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Abstract. We study cohomology-free (c.f.) diffeomorphisms of the torusT n. A diffeo-
morphism is c.f. if every smooth functionf on T n is cohomologous to a constant
f0, i.e. there exists aC∞ function h so thath − h ◦ ϕ = f − f0. We show that
the only c.f. diffeomorphisms ofT n, 1 ≤ n ≤ 3, are the smooth conjugations of
Diophantine translations. Forn = 4, we prove the same result for c.f.orientation-
preservingdiffeomorphisms.

0. Introduction
Let M be aC∞ manifold andϕ a smooth diffeomorphism ofM. All the objects we
consider here areC∞. We say thatϕ is cohomology-free(c.f.) if every smooth function
onM is cohomologous to a constant, i.e. for every functionf onM there exists a smooth
functionh onM and a constantf0 so thath− h ◦ ϕ = f − f0.

Katok [13, Problem 17] proposes the following.

Problem.For a given manifoldM what are the cohomology-free diffeomorphisms?

In this generality very little is known. We first observe that c.f. diffeomorphisms are
uniquely ergodic and in fact the space of invariant distributions is one-dimensional. We
show in Proposition 1.2 that a c.f. diffeomorphismϕ of an orientable manifoldM leaves
invariant a volume form� in the sense that

ϕ∗� = (degϕ)�,

where degϕ is the degree ofϕ. Soϕ is minimal.
The aim of this article is to give an answer to Katok’s question when the manifold is

a low-dimensional torus. We prove the following.
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THEOREM A. The cohomology-free diffeomorphisms of the torusT n, 1≤ n ≤ 3, are C∞

conjugate to Diophantine translations.

THEOREM B. The only cohomology-free orientation-preserving diffeomorphisms of the
torus T 4 are theC∞ conjugations of Diophantine translations.

Theorem A is proved in§§2 and 3 and Theorem B is proved in§4. §§5 and 6 are
auxiliary results. The cohomology of the foliation given by the fibres of a torus bundle
is discussed in§5. In §6 we adapt to our needs the isotopy theorem for volume forms
due to Moser [19].

In Example 1.9 we give an example of an analytic, minimal and uniquely ergodic
diffeomorphism ofT 2 that reverses orientation. This shows the crucial role of the
cohomological triviality of the diffeomorphism in Theorem A.

In the proof of our results, the analogue for the torusT 2 of the so-called ‘last geometric
theorem of Poincaré’ as conjectured by Arnold in [2] and [3] and proven by Conley and
Zehnder in [7] plays an important role. It says that if an area-preserving diffeomorphism
of T 2 is homotopic to the identity and has mean translation 0, then the diffeomorphism
has at least three fixed points.

1. On the cohomology-free diffeomorphisms

1.1.We use c.f. as an abbreviation for cohomology-free. For a closed orientable manifold
we have the following.

PROPOSITION1.2. Let M be a closed orientableC∞ manifold and letϕ be a cohomology-
free diffeomorphism of M. Then there exists a smooth volume form� on M so that

ϕ∗� = (degϕ)�, (1.1)

wheredegϕ denotes the degree ofϕ.

Proof. Fix a volume form�0 onM with total volume 1. Notice that

Dϕn =
n−1∏
j=0

Dϕ ◦ ϕj .

From this we get

1

n
(log |detDϕn|) = 1

n

n−1∑
j=0

log |detDϕ| ◦ ϕj , (1.2)

where detDϕ is defined by the identity

ϕ∗�0 = (detDϕ)�0.

Let µ be the uniqueϕ-invariant normalized probability measure onM.
Now, following an idea of Denjoy [8], we see from (1.2) and the unique ergodicity ofϕ

that log|detDϕn|/n converges uniformly toµ(log |detDϕ|) and since
∫
M

detDϕn�0 =
degϕn = ±1 we haveµ(log |detDϕ|) = 0. As ϕ is c.f. the functional equation
h − h ◦ ϕ = log |detDϕ| has a uniqueC∞ solution h such that

∫
M
eh�0 = 1. It is

easy to see that if� = eh�0, thenϕ∗� = (degϕ)�, proving the Proposition. �
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It follows from the above proposition thatϕ preserves the Lebesgue measure ofM

and sinceϕ is uniquely ergodic thenϕ is minimal (i.e. every orbit ofϕ is dense).
We say that a 1-formw0 is almostϕ-invariant if ϕ∗w0 = w0+ df .

Remark 1.3.Let ϕ : M → M be a c.f.C∞ diffeomorphism and letw0 be an almost
ϕ-invariant 1-form. Then there exists a uniqueϕ-invariant 1-formw cohomologous to
w0 (w0 need not to be closed).

This holds sinceϕ is c.f. so that the functional equationh − h ◦ ϕ = f has aC∞

solutionh : M → R, wheref is as above. Noww = w0+dh is theϕ-invariant 1-form.
We restrict ourselves to the study of the c.f. diffeomorphisms of the torusT n.

Remark 1.4.Let ϕ be the diffeomorphism given on the coveringRn by ϕ = A + F ,
whereA is an integral matrix with determinant of absolute value 1 andF : Rn→ Rn is
Zn-periodic, i.e.F(x+ `) = F(x) for all x ∈ Rn and` ∈ Zn. The Lefschetz number of
ϕ is given by

L(ϕ) = det(I − A). (1.3)

We will denote byσ(A) the spectrumof A. Thus by the Lefschetz fixed point
theorem, 1∈ σ(A) if ϕ has no fixed point. Choose a vectorv = (m1, . . . , mn) in Zn so
that tAv = v and g.c.d.(m1, . . . , mn) = 1. By [20, Theorem II.1]v extends to a basis
B = {v, v1, . . . , vn−1} of Zn so that

P−1 tAP =




1 ∗ · · · ∗
0
... tAn−1

0


 , (1.4)

whereP is the matrix whose columns are the vectors ofB and detP = 1. Of course,
detAn−1 = degϕ.

Now if σ(A) = {1}, thenB can be chosen so thatAn−1 is triangular. This can be
proved by induction onn.

A translationTα of T n is Diophantine [5, 12] if α ∈ Rn satisfies a Diophantine
condition

‖k · α‖ ≥ C

|k|n+β , C, β > 0 (1.5)

for all k = (k1, . . . , kn) ∈ Zn − {0}, where‖x‖ = inf{|x − `|, ` ∈ Zn} defines a metric
on T n, |x| = supj |xj | andk · α = k1α1+ · · · + knαn.

The following result is probably known [14].

THEOREM 1.5. The only cohomology-free affine diffeomorphisms of the torusT n are the
Diophantine translations.

Proof. Let Tα be a Diophantine translation and letf be a smooth function onT n whose
average overT n is zero. Using Fourier series, one can see that the solutionh to the
equationh − h ◦ Tα = f must satisfy|ĥ(k)| ≤ (|k|n+β/c)|f̂ (k)| for all k ∈ Zn, which
shows thath is smooth. ThusTα is c.f. Now, ifA+α induces a c.f. affine diffeomorphism
of T n, then it is minimal. Thusσ(A) = {1} [11] andA = I +N , whereN is nilpotent.
We show that ifN 6= 0 there is a countable family of invariant distributions which are
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not measures, and thus the affine diffeomorphism is not c.f. To eachk ∈ Zn, tNk 6= 0,
we associate an invariant distribution by

ρk(f ) =
∑
m∈Z

e2πiam(0)kf̂ (tAmk) (1.6)

for everyC∞ function f : T n → C where f̂ denotes, as usual, the Fourier transform
of f .

To show thatρk is a-invariant observe that

ρk(f ◦ a) =
∑
m∈Z

e2πi[am(0)+Ama−1(0)]kf̂ (tAm−1k)

andam(0)+Ama−1(0) = am−1(0). Thusa is a Diophantine translation by [12] and [5],
finishing the proof. �

A closed ordered coframeof T n is an orderedn-tuple {w1, . . . , wn} of closed 1-forms
which are linearly independent at every point ofT n.

LEMMA 1.6. Let ϕ be a C∞ diffeomorphism ofT n and let w = {w1, . . . , wn} be a
closed coframe cohomologous to the canonical coframedx = {dx1, . . . , dxn}, i.e.
wj = dxj + dhj , 1 ≤ j ≤ n. Thenϕ is conjugate to an affine diffeomorphisma of
T n, induced byA+α, and the conjugating diffeomorphismψ is homotopic to the identity
if and only ifϕ∗w = tAw (in matrix notation).

Proof. Clearly, if ψ ◦ ϕ = a ◦ ψ then ϕ∗w = tAw, whereψ∗dxj = wj , 1 ≤ j ≤ n.
Now sincew anddx are closed cohomologous coframes then by [6] there exists aC∞

diffeomorphismψ homotopic to the identity such thatψ∗dx = w. Thusa = ψ ◦ϕ ◦ψ−1

is an affine diffeomorphism, sincea∗dx = tAdx.

COROLLARY 1.7. Let ϕ be a c.f. diffeomorphism ofT n such that the only eigenvalue of
ϕ∗ : H1(T

n, R) ←↩ is 1. Thenϕ is conjugate to a Diophantine translation by aC∞

diffeomorphism.

Proof. By Remark 1.4 we may assume thatϕ is given on the coveringRn by a
diffeomorphism of the form

ϕ = A+ F + α, (1.7)

whereA is triangular, i.e.Aij = 0 if i < j , F has Lebesgue measure zero inT n and
α ∈ Rn. By Lemma 1.6 and Theorem 1.5 it suffices to construct a closed coframe
w = {w1, . . . , wn} of T n cohomologous to the canonical coframedx and such that
ϕ∗w = tAw in matrix notation. We constructw inductively using the cohomological
triviality of ϕ. Let w1 = dx1+ dh1, whereh1− h1 ◦ ϕ = F1,

w2 = dx2+ dh2 whereh2− h2 ◦ ϕ = F2− A21h1 (1.8)

andwj = dxj + dhj , wherehj − hj ◦ ϕ = Fj −
∑j−1

i=1 Ajihi , 1 ≤ j ≤ n. It follows
that ϕ∗w = tAw and by the minimality ofϕ we see thatw is a coframe, proving the
corollary. �
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We now show that a c.f. diffeomorphismϕ of T n is quasi-unipotent on homology.

PROPOSITION1.8. Letϕ be a c.f. diffeomorphism of the torusT n. Then all the eigenvalues
of the induced mappingϕ∗ : H1(T

n, R)←↩ are roots of unity and 1 is an eigenvalue.

Proof. By a theorem of Manning in [18] the spectral radius sp(ϕ∗) of ϕ∗ : H1(T
n;R)←↩

is bounded above by the exponential of the topological entropyh(ϕ) of ϕ, i.e.

h(ϕ) ≥ log sp(ϕ∗). (1.9)

Now, by a theorem communicated to us by A. Katok, after reading a preliminary version
of this paper, the topological entropy of a c.f. diffeomorphism of an orientable manifold
is zero. Thus

sp(ϕ∗) = 1. (1.10)

Since the characteristic polynomial ofϕ∗ is a monic over the integers, then by a well-
known result of algebra all the eigenvalues ofϕ∗ are roots of unity. Of course, by the
Lefschetz fixed point theorem, 1 is an eigenvalue ofϕ∗. �

The above proposition is not sharp as is shown by the following.

Example 1.9.We construct an analytic, minimal and uniquely ergodic orientation-
reversing diffeomorphism of the torusT 2. On the coveringR2 it is of the form

ϕ(x, y) = (x + α,−y + f (x)), (1.11)

whereα is a special Liouville number andf is aZ-periodic function. It is sufficient to
chooseα andf so that

ϕ2(x, y) = (x + 2α, y − f (x)+ f (x + α)) (1.12)

is minimal and uniquely ergodic.
By a well-known result of Furstenberg [9] if the functional equation

χ(x)− χ(x + 2α) = −f (x)+ f (x + α) (1.13)

has no measurable solution, thenϕ2 is minimal and uniquely ergodic. By a theorem of
Krygin [16] if the numberβ = 2α has a sequence of convergentspn/qn such that

β − pn
qn
= θn

2qnq2
n

, (1.14)

where|θn| is a bounded sequence, then there exists an analyticZ-periodic function such
that the diffeomorphism induced by

ψ(x, y) = (x + β, y + g(x)) (1.15)

is uniquely ergodic. The functiong is constructed by a uniformly convergent series

g(x) =
∞∑
k=1

ck(e
2πibkx + e−2πibkx) (1.16)

with positive coefficientsck. Thebk are selected as some subsequence of{qn}.
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We construct the numberα inductively by a continued fraction [0, a1, a2, . . .] as
follows. Observe first that the partial quotientsan and the convergents toα must satisfy

pn = anpn−1+ pn−2, p0 = 0, p1 = 1

and
qn = anqn−1+ qn−2, q0 = 1, q1 = a1, for n ≥ 2.

So define inductively the odd numbers

ak+1 = 3qk , (1.17)

wherepk/qk = 〈0, a1, . . . , ak〉 is the kth convergent ofα. As theak are odd integers,
thenp3n+2 = 2rn − 1 are odd integers and

q3n+2 = 2ln are even. (1.18)

We claim that(2rn − 1)/ ln are convergents of the numberβ = 2α.
This holds since from (1.18) and a well-known property of the convergents [23] we

have ∣∣∣∣α − 2rn − 1

2ln

∣∣∣∣ ≤ 1

q3n+3q3n+2
≤ 1

q3n+3ln
, (1.19)

and from (1.17) and (1.18) we get

q3n+3 > 3q3n+2q3n+2 > 2ln ln. (1.20)

Now from (1.19) and (1.20) we get∣∣∣∣β − 2rn − 1

ln

∣∣∣∣ < 1

2ln l2n
, (1.21)

whereβ = 2α. Thus by a well-known result of Legendre [23] (rn−1)/ ln are convergents
of β proving our claim. Hence condition (1.14) is satisfied for the above sequence and
(1.15) and (1.16) hold.

We claim that
−f (x)+ f (x + α) = g(x), (1.22)

wheref is an analyticZ-periodic function. This holds since

f (x) =
∞∑
k=1

dke
2πibkx +

∞∑
k=1

dke
−2πibkx,

where
dk = ck

e2πibkβ − 1
(1.23)

and bk = lnk is a subsequence ofln. So f defines an analytic function since
limk→∞ ‖lnkβ‖ = 1

2. Thus from (1.12), (1.17) and (1.22),ψ = ϕ2 is minimal and
uniquely ergodic.

Theorem A follows immediately from Proposition 1.8 and Corollary 1.7 if the manifold
is the circle.
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LetM be a compact metric space,ϕ : M ←↩ andf : M → R be continuous mappings.
Consider the series ∞∑

j=0

f ◦ ϕj (1.24)

the partial sums

Sk(f, ϕ) =
k−1∑
j=0

f ◦ ϕj

and the Ces̀aro sums

σn(f, ϕ) = 1

n

n∑
k=1

Sk(f, ϕ).

We say that the series (1.24) isC0-Cesàro convergentto s if the sequenceσn(f, ϕ) is
uniformly convergent tos.

PROPOSITION1.10. Let M be a compact metric space,ϕ : M ←↩ be a continuous uniquely
ergodic mapping,µ be the normalizedϕ-invariant probability measure andf : M → R

be a continuous function. Then the functional equation

χ − χ ◦ ϕ = f, µ(f ) = 0 (1.25)

has a continuous solutions : M → R, µ(s) = 0⇔∑∞
j=0 f ◦ϕj isC0-Cesàro convergent

to s.

Proof.Let s : M → R, µ(s) = 0 be a continuous solution to (1.25). An easy computation
shows that

σn(f, ϕ) = s − 1

n

n∑
k=1

s ◦ ϕk (1.26)

and asϕ is uniquely ergodic, thenσn(f, ϕ) converges uniformly tos.
Consider the identity

σn(f, ϕ)− σn(f, ϕ) ◦ ϕ = f − 1

n

n∑
j=1

f ◦ ϕj . (1.27)

Now if σn(f, ϕ) converges uniformly tos : M → R, then s is a continuous solution
to equation (1.25) because1

n

∑n
j=1 f ◦ ϕj converges uniformly toµ(f ) = 0 sinceϕ is

uniquely ergodic. Moreover,µ(s) = 0. �

COROLLARY 1.11. LetF → M
π−→ N be a fibre bundle and letϕ : M ←↩ be a c.f. fibre

preserving diffeomorphism. Then the induced diffeomorphismψ : N ←↩ is also c.f.

Proof. Let f : N → R be aC∞ function,µ(f ) = 0. Asϕ is c.f. then there exists aC∞

solutionh : M → R to the equation

h− h ◦ ϕ = f ◦ π. (1.28)

Now observe that the Cesàro sums of
∑∞
j=0 f ◦ π ◦ ϕj satisfy

σn(f ◦ π, ϕ) = σn(f, ϕ) ◦ π (1.29)

since, by assumption,π ◦ ϕ = ϕ ◦ π . Thus σn(f, ϕ) ◦ π converges uniformly toh.
Thereforeh = h ◦ π whereh : N ←↩ is aC∞ solution to the equationh − h ◦ ϕ = f
andϕ is c.f. �
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2. The cohomology free diffeomorphisms ofT 2

We show that theonly c.f. diffeomorphisms ofT 2 are the differentiable conjugations
of Diophantine translations. Let ϕ be aC∞ c.f. diffeomorphisms ofT 2. Then ϕ is
minimal and by Proposition 1.8,σ(ϕ∗) ⊂ {−1,1}. Now by Corollary 1.7 to show that
ϕ is conjugate to a Diophantine translation ofT 2 we have to show that−1 is not an
eigenvalue. Suppose−1 ∈ σ(ϕ∗). Then by Remarks 1.3 and 1.4,ϕ is, on the covering
spaceR2, of the form

ϕ(x, y) = (x + α, nx − y + f (x, y)), (2.1)

wheren is an integer.
Now by a theorem of Moser [19], see Corollary 6.2, we may assume thatϕ∗(dx ∧

dy) = −dx ∧ dy which implies thatfy = 0 andf does not depend ony.
We claim thatTα(x) = x + α induces a Diophantine rotation onS1. By Theorem 1.5

it is sufficient to show thatTα is c.f. To show this, letg be aC∞ Z-periodic function
on R. Sinceϕ is c.f., the functional equation

h− h ◦ ϕ = g ◦ π (2.2)

has aC∞ solution, whereπ is the projection on the first factor. Differentiating (2.2) we
get

hy + hy ◦ ϕ = 0.

Sohy = 0 sinceϕ is minimal. Thush is a solution to the equationh(x) − h(x + α) =
g(x), showing thatTα is c.f. We note that sinceα is a Diophantine number, then we also
have aC∞ solutionk to the equation

k(x)+ k(x + α) = −f (x). (2.3)

Now ϕ∗w = ndx−w, wherew = dy+d(k ◦π), and asϕ∗dx = dx, then by Lemma 1.6
ϕ is differentiably conjugate to the affine mapping

a(x, y) = (x + α,−y + nx)
which by Theorem 1.5 shows thata is not c.f. Thusϕ is not c.f., giving a contradiction.

3. The cohomology free diffeomorphisms of the torusT 3

We show thatthe only c.f. diffeomorphisms ofT 3 are smooth conjugations of Diophantine
translations.

We see from 1.4 that a minimal diffeomorphismϕ of T 3 is given, on the covering
R3, by

ϕ = A+ F,
where the integral matrixA is of the form

A =

 1 0 0
n1

n2 B


 (3.1)
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with detB = degϕ and F : Rn → Rn is Zn-periodic. By Proposition 1.8 all the
eigenvalues ofB are roots of unity. Now sinceϕ∗ dx = dx + dF1 then, by Remark 1.3,
if ϕ is c.f. so we have aϕ-invariant 1-formw = dx + dh. Hence, by the isotopy
theorem [17] there exists aC∞ diffeomorphismψ isotopic to the identity such that
ψ∗w = dx. Soψ ◦ ϕ ◦ ψ−1 leavesdx invariant and we may, in addition, assume that
ϕ leavesdx invariant. Now by Proposition 1.2 there exists a volume form� such that
ϕ∗� = (degϕ)�. Thus by an adapted version of a theorem of Moser, see Corollary 6.2,
we may assume that� = dx ∧ dy ∧ dz.

We need the following lemma.

LEMMA 3.1. Let B be a unipotentn×n real matrix, i.e.Bm = I for some positive integer
m, and letTα be a Diophantine translation of the torusT p. Let r : T p → Rn be anyC∞

function with Haar measure zero. Then there exists a uniqueC∞ solutionh : T p → Rn

to the functional equation
h− Bh ◦ Tα = r.

Proof. The formal solution in Fourier transform of the above equation is

(I − e2πik·αB)ĥ(k) = r̂(k)
and as the eigenvalues ofB are roots of unity andk · α /∈ Z for all k ∈ Zp − {0}, then
we can solve forh and get

ĥ(k) = (I − e2πik·αB)−1r̂(k).

SinceB is unipotent, an easy computation gives

|ĥ(k)| ≤ L

|1− e2πik·mα| |r̂(k)|, ∀k ∈ Zp − {0}

for some constantL > 0 and allk 6= 0. As α is Diophantine, then

|ĥ(k)| < CL|k|p+β |r̂(k)|
showing thath is aC∞ function. �

We now distinguish two cases.

3.2. The diffeomorphismϕ preserves orientation.By Corollary 1.7 we have to show
σ(B) = {1}. Suppose 1/∈ σ(B). The idea of the proof is to show the existence of
a free actionψ of S1 on T 3 which is invariant underϕ, i.e. ϕ ◦ ψt = ψt ◦ ϕ for all
t ∈ S1. Thusϕ gives a morphism (ϕ, ϕ) of a circle bundleS1 → T 3 τ−→ T 2. Now
by Corollary 1.11 the diffeomorphismϕ of T 2 is c.f. and by§2 we conclude thatϕ is
conjugate to a Diophantine translation ofT 2. Thus 1 is an eigenvalue ofB, giving a
contradiction.

We may, as before, assume thatϕ leaves invariant the 1-formdx and the canonical
volume element� = dx ∧ dy ∧ dz. Thusϕ has, on the covering, the form

ϕ(x, y, z) = (x + α,G) whereG(x, y, z) = B
(
y

z

)
+ F (3.2)
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andF : R3→ R2 is aZ3-periodic function.
The main difficulty lies in proving the existence of aϕ-invariant free action ofS1 as

above. Instead of determining the actionψ directly we first look for aϕ-invariant closed
2-form2 so that

dx ∧2 = �. (3.3)

Now theϕ-invariant volume form� will convert 2 into a divergence-freeϕ-invariant
vector fieldX, i.e.

2 = iX� and ϕ∗X = X. (3.4)

We show using a fixed point theorem due to Conley and Zehnder [7] that X generates
the desired action.

To find2 we first start with the integral linear closed 2-form

θ0 = dy ∧ dz +m1 dx ∧ dy +m2 dx ∧ dz (3.5)

which isϕ∗-invariant inH 2(T 3, R), i.e.

dx ∧ θ0 = � and ϕ∗θ0 = θ0+ dx ∧ η, (3.6)

wheredx ∧ η = dξ is an exact 2-form.
Let F be the foliation given by the submersionp : T 3 → S1, p(x, y, z) = x.

Observing that the 1-formη is df -closed anddx∧η is exact we may, by Proposition 5.4,
chooseη to be of the form

η = r ′1(x) dy + r ′2(x) dz + df. (3.7)

Now, sinceϕ preserves orientation, the matrixB in (3.1) is either unipotent or is the
matrix (−1 0

m −1

)
, (3.8)

m integer.
Let h be given as in Lemma 3.1 ifB is unipotent. IfB is the matrix in (3.8), it is

easy to see that we also have a smooth solution to the equation

h− Bh ◦ Tα = r, r =
(
r1

r2

)
. (3.9)

Now if θ = θ0+ dh1 ∧ dy + dh2 ∧ dz, then from (3.9) one can see that

ϕ∗θ = θ + dx ∧ dg,

where

g = f + (h′1 ◦ Tα)F1+ (h′2 ◦ Tα)F2

andF is the mapping given in (3.2). Sinceϕ is c.f. there exists a smooth solutionk to
the equationk − k ◦ ϕ = g. An easy computation shows that the closed 2-form

2 = θ0+ dh1 ∧ dy + dh2 ∧ dz + dx ∧ dk (3.10)
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is invariant underϕ. Since� and2 areϕ-invariant, then the vector fieldX in (3.4) is
also invariant, i.e.ϕ∗X = X sinceiϕ∗X� = iX�. Actually, one can see from (3.10) that

X = ∂

∂x
− (m2+ h′2+ kz)

∂

∂y
+ (m1+ h′1+ ky)

∂

∂z
. (3.11)

The flowψt of X is given, on the coveringR3, by

ψt(x, y, z) = (x + t, y + ut , z + vt ). (3.12)

We notice that sinceLX2 = 0, thenψ∗t 2 = 2 for all t sinceϕ andψ1 commute then
(3.2) and (3.12) give rise to the cocycle

BU − U ◦ ϕ = F − F ◦ ψ1, whereU = (u1, v1). (3.13)

Now, integrating along the fibres of the torus bundlep : T 3→ S1 [10] one obtains

B −
∫
U dy dz − T ∗α −

∫
U dy dz = 0

and sinceα is irrational we see that−
∫
U dy dz is constant and as 1 is not an eigenvalue

of B this constant must be zero.
Thus, by a theorem of Conley and Zehnder in [7], the restriction ofψ1 to each fibre

has at least three fixed points and asϕ andψ1 commute andϕ is minimal thenψ1 is
the identity mapping. HenceX generates aϕ-invariant free action ofS1, finishing the
proof. �

3.3. The Diffeomorphismϕ reverses orientation.We may assume, by Proposition 1.8 and
Remark 1.4, that the diffeomorphismϕ is, on the coveringR3, homotopic to the integral
matrix

A =

 1 0 0
n1 1 0
n2 n3 −1


 .

By Remark 1.3 and the isotopy theorem [17] we may assume thatdx is invariant under
ϕ. Thusϕ is, on the covering, of the form

ϕ(x, y, z) = (x + α1, n1x + y + f, n2x + n3y − z + g). (3.14)

The cohomological triviality ofϕ gives rise to a smooth functionh on T 3 and a constant
α2 such thath − h ◦ ϕ = f − α2. If w = dy + dh then ϕ∗w = n1 dx + w and the
closed 2-formW = dx ∧ w is ϕ-invariant. We want to construct a diffeomorphismψ
such thatψ∗ dx = dx andψ∗ dy = w and modifyϕ by conjugation byψ in order to
simplify ϕ. For this, we show that the submersionp : T 3→ T 2, p(x, y, z) = (x, y+h)
is a ϕ-invariant principal circle bundle. This holds since by Proposition 1.2 there exists
a volume formλ�, � being the standard volume form ofT 3, so thatϕ∗λ� = −λ�.

Let X be the vector field corresponding to the 2-formW , i.e.W = iXλ�. SinceW
is ϕ-invariant andϕ∗λ� = −λ�, then one can see thatϕ∗X = −X. Observe that the
orbits ofX are the fibres ofp which are circles. Thus all of them are closed. We have
to show they have the same period. This can be seen by observing that the union of all
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orbits of a given period is a closedϕ-invariant set and, asϕ is minimal, this set is either
the empty set orT 3.

Thusp : T 3→ T 2 is isotopic to the trivial circle bundleS1 × T 2 π−→ T 2, i.e. there
exists a diffeomorphismψ of T 3 isotopic to the identity such thatπ ◦ψ = p. Henceψ
leavesdx invariant andψ∗ dy = w. So, up to a conjugation byψ , we may assume that

ϕ∗ dx = dx and ϕ∗ dy = n1 dx + dy (3.15)

andπ ◦ϕ = a◦π , wherea(x, y) = (x+α1, y+α2) is by Corollary 1.11 and Theorem 1.5
a Diophantine translation. Now apply Corollary 6.2 to modifyϕ by conjugation to obtain
a new diffeomorphism satisfyingϕ∗� = −� and

ϕ(x, y, z) = (x + α1, y + α2, n2x + n3y − z + g). (3.16)

It follows from (3.16) thatgz = 0. Thus Lemma 3.1 gives a smooth solutionχ to the
equationχ + χ ◦ Tα = g. Consider now the closed coframe

ρ = {dx, dy, ρ3}, (3.17)

whereρ3 = dz − dχ . Since, in matrix notation,ϕ∗ρ = tAρ, then by Lemma 1.6ϕ is
differentiably conjugate to the affine mapping induced byA+ α, whereα = (α1, α2,0),
contradicting, by Theoerm 1.5, the cohomological triviality ofϕ. §§3.2 and 3.3 show
that the c.f. diffeomorphisms of the torusT 3 are the smooth conjugations of Diophantine
translations.

This finishes the proof of Theorem A.

4. The orientation-preserving cohomology-free diffeomorphisms of the torusT 4

Let ϕ be a c.f. diffeomorphism ofT 4. Thenϕ is minimal and by Proposition 1.8 all the
eigenvalues ofϕ∗ : H1(T

4, R)←↩ are roots of unity and 1 is an eigenvalue. So, on the
coveringR4, ϕ is given by

ϕ = A+ F, (4.1)

whereF is a Z4-periodic mapping fromR4 to R4 and the characteristic polynomial of
the integral matrixA factors overZ as

p(x) = (x − 1)j q(x), 1≤ j ≤ 4 (4.2)

andq(1) 6= 0.
Notice that sinceϕ preserves orientation, if 3 ≤ j then 1 is the only eigenvalue ofA

and by Corollary 1.7ϕ is differentiably conjugate to a Diophantine translation. Thus, in
this case, we may assume 1≤ j ≤ 2. By Remark 1.4, we may, in addition, assume that
the matrixA is of the form

A =

 1 0 0 0
n 1 0 0

L B


 , (4.3)

where detB = 1.
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Now, sinceϕ is c.f., there exist constantsαj and smoothZ4-periodic zero measure
functionsgj such that

gj − gj ◦ ϕ = Fj − αj , 1≤ j ≤ 2, (4.4)

whereF j is the j th coordinate function ofF . We also have a smoothZ4-periodic
solution to the functional equation

h− h ◦ ϕ = g1.

Let w1 = dx1+ dg1 andw2 = dx2+ dg2− ndh. An easy computation shows that

ϕ∗w1 = w1 and ϕ∗w2 = nw1+ w2. (4.5)

SoW = w1∧w2 is ϕ-invariant and asϕ is minimal thenW is non-singular, i.e.w1 and
w2 are linearly independent at each point ofT 4. Thus, the submersionp : T 4 → T 2

given byp(x) = (x1+ g1, x2+ g2− nh) is aϕ-invariant torus bundle andϕ induces on
the base spaceT 2 an affine mapping

a =
(

1 0
n 1

)
+ α, α =

(
α1

α2

)
. (4.6)

By Corollary 1.11a is c.f. and by Theorem 1.5 it must be a Diophantine translationTα.
Thusn = 0 and we do have twoϕ-invariant 1-forms

wj = dxj + dgj , 1≤ j ≤ 2. (4.7)

4.1. A difficulty now arises: we need to linearize simultaneously these two 1-forms, i.e.
to show thatthere is a diffeomorphismψ of T 4 homotopic to the identity and such that

ψ∗wj = dxj , 1≤ j ≤ 2. (4.8)

But in T 4, even the isotopy theorem is not known to be true. We by-pass this difficulty
by making use of a result on the cohomology of fibrations, Proposition 5.4. By [6], w1

andw2 are simultaneously linearizable if and only ifw1 andw2 can be extended to a
closed coframe{w1, w2, ρ1, ρ2} of T 4.

We claim the following.

4.2. The closed invariant1-formsw1 andw2 can be extended to a closed coframe ofT 4.

By a Theorem of Saldanha in [21] and Proposition 5.4,w1 and w2 extend to a
df -closed coframe, i.e. there existdf -closed 1-formsη1 andη2 such that

{w1, w2, η1, η2} (4.9)

is a coframe ofT 4.
Here the foliationF is given by the fibres of the torus bundlep : T 4→ T 2. Now as

the canonical 1-formsdyj , 1≤ j ≤ 2, are closed, they give adf -closed ordered pair of
tangent 1-formsdyf = {dyf1 , dyf2 }, of the foliated manifold (T 4,F).

By Proposition 5.4 we have, in matrix notation,

dyf = (P ◦ p)η + df k, (4.10)
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whereP is a smooth mapping fromT 2 to the vector space of all real 2×2 matrices. To
prove Claim 4.2 it is sufficient to show that detP 6= 0 for all x ∈ T 2. If ρ = dy − dk,
then

W ∧1ρ = det(P ◦ p)W ∧1η, (4.11)

where1η = η1 ∧ η2 and1ρ = ρ1 ∧ ρ2. Notice thatW ∧1η is a volume form ofT 4.
Thus detP(x) 6= 0 for all x ∈ T 2 if and only if {w1, w2, ρ1, ρ2} is a closed coframe
of T 4. We show now that detP(x) 6= 0 for all x ∈ T 2. In fact, sinceϕ is a morphism
of the torus bundlep : T 4→ T 2, then by Proposition 5.4, (5.12), one has

ϕ∗η = (M ◦ p)η + df h. (4.12)

From (4.10) and (4.12) we get

ϕ∗ dyf = [(P ◦ Tα ◦ p)(M ◦ p)]η + df [k ◦ ϕ + ((P ◦ Tα) ◦ p)h],

on the other hand, from (4.1), (4.3) and (4.10) we also have

ϕ∗ dyf = tB(P ◦ p)η + df [tBk + π2 ◦ F ],

whereπj are the projections ofR4 = R2×R2 ontoR2, 1≤ j ≤ 2. Thus by Remark 5.5
one has

P(x + α)M(x) = tBP (x) (4.13)

for all x ∈ T 2.
Iteration of (4.12) and (4.10) leads to

P(x +mα)Mm(x) = tBmP (x), (4.14)

whereMm(x) =
∏m
j=1M(x + (m− j)α).

We claim that detM(x) 6= 0 for all x ∈ T 2. From (4.12) we get

ϕ∗(W ∧1η) = (detM ◦ p)(W ∧1η)+ dτ
and integrating along the fibres of the torus bundlep one has

g(x + α) = g(x)detM(x), (4.15)

whereg(x) = −∫1η(x) 6= 0 for all x ∈ T 2 since1η gives a volume form on each fibre
of p.

Thus detM(x) 6= 0 for all x ∈ T 2 as claimed.
Now from (4.14), if detP(x0) = 0 at some pointx0 ∈ T 2 then detP(x) = 0 for all

x ∈ T 2 since the translation byα is minimal. This contradicts (4.11) sinceW ∧1ρ is
cohomologous to the canonical volume formdx ∧ dy of T 4, proving 4.2 and 4.1. We
have thus proved the following.

4.3. The canonical formof a c.f. orientation-preserving diffeomorphism ofT 4 is, on the
coveringR4, given by

ϕ = A+H,
whereA is given in (4.3) and the first two coordinate functions ofH are constant, i.e.
H = (α1, α2, F ), F : R4→ R2. By Corollary 6.2 we may assume thatϕ preserves the
standard volume form�0 = dx ∧ dy of T 4.
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We now prove the main result of this section.

4.4. The only c.f. orientation-preserving diffeomorphisms ofT 4 are the smooth
conjugations of Diophantine translations.

By Corollary 1.7 we have to showσ(B) = {1}. Suppose 1/∈ σ(B). The idea of the
proof is to construct aϕ-invariant free actionψ of T 2 on T 4, obtaining a principal torus
bundleT 2 → T 4 τ−→ T 2. Now, ϕ induces a diffeomorphismϕ on the base spaceT 2.
As before, Corollary 1.11 shows thatϕ is c.f. Thus, by§2, ϕ is a smooth conjugation of
a Diophantine translation. Soϕ is homotopic to the identity and asϕ is, on the covering
R2, homotopic toB thenB is the identity matrix, giving a contradiction.

Instead of constructingψ directly we first look for aϕ-invariant symplectic form
2 which will convert theϕ-invariant 1-formsdx1 anddx2 into ϕ-invariant commuting
vector fieldsX1 andX2. Then we use a fixed point theorem for measure preserving
diffeomorphism ofT 2 due to Conley and Zehnder, [7] to show thatX1 andX2 generate
a free actionψ of T 2 on T 4, as desired.

To construct2 we first observe that a routine computation shows the existence of a
rational 2-form

θ0 = dy1 ∧ dy2+ r1 dx1 ∧ dy1+ r2 dx1 ∧ dy2+ r3 dx2 ∧ dy1+ r4 dx2 ∧ dy2, (4.16)

rj ∈ Q, 1≤ j ≤ 4, such that

ϕ∗θ0 = θ0+ dξ wheredξ = dx1 ∧ η1+ dx2 ∧ η2

sinceϕ∗ dxj = dxj , 1≤ j ≤ 2. Moreover,η1 andη2 are smooth.
Now asdx ∧ θ0 = dx ∧ dy is the standard volume form onT 4 thenw0 = 1

2(dx + θ0)

is a symplectic form and asdx is ϕ-invariant, thenw0 is ϕ-invariant in cohomology.
Sinceξ is a df -closed 1-form, Proposition 5.4 gives

ξ = (r1 ◦ π) dy1+ (r2 ◦ π) dy2+ ξ0+ df k, π(x, y) = x, (4.17)

wherer1 and r2 are smooth real functions onT 2, k is smooth real function onT 4 and
ξ0 = g1 dx1+g2 dx2 is a smooth 1-form onT 4. Sinceϕ is c.f., we have smooth solutions
kj to the equations

kj − kj ◦ ϕ = gj − cj , 1≤ j ≤ 2,

wherecj is the integral ofgj over T 4. Let h be the smooth solution to the equation
h − Bh ◦ Tα = r given by Lemma 3.1 where the coordinate functions ofr : T 2 → R2

are as in (4.17). Now, if

θ1 = θ0+ dh1 ∧ dy1+ dh2 ∧ dy2+ d(k1 dx1+ k2 dx2)+ d df χ,
where

χ − χ ◦ ϕ = k
then, by a straightforward computation, one gets

ϕ∗θ1 = θ1+ dη, (4.18)

whereη = F 1 d(h1 ◦ Tα) + F 2 d(h2 ◦ Tα). So η is of the formη = `1 dx1 + `2 dx2,
where j̀ are smooth real functions onT 4. Sinceϕ is c.f. and the 1-formsdx1 and
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dx2 areϕ-invariant, we have a smooth solutionγ to the equationγ − ϕ∗γ = η. Thus
θ = θ1+ dγ is aϕ-invariant smooth 2-form anddx ∧ θ = �0. Therefore

2 = 1
2(dx + θ) (4.19)

is the desiredϕ-invariant sympletic form. LetXj be the smooth divergence-free vector
fields given byiXj2 = dxj , 1≤ j ≤ 2. Since2 anddxj areϕ-invariant, then

ϕ∗Xj = Xj, 1≤ j ≤ 2. (4.20)

Now as iXj dxj are ϕ-invariant smooth functions andϕ is minimal, they are constant
and we may, in addition, assume thatiXj dxj = 1 and iXi dx2 = 0. Actually, X1 and
X2 commute since the Poisson bracket(dx1, dx2) = −d2(X1, X2) vanishes. So these
vector fields generate a locally free actionψ of R2 on T 4 which is transversal to the
fibres of the trivial bundleπ(x, y) = x.

Sinceϕ andψj = ψej commute, 1≤ j ≤ 2, andψj(x, y) = (x + ej , y + Uj), where
Uj : T 4→ R2 are smooth functions, then one has the cocycle equations

BUj − Uj ◦ ϕ = F − F ◦ ψj , 1≤ j ≤ 2. (4.21)

Integration along the fibres ofπ gives

B −
∫
Uj dy − Tα −

∫
Uj dy = 0, 1≤ j ≤ 2,

and asTα is minimal andB is unipotent, then−
∫
Uj dy is constant and as, by assumption,

1 is not an eigenvalue ofB, these constants must be 0. Thus the restriction ofψj to
each fibre ofπ has mean translation 0 and by a theorem of Conley and Zehnder [7] ψj
has at least three fixed points in each fibre. Asϕ andψj commute andϕ is minimal,
ψj must be the identity mapping. Hence the actionψ generated byX1 andX2 is free,
finishing the proof of 4.4. This proves Theorem B.

5. On the cohomology of torus bundles
We discuss briefly some results on the cohomology of the foliationF given by the fibres
of a torus bundleT q → T n

τ−→ T p.
Let F be a foliation of codimensionq of a closed, orientable, connectedm-manifold

M and let3(M) be the graded algebra of allC∞ differential forms onM. If I (F)
is the annihilating ideal ofF then I (F)q+1 = 0. We call3(F) = 3(M)/I (F) the
graded algebra of thedifferential forms tangent toF . Since, by Frobenius’ theorem,
dI (F) ⊂ I (F), the differentiald : 3(M) → 3(M) induces thefoliated differential
df : 3(F) → 3(F). The cohomologyH ∗(F) of the differential complex (3(F), df )
is referred to as thecohomology of the foliated manifold(M,F). This is a natural
generalization of the de Rham cohomology. For more details see [4] and [22].

To give a torus bundleT q → T n
τ−→ T p is equivalent to giving anintegral closed

p-coframew = {w1, . . . , wp} on T n, i.e. the 1-formswj , 1 ≤ j ≤ p, are closed and
linearly independent at every point ofT n andwj = τ ∗ dxj , 1≤ j ≤ p.

We now compute the cohomology groupHq(F). Let 3(M)
f−→ 3(F), θ 7→ θf , be

the quotient mapping and letW = w1∧ · · · ∧wp be the closedp-form which definesF .
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We have a vector space isomorphism

3q(F) W3−→ 3n(T n), θf 7→ W ∧ θ.
Integration along the fibre ofτ [10] gives an epimorphism

3q(F) P−→ 3p(T p) ' C∞(T p), (5.1)

where

P(θf ) = −
∫
W ∧ θ.

PROPOSITION5.1. Let T q → T n
τ−→ T p be a torus bundle and letF be the foliation

given byτ . Then:
(i) the kernel ofP is the subspaceBq(F) of all df -exact tangent forms in3q(F);
(ii) Hq(F) is isomorphic to the spaceC∞(T p) of all smooth real functions onT p.

Proof. Let � be a volume form onT n and letf be any smooth real function onT n. To
prove (i) we have to show

−
∫
f� = 0⇔ f� = W ∧ dη (5.2)

for someη ∈ 3q−1(T n) andW = p∗ dx, wheredx = dx1 ∧ · · · ∧ dxp is the standard
volume form ofT p.

Clearly, −
∫
W ∧ dη = dx −

∫
dη = 0, by Stokes’ theorem. Now, let−

∫
f� = 0 and

let ψ : V × T q → τ−1(V ) be a local trivialization ofτ , i.e. τ ◦ ψ = π where
π : V × T q → V is the projection. We observe that

ψ∗(W ∧ θ) = π∗ dx ∧ θ, θ = ψ∗θ = f dy,
wheredy = dy1 ∧ dy2 and, by assumption

dx−
∫
θ = −

∫
V

ψ∗(W ∧ θ) = −
∫
V

W ∧ θ = 0,

where−
∫
V

means integration along the fibre of the torus bundleτ−1(V ) → V . Thus
−
∫
θ = 0, which implies

θ = df η (5.3)

for some 1-formη on V .
Now coverT p by open setsVλ as above and letψλ : Vλ × T q → τ−1(Vλ) be the

corresponding trivializations. Let{ρλ} be a smooth partition of unity subordinate to the
cover {Vλ}. Let gλ dV = ψ∗λ (f�). As −

∫
f� = 0 then−

∫
Vλ
f� = −∫ gλ dV = 0, where

dV = dx ∧ dy is the standard volume form ofT n. Thus from (5.3) one has

gλ dV = dx ∧ dηλ
f� =

∑
λ

(ρ ◦ τ)W ∧ dηλ = W ∧ dη,

whereψ∗ληλ = ηλ, proving (i). Now, (ii) follows immediately from (i) and (5.1). �
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COROLLARY 5.2. Let ϕ be a c.f. diffeomorphism ofT n and letT q → T n
τ−→ T p be a

ϕ-invariant torus bundle, i.e.ϕ∗W = W , W = τ ∗ dx. Let θ0 be a closed q-form onT n

such that:
(i) ϕ∗θ0 = θ0+ dη0;
(ii) π∗ dx ∧ θ0 = � is theϕ-invariant volume form onT n, whereπ is the projection of

T n = T p × T q on the first factor.
Then there exists a (q − 1)-form η on T n such that� = W ∧ θ , whereθ = θ0+ dη.

Proof. Observe thatW ∧ (ϕ∗θ0 − θ0) = W ∧ dη0 − f� and−
∫
f� = 0. Sinceϕ is c.f.

we have a smooth solutiong to the equationg − g ◦ φ = f . Integration along the fibre
of τ leads to the equation

−
∫
g�− ϕ∗ −

∫
g� = 0, (5.4)

whereτ ◦ ϕ = ϕ ◦ τ , and sinceϕ is minimal then−
∫
g� = 0. Now, Proposition 5.1(i)

gives a smooth 1-formη so that

g� = W ∧ dη. (5.5)

It is easy to see that� = W∧θ , whereθ = θ0+dη, becauseW∧(dη−ϕ∗ dη) = W∧dξ0,
finishing the proof. �

In what follows, it would be interesting to have an answer to the following.

Question 5.3.Let T q → M
τ−→ T p be a smooth torus bundle. Does there exist a locally

free smooth action ofRq on T n whose orbits are the fibres ofτ?
For q = 1 the answer is trivially yes. Forq = 2 the answer is yes, by a theorem of

Saldanha [21].

Let (M,F) be a foliated manifold and letq be the dimension ofF . By [6] and [22],
to give a locally free actionA of Rq tangent to F , i.e. the orbits ofA are the leaves of
F , is equivalent to giving adf -closed coframeξf tangent toF . A df -closed coframe
is an ordered setξf = {ξf1 , . . . , ξfq } of df -closed tangent forms ofF such thatξf is a
basis of the tangent spaceTxF at every pointx of M.

We have the following.

PROPOSITION5.4. LetT q → T n
τ−→ T p be a torus bundle. Suppose there exists a locally

free actionA ofRq tangent to the fibres ofτ . Then the cohomology of the foliation defined
by the fibres ofτ is given by

Hj(F) ' Hj(T q)⊗ C∞(T p).

Proof. For the sake of clarity we give a proof forq = 2. Let Y = {Y1, Y2} be the frame
of the generators ofA and letη = {η1, η2} be a coframe adapted toA, i.e. ηi(Yj ) = δij .
Thus, asY1 andY2 commute,η is a df -closed coframe. So,η = {w1, . . . , wp, η1, η2}
is a df -closed coframe ofT n, i.e. W ∧ dηj = 0, 1 ≤ j ≤ 2, where, as before,
W = w1 ∧ · · · ∧ wp andwj = τ ∗ dxj , 1≤ j ≤ p. Now letψ : V × T 2→ τ−1(V ) be a
local trivialization ofτ and letZj be the vector field tangent to the fibres of the trivial
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bundleπ : V × T 2→ V given byψ∗Zj = Yj , 1≤ j ≤ 2. We may assume that

Zj = fj1(x)
∂

∂y1
+ fj2(x)

∂

∂y2
, x ∈ V,1≤ j ≤ 2

or, in matrix notation,

Z = F(x) ∂
∂y
, (5.6)

whereF is a smooth mapping fromV to G`(2, R).
If ξ is a closed 1-form, then

ξ = g1η1+ g2η2 whereY1g2 = Y2g1. (5.7)

Notice thatξ0 = ψ∗ξ is alsodf -closed, i.e.dx ∧ dξ0 = 0. HereF0 is the foliation given
by the fibres ofπ . We claim that

H 1(F0) = H 1(T 2)⊗ C∞(V ). (5.8)

ξ0 = f dy1 + g dy2 is df -closed iff gy1 = fy2 and then, using the Fourier transform,
we getf = r1(x)+ hy2 andg = r2(x)+ hy1, which gives

ξ0 = r1(x) dy1+ r2(x) dy2+ df h, (5.9)

wherer1 andr2 are smooth real functions onT2 andh is a smooth function onT 4, proving
(5.8). If ρ = {ρ1, ρ2} is the coframe adapted toZ = {Z1, Z2} given byψ∗ρj = ηj ,
1≤ j ≤ 2, then from (5.6) one has

dy = tF−1(x)ρ (5.10)

in matrix notation. Now from (5.9) and (5.10) we see thatξ0 can be written as

ξ0 = s1(x)ρ1+ s2(x)ρ2+ df k, (5.11)

wheresj are smooth functions onT 2.
Cover T 2 by an open setVλ as above and let{ρλ} be a smooth partition of unity

subordinate to this cover. A routine computation gives

ξf = (s1 ◦ τ)η1+ (s2 ◦ τ)η2+ df h, (5.12)

wheresj , 1 ≤ j ≤ 2, are smooth functions onT 2 and h is a smooth function onT 4,
finishing the proof. �

Remark 5.5.The expression ofξf in terms of a givendf -closed coframeη, as in (5.12)
above, isunique. If (s1 ◦ τ)η1+ (s2 ◦ τ)η2 = df h then integration along the fibre of the
bundleτ gives

sj (x) dx−
∫
1η = 0, 1≤ j ≤ 2,

where1η = η1 ∧ η2 is the corresponding volume form on the fibres ofτ . Thussj = 0,
1≤ j ≤ 2.
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6. An adapted version of the isotopy theorem of Moser
In this paper, we make use of an adapted version of a theorem due to Moser [19].

Let T n = T p × T q and denote by(x, y), x ∈ T p, y ∈ T q , the points of the torusT n.
As before, we denote bydx = dx1 ∧ · · · ∧ dxp the standardp-form of T p.

Let F be the foliation ofT n defined bydx. The foliated divergenceof a smooth
functionF : T n→ Rq is the real function Divf F on T n given by

Divf F = F 1
y1
+ · · · + Fqyq , (6.1)

F j , 1≤ j ≤ q, being the coordinate functions ofF .
Let �0 = ±dx ∧ dy, wheredx ∧ dy is the standard volume form ofT n.
We have the following.

THEOREM 6.1. Suppose� = �0 + dσ is a volume form on the torusT n such that
� = (1 + Divf F )�0 for some smooth functionF : T n → Rq . Then there exists a
C∞ diffeomorphismψ of T n, isotopic to the identity such that:
(i) ψ∗ dxj = dxj , 1≤ j ≤ p;
(ii) ψ∗� = �0.

Proof. Consider the path�t = �0 + t dσ , 0 ≤ t ≤ 1, of cohomologous volume forms
on T n. We want to find a pathψt of smooth diffeomorphisms ofT n such thatψ0 = id,
ψ1 = ψ and:
(i) ψ∗t dxj = dxj , 1≤ j ≤ p;
(ii) ψ∗t �t = �0.
where (i) and (ii) hold for allt , 0≤ t ≤ 1.

We now follow the ideal of Moser [19]. Instead of determining the pathψt directly
we look for a vector fieldV : R → –X(T n), from which we obtainψt by solving the
differential equation

d

dt
ψt = Vt ◦ ψt, (6.2)

where–X(T n) is the Fŕechet space of allC∞ vector fields on the torusT n. To obtain a
more convenient expression for (6.2) we use the formula [15]

d

dt
(ψ∗t α) = −ψ∗t (LVt α), (6.3)

whereLVt α is the Lie derivative of a differential formα ∈ 3(T n) with respect toVt .
This has the advantage of linearizing the problem. Taking

Vt = a1
t

∂

∂y1
+ · · · + aqt

∂

∂yq
(6.4)

where

a
j
t =

Fj

1+ t Divf F
, 1≤ j ≤ q,

for the vector field, we see from (6.1)–(6.3) that

d

dt
(ψ∗t dxj ) = 0 and

d

dt
(ψ∗t �t ) = 0,

for q ≤ j ≤ p, proving the theorem. �
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COROLLARY 6.2. Let ϕ be a minimalC∞ diffeomorphism ofT n such that:
(i) ϕ∗t dxj = dxj , 1≤ j ≤ p;
(ii) ϕ preserves a smooth volume form� on T n, i.e. ϕ∗� = (degϕ)� and � is

cohomologous to the standard volume form�0.
Then there exists aC∞ diffeomorphismψ of T n, isotopic to the identity, such that

ψ∗� = �0 and ψ∗ dxj = dxj , 1≤ j ≤ p.

Proof. Notice that
� = �0+ dτ = (1+ f )�0. (6.6)

In view of Theorem 6.1, we have to show that there exists a smooth mappingF : T n→
Rq such that

f = Divf F. (6.7)

By (i), π ◦ ϕ = Tα ◦ π , whereπ is the projection ofT n = T p × T q on the first factor
andTα is a minimal translation of the torusT p. Integrating� along the fibres ofπ and
using (ii) we geth(x+α) = ±h(x), whereh is the smooth real function ofT p given by
−
∫
� = h dx, wheredx is the standard volume form ofT p. Now, sinceTα is minimal,h

is a constant function and we may, in addition, assume thath = 1. So, from (6.6) we get
−
∫
f�0 = 0 which, by a standard argument using Fourier series, implies (6.7), proving

the Corollary. �

The crucial problem on c.f. diffeomorphisms is the following.

Problem.Let ϕ : M → M be a c.f. diffeomorphism of a compact smooth manifoldM
andn ∈ Z− {0}. Is ϕn also c.f.?
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