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This paper compares the performance of several single and system estimators of a
two equation simultaneous model with unbalanced panel data+ The Monte Carlo
design varies the degree of unbalancedness in the data and the variance components
ratio due to the individual effects+ One useful result for applied researchers is that
the feasible error components 2SLS and 3SLS procedures based on simple ANOVA
type estimators of the variance components perform well with incomplete panels
and are recommended in practice+

1. INTRODUCTION

The error component specification is popular in modeling the disturbance terms
of panel data models, and one reason for its popularity is its parsimonious spec-
ification of heterogeneity across the cross-sectional units+ As a result, simple
estimators using 2SLS and 3SLS subroutines can be used to handle the endo-
geneity of the regressors~see Baltagi, 1995!+ Incomplete panels complicate the
computations and the analytical derivations in that the panel data matrices now
have missing observations in them+One purpose of this paper is to study how the
incompleteness of the panel affects the small sample performance of various
popular estimators used in the simultaneous equation error component literature+
To achieve this purpose,Monte Carlo experiments are performed for a two equa-
tion simultaneous model with one-way error component disturbances based on
randomly missing panel data+Previous Monte Carlo studies on incomplete panels
are limited to a simple regression with exogenous regressors~see Wansbeek and
Kapteyn, 1989; Mátyás and Lovrics, 1991; Baltagi and Chang, 1994!+ On the
other hand,Monte Carlo studies for the simultaneous equations model with com-
plete panel data include Baltagi~1984! and Mátyás and Lovrics~1990!+

Our Monte Carlo study is the first to address the joint problem of simultaneity
andincompleteness of the panel+ Some of the important questions we ask are the
following: ~1! What results generalize from the complete to the incomplete panel
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simultaneous equations case? For example, can we distinguish among the various
asymptotically efficient estimators of the structural coefficients according to small
sample criteria? Will better estimates of the structural variance components nec-
essarily imply better estimates of the structural parameters?~2! How does the
degree of unbalancedness in the data affect the variance components estimates
and in turn the structural coefficients estimates?~3! How much loss in efficiency
is there in estimating the simultaneous equation model from a subbalanced panel
relative to estimating it from the incomplete panel?

2. THE MODEL

Following Baltagi~1984!,we consider the following two equations simultaneous
model:

G
I
yit 1 L

I
xit 5

I
uit i 5 1, + + + ,N t 5 1, + + + ,Ti , (1)

whereG is a 23 2 matrix of coefficients of current endogenous variables andL
is a 23 4 matrix of coefficients of predetermined variables+ Here

I
yit , I

xit , and
I
uit

are column vectors of dimension 2, 4, and 2, respectively+ The subscriptsi andt
denote the particulari th cross section andtth time period+ The panel data are
incomplete in the sense that there areN individuals observed over varying time
period length~Ti for i 51, + + + ,N!+ The error component structure for thejth equa-
tion is given byuitj 5 m ij 1 nitj ,wherem ij denotes thei th cross-section effect and
nitj the remainder error for thejth structural equation+ Let

J
m i
'5 ~m i1,m i 2! and

I
nit
'5

~nit1,nit2!; then
J
mit 5

J
m i 1 I

nit , where
J
m i and

I
nit are mutually independent normal

random variables with zero means and covariance matricesSm 5 @smk,# andSn 5
@snk,# for k,, 5 1,2+ Throughout the experiment

G 5 F1 +5

4 1G and L 5 F2 21+5 0 0

0 0 3 21+8G +
We construct the predetermined matrixX such thatX 'X5 I4+ This can be done

using the Gram–Schmidt orthogonalization procedure+ This orthogonalization
was suggested by Rhodes and Westbrook~1981! because it precludes multicol-
linearity and enhances the computational accuracy of the estimation procedure+
For each fixedN,we followed the suggestion given by Swallow and Searle~1978!
of selectingT-patterns that range from slightly to badly unbalanced+ Let 5~15!
denote theT-pattern with 15 individuals, each observed over five periods+ For
N 5 30, the following unbalancedT-patterns are used: P1 5 5~15!, 9~15!; P2 5
5~10!, 7~10!, 9~10!; P3 5 3~6!, 5~6!, 7~6!, 9~6!, 11~6!; P4 5 3~9!, 5~6!, 9~6!,
11~9!; P55 3~24!, 23~6!; P65 2~15!, 12~15!+ The total number of observations is
held fixed at 210 for all these unbalanced patterns+A measure of unbalancedness
as given by Ahrens and Pincus~1981! is defined asv 5 N0 PT (~10Ti !, where PT5

(Ti 0N, with 0 , v # 1+ Note thatv takes the value of one when the pattern is
balanced but it takes smaller values as the pattern gets more severely unbalanced+
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Denotingv~i ! as the measure of unbalancedness for the patternPi and denoting
v as the vector ofv~i !’s, then v 5 ~0+918, 0+841, 0+813, 0+754, 0+519, 0+490!+
That is, the degree of unbalancedness increases as the subscript ofP gets large+
One thousand replications were performed for every model specification consid-
ered+ Models considered are distinguished from each other by the values of the
variance components and the pattern of unbalancedness+1 The variance-covariance
matrix between thej th and, th reduced form equations~see Baltagi, 1984! can be
written as

S j,
* 5 sj,

* @ rj,
* diag~JTi

! 1 ~12 rj,
* ! In# j,, 5 1,2, (2)

wheresj,
* 5 smj,

* 1 snj,
* and rj,

* 5 smj,
* 0sj,

* + Here In is an identity matrix of
dimensionn, and JTi

is a matrix of ones of dimensionTi + Throughout the ex-
periments, s11

* 5 s22
* 5 20 ands12

* 5 10+ However, rj,
* was varied over the set

~0, 0+2, 0+5, 0+8! such thatSm
* and Sn

* were all positive definite+2 In total, 42
experiments were performed corresponding to seven variance-components pat-
terns times six unbalanced patterns+

3. ESTIMATION METHODS

The jth structural equation can be written in vector form as

yj 5 Yj gj 1 Xj l j 1 uj 5 Zj dj 1 uj j 5 1,2, (3)

whereyj is n 3 1, Yj is n 3 1, Xj is n 3 2, andn 5 (i51
N Ti + Also,

uj 5 Zm m j 1 nj j 5 1,2, (4)

where Zm 5 diag~iTi
!, iTi

is a vector of ones of dimensionTi , m j 5 ~m j1,
m j 2, + + + ,m jN !', and nj 5 ~nj11, + + + ,nj1T1

, + + + ,njN1, + + + ,njNTN
!' for j 5 1,2+ The

variance-covariance matrix between thej th and, th structural equations is given
by

Sj, 5 E~uj u,
' ! 5 snj, diag@ETi

# 1 diag@wij, NJTi
# , (5)

whereETi
5 ITi

2 NJTi
, with NJTi

5 JTi
0Ti , andwij, 5 Ti smj, 1 snj,+ Therefore,

!snj, S j,
2102 5 diag~ETi

! 1 diag@%~snj, 0wij,! NJTi
# (6)

~see Baltagi, 1995!+ The typical element of!snj, S j,
2102yj is yjit 2 uij, Syji +, where

Syji + 5 (t51
Ti yjit 0Ti anduij, 5 1 2 %snj,0wij,+ We consider the following single

equation estimation methods+
~a! Two stage least squares~2SLS!+ This completely ignores the error com-

ponent structure of the disturbances: Zdj,2SLS 5 ~Zj
'PX Zj !

21Zj
'PX yj for j 5 1,2

wherePX 5 X~X 'X !21X '+
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~b! Within two stage least squares~W2SLS!+ This assumes that them i ’s are
fixed parameters to be estimated: Zdj,W2SLS 5 @Zj

'QX~X 'QX!21X 'QZj #
21 3

Zj
'QX~X 'QX!21X 'Qyj , whereQ 5 diag~ETi

!+
~c! Error components two stage least squares~EC2SLS!+ This accounts for the

random error component structure on the disturbances+ Premultiplying thejth
structural equation by!snjj S jj

2102 given in~6!, one gets

yj
* 5 Zj

*dj
*1 uj

* (7)

with yj
* 5 !snjj S jj

2102yj , Zj
* 5 !snjj S jj

2102Zj and uj
* 5 !snjj S jj

2102uj + EC2SLS
based on the true values of the variance components is asymptotically equivalent
to running 2SLS on~7! with the matrix of instrumentsX* 5 !snjj S jj

2102X ~see
Baltagi, 1995!:

Zdj,EC2SLS5 ~Zj
*'PX* Zj

*!21Zj
*'PX* yj

*

5 @Zj
'S jj

21X~X 'S jj
21X !21X 'S jj

21Zj #
21Zj

'S jj
21X~X 'S jj

21X !21X 'S jj
21yj +

Two feasible versions of EC2SLS are compared based on two ANOVA type es-
timators of the variance components+3 Knowing the true disturbances, it is easy to
show that

[snj, 5 uj
'Qu,Y(

i51

N

~Ti 2 1! and [smj, 5 ~uj
'Pu, 2 N [snj,!Y(

i51

N

Ti (8)

are unbiased estimators ofsnj, andsmj,, respectively+HereP5diag~ NJTi
! andQ5

In2 P5 diag~ETi
!+ To make the EC2SLS estimators feasible,we substitute 2SLS

residuals for the true residuals in~8!+ This is denoted by EC2SLS1+ This is an
extension of the Wallace and Hussain~1969! estimator,which uses ordinary least
squares~OLS! residuals in the single equation with exogenous regressors+ Next,
we substitute within 2SLS residuals in~8!+ This is denoted by EC2SLS2+ This is
an extension of the estimator of Amemiya~1971!, who uses within residuals in
the single equation with exogenous regressors+

For system estimation, we stack the two structural equations as follows:

y 5 Zd 1 u, (9)

wherey'5 ~ y1
' , y2
' !, Z5diag@Zj # , d '5 ~d1

' ,d2
' !, andu'5 ~u1

' ,u2
' !+ In this case,S5

E~uu'! has a typical subblockS j, 5 E~uj u,
' ! given by~5!+ It can be easily shown

thatS21 has a typical subblock

S j,
21 5 ~sn

j,!diag~ETi
! 1 diag@~wi

j,! NJTi
# , (10)

wheresn
j, is the typical~ j,!th element ofSn

21 and wi
j, is the typical~ j,!th

element of~Sn 1 Ti Sm!21+ Therefore, S21 is more involved than the balanced
panel data case described in Baltagi~1984!+ Note that one can still apply the
Cholesky decomposition onSn and~Sn 1 Ti Sm! to obtain the typical subblock of
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S2102, as suggested by Kinal and Lahiri~1990!+ However, for incomplete panels,
~Sn 1Ti Sm! now varies withTi + The system estimators considered are as follows+

~d! Three stage least squares~3SLS!+ This ignores the error component struc-
ture in estimating the system: Zd3SLS5 @Z '~S21 J PX!Z#21Z '~S21 J PX!y,where
S is the classical estimator of the system covariance matrixS that is based on
2SLS residuals+

~e! Within three stage least squares~W3SLS!+ This assumes that the individ-
ual effects are fixed parameters to be estimated: DdW3SLS 5 @ EZ '~Sn

21 J
P FX! EZ#21 EZ '~Sn

21 J P FX! Iy, where EZ 5 ~I2 J Q!Z, FX 5 ~I2 J Q!X, and Iy 5 ~I2 J
Q!y+ Also, Sn is the estimator of the covariance matrixSn based on within 2SLS
residuals+

~f ! Error components three stage least squares~EC3SLS!+ This accounts for
the random error component structure+ Premultiplying the system of equations
given in~9! by S2102 one gets

y* 5 Z*d 1 u*, (11)

wherey* 5 S2102y,Z* 5 S2102Z, andu* 5 S2102u+ EC3SLS based on the true
values of the variance components turns out to be asymptotically equivalent to
running 3SLS on~11! with the matrix of instrumentsX*5 S2102X ~see Baltagi,
1995!:

ZdEC3SLS5 ~Z*'PX* Z
* !21Z*'PX* y

*

5 ~Z 'S21X~X 'S21X !21X 'S21Z!21Z 'S21X~X 'S21X !21X 'S21y+

Two feasible versions of EC3SLS are considered, corresponding to the two
ANOVA type estimators of the variance components described previously+ These
are denoted by EC3SLS1 and EC3SLS2, respectively+

4. RESULTS

4.1. The Structural Parameters

Table 1 gives the bias, standard deviation, and root mean squared error~RMSE!
of the structural parameters for a typical experiment~patternP2 with r11

* 5 r12
* 5

0+5!+ These are normalized by the corresponding values of the true parameters+
Tables for other experiments are available upon request from the authors+ The
relative bias in Table 1 varies between 0% and 18% depending on the parameter
and the estimation method considered+ It is evident that there is gain according to
RMSE in performing EC2SLS, rather than 2SLS, for all structural parameters+
There is also gain according to RMSE in performing EC3SLS rather than EC2SLS
for all structural parameters+4 From the experiments performed,we also conclude
that better estimates of the structural variance components~according to the RMSE
criteria! did not necessarily imply better estimates of the structural coefficients+A
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similar result was obtained by Baltagi~1984! for the balanced simultaneous equa-
tions case+

To summarize the results of all experiments, two measures of the overall per-
formance of each estimator were obtained+ The first is the normalized root mean

Table 1. The bias, standard deviation, and RMSE of the structural parameters:a

Unbalanced patternP2 ~ r11
* 5 r12

* 5 0+5!

Method g12 l11 l12 g21 l23 l24

True value 20+5 22 1+5 24 23 1+8

Single equation estimators
2SLS 0+034 0+071 20+044 20+005 0+051 20+031

~0+544! ~1+167! ~1+260! ~0+393! ~1+397! ~2+016!
0+545 1+169 1+260 0+393 1+398 2+016

W 2SLS 0+000 0+006 20+003 0+006 0+027 0+001
~0+352! ~0+801! ~0+854! ~0+241! ~0+864! ~1+332!
0+352 0+801 0+854 0+241 0+865 1+332

EC2SLS1 0+008 0+020 20+009 0+001 0+029 20+000
~0+330! ~0+742! ~0+791! ~0+224! ~0+805! ~1+244!
0+330 0+742 0+791 0+224 0+806 1+244

EC2SLS2 0+006 0+017 20+008 0+001 0+028 20+001
~0+329! ~0+740! ~0+788! ~0+223! ~0+803! ~1+235!
0+329 0+741 0+788 0+223 0+804 1+235

EC2SLS 0+006 0+016 20+008 0+001 0+025 0+003
~0+326! ~0+732! ~0+783! ~0+222! ~0+798! ~1+233!
0+326 0+733 0+783 0+222 0+798 1+233

System equation estimators
3SLS 0+034 0+164 20+159 20+005 0+184 20+170

~0+544! ~1+26! ~1+141! ~0+393! ~1+209! ~1+269!
0+545 1+137 1+152 0+393 1+223 1+280

W3SLS 0+004 0+064 20+067 0+008 0+075 20+084
~0+351! ~0+775! ~0+772! ~0+240! ~0+788! ~0+810!
0+351 0+778 0+775 0+240 0+792 0+814

EC3SLS1 0+012 0+068 20+066 20+001 0+078 20+057
~0+331! ~0+722! ~0+726! ~0+230! ~0+747! ~0+842!
0+332 0+725 0+729 0+230 0+751 0+844

EC3SLS2 0+010 0+065 20+067 0+003 0+072 20+075
~0+330! ~0+721! ~0+718! ~0+224! ~0+737! ~0+758!
0+330 0+723 0+721 0+224 0+740 0+762

EC3SLS 0+008 0+060 20+060 0+002 0+070 20+064
~0+326! ~0+710! ~0+714! ~0+221! ~0+725! ~0+767!
0+326 0+713 0+716 0+221 0+728 0+770

aIn each cell in this table, the upper number denotes the bias, the middle one in parentheses denotes the standard
deviation, and the bottom number denotes the RMSE, all normalized by the corresponding value of the true param-
eter+
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square deviation~NORMSQD!, and the second is the normalized mean absolute
deviation ~NOMAD!+ These are defined in Sasser~1973!+5 Table 2 gives the
NORMSQD and NOMAD for the structural parameter estimates relative to that
of true EC3SLS by method of estimation for the unbalanced designsP1, P3, and
P5+ Results for other unbalanced designs are available upon request from the
authors+ The following conclusions can be drawn from Table 2+ For a specific
pattern of unbalancedness: ~1! 2SLS deteriorates in NORMSQD and NOMAD
when the variance components increase as a percentage of the total variance, i+e+,
with increasingr11

* andr12
* + ~2! W2SLS improves in NORMSQD and NOMAD

performance asr11
* andr12

* increase+ ~3! Feasible EC2SLS methods always do
better than 2SLS~except whenSm50!+These methods also do better than W2SLS+
~4! There is not much difference among the two feasible EC2SLS methods in
NORMSQD and NOMAD performance+ In fact, these are always close to NORM-
SQD and NOMAD of EC2SLS using the true values of the variance components+
~5! The performance of 3SLS deteriorates asr11

* and r12
* increase+ However,

3SLS always does better than 2SLS in NORMSQD and NOMAD+ ~6! The per-
formance of W3SLS improves asr11

* andr12
* increase+Also,W3SLS always does

better than W2SLS in NORMSQD and NOMAD+ ~7! Feasible EC3SLS methods
always do better than 3SLS~except whenr11

* andr12
* are small and close to zero!+

These methods also do better than W3SLS~except whenr11
* andr12

* are large and
close to 0+8!+ ~8! There is not much difference among the two feasible EC3SLS
methods in NORMSQD and NOMAD+ In fact, these are always close to NORM-
SQD and NOMAD of EC3SLS using the true variance components+ ~9! The
EC3SLS estimators are always better in NORMSQD and NOMAD than the cor-
responding EC2SLS estimators+ ~10! What is interesting in this setup is that for
larger11

* andr12
* , EC2SLS does better than 3SLS+ This says that for our limited

experiments with only two equations, ignoring the presence of large variance
components can be more dangerous than ignoring the estimation of two equations
simultaneously+

4.2. A Comparison of Some Unbalanced Patterns
with Their Corresponding Subbalanced Counterparts

Let P1
A5 5~30! be the subbalanced pattern obtained fromP1 by dropping the four

extra observations on the second set of 15 individuals to make the panel bal-
anced+6 Alternatively, let P1

B 5 9~15! maximize the time-series lengths by drop-
ping the first 15 individuals observed over only five periods+ Finally, let P3

A 5
3~30! maximize the number of individuals observed in constructing a balanced
panel fromP3+ PatternP1

A retains~ 5
7
_!, whereasP1

B retains~ 9
14
_! andP3

A retains~ 3
7
_!

of the original sample+ Our Monte Carlo results demonstrate that using these
subbalanced patterns is costly+ For example, for r11

* 5 r12
* 5 0+8, the ratio of

NORMSQD of true EC3SLS forP1
A relative to that ofP1 is 1+188+ For P1

B, this
ratio is 1+224, and forP3

A it is 1+596+ Similar ratios are obtained for NOMAD+ For
example, for r11

* 50+5 andr12
* 50+8, the ratio of NOMAD of true EC2SLS forP1

A

relative to that ofP1 is 1+146+ For P1
B, this ratio is 1+286, and forP3

A it is 1+313+
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Table 2. Normalized root mean square deviation and normalized absolute deviation of the structural parameters with unbalanced
panelsa

r11
* r12

* 2SLS W 2SLS EC2SLS1 EC2SLS2 EC2SLS 3SLS W3SLS EC3SLS1 EC3SLS2

P1 0 0 1+224 1+983 1+230 1+242 1+224 0+985 1+623 0+992 1+026
1+171 1+772 1+176 1+186 1+171 0+988 1+481 0+993 1+025

0+2 0 1+343 1+599 1+250 1+251 1+229 1+086 1+287 1+089 1+024
1+278 1+482 1+195 1+197 1+175 1+086 1+241 1+033 1+029

0+2 0+2 1+402 1+542 1+248 1+243 1+230 1+133 1+235 1+012 1+018
1+334 1+435 1+196 1+192 1+178 1+134 1+195 1+016 1+017

0+5 0+2 1+830 1+372 1+233 1+233 1+223 1+487 1+101 1+013 0+991
1+705 1+313 1+194 1+196 1+184 1+454 1+103 1+026 1+006

0+5 0+5 2+048 1+356 1+254 1+248 1+243 1+666 1+076 1+034 1+003
1+878 1+288 1+204 1+200 1+193 1+600 1+071 1+031 1+008

0+5 0+8 2+185 1+284 1+217 1+203 1+200 1+772 1+012 1+023 0+968
2+055 1+251 1+190 1+180 1+176 1+745 1+031 1+035 0+987

0+8 0+8 3+695 1+294 1+270 1+264 1+262 2+972 1+021 1+072 0+999
3+301 1+232 1+215 1+209 1+206 2+818 1+021 1+056 1+001

P3 0 0 1+224 2+020 1+230 1+240 1+224 0+985 1+654 0+989 1+029
1+171 1+826 1+175 1+184 1+171 0+987 1+532 0+991 1+027

0+2 0 1+330 1+656 1+246 1+246 1+229 1+074 1+329 1+004 1+012
1+269 1+542 1+191 1+192 1+174 1+080 1+291 1+012 1+021

0+2 0+2 1+389 1+597 1+249 1+243 1+229 1+124 1+283 1+012 1+016
1+326 1+491 1+195 1+190 1+176 1+128 1+247 1+015 1+016

0+5 0+2 1+812 1+442 1+253 1+254 1+244 1+470 1+140 1+026 0+999
1+679 1+370 1+202 1+203 1+192 1+435 1+144 1+034 1+015

2
7
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0+5 0+5 1+987 1+391 1+255 1+250 1+242 1+618 1+099 1+041 1+004
1+831 1+325 1+201 1+197 1+189 1+564 1+104 1+033 1+008

0+5 0+8 2+131 1+310 1+219 1+205 1+197 1+733 1+032 1+034 0+979
2+003 1+273 1+187 1+176 1+170 1+704 1+055 1+035 0+995

0+8 0+8 3+532 1+313 1+274 1+267 1+265 2+849 1+028 1+075 1+000
3+169 1+249 1+213 1+208 1+205 2+707 1+037 1+055 1+003

P5 0 0 1+225 2+792 1+231 1+253 1+225 0+984 1+967 0+986 1+144
1+167 2+298 1+172 1+191 1+167 0+988 1+753 0+989 1+068

0+2 0 1+286 2+250 1+221 1+235 1+216 1+043 1+531 1+025 1+157
1+239 1+937 1+169 1+183 1+163 1+060 1+468 1+009 1+062

0+2 0+2 1+347 2+162 1+248 1+250 1+240 1+095 1+467 1+009 1+076
1+298 1+882 1+194 1+197 1+185 1+111 1+423 1+012 1+052

0+5 0+2 1+617 1+813 1+226 1+269 1+251 1+324 1+232 1+007 1+018
1+528 1+621 1+203 1+210 1+193 1+313 1+214 1+020 1+020

0+5 0+5 1+754 1+754 1+307 1+302 1+286 1+444 1+191 1+038 1+025
1+645 1+564 1+230 1+229 1+215 1+414 1+169 1+026 1+023

0+5 0+8 1+917 1+696 1+327 1+311 1+300 1+581 1+156 1+055 1+024
1+788 1+515 1+250 1+239 1+229 1+530 1+138 1+041 1+022

0+8 0+8 2+884 1+548 1+394 1+382 1+373 2+375 1+049 1+060 1+003
2+651 1+403 1+297 1+286 1+280 2+276 1+041 1+047 1+007

aIn each cell of this table, the first number denotes NORMSQD, and the second number denotes NOMAD+ Both measures are relative to that of true EC3SLS+
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These performance measures get worse as the number of deleted observations
increases+

5. SUMMARY AND CONCLUSIONS

Many of the results obtained for the simultaneous equation error component model
with balanced data carry over to the unbalanced case+ For example, both feasible
EC2SLS estimators considered performed reasonably well, and it is hard to choose
between them+SimpleANOVAmethods can still be used to obtain good estimates
of the structural and reduced form parameters even in the unbalanced panel data
case+ Replacing negative estimates of the variance components by zero did not
seriously affect the performance of the corresponding structural or reduced form
estimates+ Better estimates of the structural variance components do not neces-
sarily imply better estimates of the structural coefficients+ Finally, do not make
the data balanced to simplify the computations+ The loss in RMSE can be huge+

NOTES

1+ Our Monte Carlo results are limited in that they do not vary the degree of overidentification, the
number of simultaneous equations, the X matrix, or key parameters that could influence the small
sample properties of the simultaneous equations~see Phillips, 1983!+

2+ The following pairs of variance components ratios were used: ~ r11
* ,r12

* ! 5 $~0,0!,~0+2,0!,
~0+2,0+2!,~0+5,0+2!,~0+5,0+5!,~0+5,0+8!,~0+8,0+8!% with r11

* 5 r22
* +

3+ ANOVAestimators are minimum variance unbiased under normality of the disturbances and, in
general, best quadratic unbiased~BQU! estimators of the variance components whenever the panel is
balanced+ However, for unbalanced panels, the BQU estimators are a function of the variance com-
ponents themselves~see Townsend and Searle, 1971!+

4+ This dominance has some exceptions depending on the structural parameter and experiment
considered+

5+ NOMAD computes the absolute deviation of each parameter estimate from the true parameter,
normalizing it by the true parameter and averaging it over all parameters and replications considered+
NOMSQD computes the mean square error for each parameter, normalizing it by the square of the
true parameter and averaging it over all parameters considered in the model+NORMSQD is the square
root of NOMSQD+

6+ Nobody advocates dropping these observations, but it is the intent of this study to emphasize
the dangers from such practice+
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