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In commonly used formulations of the Boussinesq approximation centrifugal buoyancy
effects related to differential rotation, as well as strong vortices in the flow, are
neglected. However, these may play an important role in rapidly rotating flows, such
as in astrophysical and geophysical applications, and also in turbulent convection. Here
we provide a straightforward approach resulting in a Boussinesq-type approximation
that consistently accounts for centrifugal effects. Its application to the accretion-disc
problem is discussed. We numerically compare the new approach to the typical one
in fluid flows confined between two differentially heated and rotating cylinders. The
results justify the need of using the proposed approximation in rapidly rotating flows.
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1. Introduction
In 1903 Boussinesq observed that: ‘The variations of density can be ignored except

where they are multiplied by the acceleration of gravity in the equation of motion
for the vertical component of the velocity vector’ (Boussinesq 1903). This simple
approximation has had a far-reaching impact on many areas of fluid dynamics; it
allows us to approximate flows with small density variations as incompressible, whilst
retaining the leading-order effects due to the density variations. Moreover, it is of
great importance both analytically and numerically as it eliminates acoustic modes,
which are challenging to treat. Many problems in fluid dynamics have been tackled
with Boussinesq-type approximations, rendering in most cases successful results
in good agreement with experiments. However, some problems feature important
physics neglected in the original Boussinesq approximation. For example, in many
investigations of systems subject to rotation, the centrifugal term in the Navier–Stokes
equations is treated as a gradient and is absorbed into the pressure (Chandrasekhar
1961). Under this assumption centrifugal buoyancy enters the hydrostatic balance but
does not play a dynamic role, making an analytical treatment of the equations possible.
In contrast, the inclusion of centrifugal terms in numerical simulations requires a
minimal coding and computing effort. Therefore, it should always be included in the
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The Boussinesq approximation in rapidly rotating flows 57

simulations (Randriamampianina et al. 2006), and whether it is dynamically significant
or not should be determined a posteriori.

In systems rotating at angular velocity Ω the dynamical role of centrifugal buoyancy
is straightforward to model. Typically, a term acting in the radial direction and
proportional to ρ ′Ω2, where ρ ′ is the density variation, is added to the Navier–Stokes
equation (Barcilon & Pedlosky 1967; Homsy & Hudson 1969). One example where
this term has been included is rotating Rayleigh–Bénard convection. Hart (2000)
studied the effect of centrifugal buoyancy using a self-similar and perturbative
approach, confirmed by numerical simulations in the axisymmetric case (Brummell,
Hart & Lopez 2000). More recently, Marques et al. (2007) and Lopez & Marques
(2009) conducted full three-dimensional simulations in the same geometry. All of these
investigations show the relevance of centrifugal buoyancy in rotating convection. In
these studies the imposed temperature gradient is parallel to gravity, while in the
present work both gradients are perpendicular, and additional centrifugal effects, in
addition to the traditional ρ ′Ω2 term, are also included.

Note that in the traditional approach, described in the previous paragraph, effects
due to differential rotation or strong internal vorticity, of especial importance in
rapidly rotating flows, are neglected. The increasing interest in these flows because
of their industrial (e.g. cyclonic dust collectors or vortex chambers) and scientific
(astrophysical and atmospheric turbulence) applications (see Elperin, Kleeorin &
Rogachevskii 1998) motivates the development of a new approximation, which we
here undertake. It is based on the Boussinesq approximation but it includes additional
physical effects stemming from the advection term in the Navier–Stokes equations. It
allows it to accurately cast rapidly rotating flows with mild variations of density into
an incompressible formulation. In § 2, we describe a systematic way to achieve this,
and we provide two different and easy to implement ways to account for centrifugal
buoyancy effects in rotating problems.

We compare the different ways of including centrifugal effects in the
Boussinesq–Navier–Stokes equations by numerically studying the linear stability
of fluid between two differentially rotating cylinders subject to a negative radial
temperature gradient. Apart from its intrinsic interest, this setting has been widely
used to model both atmospheric (Hide & Fowlis 1965) and astrophysical flows
(Petersen, Julien & Stewart 2007), where the fluid reaches high rotational speeds.
Our simulations show that the traditional Boussinesq approximation (i.e. with the ρ ′Ω2

term) is valid in a wide range of angular speeds. However, for rapidly rotating flows
important centrifugal effects arise. Here even the linear behaviour of the problem
is significantly different for both approximations, justifying the application of our
approximation to account for centrifugal effects.

The paper is organized as follows. After introducing the new approximation in
§ 2, we compare it in § 3 with other approximations used in accretion-disc models.
Section 4 gives a detailed description of the system as well as the governing equations
of the problem and its linearization. A brief description of the base flow is also
provided. Section 5 introduces the Petrov–Galerkin method implemented to discretize
the equations. In § 6 the linear stability of the system considering both ways to
introduce the centrifugal buoyancy is compared. Various cases of interest are analysed.
In § 6.1 we consider fluid rotating as a solid body, whereas in § 6.2 shear is introduced
in the system. We study quasi-Keplerian rotation in § 6.2.1 and a system rotating close
to solid body subjected to weak shear in § 6.2.2. Discussion and concluding remarks
are given in § 7.
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2. Boussinesq-type approximation for the centrifugal term
In rotating thermal convection or stratified fluids the Navier–Stokes–Boussinesq

equations are usually formulated in the rotating reference frame, with angular velocity
vector Ω . The momentum equation in this non-inertial reference frame includes four
inertial body force terms (Batchelor 1967), also called d’Alambert forces:

ρ(∂t + u ·∇)u=−∇p+∇ · σ + ρ f − ρ∇Φ
− ρA− ρ α × r− 2ρΩ × u− ρΩ × (Ω × r). (2.1)

Here −ρA is the translation force due to the acceleration A of the origin of the
rotating reference frame, −ρ α × r is the azimuthal force (also called Euler force)
due to the angular acceleration α = dΩ/dt, −2ρu × Ω is the Coriolis force and
−ρΩ × (Ω × r) is the centrifugal force (all of them per unit volume). In (2.1), ρ, p
and u are the density, pressure and velocity field of the fluid, r is the position vector
of the fluid parcel and Φ is the gravitational potential, so −ρ∇Φ is the gravitational
force. The term ρf accounts for additional body forces that may act on the fluid. For a
Newtonian fluid the stress tensor σ reads

σ =−pI + µ(∇u+∇uT)+ λ∇ ·uI, (2.2)

where I is the identity tensor, µ is the dynamic viscosity and λ is the second viscosity.

2.1. The Boussinesq approximation in a rotating reference frame
In the Boussinesq approximation all fluid properties are treated as constant, except
for the density, whose variations are considered only in the ‘relevant’ terms. Density
variations are assumed to be small: ρ = ρ0 + ρ ′, with ρ0 constant and ρ ′/ρ0 � 1;
the ρ ′ term usually includes the temperature dependence, density variations due to
fluid density stratification, density variations in a binary fluid with miscible species
of different densities, etc. With this assumption the continuity equation reduces to
∇ · u = 0 and the fluid can be treated as incompressible. As a direct consequence the
shear stress term in the momentum equation (2.1) simplifies to the vector Laplacian,
i.e. ∇ · σ = µ∇2u.

Identifying the relevant terms in the momentum equation is a more delicate issue.
Any term in (2.1) with a factor ρ splits into two terms, one with a factor ρ0 and
the other with a factor ρ ′. If a ρ0 term is not a gradient, it is the leading-order
term, and the associated ρ ′ term may be neglected. If the ρ0 term is a gradient, it
can be absorbed into the pressure gradient and does not play any dynamical role,
and therefore the associated ρ ′ term must be retained in order to account for the
associated force at leading order. This is exactly what happens with the gravitational
term: −ρ0∇Φ = ∇(−ρ0Φ), which is absorbed into the pressure gradient term and
we must retain the −ρ ′∇Φ term to account for gravitational buoyancy. The same
treatment must be applied to the translation and centrifugal terms, yielding the gradient
terms

−ρ0A− ρ0Ω × (Ω × r)=∇( 1
2ρ0|Ω × r|2 − ρ0A · r), (2.3)

as well as −ρ ′A and −ρ ′Ω × (Ω × r), which must also be retained.
The ρ0 part of the remaining terms in (2.1) (so far, we have considered the

gravitational, centrifugal and translational forces) are not gradients, so they are
retained as leading-order terms and the corresponding ρ ′ terms are neglected, leading
to the Boussinesq approximation equations in the rotating reference frame:

ρ0(∂t + u ·∇)u=−∇p∗ + µ∇2u+ ρ f − ρ ′∇Φ
− ρ ′A− ρ0α × r− 2ρ0Ω × u− ρ ′Ω × (Ω × r), (2.4)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

55
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.558


The Boussinesq approximation in rapidly rotating flows 59

where

p∗ = p+ ρ0Φ − 1
2ρ0|Ω × r|2 + ρ0A · r, (2.5)

together with the incompressibility condition ∇ · u = 0. Of course, supplementary
equations are often needed; for example, if ρ ′ depends on the temperature, an
evolution equation for the temperature must be included.

2.2. Formulation in the inertial frame
In many cases the fluid container is not rotating at a given angular speed, but
different parts may rotate independently. For example Taylor–Couette flows with
stratification and/or heating, cylindrical containers with the lids rotating at different
angular velocities, etc. In these flows, there is not a natural or unique angular velocity
Ω to use in (2.4) and it may be more convenient to write the governing equations
in the laboratory reference frame. In § 2.2.1 we derive the momentum equation in the
laboratory frame but for the sake of simplicity we assume that the fluid container
rotates with angular speed Ω . In § 2.2.2 we show how the formulation is easily
extended to account for the general case where a unique rotating reference frame
cannot be identified.

2.2.1. Formulation in the inertial frame: container rotating at angular velocity Ω
The laboratory frame is an inertial reference frame, so the four inertial terms in (2.1)

are absent, and the momentum equation is

ρ(∂t + v ·∇)v=−∇p+ µ∇2v− ρ∇Φ + ρ f , (2.6)

where we have used v for the velocity field in the inertial reference frame, to
distinguish it from the velocity u in the rotating frame. In order to implement the
Boussinesq approximation, we could naı̈vely repeat the previous analysis; since the
only term which is a gradient is the gravitational force −ρ0∇Φ, we end up with an
equation containing only the gravitational buoyancy, and the centrifugal buoyancy is
absent. This appears reasonable, because the governing equations do not contain the
rotation frequency Ω of the container. However, Ω appears in the boundary conditions
for the velocity, so it must be taken into account by a careful analysis of the nonlinear
advection term. The easiest way to do this is by decomposing the velocity field as
v = u + Ω × r, so the Ω × r part accounts for the boundary conditions (rotating
container); u is precisely the velocity of the fluid in the rotating reference frame, with
zero velocity boundary conditions. The advection term splits into four parts:

v ·∇v= u ·∇u+ u ·∇(Ω × r)+ (Ω × r) ·∇u+ (Ω × r) ·∇(Ω × r). (2.7)

Using the incompressibility character of u, the dependence of Ω on time but not on
the spatial coordinates, and some vector identities, we can transform the advection
term into

v ·∇v= u ·∇u+ 2Ω × u+Ω × (Ω × r)+∇ × (u× (Ω × r)). (2.8)

We have recovered the Coriolis and centrifugal terms, and because Ω × (Ω × r) is a
gradient, we must add a centrifugal contribution also in the inertial reference frame.

The last term in (2.8) accounts for the difference between the time derivatives in
the inertial and rotating reference frames, respectively. An easy way to see this is
by considering the simple case where the two reference frames have the same origin,
and Ω =Ω k̂, where k̂ is the vertical unit vector and Ω is constant. Using cylindrical
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coordinates (r, θ, z), with z in the vertical direction, we obtain

∇ × (u× (Ω × r))=Ω∂θu. (2.9)

The change of coordinates between the inertial and rotating frame is

r = r′, z= z′,
θ = θ ′ +Ωt, t = t′,

}
(2.10)

where (r′, θ ′, z′) are the cylindrical coordinates in the rotating frame of the same fluid
parcel with coordinates (r, θ, z) in the inertial frame; t and t′ are the times in both
reference frames. From (2.10) we obtain ∂t′ = ∂t + Ω∂θ , so the last term in (2.8),
combined with ∂tu results in the term ∂t′u in the rotating frame. Finally, ∂tv in the
inertial frame contains an extra term, ∂t(Ω × r)= α × r. Therefore, we have recovered
all of the inertial forces in the rotating frame (2.1), except for the translation force
−ρA, because in the example considered, (2.10), both reference frames have the same
origin, and the translation is absent; by including a translation term in (2.10) we could
also recover it. Now, the two formulations, including centrifugal buoyancy in both
reference frames (inertial and rotating), fully agree.

In the inertial reference frame, we are interested in a formulation in terms of
the velocity field in the inertial frame v, instead of u as in (2.8). The analysis
presented above considering the advection term results simply in an additional term,
the centrifugal buoyancy. We have also discussed the effect of the decomposition
v= u+Ω × r in the time derivative term. Now it only remains to consider the viscous
term. However, ∇2(Ω × r) = 0 because Ω × r is linear in the spatial coordinates and
so its Laplacian is zero. The traditional Boussinesq approximation equations in the
inertial reference frame are

ρ0(∂t + v ·∇)v=−∇p∗ + µ∇2v+ ρ f − ρ ′∇Φ − ρ ′Ω × (Ω × r), (2.11)

where p∗ = p+ ρ0Φ − ρ0|Ω × r|2/2, and together with the incompressibility condition
∇ ·u= 0.

2.2.2. Formulation in the inertial frame: generalization
We have shown that centrifugal buoyancy enters the governing equations via

the boundary conditions and the advection term; no other term is affected in the
Boussinesq approximation. This now suggests a very simple formulation, consisting
in keeping the whole density, ρ = ρ0 + ρ ′, in the advection term. This formulation
is easy to implement, and since most time-evolution codes for incompressible flows
are semi-implicit (i.e. the viscous term is treated implicitly, whereas the advection
term is treated explicitly), the speed and efficiency of the codes do not change. The
formulation reads

ρ0(∂t + v ·∇)v=−∇p∗ + µ∇2v+ ρ f − ρ ′∇Φ − ρ ′(v ·∇)v, (2.12)

where p∗ = p + ρ0Φ, and allows one to easily handle situations where different parts
of a fluid container rotate independently. In these flows there is not a natural or unique
angular velocity Ω to use for a rotating reference frame in the formulation (2.11);
however, the angular velocities of the problem still enter the governing equations
through the boundary conditions and the advection term. Hence, formulation (2.12)
provides a natural way to account for centrifugal buoyancy effects of these rotating
flows in the inertial (laboratory) reference frame. This formulation is also appropriate
if additional equations appear coupled with the Navier–Stokes equations, for example
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The Boussinesq approximation in rapidly rotating flows 61

for large density variations in stratified flows. The treatment of the centrifugal effects
can be carried out exactly in the same way presented here.

2.2.3. Alternative formulation in the inertial frame and physical interpretation
The extra term included in (2.12), ρ ′(v · ∇)v, can be expressed in a different way,

providing a closer resemblance to the expression in (2.11). Close to a rotating wall,
the velocity field is v ≈Ω × r; this expression is exact at the wall (no slip boundary
condition at a rigid rotating wall). The dominant part of the advection term is then

(v ·∇)v≈ (Ω × r) ·∇(Ω × r)=Ω × (Ω × r)=−∇( 1
2 |Ω × r|2)≈−∇( 1

2v
2). (2.13)

As the dominant term is a gradient, it is necessary to include the ρ ′ term in the
Boussinesq approximation. Replacing ρ ′(v · ∇)v by −ρ ′∇(v2/2) gives the alternative
form for (2.12):

ρ0(∂t + v ·∇)v=−∇p∗ + µ∇2v+ ρ f − ρ ′∇Φ + ρ ′∇( 1
2v

2). (2.14)

This centrifugal effect is not only important when we have rotating walls, but also
if a strong vortex appears dynamically in the interior of the domain; therefore, it is
advisable to always include this term in the Boussinesq approximation in order to
account for all possible sources of centrifugal instability.

We have presented two different ways, (2.12) and (2.14), of including the centrifugal
buoyancy in rotating problems. One may wonder whether there exists a canonical
way to extract from the advection term the part that is a gradient, and then multiply
this gradient by ρ ′. The Helmholtz decomposition (Arfken & Weber 2005), writing a
given vector field as the sum of a gradient and a curl, could serve this purpose, but
unfortunately this decomposition is not unique (it depends on the boundary conditions
satisfied by the curl part), and moreover it is not a local decomposition (i.e. in order to
extract the gradient part, we need to solve a Laplace equation with Neumann boundary
conditions). The two formulations presented here, (2.12) and (2.14), are simple and
easy to implement, and deciding between one or the other is a matter of taste.

The extra term we have included in (2.14), ρ ′∇(v2/2), has an important physical
interpretation; it is a source of vorticity due to density variations and centrifugal
effects. Taking the curl of (2.14) and using

∇ × (v ·∇v)=∇ × (ω × v)= v ·∇ω − ω ·∇v, (2.15)

where ω =∇ × v is the vorticity field, results in an equation for the vorticity:

ρ0(∂t + v ·∇)ω = ρ0ω ·∇v+ µ∇2ω +∇ × (ρ f )−∇ρ ′ ×∇Φ +∇ρ ′ ×∇( 1
2v

2).

(2.16)

The first three terms in the right-hand side of (2.16) provide the classical vorticity
evolution equation for an incompressible flow with constant density. The last two
terms are the explicit generation of vorticity due to the gravitational and centrifugal
buoyancies, respectively. In the next section we discuss two hydrodynamic approaches
to the accretion-disc problem in astrophysics, where centrifugal buoyancy is not
included, and we show that it can be easily included in the numerical analysis.

3. Centrifugal effects in hydrodynamic accretion-disc models
There are other approximations used in the literature, which may also be modified

to include centrifugal buoyancy. Astrophysics is a very active field where these
approximations are used. The book of Tassoul (2000) provides a comprehensive
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discussion on rotating stellar flows under the influence of shear and stratification.
In this section we briefly discuss two approximations used in accretion-disc theory.
The first is the shearing sheet model (Balbus 2003; Regev & Umurhan 2008; Lesur &
Papaloizou 2010), where the Boussinesq approximation is used in a small domain of
the accretion disc. The second is the anelastic approximation (Bannon 1996), used by
Petersen et al. (2007) in a global model of an accretion disc.

In the shearing sheet approximation the governing equations are written in a small
thin rectangular box at a distance r0 from the centre of the accretion disc; the
coordinates used are x = r − r0, y = r0θ and z, where (r, θ, z) are the cylindrical
polar coordinates of the disc. Let Ω(r) be the Keplerian angular velocity profile
of the accretion disc, i.e. its background rotation. The rotating reference frame has
Ω = Ω0ez, A = −r0Ω

2
0er and α = 0, where Ω0 = Ω(r0) (see (2.4)). In terms of the

velocity perturbation with respect to the background rotation, w = (u, v,w) = u − u0,
with u0 = r(Ω(r)−Ω0)ey, the governing equations (2.4) are

ρ0(∂t + w ·∇ − Sx∂y)w=−∇p∗ + µ∇2w− ρ ′∇Φ − 2ρ0Ω × w+ ρ0Suey

− 2ρ0Ω0Sxex − ρ ′Ω × (Ω × (r0ex + r)). (3.1)

Here S = −r0 dΩ/dr|r0 is a linear approximation of the shear associated with the
background rotation profile Ω(r). We have assumed as customary that x� r0 and
expanded Ω(r) up to first order in x/r0. We can compare (3.1) with the governing
equations in Balbus (2003) and Lesur & Papaloizou (2010), and we observe that the
centrifugal therm −ρ ′Ω × (Ω × r) is absent in these references. The baroclinic term
−ρ ′∇Φ is the only buoyancy term considered in these works, and it points into the
radial direction for an axisymmetric mass distribution in the accretion disc. Another
source of instability are the shear terms proportional to S, that are independent of
the temperature. When centrifugal buoyancy is included, additional terms both in the
radial and azimuthal directions appear, competing with the gravitational buoyancy and
the shear terms. As a result, the stability analysis and the dynamics of the accretion
disc may be modified by the inclusion of centrifugal buoyancy. If the centrifugal
effects of internal strong vortices or differential rotation are also taken into account, as
in (2.12) and (2.14), additional terms may also be included: −ρ ′(v·∇)v or equivalently
ρ ′∇(v2/2).

The shearing sheet approximation is local, it models a small rectangular
neighbourhood of a point in the accretion disc. In order to perform a global analysis of
the disc in the radial direction, it is necessary to account for large variations in density,
which do not fit into the Boussinesq framework. The anelastic approximation is very
useful in this case. It is assumed that there is a background state ρ0(r), p0(r) in static
balance between centrifugal force, gravity and pressure,

rΩ2(r)= dΦ
dr
+ 1
ρ0

dp0

dr
, (3.2)

and the continuity equation now reads ∇ · (ρ0(r)u) = 0. The velocity field is not
solenoidal, but the governing equations and numerical methods are very similar to
those corresponding to the Navier–Stokes–Boussinesq approximation, and in two-
dimensional problems (Petersen et al. 2007) a streamfunction can still be defined.
Owing to the strong differential rotation in the accretion-disc problem, the inertial
reference frame is usually preferred. As the centrifugal force is included in the
static balance equation (3.2), it may look like centrifugal effects have been included
into the governing equations. However, the static balance means that the centrifugal
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term −ρ0Ω × (Ω × r) is a gradient, and therefore terms of the form −ρ ′(v · ∇)v
or ρ ′∇(v2/2) should be included in the governing equations, as has been discussed
in the preceding section. These terms are not included in studies using the anelastic
approximation (Bannon 1996; Petersen et al. 2007). Therefore, centrifugal effects in
many geophysical and astrophysical problems could modify the stability analysis and
the dynamics obtained so far, particularly at large rotation rates.

4. Description of the system
We consider the motion of a fluid of kinematic viscosity ν contained in the annular

gap between two concentric infinite cylinders of radii ri and ro. The cylinders rotate
at independent angular speeds Ωi and Ωo. A negative radial gradient of temperature,
as in accretion discs, is considered by setting the temperature of the inner cylinder
to Ti = Tc + 1T/2 and the outer cylinder to To = Tc − 1T/2, where Tc is the mean
temperature. We fix the radii ratio η = 0.71, a typical value in experimental facilities,
and the Prandtl number σ = 7.16, corresponding to water. In astrophysics σ � 1
because thermal relaxation is dominated by radiation processes, whereas in geophysics
(planetary core and mantle) σ � 1. We assume that the gravitational acceleration is
vertical and uniform, as in typical Taylor–Couette experiments. This is in contrast to
astrophysical stellar flows, where radial gravity plays a prominent role and cannot be
neglected (Tassoul 2000). For example, the radial buoyancy frequency (absent in our
system) defines the stability of rotating astrophysical objects. Similarly, in accretion
discs the radial Grashof number (also absent in our system) is more relevant than the
vertical one. Another crucial difference is the presence of radial boundaries (cylinders)
to drive rotation. As a result, in the quasi-Keplerian regime (Ωi >Ωo and r2

iΩi < r2
oΩo)

the radial pressure gradient is positive, whereas in accretion discs it may also be
negative.

4.1. Governing equations

The centrifugal buoyancy in the stationary frame of reference is included as in § 2,
(2.12):

ρ0(∂t + v ·∇)v=−∇p∗ + µ∇2v− ρ ′∇Φ − ρ ′v ·∇v, (4.1)

where p∗ includes part of the gravitational potential, ρ0Φ.
We assume that ρ = ρ0+ρ ′ = ρ0(1−αT), where T is the deviation of the temperature

with respect to the mean temperature Tc, and ρ0 is the density of the fluid at
Tc. As the gravity acceleration is vertical and uniform, the gravitational potential is
given by Φ = gz; cylindrical coordinates (r, θ, z) are used. With these assumptions,
−ρ ′∇Φ = ρ0αgT ẑ where ẑ is the unit vector in the axial direction z and α is the
coefficient of volume expansion. The governing equations, including the temperature
and incompressibility condition, are

(∂t + v ·∇)v=−∇p+ ν∇2v+ αgT ẑ+ αTv ·∇v, (4.2a)
(∂t + v ·∇)T = κ∇2T, (4.2b)

∇ ·v= 0, (4.2c)

where κ is the thermal diffusivity of the fluid. The equations are made dimensionless
using the gap width d = ro − ri as the length scale, the viscous time d2/ν as the
time scale, 1T as the temperature scale and (ν/d)2 for the pressure. In doing so, six
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independent dimensionless numbers appear:

Grashof number G= αg1Td3/ν2, (4.3a)
Relative density variation ε = α1T =1ρ/ρ0, (4.3b)

Prandtl number σ = ν/κ, (4.3c)
Radius ratio η = ri/ro, (4.3d)

Inner Reynolds number Rei =Ωirid/ν, (4.3e)
Outer Reynolds number Reo =Ωorod/ν. (4.3f )

where 1ρ is the density variation associated with a temperature change of 1T . In this
system the Froude number is not particularly useful because we have two different
rotation rates, Ωi and Ωo, so the Froude number definition is not unique.

From now on, only dimensionless variables and parameters will be used. The
dimensionless governing equations are

(∂t + v ·∇)v=−∇p+∇2v+ GT ẑ+ εTv ·∇v, (4.4a)
(∂t + v ·∇)T = σ−1∇2T, (4.4b)

∇ ·v= 0, (4.4c)

The only change needed to recover the traditional Boussinesq approximation is to
replace the centrifugal term εTv · ∇v in (4.4a) by −εΩ2Trr̂, where r̂ is the unit vector
in the radial direction r.

4.2. Base flow
An analytical solution for the base flow can be found by assuming only radial
dependence for the variables of the problem. We also use the zero axial mass flux
condition to fix the axial pressure gradient, i.e.∫ ro

ri

rwb(r) dr = 0. (4.5)

The resulting steady base flow is given by

ub(r)= 0 (4.6a)

vb(r)= Ar + B

r
(4.6b)

wb(r)= G

(
C(r2 − r2

i )+
(

C(r2
o − r2

i )+
1
4
(r2

o − r2)

)
ln(r/ri)

ln η

)
(4.6c)

Tb(r)= 1
2
+ ln(r/ri)

ln η
(4.6d)

p(r, z)= po + G

(
4C + 1

2
− 1

ln η

)
z+

∫ r

ri

(1− εTb(r))v
2
b(r)

dr

r
, (4.6e)

where (u, v,w) are the radial, azimuthal and axial components of the velocity field,
and cylindrical coordinates (r, θ, z) are being used. Here vb is the azimuthal velocity
for the classical Taylor–Couette problem (Chandrasekhar 1961), whereas wb and Tb

correspond to convection in a conductive regime and appeared for the first time in
Choi & Korpela (1980). The pressure varies linearly with the axial coordinate z, but
the pressure gradient depends only on r, and therefore it is periodic in the axial
direction. This axial pressure gradient mimics the presence of distant endwalls in any
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real situation, by enforcing the zero mass flux constraint (4.5). It is possible to give
an explicit closed expression for p by integrating (4.6e), but it is quite involved and it
does not appear in the problem solution. The expressions for the parameters A, B and
C are

A= Reo − ηRei

1+ η , B= η Rei − ηReo

(1− η)(1− η2)
, (4.7)

C =− 4 ln η + (1− η2)(3− η2)

16(1− η2)((1+ η2) ln η + 1− η2)
, (4.8)

where (4.7) define the pure rotational flow in the azimuthal coordinate and C gives
the axial component of the velocity field. The non-dimensional radii of the cylindrical
walls are given by ri = η/(1 − η), ro = 1/(1 − η). Note that the presence of the new
centrifugal buoyancy term, proportional to ε, does not modify the base flow’s velocity
field, but only its pressure.

4.3. Linearized equations
We perturb the base flow with infinitesimal perturbations which vary periodically in
the axial and azimuthal directions,

v(r, θ, z, t)= vb(r)+ ei(nθ+kz)+λtu(r), (4.9a)

T(r, θ, z, t)= Tb(r)+ ei(nθ+kz)+λtT ′(r), (4.9b)

where vb = (0, vb,wb) and Tb(r) correspond to the base flow equation (4.6);
u(r)= (ur, uθ , uz) and T ′(r) are the velocity and temperature perturbations, respectively.
The boundary conditions for both u and T ′ are homogeneous: u(ri) = u(ro) = T ′(ri) =
T ′(ro) = 0. The axial wavenumber k and the azimuthal mode number n define the
shape of the disturbance. The parameter λ is complex. Its real part λr is the
perturbation’s growth rate, which is zero at critical values, and its imaginary part
λi is the oscillation frequency of the perturbation.

Using the decomposition (4.9) in the equations (4.4) and neglecting high-order
terms, we obtain an eigenvalue problem, with eigenvalue λ. It reads

λur = 1
r

∂

∂r

(
r
∂ur

∂r

)
− ur

[
n2 + 1

r2
+ k2 + i

(nvb

r
+ kwb

)
(1− εTb)

]
+ 2vb

r
(1− εTb)uθ − 2in

r2
uθ − εv

2
b

r
T ′, (4.10a)

λuθ = 1
r

∂

∂r

(
r
∂uθ
∂r

)
− uθ

[
n2 + 1

r2
+ k2 + i

(nvb

r
+ kwb

)
(1− εTb)

]
−
(
∂vb

∂r
+ vb

r

)
(1− εTb)ur + 2in

r2
ur, (4.10b)

λuz = 1
r

∂

∂r

(
r
∂uz

∂r

)
− uz

[
n2

r2
+ k2 + i

(nvb

r
+ kwb

)
(1− εTb)

]
+ ∂wb

∂r
(εTb − 1)ur + GT ′, (4.10c)

λT ′ = 1
σ r

∂

∂r

(
r
∂T ′

∂r

)
− T ′

[
1
σ

(
n2

r2
+ k2

)
+ i
(nvb

r
+ kwb

)]
− ∂Tb

∂r
ur. (4.10d)
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Note that here the continuity equations and pressure terms are omitted because
the Petrov–Galerkin method chosen to solve the resulting system of equations
automatically satisfies the continuity equation and eliminates the pressure by using
a proper projection (see the next section).

From (4.10) the equations for the traditional Boussinesq approximation can be
easily obtained by setting ε = 0 in all terms except for −ε(v2

b/r)T
′. The traditional

approximation incorporates only one rotating frame of reference for the system; the
expression (4.6b) for the base flow azimuthal velocity vb(r)= Ar + B/r has two terms,
Ar corresponding to solid-body rotation and B/r corresponding to shear. It is natural to
identify A as the frequency of the rotating frame of reference, Ωr. In fact, if we take
Ωi =Ωo =Ω , the Couette flow profile is

vb(r)= Ar + B

r
= Ωor2

o −Ωir2
i

r2
o − r2

i

r + (Ωi −Ωo)(riro)
2

r2
o − r2

i

1
r
=Ωr =Ωrr, (4.11)

and we recover the linearized version of the centrifugal term considered in the
traditional approach, −εΩ2T ′rr̂. In the general case with Ωi 6= Ωo the traditional
Boussinesq approximation is defined in the frame of reference rotating with Ωr = A.
This approximation takes only into account the centrifugal buoyancy acting in the
radial direction, which is obviously its main contribution. However, as we will see
in § 6, for high rotation rates other terms acting both in the radial and azimuthal
directions become important and change the behaviour of the system. Part of the
discrepancy stems from the fact that the effect of differential rotation is entirely
neglected in the traditional approximation.

5. Numerical method
In order to solve numerically the eigenvalue problem described in the previous

section, a spatial discretization of the domain must be made. This is accomplished by
projecting the equations (4.10) onto a basis carefully chosen to simplify the process,

V3 = {v ∈ (L2(ri, ro))
3 |∇ ·v= 0,v(ri)= v(ro)= 0}, (5.1)

where (L2(ri, ro))
3 is the Hilbert space of square integrable vectorial functions defined

on the interval (ri, ro), with the inner product

〈v,u〉 =
∫ ro

ri

v∗ ·ur dr, (5.2)

where ∗ denotes the complex conjugate. For any v ∈ V3 and any function p, using the
incompressibility condition, the boundary conditions and integrating by parts,

〈v,∇p〉 =
∫ ro

ri

(v∗ ·∇p)r dr =
∫ ro

ri

rv∗r ∂rp dr = rpv∗r |ro
ri
−
∫ ro

ri

p∂r(rv
∗
r ) dr = 0. (5.3)

This consideration allows us to eliminate the pressure from the equations as we project
them onto the basis (Canuto et al. 2007). Moreover, the continuity equation is satisfied
by definition of the space V3. For the temperature perturbation the appropriate space is

V1 = {f ∈L2(ri, ro) | f (ri)= f (ro)= 0}. (5.4)
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We expand the variables of the problem as follows

X =
[
u(r)
T ′(r)

]
=
∑

j

ajXj Xj ∈ V3 × V1, (5.5)

and projecting (4.10) onto V3 × V1, we arrive at a linear system of equations for the
coefficients aj.

The solution of the system is performed by means of a Petrov–Galerkin scheme,
where the basis used in the expansion is different from that used in the projection.
The bases are composed of functions built on Chebyshev polynomials satisfying the
boundary conditions. A detailed description of the method as well as the basis and
functions used for the velocity field can be found in Meseguer & Marques (2000)
and Meseguer et al. (2007), respectively. The basis functions for the temperature (last
component of Xj in (5.5)), and for the projection (with ˜ ) are

hj(r)= (1− y2)Tj−1(y), h̃j(r)= r2(1− y2)Tj−1(y), (5.6)

where y = 2(r − ri) − 1 and Tj are the Chebyshev polynomials. As a result of this
process, we obtain a generalized eigenvalue system of the form

λM1x=M2x, (5.7)

where x is a vector containing the complex spectral coefficients (aj) and the matrices
M1 and M2 depend on the parameters of the problem, the axial wavenumber k and
the azimuthal mode n. This system is solved by using LAPACK. The numerical code
written to perform this work implements the described method and analyses a range
of k, n and G provided by the user for a fixed Re number, searching for the critical
values (Re λ= λr = 0). Up to M = 200 radial modes have been used in order to ensure
the spectral convergence when high Re numbers are considered. The code has been
tested by computing critical values for several cases in McFadden et al. (1984) and Ali
& Weidman (1990), obtaining an excellent agreement with their results, as shown in
table 1: the critical values computed coincide up to the last digit shown with those in
the mentioned references. In both cases the outer cylinder is at rest (Reo = 0).

6. Stability of differentially heated fluid between corotating cylinders
In this section we present a detailed comparison of the linear stability of the system

using the traditional Boussinesq approximation and the new approximation (4.10). We
consider three different cases, all with η = 0.71 and σ = 7.16. In the first one the
cylinders are rotating at same angular speed, corresponding to fluid rotating as a solid
body. In the second and third cases the stability of a differentially rotating fluid is
considered in the presence of weak and strong (quasi-Keplerian) shear.

6.1. Cylinders rotating at the same angular speed
In this case a rotating frame of reference is readily identified and the shear term B/r
in the base flow azimuthal velocity (4.6b) is zero, whereas the term A corresponds to
the angular velocity of the cylinders. Figure 1 shows the critical values of G as the
rotation speed, indicated here by the inner cylinder Reynolds number Rei, is increased.
In the case of stationary cylinders instability sets in at G = 8087.42, with kc = −2.74
and n = 0. The emerging pattern is characterized by pairs of counter-rotating toroidal
rolls, that unlike Taylor vortices have a non-zero phase velocity that causes a slow
drift of the cellular pattern upward. Extensive information about natural convection
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Parameters Critical values

η σ Ta Gc kc nc λi c= |λi|/kc

(a) 0.99 0.71 0 8038.0 2.80 0 0.25424
0.60 0.71 0 8512.4 2.75 0 13.39899
0.60 3.5 0 8347.5 2.75 0 12.97744
0.99 3.5 0 7857.1 2.75 0 0.24673

(b) 0.6 4.35 2591.0 50.0 3.15 0 −0.50294
0.6 4.35 380.3 700.0 1.88 −3 18.66889
0.6 15 111.1 280.0 1.68 −2 6.58916
0.6 15 26.88 700.0 0.77 −4 7.19973

TABLE 1. Code testing. The cases computed correspond to parameter values in (a)
McFadden et al. (1984, table 1) and (b) Ali & Weidman (1990, table 1, p. 67). Here
Ta = 2(1 − η)Rei/(1 + η) is the Taylor number, λi = Im[λ] is the imaginary part of the
critical eigenvalue, for which Re[λ] = 0 and c is the dimensionless axial wave speed. The
sign of nc in our computation is opposite to that of Ali & Weidman (1990) because of the
definition of the normal Fourier modes in (4.9).

instabilities can be found in the literature: Choi & Korpela (1980) and McFadden
et al. (1984) for infinite geometries, and de Vahl Davis & Thomas (1969) and Lee,
Korpela & Horn (1982) for finite geometries. Without rotation, traditional (dashed
line) and new (solid line) approximations yield identical results to the case where
centrifugal buoyancy is neglected (dashed-dotted line). For slow rotation the effect
of the centrifugal buoyancy is negligible, and nearly the same critical values are
obtained in each case (see the inset in figure 1). As rotation is increased, the flow
is strongly stabilized by centrifugal buoyancy. Note that if this is neglected, the onset
of instability asymptotically approaches Gc = 172.50 and is qualitatively wrong. The
presence of the centrifugal term in any of the ways considered here, entirely modifies
the stability of the problem and consequently is an essential element to study these
flows. No differences between the two approximations in the linear behaviour of the
system are observed up to Rei ∼ 5 × 105, where the two curves start to depart from
each other. Up to this point and after a small initial region where several azimuthal
modes up to n = 6 are involved, the base flow loses stability to an azimuthal mode
n = 1 with small axial wavenumber k ∼ 10−3. The shape of the critical modes along
the stability curve is illustrated in figure 2, showing contours of constant temperature
in a horizontal cross-section. The three states correspond to the circles in figure 1
and depict the transition between the lower and intermediate branches as we consider
the new approximation. As we proceed forward along the critical curve the cold fluid
progressively penetrates into the warm fluid and vice versa. The same behaviour is
observed when the traditional approximation is used, nevertheless the values of Rei

and Gc required are larger.
As Rei increases beyond 5 × 105 the new terms in our approximation start

becoming important and lead to different behaviour in the linear stability of the
system. An analysis of the magnitude of each term in our approximation reveals
that the differences observed in figure 1 at high Rei are due to terms involving the
product vbuθ , implying the existence of an important centrifugal force acting in the
azimuthal direction as high rotational speeds are reached. This provides evidence
that the traditional formulation, including only the main (radial) contribution of
centrifugal buoyancy, is a very good approximation if slow rotation is involved but
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Traditional approximation
New approximation
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FIGURE 1. (Colour online) Critical Grashof number Gc as a function of the inner-cylinder
Reynolds number Rei for fluid rotating as a solid body. The solid line is the linear stability
curve using the new approximation for the centrifugal buoyancy proposed in this paper, the
dashed corresponds to the traditional Boussinesq approach, whereas the dotted-dashed line is
the case without centrifugal buoyancy, which can only be distinguished from the horizontal
axis in the inset (log–log axes). Different symbols indicate the two distinct mechanisms
of instability. Up and down triangles represent the critical points due to the mechanism at
moderate Rei for the new and traditional approximations respectively, whereas squares and
diamonds correspond to the mechanism at large Rei.

(a) (b) (c)

FIGURE 2. (Colour online) Contours of the temperature disturbance T ′ at a z-constant
section corresponding to the points marked as circles (shown in blue online) in figure 1:
(a) Rei = 5 × 105, Gc = 21 206.53; (b) Rei = 5.7 × 105, Gc = 33 768.37; (c) Rei = 5.2 × 105,
Gc = 79 670.16. There are 10 positive (dark grey; red in the online version) and 10 negative
(light grey; yellow in the online version) linearly spaced contours. In all cases the critical
azimuthal mode is n= 1 and k = O(10−3).

other contributions may not be neglected in rapidly rotating fluids. Once the critical
values given by both approximations differ, we can identify two interesting regions
in parameter space. For Rei ∈ [5 × 105, 7.7 × 105] the traditional Boussinesq approach
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FIGURE 3. (Colour online) (a) Critical axial wavenumber kc and (b) spiral angle of the
modes arctan(kc/n) as a function of Rei for the curves in figure 1. The inset is a close up at
low Rei where the first mechanism stops being dominant and is superseded by spiral modes
with angle far from 90◦, indeed 0, corresponding to n= 0, at Rei = 0.

yields larger critical G than our approximation, whereas for Rei > 7.7 × 105 the upper
branch of the new approximation yields much lower critical values. Moreover, the
differences keep increasing as Rei grows.

The analysis performed reveals the existence of two mechanisms of instability
associated with the lower-intermediate and upper branches in figure 1. Different
symbols are used to represent the critical values corresponding to each mechanism
in each problem. The differences between them are illustrated in figure 3, showing
the evolution of the critical axial wavenumber kc and the angle of the spiral modes
arctan(kc/n) versus Rei. Two regions with distinct characteristics are well defined. The
first mechanism of instability has already been presented (see figure 2). Low azimuthal
wavenumbers, primarily n= 1, and very small axial wavenumbers characterize it. This
corresponds to quasi two-dimensional modes and can be readily seen in figure 3(b),
showing that the angle of the spiral modes remains constant at ∼90◦. The inset
shows the small initial region where the spiral angle increases progressively until
it reaches a vertical position. The second mechanism is characterized by n > 80
and kc ∼ O(1), also corresponding to quasi-two-dimensional modes (see figure 3b).
Another common feature between the two types of instabilities is that the rotational
frequency coincides with the angular velocity of the container in both mechanisms and
both approximations. This is in agreement with Maretzke, Hof & Avila (2013), who
have analytically proven that two-dimensional modes with k = 0 always rotate at speed
A (4.6b) in Taylor–Couette flows without heating. An interesting distinct feature of the
second instability mechanism is localization near the inner cylinder. An example of
these wall convection modes is shown in figure 4; the critical disturbances are clearly
different in the traditional and in the new Boussinesq approximations.

6.2. Differentially rotating cylinders
The traditional approximation for the centrifugal buoyancy neglects the part of the
base flow containing shear, i.e. the B/r term in (4.6b). To quantify the influence
of including shear in the centrifugal terms, we perform the same analysis as in
the previous section but for differentially rotating cylinders. The amount of shear
introduced is characterized by the ratio of angular velocities β =Ωi/Ωo; the further β
is from one, the stronger is the shear effect considered.
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(a) (b)

FIGURE 4. (Colour online) Contours of the critical disturbance temperature on a z-constant
section for Rei = 700 000. (a) Critical mode using the traditional Boussinesq approximation.
Here Gc = 489 371.47, kc = 1.81 and n= 150. (b) Critical mode using the new approximation.
Here Gc = 207 906.92, kc = 0.54 and n = 116. In both cases, only 1/20 of the domain is
shown. There are 10 positive (darker grey; red online) and negative (light grey; yellow online)
contours.

6.2.1. Weak shear: rotation close to the solid body (β =Ωi/Ωo = 1.006)
We first consider the case where the container is rotating near the solid body.

Although shear may be here expected to play only a secondary role, this case serves
the purpose of illustrating the importance of including shear effects in the centrifugal
term. Figure 5 shows the neutral stability curve for the two approaches considered and
also without centrifugal buoyancy (dashed-dotted line), which produces qualitatively
correct results in this instance. Unlike in the solid-body case, the critical values Gc

increase monotonically as Rei grows. In addition to shear, centrifugal effects are also
important in this configuration. From Rei & 2 × 105 on the linear stability curves
obtained by using both approximations become quite different. Similar features with
respect to the solid-body case may be identified. At first the traditional approximation
gives lower critical value of the Grashof. However, this region is smaller than in
the solid-body case and ends at Rei ∼ 2.9 × 105 where both curves intersect. From
that point on, the stability region predicted by the new approximation is smaller; the
differences between the critical values given by both approximations keep increasing
as larger Rei are considered. At the point where both curves first depart from each
other Rei has half the value of that of the solid-body case. Consequently, the rotational
speeds for which the new approximation is necessary are significantly smaller in the
presence of weak differential rotation.

Critical axial and azimuthal wavenumbers exhibit similar behaviour to the solid-
body case and so they are not shown here. Two mechanisms of instability are also
found. The first one embraces the region 2 × 105 < Rei and is characterized by kc ∼ 0
and 1 6 n 6 6. Modes are similar to those obtained for the first mechanism in the
solid-body case. A subtle difference can be nevertheless pointed out. In the solid-
body situation the temperature disturbances fill the whole annulus, whereas differential
rotation confines the perturbation towards the central part (see figure 6a). The second
mechanism also presents the same features as in the solid-body case, high azimuthal
modes and kc ∈ [0.5, 1.5], but differences in the flow appear that deserve to be
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FIGURE 5. (Colour online) Critical Grashof number Gc as function of the inner-cylinder
Reynolds number Rei for rotation near the solid body (β = 1.006). Different symbols refer to
two distinct instability mechanisms as in figure 1.

(a) (b) (c)

FIGURE 6. (Colour online) Contours of the critical disturbance temperature on a z-constant
section: (a) n= 1, Rei = 178 125, Gc = 92 987.56. (b,c) Comparison of the traditional (b) and
new (c) approximation at Rei = 285 000 (near the crossover point in figure 5) showing 1/20
of the annulus: (b) Gc = 154 864.79, kc = 0.24 and n = 30; (c) Gc = 156 547.54, kc = 0.39
and n = 75. There are 10 positive (dark grey; red online) and negative (light grey; yellow
online) linearly spaced contours.

highlighted. In the traditional approximation the dominant wall modes are located
at the inner cylinder, as occurs in the solid-body case (figure 6b). In contrast, using
the new approximation changes the location of the dominant wall modes to the outer
cylinder (figure 6c). In view of these results we can say that considering shear effects
in the centrifugal term of the Navier–Stokes equations may be extremely important:
not only regarding the linear stability boundary but also the shape and location of the
critical modes.
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6.2.2. Strong shear: quasi-Keplerian rotation (β =Ωi/Ωo = 1.58)
If 1/η > β > 1 the angular velocity decreases outward but the angular momentum

increases. These flows, known as quasi-Keplerian flows, are used as models to
investigate the dynamics and stability of astrophysical accretion discs. Here we
choose a typical value β = 1.58 and as in the previous sections consider a negative
temperature gradient in the radial direction, as expected in accretion discs. Figure 7
shows the neutral stability curve for the two approximations considered, as well as
entirely neglecting centrifugal effects (ε = 0). The three curves are almost straight
lines, that completely overlap in a plot (Gc,Rei). In order to see the small differences
that appear at large Rei, we have plotted in this case Gc/Rei versus Rei. Shear is the
completely dominant mechanism in this regime, but small differences can be observed
for Rei & 2 × 105, that are enhanced in the inset. Surprisingly, shear has a very strong
stabilizing effect in this problem: without shear the critical Grashof number is 10 times
smaller at Rei = 106 than in the quasi-Keplerian case.

Depending on the Reynolds number two mechanisms of instability are again found.
The first mechanism exhibits a similar flow structure to that observed in the previous
case. It also occurs at low Rei and is localized in the central part of the annulus due
to the action of differential rotation. Figure 8(a) shows the contours of the disturbance
temperature in a horizontal plane. In contrast to what happens in the weak shear
situation, these modes present a clear three-dimensional structure with kc ∼ −1. Small
azimuthal wavenumbers are involved in this mechanism, ranging from n = 1 to n = 6.
More remarkable differences are found when analysing the second mechanism. High
azimuthal modes n ∼ 50 arise as this mechanism becomes dominant, but unlike the
solid-body and weak-shear situations, the azimuthal mode number decreases as Rei

increases. The same behaviour is observed in the axial wavenumber, so that the spiral
angle quickly converges to 90◦ as observed in the previous sections. Figure 8(b) shows
that the instability is characterized by convection wall modes localized at the outer
cylinder, as in the case of weak shear using the new approximation. Nevertheless, in
quasi-Keplerian flows the dominant modes are always localized at the outer cylinder
regardless of how centrifugal terms enter the equations.

7. Summary and discussion
We have identified weaknesses in how the Boussinesq formulation is typically used

to account for centrifugal buoyancy in the Navier–Stokes equations. In particular,
the traditional approximation (including only the term ρ ′Ω2) neglects the effects
associated with differential rotation or strong internal vorticity. This has motivated
us to develop a new consistent Boussinesq-type approximation correcting this problem.
It consists of keeping the density variations in the advection term of the Navier–Stokes
equations and, thus, it is very easy to implement in an existent solver. The new
approximation allows accurate treatment of situations with differential rotation or when
strong vortices appear in the interior of the domain, which may cause important
centrifugal effects even in flows without global rotation. The latter may be especially
relevant in simulations at high Rayleigh numbers (as e.g. in the quest for the ‘ultimate
regime’; (Ahlers, Grossmann & Lohse 2009)). Thus, we argue that our formulation
for the centrifugal terms should be always implemented whenever the Boussinesq
approximation is used.

The relevance of the new approximation has been illustrated with a linear stability
analysis of a Taylor–Couette system subjected to a negative radial gradient of
temperature. Three different cases have been studied. First, we have considered the
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FIGURE 7. (Colour online) Critical ratio Gc/Rei as function of inner cylinder Reynolds
number Rei for quasi-Keplerian rotation (β = 1.58). The three curves differ only by ∼1 % and
hence are only distinguishable in the inset.

(a) (b)

FIGURE 8. (Colour online) Contours of the critical disturbance temperature on a z-
constant section: (a) Rei = 11 681.03 with Gc = 4.1268 × 104, kc = −1.05 and n = 1; (b)
Rei = 584 051.72 with Gc = 1.8511 × 104, kc = 8.21 and n = 38. Ten positive (dark grey;
red online) and negative contours (light grey; yellow online) are displayed. Only 1/20 of the
domain is shown in (b).

container rotating as a solid body, i.e. without differential rotation. We note that if
centrifugal buoyancy is entirely neglected, the results are even qualitatively wrong.
For both traditional and new approximations the critical values obtained agree up to
Rei ∼ 5.5 × 105, beyond which discrepancies become significant. Beyond this point
the conductive base flow loses stability to quasi two-dimensional wall modes (aligned
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with the axis of rotation, as expected from the Taylor–Proudman theorem) localized
at the inner cylinder. Note that the large discrepancy in critical Grashof numbers
observed at Rei ∈ [5× 105, 106] between both approximations makes it possible to test
them against laboratory experiments. For example, in the experiments from Paoletti &
Lathrop (2011) and Avila & Hof (2013), which allow for radial temperature gradients,
Re = 106 can be reached, and the required Grashof numbers 5 × 105 can be obtained
with temperature differences about half a degree Kelvin.

We have also considered the case in which the cylinders rotate at different angular
speeds, thus introducing shear. For weak differential rotation, shear and centrifugal
buoyancy effects compete and the critical values obtained with both approximations
differ from each other at lower Rei ∼ 2 × 105. Moreover, the new approximation gives
rise to wall modes located on the outer cylinder, whereas the traditional approach
yields wall modes on the inner cylinder, as in the solid-body case. In quasi-Keplerian
flows, shear is so dominant that centrifugal terms may be entirely neglected in
the linear stability analysis (discrepancies in Gc are below 1 % regardless of how
centrifugal terms enter the equations, if at all). Here the critical modes are always
localized at the outer cylinder. Note that such wall modes, similar to those identified
by Klahr, Henning & Kley (1999), are not relevant to the accretion-disc problem,
in which there are no solid radial boundaries. Furthermore, it is worth noting that
testing our differential rotation results in the laboratory is very difficult because of
axial endwall effects. The large Re involved will necessarily trigger instabilities and
transition to turbulence because of the nearly discontinuous angular velocity profile at
the junction between axial endwalls and cylinders (Avila 2012).

Although it may be tempting to suggest that laminar quasi-Keplerian flows are stable
for weak stratification in the radial direction, our analysis has only axial gravity, and
is linear and hence concerned with infinitesimal disturbances only. In more realistic
models of accretion discs, nonlinear baroclinic instabilities have been found in similar
regimes by Klahr & Bodenheimer (2003), and we expect that subcritical transition via
finite-amplitude disturbances may occur in the problem investigated here. This remains
a key question for incoming numerical and experimental investigations. In fact, even
in the classical (isothermal) Taylor–Couette problem this possibility remains open and
controversial (see e.g. Balbus 2011).
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