y,2) = (x+1,y+u,z+v). (3.12)

We notice that sincd.x® = 0, theny;*® = © for all ¢ sincey andy; commute then
(3.2) and (3.12) give rise to the cocycle

BU—-Uo¢p=F—Foy, whereU = (ug,v). (3.13)

Now, integrating along the fibres of the torus bungle 7° — $* [10] one obtains
B][Udydz — T;][Udydz =0

and sincex is irrational we see thafU dy dz is constant and as 1 is not an eigenvalue
of B this constant must be zero.

Thus, by a theorem of Conley and Zehnder Th the restriction ofyr; to each fibre
has at least three fixed points and@snd 1 commute andy is minimal theny; is
the identity mapping. Henc#& generates @-invariant free action ofs?, finishing the
proof. O

3.3. The Diffeomorphisi reverses orientatione may assume, by Proposition 1.8 and
Remark 1.4, that the diffeomorphisgis, on the covering?®, homotopic to the integral

matrix
1 0 O

A= ni 1 0
np ns -1

By Remark 1.3 and the isotopy theoref¥] we may assume thatx is invariant under
¢. Thusg is, on the covering, of the form

o(x,y,2) = (x+ar,mx +y+ finpx +nzgy —z+g). (3.14)

The cohomological triviality ofp gives rise to a smooth functionon 72 and a constant
ap such thath —hogp = f —ay. If w =dy+ dh thengp*w = n1dx + w and the
closed 2-formW = dx A w is g-invariant. We want to construct a diffeomorphigm
such thaty* dx = dx andy*dy = w and modify¢ by conjugation byy in order to
simplify ¢. For this, we show that the submersipn 72 — T2, p(x, y,z) = (x, y +h)
is a g-invariant principal circle bundle. This holds since by Proposition 1.2 there exists
a volume formr$2, © being the standard volume form @F, so thatp*AQ = —AQ.

Let X be the vector field corresponding to the 2-folih i.e. W = ixAQ. SinceW
is p-invariant andp*AQ2 = —AQ2, then one can see that X = —X. Observe that the
orbits of X are the fibres op which are circles. Thus all of them are closed. We have
to show they have the same period. This can be seen by observing that the union of all
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orbits of a given period is a closegtinvariant set and, ag is minimal, this set is either
the empty set of 3.

Thusp : T3 — T2 is isotopic to the trivial circle bundlé! x 72 7> T2, i.e. there
exists a diffeomorphisny of 72 isotopic to the identity such that o = p. Hencey
leavesdx invariant andy* dy = w. So, up to a conjugation by, we may assume that

*dx =dx and ¢*dy =nidx +dy (3.15)

andr og = aom, wherea(x, y) = (x+a1, y+ay) is by Corollary 1.11 and Theorem 1.5
a Diophantine translation. Now apply Corollary 6.2 to modifpy conjugation to obtain
a new diffeomorphism satisfying*Q2 = —Q and

@x,y,2) = (x + o1,y +ag,n2x +ngy —z+g). (3.16)

It follows from (3.16) thatg, = 0. Thus Lemma 3.1 gives a smooth solutigrto the
equationy + x o T, = g. Consider now the closed coframe

p = {dx,dy, ps}, (3.17)

whereps = dz — dy. Since, in matrix notationp*p = ‘Ap, then by Lemma 1.& is
differentiably conjugate to the affine mapping inducedAy «, wherea = (a1, az, 0),
contradicting, by Theoerm 1.5, the cohomological triviality ¢of §§3.2 and 3.3 show
that the c.f. diffeomorphisms of the tord@® are the smooth conjugations of Diophantine
translations.

This finishes the proof of Theorem A.

4. The orientation-preserving cohomology-free diffeomorphisms of the #ftus
Let ¢ be a c.f. diffeomorphism of*. Theng is minimal and by Proposition 1.8 all the
eigenvalues of, : H1(T*, R) < are roots of unity and 1 is an eigenvalue. So, on the
coveringR*, ¢ is given by

¢ =A+F, (4.1)

where F is a Z*-periodic mapping fromkR* to R* and the characteristic polynomial of
the integral matrixA factors overZ as

px)=(x—1/qx), 1<j<4 (4.2)

andg (1) # 0.

Notice that sincep preserves orientationif 3 < j then 1 is the only eigenvalue of
and by Corollary 1.% is differentiably conjugate to a Diophantine translation. Thus, in
this case, we may assume<lj < 2. By Remark 1.4, we may, in addition, assume that
the matrixA is of the form

0], (4.3)

where deB = 1.
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Now, sinceg is c.f., there exist constants and smoothZ-periodic zero measure
functionsg; such that

g —gop=F —qa;, 1<j<2 (4.4)

where F/ is the jth coordinate function ofF. We also have a smoot&*-periodic
solution to the functional equation

h —_ h 0] (p = gl_
Let w; = dx; +dgy andw, = dx, + dgo — ndh. An easy computation shows that
*wi=w1 and ¢ wy = nwy + wy. (4.5)

So W = w; A w3 is g-invariant and ag is minimal thenW is non-singular, i.ew; and
w, are linearly independent at each point®f. Thus, the submersiop : 74 — T2

given by p(x) = (x1 + g1, x2 + g2 — nh) is ag-invariant torus bundle and induces on
the base spacg? an affine mapping

a:(i' g)—i-o:, a:(z;>. (4.6)

By Corollary 1.11a is c.f. and by Theorem 1.5 it must be a Diophantine translafign
Thusn = 0 and we do have twe-invariant 1-forms

4.1. A difficulty now arises: we need to linearize simultaneously these two 1-forms, i.e.
to show thathere is a diffeomorphisny of 7% homotopic to the identity and such that

Yrw; =dx;, 1l<j<2 (4.8)

But in 74, even the isotopy theorem is not known to be true. We by-pass this difficulty
by making use of a result on the cohomology of fibrations, Proposition 5.4 6Byuf
and w, are simultaneously linearizable if and only.if, and w, can be extended to a
closed coframédws, wa, p1, p2} of T4

We claim the following.

4.2. The closed invariant-forms w;, and w, can be extended to a closed coframeTdf

By a Theorem of Saldanha ir2]] and Proposition 5.4w; and w, extend to a
ds-closed coframe, i.e. there exigt-closed 1-forms;; andn, such that

{wla w27 7717 7]2} (49)

is a coframe ofr'“.

Here the foliationF is given by the fibres of the torus bundte: 74 — T2. Now as
the canonical 1-formdy;, 1 < j < 2, are closed, they give &-closed ordered pair of
tangent 1-formsiy/ = {dy], dy]}, of the foliated manifold 14, F).

By Proposition 5.4 we have, in matrix notation,

dy’ = (P o p)n +dyk, (4.10)
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where P is a smooth mapping frori? to the vector space of all realx22 matrices. To
prove Claim 4.2 it is sufficient to show that det£ 0 for all x € T?. If p = dy — dk,
then

W A Ap =det(P o p)W A A, (4.11)

where An = 1 A n2 and Ap = p1 A po. Notice thatW A Ap is a volume form ofT*.
Thus detP(x) # 0 for all x € T2 if and only if {w1, wo, p1, p2} is a closed coframe
of T4. We show now that deg®(x) # 0 for all x € T?. In fact, sincep is a morphism
of the torus bundlg : 7% — T2, then by Proposition 5.4, (5.12), one has

@*n = (Mo p)n+dsh. (4.12)
From (4.10) and (4.12) we get
¢*dy’ =[(P o T, 0 p)(M o p)ln+dslkog+((PoT,)o phl,
on the other hand, from (4.1), (4.3) and (4.10) we also have
¢*dy’ ='B(P o p)n + d;['Bk + mz 0 F],

wherex; are the projections oR* = R? x R? onto R?, 1 < j < 2. Thus by Remark 5.5
one has
P(x +a)M(x) = 'BP(x) (4.13)

for all x e T2.
Iteration of (4.12) and (4.10) leads to

P(x +ma)M,, (x) ='B"P(x), (4.14)

where M, (x) = []/_; M(x + (m — j)a).
We claim that ded (x) # O for all x € T2. From (4.12) we get

©*(W A An) = (detM o p)(W A An) +dt
and integrating along the fibres of the torus bunglene has
g(x + o) = g(x) detM (x), (4.15)

whereg(x) = f An(x) # 0 for all x € T2 since An gives a volume form on each fibre
of p.

Thus detV (x) # 0 for all x € T2 as claimed.

Now from (4.14), if detP(xo) = 0 at some poinky € 72 then detP(x) = 0 for all
x € T? since the translation by is minimal. This contradicts (4.11) Sind& A Ap is
cohomologous to the canonical volume fotia A dy of T4, proving 4.2 and 4.1. We
have thus proved the following.

4.3. The canonical formof a c.f. orientation-preserving diffeomorphism Bt is, on the
covering R*, given by

¢p=A+H,
where A is given in (4.3) and the first two coordinate functionsmfare constant, i.e.

H = (o1, a0, F), F : R* — R?. By Corollary 6.2 we may assume thatpreserves the
standard volume forn®2g = dx A dy of T*.
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We now prove the main result of this section.

4.4. The only c.f. orientation-preserving diffeomorphisms Bf are the smooth
conjugations of Diophantine translations

By Corollary 1.7 we have to show(B) = {1}. Suppose ¥ o(B). The idea of the
proof is to construct -invariant free actiony of 72 on T4, obtaining a principal torus
bundleT? — T4 — T2. Now, ¢ induces a diffeomorphisra on the base spacg?.

As before, Corollary 1.11 shows thatis c.f. Thus, by§2, g is a smooth conjugation of
a Diophantine translation. Spis homotopic to the identity and gsis, on the covering
R?, homotopic toB then B is the identity matrix, giving a contradiction.

Instead of constructings directly we first look for ag-invariant symplectic form
©® which will convert thegp-invariant 1-formsdx; anddx; into g-invariant commuting
vector fieldsX; and X,. Then we use a fixed point theorem for measure preserving
diffeomorphism of7'? due to Conley and Zehndef7][to show thatX; and X, generate
a free actiomy of T2 on T*, as desired.

To construct® we first observe that a routine computation shows the existence of a
rational 2-form

0o = dyy Adys +ridxy Adyr +radxi Adys + r3dxs Adyy + radxs Ady,,  (4.16)
ri € @, 1< j <4, such that
©*0g = 0g+dé wheredé =dx; Anp+dx; A

since¢* dx; = dx;, 1 < j < 2. Moreover,n; andn, are smooth.

Now asdx A 6y = dx Ady is the standard volume form dif* thenwg = %(dx + 6p)
is a symplectic form and agx is g-invariant, thenwg is g-invariant in cohomology.
Sinceé is ad-closed 1-form, Proposition 5.4 gives

E=(riom)dyr+ (rpom)dys + & +dsk, n(x,y) =x, (4.17)

wherer; andr, are smooth real functions of?, k is smooth real function od* and
&0 = g1dx1+ g>dx; is a smooth 1-form o, Sincey is c.f., we have smooth solutions
k; to the equations

kj—kjo(ngj—cj, 15]52,

wherec; is the integral ofg; over T4, Let h be the smooth solution to the equation
h — Bh o T, = r given by Lemma 3.1 where the coordinate functions of7’? — R?
are as in (4.17). Now, if

01 =00 +dhy ANdy1+dhy ANdyr +d(kidxi + kaodxo) +d dyy,

where
X—xo¢=k
then, by a straightforward computation, one gets
@*01 =601 +dn, (4.18)

wheren = Fld(hyo T,) + F?d(hy o T,). Son is of the formn = €1dx1 + €2dxo,
where ¢; are smooth real functions ofi*. Sinceg is c.f. and the 1-formsix; and
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dx, are g-invariant, we have a smooth solutignto the equatiorny — ¢*y = n. Thus
0 = 01 + dy is ag-invariant smooth 2-form andx A 6 = Qg. Therefore

© = i(dx +6) (4.19)

is the desiredp-invariant sympletic form. LeX; be the smooth divergence-free vector
fields given byiy,® = dx;, 1 < j < 2. Since® anddx; are g-invariant, then

eX;j=X;, l=j=2 (4.20)

Now asix, dx; are g-invariant smooth functions angd is minimal, they are constant
and we may, in addition, assume thgtdx; = 1 andix, dx; = 0. Actually, X; and
X, commute since the Poisson brackék, dx;) = —d® (X1, X») vanishes. So these
vector fields generate a locally free actignof R? on T which is transversal to the
fibres of the trivial bundler (x, y) = x.

Sincep andy; = ¢, commute, 1< j < 2, andy;(x, y) = (x +¢;, y + U;), where
U : T*— R? are smooth functions, then one has the cocycle equations

BUj—UjO(pZF—FOIﬂj, l<j<2 (421)

Integration along the fibres of gives
B][Ujdy—Ta][Ujdyzo, 1<j<2

and asT, is minimal andB is unipotent, theffU; dy is constant and as, by assumption,
1 is not an eigenvalue aB, these constants must be 0. Thus the restrictionyofo
each fibre ofr has mean translation 0 and by a theorem of Conley and Zehiper; [
has at least three fixed points in each fibre. ¢Aandy; commute andp is minimal,

¥; must be the identity mapping. Hence the actipbrgenerated byX; and X is free,
finishing the proof of 4.4. This proves Theorem B.

5. On the cohomology of torus bundles
We discuss briefly some results on the cohomology of the foliakiagiven by the fibres
of a torus bundlerd — 7" -5 TP,

Let F be a foliation of codimension of a closed, orientable, connectedmanifold
M and let A(M) be the graded algebra of all* differential forms onM. If I(F)
is the annihilating ideal ofF then I(F)¢*! = 0. We call A(F) = A(M)/1(F) the
graded algebra of thdifferential forms tangent taF. Since, by Frobenius’ theorem,
dI(F) C I(F), the differentiald : A(M) — A(M) induces thefoliated differential
dy : A(F) — A(F). The cohomologyH*(F) of the differential complex £ (F), dy)
is referred to as theohomology of the foliated manifol, ). This is a natural
generalization of the de Rham cohomology. For more details4emnfl [22].

To give a torus bundlg? — T" - T’ is equivalent to giving aintegral closed
p-coframew = {w1,...,w,} on T", i.e. the 1-formsw;, 1 < j < p, are closed and
linearly independent at every point 8" andw; = t*dx;, 1 < j < p.

We now compute the cohomology grodfy (F). Let A(M) N A(F), 6 — 67, be
the quotient mapping and 18¥ = wi A --- Aw, be the closeg-form which definesF.
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We have a vector space isomorphism
AYF) EE ATy, 07 > WAS.
Integration along the fibre of [10] gives an epimorphism
AU(F) 25 AP(TP) ~ C=(TP), (5.1)

where
PO = ][W AO.

PROPOSITION5S.1. Let T4 — T" — T” be a torus bundle and IeF be the foliation
given byr. Then:

(i) the kernel ofP is the subspac®?(F) of all d;-exact tangent forms it (F);

(i) HI(F) is isomorphic to the spac€>(T?) of all smooth real functions ofi?.

Proof. Let Q be a volume form o and let f be any smooth real function ¢i’. To
prove (i) we have to show

][fS2=O<:>fQ=W/\dn (5.2)

for somen € AY"Y(T") and W = p*dx, wheredx = dxi A --- A dx, is the standard
volume form of T'?.

Clearly, fW Adn = dx fdn = 0, by Stokes’ theorem. Now, leffQ2 = 0 and
let v : V x T? — t=1(V) be a local trivialization ofz, i.e. Tt o ¥ = @ where
7V xT?— V is the projection. We observe that

VW AO) =ntdx AD, 0=1vy"0=Fdy,

wheredy = dyi1 A dy, and, by assumption

dx][éz][ Iﬂ*(W/\G)z][ WAH =0,
|4 \%4

wherefv means integration along the fibre of the torus bundfé(V) — V. Thus
{6 =0, which implies
0=dm (5.3)

for some 1-formyy on V.

Now coverT? by open sets/; as above and let; : Vi x T9 — t71(V,) be the
corresponding trivializations. Ldip,} be a smooth partition of unity subordinate to the
cover{V;}. Letg,dV = ¥ (f2). As ffQ =0 thenf, fQ = fg dV =0, where
dV = dx A dy is the standard volume form @". Thus from (5.3) one has

g.dV =dx ndn,

fQ:Z(pot)W/\dm: W Adn,
P

whereyn, =7,, proving (i). Now, (ii) follows immediately from (i) and (5.1). O

https://doi.org/10.1017/50143385798108222 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385798108222

1002 R. U. Luz and N. M. dos Santos

COROLLARY 5.2. Let ¢ be a c.f. diffeomorphism & and let7¢ — T" — T” be a

p-invariant torus bundle, i.ep*W = W, W = t*dx. Let6, be a closed g-form off””

such that:

()  ¢*60 = 6o + dno;

(i) m*dx A0y = Q is theg-invariant volume form orif'”, wherer is the projection of
T" = TP x TY on the first factor.

Then there exists aj(— 1)-formn on T" such that2 = W A 6, whered = 6y + dn.

Proof. Observe thatV A (¢*0p — 6g) = W Adno — fQ and f f2 = 0. Sinceg is c.f.
we have a smooth solutiof to the equatiorg — g o ¢ = f. Integration along the fibre

of T leads to the equation
][gsz—a*][gsz =0, (5.4)

wheret o ¢ = @ o 7, and sincep is minimal thenf¢Q = 0. Now, Proposition 5.1(i)
gives a smooth 1-formy so that

gQ =W Adn. (5.5)

Itis easy to see th& = W A0, whered = 6p+dn, becauséV A (dn—¢* dn) = W Ad&,
finishing the proof. O

In what follows, it would be interesting to have an answer to the following.

Question 5.3Let T — M —> T” be a smooth torus bundle. Does there exist a locally
free smooth action oR? on T" whose orbits are the fibres of?

For g = 1 the answer is trivially yes. Far = 2 the answer is yes, by a theorem of
SaldanhaZ21].

Let (M, F) be a foliated manifold and let be the dimension of-. By [6] and [22],
to give a locally free actiom of R? tangentto F, i.e. the orbits ofd are the leaves of
F, is equivalent to giving al;-closed coframes/ tangent toF. A d;-closed coframe
is an ordered sef/ = {slf, L&Y of dy-closed tangent forms of such thatt/ is a
basis of the tangent spa@gF at every pointx of M.

We have the following.

PROPOSITION5.4. LetT? — T" — T be a torus bundle. Suppose there exists a locally
free actionA of R tangent to the fibres af. Then the cohomology of the foliation defined
by the fibres ot is given by

H/(F) ~ H(T?) @ C®(T?).

Proof. For the sake of clarity we give a proof fgr= 2. LetY = {Y3, Y2} be the frame
of the generators oA and letn = {1, 7o} be a coframe adapted t, i.e. n;(¥;) = §;;.
Thus, asY; and Y, commute,n is ady-closed coframe. Sy = {ws, ..., wp, 71, N2}

is a dy-closed coframe off”, ie. W Adnp; = 0, 1 < j < 2, where, as before,
W=wiA---Awp, andw; = t*dx;, 1 < j < p. Now lety : V x 72 > t=Y(V) be a
local trivialization ofr and letZ; be the vector field tangent to the fibres of the trivial
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bundler : V x T? — V given by, Z; = Y;, 1 < j < 2. We may assume that
—7‘()78 +f()—8 eV,l<j<2
Z; = fu(x 2(x , X s
’ ! dy1 ! ay2 /

or, in matrix notation,
ad
Z = F(x)—, (5.6)
dy

where F is a smooth mapping frory to G¢(2, R).
If £ is a closed 1-form, then

& =gim+ g2 whereYigr = Yog1. (5.7

Notice thatéy = *£ is alsody-closed, i.edx A d& = 0. HereFy is the foliation given
by the fibres ofr. We claim that

HY(Fo) = HY(T?) @ C=(V). (5.8)

& = fdyi+ gdys is dy-closed iff g,, = f,, and then, using the Fourier transform,
we getf = ri(x) + h,, andg = ra(x) + h,,, which gives

o =ri(x)dy1 +ra(x)dy> +dsh, (5.9)

wherer; andr, are smooth real functions df and# is a smooth function ofi#, proving
(5.8). If p = {p1, p2} is the coframe adapted t6 = {Z;, Z>} given by v*p; = n;,
1< j <2, then from (5.6) one has

dy ="F1(x)p (5.10)
in matrix notation. Now from (5.9) and (5.10) we see thatan be written as
&0 = 51(x)p1 + 52(x) p2 + drk, (5.11)

wheres; are smooth functions ofi2.
Cover T2 by an open seV, as above and letp,} be a smooth partition of unity
subordinate to this cover. A routine computation gives

£/ = (s10T)n1+ (s20 )2+ dyh, (5.12)

wheres;, 1 < j < 2, are smooth functions ofiZ and s is a smooth function orf'%,
finishing the proof. O

Remark 5.5The expression of/ in terms of a giveni,-closed coframey, as in (5.12)
above, isunique If (s 0 t)n1 + (s2 0 T)n2 = dyh then integration along the fibre of the
bundlet gives

sj(x)dx][An=0, 1<j=<2

where An = n1 A 2 is the corresponding volume form on the fibresrofThuss; = 0,
l<j=<2
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6. An adapted version of the isotopy theorem of Moser
In this paper, we make use of an adapted version of a theorem due to Mé&ker |
Let 7" = T? x T? and denote byx, y), x € T?, y € T4, the points of the torug™”.
As before, we denote byx = dx1 A --- A dx, the standarg-form of T7.
Let F be the foliation of 7" defined bydx. The foliated divergenceof a smooth
function F : T" — R? is the real function Diy F on T" given by

i _rl
Divy F = F, +---+ Fy,

(6.1)

FJ/, 1< j <gq, being the coordinate functions df.
Let Qo = +dx A dy, wheredx A dy is the standard volume form &f”.
We have the following.

THEOREM 6.1. Suppose2 = o + do is a volume form on the torug” such that
Q = (1+ Divy F)Qp for some smooth functiof’ : 7" — R?. Then there exists a
C® diffeomorphismy of 7", isotopic to the identity such that:

() ydxj=dx;,1<j<p;

(i) v*Q = Qo.

Proof. Consider the patl®2, = Qo+ tdo, 0 <t < 1, of cohomologous volume forms
on 7". We want to find a pathy, of smooth diffeomorphisms df” such thaty = id,

Y1 = and:
() vidy=dy,1<j<p;
(i) ¥ Q, = Qo.

where (i) and (ii) hold for alk, 0 < r < 1.

We now follow the ideal of Moserl9]. Instead of determining the path, directly
we look for a vector fieldV : R — X(T"), from which we obtaimy, by solving the
differential equation

d
E‘ﬁt =V, oy, (6-2)

whereX (T") is the FEchet space of all'* vector fields on the torug”. To obtain a
more convenient expression for (6.2) we use the formi& [

d
E(W“) = =V (Lv,a), (6.3)

where Ly« is the Lie derivative of a differential formx € A(T") with respect toV,.
This has the advantage of linearizing the problem. Taking

0 ad
Vi=al— + - +al — 6.4
1= 3)’1+ +a 8y, (6.4)
where )
. J
{ i 1<j<gq,

T 1 Div, F
for the vector field, we see from (6.1)—(6.3) that

d * d *
E(W; dxj) =0 and E(w’ Q) =0,

for g < j < p, proving the theorem. O
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COROLLARY 6.2. Let ¢ be a minimalC* diffeomorphism of " such that:

() ¢fdxj=dx;,1<j<p;

(i) ¢ preserves a smooth volume forfh on 7", i.e. p*Q = (degy)2 and Q is
cohomologous to the standard volume fam

Then there exists € diffeomorphism), of 7", isotopic to the identity, such that

w*QZQO and w*de:de, 15]519

Proof. Notice that
Q=Qo+dt =1+ f)Q. (6.6)

In view of Theorem 6.1, we have to show that there exists a smooth mappiry’ —
R4 such that
f = Divy F. (6.7)

By (i), m o ¢ = T, o w, wherex is the projection oflf” = TP x T4 on the first factor
andT, is a minimal translation of the torug”. Integrating2 along the fibres ofr and
using (ii) we geth(x + o) = £h(x), whereh is the smooth real function &f” given by

£Q = hdx, wheredx is the standard volume form @f”. Now, sinceT, is minimal, i

is a constant function and we may, in addition, assume/thatl. So, from (6.6) we get

f /S0 = 0 which, by a standard argument using Fourier series, implies (6.7), proving
the Corollary. O

The crucial problem on c.f. diffeomorphisms is the following.

Problem.Let ¢ : M — M be a c.f. diffeomorphism of a compact smooth maniféfd
andn € Z — {0}. Is ¢" also c.f.?
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