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SIMULTANEOUS EQUATIONS WITH
INCOMPLETE PANELS

BADI H. BALTAGI
Texas A&M University

YOUNG-JAE CHANG
Inje University

This paper compares the performance of several single and system estimators of a
two equation simultaneous model with unbalanced panel d#ta Monte Carlo

design varies the degree of unbalancedness in the data and the variance components
ratio due to the individual effect®©ne useful result for applied researchers is that

the feasible error components 2SLS and 3SLS procedures based on simple ANOVA
type estimators of the variance components perform well with incomplete panels
and are recommended in practice

1. INTRODUCTION

The error component specification is popular in modeling the disturbance terms
of panel data modeland one reason for its popularity is its parsimonious spec-
ification of heterogeneity across the cross-sectional uAigsa result simple
estimators using 2SLS and 3SLS subroutines can be used to handle the endo-
geneity of the regressotsee Baltagi1995. Incomplete panels complicate the
computations and the analytical derivations in that the panel data matrices now
have missing observations in the®ne purpose of this paper is to study how the
incompleteness of the panel affects the small sample performance of various
popular estimators used in the simultaneous equation error component literature
To achieve this purpos&lonte Carlo experiments are performed for a two equa-
tion simultaneous model with one-way error component disturbances based on
randomly missing panel datarevious Monte Carlo studies onincomplete panels
are limited to a simple regression with exogenous regregseesWansbeek and
Kapteyn 1989 Matyas and Lovrics1991 Baltagi and Changl994. On the

other handMonte Carlo studies for the simultaneous equations model with com-
plete panel data include Baltadi984) and Matyas and Lovric€990.

Our Monte Carlo study is the first to address the joint problem of simultaneity
andincompleteness of the pan&lome of the important questions we ask are the
following: (1) What results generalize from the complete to the incomplete panel
An earlier version of this paper was presented at the European Meetings of the Econometric Society held in Tou-
louse France in August 1997 We thank three referees and the Editor for helpful comments and suggestions
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simultaneous equations case? For exangale we distinguish among the various
asymptotically efficient estimators of the structural coefficients according to small
sample criteria? Will better estimates of the structural variance components nec-
essarily imply better estimates of the structural paramet@sPlow does the
degree of unbalancedness in the data affect the variance components estimates
and in turn the structural coefficients estimaté®How much loss in efficiency

is there in estimating the simultaneous equation model from a subbalanced panel
relative to estimating it from the incomplete panel?

2. THE MODEL

Following Baltagi(1984), we consider the following two equations simultaneous
modet

Ty + AXe = Uy i=L1...,N t=1...,T, (1)

wherel is a 2X 2 matrix of coefficients of current endogenous variables &nd
is a 2X 4 matrix of coefficients of predetermined variahleterey;, X, andu
are column vectors of dimension4£ and 2 respectivelyThe subscripta’; andt
denote the particulaith cross section antth time period The panel data are
incomplete in the sense that there Brandividuals observed over varying time
period lengt(T; fori =1,...,N). The error component structure for tfik equa-
tionis given byui; = uj + vy, wherew;; denotes théth cross-section effect and
vy the remainder error for thén structural equatiaret u{ = (i1, pio) @ndp, =
(Vitr, Vit2); thenui; = u; + i, wherew; andy;; are mutually independent normal
random variables with zero means and covariance magiges| o] ands, =
[o,e] for k, £ = 1,2. Throughout the experiment

1 5] 2 15 0 0
P=ly 1| a4 A=l o 3 _18]

We construct the predetermined matkisuch thaiX’X = I,. This can be done
using the Gram-Schmidt orthogonalization procediitgs orthogonalization
was suggested by Rhodes and Westbrd@®@81) because it precludes multicol-
linearity and enhances the computational accuracy of the estimation procedure
For each fixedN, we followed the suggestion given by Swallow and Sedréy8
of selectingT-patterns that range from slightly to badly unbalandest 5(15)
denote theT-pattern with 15 individualseach observed over five periadsor
N = 30, the following unbalanced-patterns are used; = 5(15), 9(15); P, =
5(10), 7(10), 9(10); P; = 3(6), 5(6), 7(6), 9(6), 11(6); P, = 3(9), 5(6), 9(6),
11(9); Ps = 3(24), 23(6); Ps = 2(15), 12(15). The total number of observations is
held fixed at 210 for all these unbalanced pattefmmeasure of unbalancedness
as given by Ahrens and Pinc(i5981) is defined as» = N/T >(1/T;), whereT =
>Ti/N, with 0 < w = 1. Note thatw takes the value of one when the pattern is
balanced but it takes smaller values as the pattern gets more severely unhalanced
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Denotingw (i) as the measure of unbalancedness for the pa®eand denoting

w as the vector ofv(i)'s, thenw = (0.918 0.841,0.813 0.754 0.519 0.490).

That is the degree of unbalancedness increases as the subsdrigets large

One thousand replications were performed for every model specification consid-
ered Models considered are distinguished from each other by the values of the
variance components and the pattern of unbalancedéssvariance-covariance
matrix between thgth and€th reduced form equatiorisee Baltagil984) can be
written as

3 = oyl pjediagJr) + (L= pj)la]  €=12, )

whereoj; = o, + 05, and pjy, = o¢/0j;. Herel, is an identity matrix of
dimensionn, and J; is a matrix of ones of dimensiofj. Throughout the ex-
perimentsoq; = 03, = 20 andoy, = 10. However pj;, was varied over the set
(0,0.2,0.5,0.8) such that¥} andx; were all positive definité In total, 42
experiments were performed corresponding to seven variance-components pat-
terns times six unbalanced patterns

3. ESTIMATION METHODS

Thejth structural equation can be written in vector form as

Y, =Yy, £ XA+ U =26 + =12, 3)
wherey;isn X 1, Yisn X1 X;isn X 2, andn = ZiNlei~ Also,
U=2Z,pty =12 4)

where Z,, = diag(cy), t1, is @ vector of ones of dimensiol, uj = (w1,
[.sz,...,/.LJ'N)’, and vi = (lel,...,leTl,...,Vle,...,VjNTN), fOI’j = LZ The
variance-covariance matrix between fiieand¢th structural equations is given
by

whereE; = I+ — J;, with J; = J;/T,, andwyj, = T o, + 0,j.. Therefore
VG0 3% = diag(Er) + diadV (a0 /Wy ) Jr | (6)

(see Baltagi1995. The typical element ofiz,;; 3,2y, is Yix — ;¢ ¥;., where
Vii. = PN y;ie/Ti and 6, = 1 — v o,j¢/W;e. We consider the following single
equation estimation methods

(a) Two stage least squarédSLS. This completely ignores the error com-
ponent structure of the disturbancé§25Ls = (Z{Px zj)-lz,f Py, forj =12
wherePy = X(X'X) X"
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(b) Within two stage least squar€g/2SLS. This assumes that the;’s are
fixed parameters to be estimated yos s = [ZJ-’QX(X’QX)*X’QZJ-]*1 X
Z/ QX(X'QX)"*X'Qy;, whereQ = diag(Ey).

(c) Error components two stage least squaEES2SLS. This accounts for the
random error component structure on the disturbanesmultiplying thejth

structural equation bya,; 3; /2 given in(6), one gets

with v = vo,; 3572y, Z = vo,; 3;V?Z; anduf = vo,; 32y, EC2SLS
based on the true values of the variance components is asymptotically equivalent
to running 2SLS or(7) with the matrix of instrumentX* = vo,; 3;/2X (see
Baltagi 1995:

Sj,ECZSLS: (Z]'Px+ Z7) 22 Py
= [Z/ 3 IX(X S P X)X S Z ] Z s EX (X S P X)X Sy

Two feasible versions of EC2SLS are compared based on two ANOVA type es-
timators of the variance componest§nowing the true disturbancgsis easy to
show that

N N
Ou¢ = UfQUe/E (Ti—1) and &, = (uPu, — N&ij)/z-ri (8)
i=1 i=1

are unbiased estimators®f;, ando ¢, respectivelyHereP = diag(J_Ti) andQ=

I, — P=diag(E:). To make the EC2SLS estimators feasjlwe substitute 2SLS
residuals for the true residuals (8). This is denoted by EC2SLSThis is an
extension of the Wallace and Huss@l969 estimatoywhich uses ordinary least
squaregOLS) residuals in the single equation with exogenous regresNers,
we substitute within 2SLS residuals(8). This is denoted by EC2SLSZhis is
an extension of the estimator of AmemigE071), who uses within residuals in
the single equation with exogenous regressors

For system estimatignve stack the two structural equations as follows

y=128+u, (9)

wherey’ = (y1, y3), Z=diag Z;], 8’ = (81,85), andu’ = (uj, u>). In this caseX =
E(uu’) has a typical subblock;, = E(u; u;) given by(5). It can be easily shown
that> ! has a typical subblock

3t = (o)) diag(Er) + diag(w/*) J; 1, (10)

where o is the typical(j¢)th element ofs,* andw/‘ is the typical(j¢)th

element of(X, + TiE,L)*l. Therefore 31 is more involved than the balanced
panel data case described in Baltat®84. Note that one can still apply the
Cholesky decomposition diy, and(X,, + T;X ) to obtain the typical subblock of
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3 ~%2 as suggested by Kinal and Lahiti990. However for incomplete panels
(2, + TiX,) now varies withl;. The system estimators considered are as follows

(d) Three stage least squar@SLS). This ignores the error component struc-
ture in estimating the systemss s=[Z'(S 1 ® Px)Z] 1Z'(S 1 ® Px)y, where
Sis the classical estimator of the system covariance mattixat is based on
2SLS residuals

(e) Within three stage least squar@¥3SLS. This assumes that the individ-
ual effects are fixed parameters to be estimatdgss s = [Z(S,' ®
Px)Z]*Z'(S,* ® Px)¥, whereZ = (1, ® Q) Z, X= (1, ® Q) X, andy = (I, ®
Q)y. Also, S, is the estimator of the covariance mattixbased on within 2SLS
residuals

(f) Error components three stage least squaE$33SLS. This accounts for
the random error component structuRremultiplying the system of equations
given in(9) by =~ %2 one gets

v =2 1)

wherey* = 312y, 7* = 3727 andu* = 3 ¥2u. EC3SLS based on the true
values of the variance components turns out to be asymptotically equivalent to
running 3SLS or{11) with the matrix of instrumentX* = 312X (see Baltagi
1995:

Secasis= (Z¥'Py=Z*) 1 Z*'Pyey*
= (ZETX(XETIX) X ETIZ) I T (XS TIX) TS .

Two feasible versions of EC3SLS are considerearresponding to the two
ANOVA type estimators of the variance components described previdusdge
are denoted by EC3SLS1 and EC3SL.&%pectively

4, RESULTS
4.1. The Structural Parameters

Table 1 gives the biastandard deviatiqgrand root mean squared er(@GMSE)

of the structural parameters for a typical experimgatternP, with pi; = pi, =

0.5). These are normalized by the corresponding values of the true parameters
Tables for other experiments are available upon request from the autlinars
relative bias in Table 1 varies between 0% and 18% depending on the parameter
and the estimation method considerkds evident that there is gain according to
RMSE in performing EC2SLSather than 2SLSor all structural parameters
Thereis also gain according to RMSE in performing EC3SLS ratherthan EC2SLS
for all structural parametefd=rom the experiments performeme also conclude

that better estimates of the structural variance compoiectsrding to the RMSE
criteria) did not necessarily imply better estimates of the structural coefficiants
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TABLE 1. The biasstandard deviatigrand RMSE of the structural parametérs
Unbalanced patterR, ( p;; = pi, = 0.5)

Method Y12 A1g A12 Y21 A2z A24
True value -0.5 -2 15 —4 -3 18
Single equation estimators
2SLS 0034 Q071 —0.044 —0.005 Q051 —0.031
(0.544) (1.167) (1.260 (0.393 (1.397) (2.016
0.545 1169 1260 Q0393 1398 2016
W2SLS Q000 Q006 —0.003 Q006 Q027 Q001
(0.352 (0.801) (0.854) (0.241) (0.864) (1.332
0.352 Q0801 0854 0241 0865 1332
EC2SLS1 008 Q0020 —0.009 Qo001 Q029 —0.000
(0.330 (0.742 (0.7971) (0.224) (0.805 (1.244
0.330 Q742 Q791 0224 Q0806 1244
EC2SLS2 006 Q017 —0.008 Q001 0028 —0.001
(0.329 (0.740 (0.788 (0.223 (0.803 (1.235
0.329 Q741 Q788 0223 Q804 1235
EC2SLS 0006 Q016 —0.008 Q001 Q025 Q003
(0.326) (0.732 (0.783 (0.222 (0.798 (1.233
0.326 Q733 Q783 Q222 Q798 1233
System equation estimators
3SLS Q034 Q164 —0.159 —0.005 Q184 -0.170
(0.544) (1.26) (1141 (0.393 (1.209 (1.269
0.545 1137 1152 0393 1223 1280
W3SLS Q004 Q064 —0.067 Q008 Q075 —0.084
(0.351) (0.775 (0.772 (0.240 (0.788 (0.810
0.351 Q778 Q775 0240 Q792 0814
EC3SLS1 w12 Q068 —0.066 —0.001 Q078 —0.057
(0.331) (0.722 (0.726) (0.230 (0.747) (0.842
0.332 Q725 Q729 0230 Q751 0844
EC3SLS2 10 Q065 —0.067 Q003 Q072 —0.075
(0.330 (0.721) (0.718 (0.224) (0.737) (0.758
0.330 Q723 Q721 Q0224 Q740 Q762
EC3SLS 0008 Q060 —0.060 Q002 Q070 —0.064
(0.326) (0.710 (0.714 (0.221) (0.725 (0.767)
0.326 Q713 Q716 0221 Q728 Q770

aln each cell in this tablehe upper number denotes the bide middle one in parentheses denotes the standard
deviation and the bottom number denotes the RM8&IEnormalized by the corresponding value of the true param-
eter

similar result was obtained by Baltadi984) for the balanced simultaneous equa-
tions case

To summarize the results of all experimentgo measures of the overall per-
formance of each estimator were obtain€lde first is the normalized root mean
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square deviatioGNORMSQD), and the second is the normalized mean absolute
deviation(NOMAD). These are defined in Sass@i973.° Table 2 gives the
NORMSQD and NOMAD for the structural parameter estimates relative to that
of true EC3SLS by method of estimation for the unbalanced de$tgri%, and

Ps. Results for other unbalanced designs are available upon request from the
authors The following conclusions can be drawn from TableFdr a specific
pattern of unbalancednegd) 2SLS deteriorates in NORMSQD and NOMAD
when the variance components increase as a percentage of the total yasgance
with increasingo;; andp;,. (2) W2SLS improves in NORMSQD and NOMAD
performance ap;; andp;, increase(3) Feasible EC2SLS methods always do
better than 2SL&exceptwherx , = 0). These methods also do better than W2SLS
(4) There is not much difference among the two feasible EC2SLS methods in
NORMSQD and NOMAD performancén fact these are always close to NORM-
SQD and NOMAD of EC2SLS using the true values of the variance companents
(5) The performance of 3SLS deteriorates s and p7, increase However
3SLS always does better than 2SLS in NORMSQD and NOM&D The per-
formance of W3SLS improves ag, andp;,increaseAlso, W3SLS always does
better than W2SLS in NORMSQD and NOMALY) Feasible EC3SLS methods
always do better than 3SLExcept whemp;; andp;,are small and close to zero
These methods also do better than W3$&&ept whem;; andp;,are large and
close to 08). (8) There is not much difference among the two feasible EC3SLS
methods in NORMSQD and NOMADN fact, these are always close to NORM-
SQD and NOMAD of EC3SLS using the true variance componed®sThe
EC3SLS estimators are always better in NORMSQD and NOMAD than the cor-
responding EC2SLS estimatof4d0) What is interesting in this setup is that for
largepi; andp;,, EC2SLS does better than 3SLBhis says that for our limited
experiments with only two equationgnoring the presence of large variance
components can be more dangerous than ignoring the estimation of two equations
simultaneously

4.2. A Comparison of Some Unbalanced Patterns
with Their Corresponding Subbalanced Counterparts

Let P = 5(30) be the subbalanced pattern obtained frby dropping the four
extra observations on the second set of 15 individuals to make the panel bal-
ancecP Alternatively let P2 = 9(15) maximize the time-series lengths by drop-
ping the first 15 individuals observed over only five perioBmally, let P4 =
3(30) maximize the number of individuals observed in constructing a balanced
panel fromP;. PatternP retains(3), whereas? retains(+y) andP2 retains(3)

of the original sampleOur Monte Carlo results demonstrate that using these
subbalanced patterns is costhor examplefor pi; = p;, = 0.8, the ratio of
NORMSQD of true EC3SLS foP7* relative to that ofP, is 1.188 For P£, this

ratio is 1224, and forP£ itis 1.596 Similar ratios are obtained for NOMADFor
examplefor pi; = 0.5 andp;,= 0.8, the ratio of NOMAD of true EC2SLS faP{
relative to that o, is 1.146. For P2, this ratio is 1286, and forP4 it is 1.313
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9.2

TaBLE 2. Normalized root mean square deviation and normalized absolute deviation of the structural parameters with unbalanced

panel$
Pi1 P2 2SLS W2SLS EC2SLS1 EC2SLS2 EC2SLS 3SLS W3SLS EC3SLS1 EC3SLS2
Py 0 0 1224 1983 1230 1242 1224 Q985 1623 Q992 1026
1171 1772 1176 1186 1171 Q988 1481 Q993 1025
0.2 0 1343 1599 1250 1251 1229 1086 1287 1089 1024
1.278 1482 1195 1197 1175 1086 1241 1033 1029
0.2 02 1402 1542 1248 1243 1230 1133 1235 1012 1018
1.334 1435 1196 1192 1178 1134 1195 1016 1017
0.5 02 1.830 1372 1233 1233 1223 1487 1101 1013 Q991
1.705 1313 1194 1196 1184 1454 1103 1026 1006
0.5 05 2.048 1356 1254 1248 1243 1666 1076 1034 1003
1.878 1288 1204 1200 1193 1600 1071 1031 1008
0.5 0.8 2185 1284 1217 1203 1200 1772 1012 1023 Q968
2.055 1251 1190 1180 1176 1745 1031 1035 Q987
0.8 0.8 3695 1294 1270 1264 1262 2972 1021 1072 Q999
3.301 1232 1215 1209 1206 2818 1021 1056 1001
P 0 0 1224 2020 1230 1240 1224 Q985 1654 Q989 1029
1171 1826 1175 1184 1171 Q987 1532 Q991 1027
0.2 0 1330 1656 1246 1246 1229 1074 1329 1004 1012
1.269 1542 1191 1192 1174 1080 1291 1012 1021
0.2 02 1.389 1597 1249 1243 1229 1124 1283 1012 1016
1.326 1491 1195 1190 1176 1128 1247 1015 1016
0.5 02 1812 1442 1253 1254 1244 1470 1140 1026 Q999
1.679 1370 1202 1203 1192 1435 1144 1034 1015
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0.5
0.5
0.8
Ps 0
0.2
0.2
0.5
0.5
0.5

0.8

0.5

0.8

0.8

0.2

0.2

0.5

0.8

0.8

1987
1.831
2131
2.003
3.532
3.169
1225
1.167
1286
1.239
1347
1.298
1617
1.528
1754
1.645
1917
1.788
2.884
2.651

1391
1325
1310
1273
1313
1249
2792
2298
2250
1937
2162
1882
1813
1621
1754
1564
1696
1515
1548
1403

1255
1201
1219
1187
1274
1213
1231
1172
1221
1169
1248
1194
1226
1203
1307
1230
1327
1250
1394
1297

1250
1197
1205
1176
1267
1208
1253
1191
1235
1183
1250
1197
1269
1210
1302
1229
1311
1239
1382
1286

1242
1189
1197
1170
1265
1205
1225
1167
1216
1163
1240
1185
1251
1193
1286
1215
1300
1229
1373
1280

1618
1564
1733
1704
2849
2707
0984
0988
1043
1060
1095
1111
1324
1313
1444
1414
1581
1530
2375
2276

1099
1104
1032
1055
1028
1037
1967
1753
1531
1468
1467
1423
1232
1214
1191
1169
1156
1138
1049
1041

1041
1033
1034
1035
1075
1055
Q986
Q989
1025
1009
1009
1012
1007
1020
1038
1026
1055
1041
1060
1047

1004
1008
Q979
Q995
1000
1003
1144
1068
1157
1062
1076
1052
1018
1020
1025
1023
1024
1022
1003
1007

2In each cell of this tablehe first number denotes NORMSQBnd the second number denotes NOMAIdth measures are relative to that of true EC3SLS
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These performance measures get worse as the number of deleted observations
increases

5. SUMMARY AND CONCLUSIONS

Many of the results obtained for the simultaneous equation error component model
with balanced data carry over to the unbalanced.daseexampleboth feasible
EC2SLS estimators considered performed reasonablyavellitis hard to choose
between thenSimple ANOVA methods can still be used to obtain good estimates

of the structural and reduced form parameters even in the unbalanced panel data
case Replacing negative estimates of the variance components by zero did not
seriously affect the performance of the corresponding structural or reduced form
estimatesBetter estimates of the structural variance components do not neces-
sarily imply better estimates of the structural coefficiefimally, do not make

the data balanced to simplify the computatiofise loss in RMSE can be huge

NOTES

1. Our Monte Carlo results are limited in that they do not vary the degree of overidentificéitéon
number of simultaneous equatigrnise X matrix, or key parameters that could influence the small
sample properties of the simultaneous equatiseg Phillips1983.

2. The following pairs of variance components ratios were used,,p;,) = {(0,0),(0.2,0),
(0.2,0.2),(0.5,0.2),(0.5,0.5),(0.5,0.8),(0.8,0.8)} with pi; = p3,.

3. ANOVA estimators are minimum variance unbiased under normality of the disturbanceés and
generalbest quadratic unbias¢BQU) estimators of the variance components whenever the panel is
balancedHowever for unbalanced paneglthe BQU estimators are a function of the variance com-
ponents themselveésee Townsend and Searl971).

4. This dominance has some exceptions depending on the structural parameter and experiment
considered

5. NOMAD computes the absolute deviation of each parameter estimate from the true parameter
normalizing it by the true parameter and averaging it over all parameters and replications considered
NOMSQD computes the mean square error for each parammetenalizing it by the square of the
true parameter and averaging it over all parameters considered in the MEIRVSQD is the square
root of NOMSQD

6. Nobody advocates dropping these observatibnsit is the intent of this study to emphasize
the dangers from such practice
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