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Simultaneous and sequential collisions of three
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Rectilinear collisions of three wetted spheres are considered under conditions of high
capillary numbers, for which viscous lubrication forces dominate over capillary forces.
The viscous forces resist the relative motion, as characterized by the Stokes number
(a dimensionless ratio of particle inertia and viscous forces). At high Stokes numbers,
the particles penetrate the fluid layers between them with sufficient inertia that
they collide and rebound. Both simultaneous and sequential collisions are simulated,
and various outcomes are demonstrated: full agglomeration of the three spheres at
low Stokes numbers, full separation or Newton’s cradle at large Stokes numbers
and even reverse Newton’s cradle at intermediate Stokes numbers when there is a
thicker combined fluid layer between the two target spheres than between the striker
sphere and the first target sphere. When there is an initial air gap between the two
target spheres, even more exotic outcomes are predicted, such as full separation
after the initial collisions followed by full agglomeration or reverse Newton’s cradle
(intermediate Stokes numbers) or Newton’s cradle (large Stokes numbers) after the
subsequent collisions when the striker sphere catches back up to the target spheres.
The approach and findings of this work are expected to provide input and guidance
to future work on discrete-element modelling of collisions of many wet particles.

Key words: lubrication theory, particle/fluid flow, granular media

1. Introduction
Applications such as particle agglomeration and coating have created interest in

modelling granular flows of wetted particles, when both liquid and solid contact
forces are present. The basic concepts of an ‘elastohydrodynamic’ collision between
a particle and a solid surface in the presence of liquid were first described over
30 years ago by Davis, Serayssol & Hinch (1986). More recent research has included
both normal and oblique collisions between one particle and a surface, or between
two particles, either fully immersed in a liquid or with thin liquid layers on the solid
surfaces (e.g. Barnocky & Davis 1988; Lian, Adams & Thornton 1996; Joseph et al.
2001; Davis, Rager & Good 2002; Joseph & Hunt 2004; Kantak & Davis 2004;
Yang & Hunt 2006; Ma, Liu & Chen 2016; Buck et al. 2017, 2018). These works
identified the Stokes number (ratio of particle inertia to viscous fluid forces) as a
key parameter in determining whether or not particle rebound would occur and, if
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so, the wet coefficient of restitution. Some of these papers also examined additional
effects, such as capillary forces, on the collision and rebound of wetted particles.
Furthermore, discrete-element methods (DEM) have been extended in recent years
to wet granular flows (e.g. Xu, Orpe & Kudrolli 2007; Anand et al. 2009; Radl
et al. 2010; Liu, Yang & Yu 2013) and cohesive flows (Mikami, Kamiya & Horio
1998; Weber & Hrenya 2006). These methods include capillary forces from the liquid
bridges between particles, and sometimes viscous forces.

An important contribution was made by Donahue, Hrenya & Davis (2010a),
Donahue et al. (2010b), who studied the simultaneous, normal (head-on) collision
of three wetted spheres. Through modelling and experiment, they demonstrated four
possible outcomes: (i) fully agglomerated (FA), in which the three spheres stick
together, (ii) fully separated (FS), in which the spheres bounce apart subsequent to
impact and remain separated, (iii) Newton’s cradle (NC), in which the striker particle
remains agglomerated with the target (middle) sphere, and the third sphere separates
from the agglomerated pair, and (iv) reverse Newton’s cradle (RNC), in which the
striker particle rebounds and separates while the target sphere agglomerates with the
third sphere. The modelling treated the simultaneous three-body collisions as a series
of two-body collisions.

In the current work, simultaneous and sequential interactions of three wetted
spheres are modelled for head-on collisions, with a particular focus on how the
viscous lubrication forces acting between the second and third particle affect the
relative motion of the first and second particle, and vice versa. The overall outcome
of a three-body collision is shown to be sensitive to these interactions, as well as to
the thickness of the liquid coatings, the Stokes number, and the initial separation of
the second and third spheres. The geometry is similar to that considered by Donahue
et al. (2010a,b), but the present study investigates both simultaneous and sequential
collisions, treats simultaneous collisions as fully three-body collisions rather than as
a series of two-body collisions and provides analytical and semi-analytical results
for pairwise sequential collisions. The focus is on viscous fluids (such as oils or
polymer solutions) and large capillary numbers, for which viscous forces dominate
over capillary forces, although it is noted that both viscous and capillary forces can be
important for less viscous fluids (such as water) or in cases of small Stokes numbers
when the relative velocities are greatly reduced from the initial value. Qualitative
agreement is shown between the current model and experiments of Donahue et al.
(2010b).

2. Problem formulation
The rectilinear motion of three spheres is considered as shown in figure 1. Sphere i

(i= 1, 2 or 3) has mass mi (including the liquid film) and radius ai, and is covered
with a thin liquid film of thickness δi � ai and viscosity µ. Sphere 1 is the striker
sphere and has initial velocity (directed along the line of centres) of magnitude v0

1 .
Spheres 2 and 3 are assumed to be initially motionless. Gravity and any other forces
except liquid and solid contact forces are neglected. The 1–2 and 2–3 pairs of spheres
and their liquid coatings are initially separated by distances d0

12 and d0
23, respectively.

The air in the space external to the solid spheres and their liquid coatings is assumed
to have negligible effect on the motion of the spheres. The value of d0

12 > 0 is
irrelevant, as the interaction starts when this separation has been traversed and the
liquid layers of the 1–2 pair first contact (defined as time t = 0). In contrast, the
value of d0

23 is important, as it determines the time at which the 2–3 interaction starts
and if and how this interaction is coupled with the 1–2 interaction.
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FIGURE 1. Schematic of the initial conditions for the rectilinear collision of three
wet spheres.

The motion of each particle is described by Newton’s second law,

m1
dv1

dt
=−F12, m2

dv2

dt
= F12 − F23, m3

dv3

dt
= F23, (2.1a−c)

where Fij is the liquid-mediated force acting between the i–j pair of particles. The
liquid force is zero prior to contact, which occurs when the distance between the
liquid surfaces decreases to dij = 0 and that between the solid surfaces decreases to
h0

ij= δi+ δj. Once the liquid layers touch, the liquid force may include both a viscous
lubrication force, which scales as O(µa2

ijvij/hij) and a capillary force, which scales as
O(σaij), where vij is the relative velocity of the i and j spheres, aij is their reduced
radius, hij is the gap thickness between their solid surfaces, and σ is the surface
tension. The ratio of viscous and lubrication forces is represented by a modified
capillary number, Ca = 3µavr/(σh), as defined by Donahue et al. (2010a,b), where
vr is the relative velocity of two colliding spheres, a is their reduced radius and h
is the minimum separation between their surfaces. Their experiments using viscous
oils had Ca> 3000, so that capillary forces could be safely neglected, as done in the
present simulations. However, capillary forces may be important when low-viscosity
fluids are used (see § 6.1). They may also come into play under near-critical conditions
for post-collision separation, as the relative velocity and, hence, lubrication forces are
small under these conditions as the spheres separate.

Once the liquid layers on two colliding spheres begin to overlap, then the viscous
lubrication forces resisting their relative motion are given by (Kantak & Davis 2006),

Fij = 0, hij > h f
ij; Fij = 6πµa2

ijvij(1− hij/h
f
ij)

2/hij, hij < h f
ij, (2.2a,b)

where aij = aiaj/(ai + aj) is the reduced radius, vij = vi − vj is the relative velocity
of the two spheres along their line of centres and h f

ij is the final film thickness
before the two spheres separate during rebound (not including a liquid bridge or
filament between the spheres prior to capillary rupture). Normally, h f

ij = δi + δj, and
the final film thickness is the same as the initial thickness and simply the sum of the
individual film thicknesses, as shown in figure 2. However, a larger value of h f

23 can
occur as a special case, if the 2–3 pair is already in contact at t= 0 and there is an
excess of liquid in the contact region due to coating the two spheres while they are
held together, as described by Donahue et al. (2010a,b).

Since the lubrication force in (2.2) is based on the relative velocity, it is convenient
to recast (2.1) in terms of the relative velocity of each pair

dv12

dt
=
−F12

m12
+

F23

m2
,

dv23

dt
=

F12

m2
−

F23

m23
, (2.3a,b)
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hf
ij hij

∂i

∂j

FIGURE 2. Schematic of two wetted spheres in close contact with overlapping
liquid layers.

where mij=mimj/(mi+mj) is the reduced mass of the i–j pair. The relative velocities
govern the change in gap sizes

dhij

dt
=−vij. (2.4)

The initial conditions for (2.3) and (2.4) are

v12 = v
0
1, v23 = 0, h12 = h0

12 = δ1 + δ2, h23 = h0
23 = d0

23 + δ2 + δ3 at t= 0.
(2.5a−d)

Note that h f
12 = h0

12 = δ1 + δ2, so that the 1–2 pair separates once it has rebounded to
its initial separation, and any residual effects of a liquid bridge and capillary forces
are neglected. The same is true of the 2–3 pair, except in the special case where it
is initially agglomerated with excess fluid in the near-contact region.

3. Rebound criteria
Once the collision starts, the 1–2 gap decreases due to a positive relative velocity,

v12. The lubrication force F12 reduces this relative velocity, and it also pushes sphere 2
towards sphere 3, so that the 2–3 gap also decreases. If the Stokes number (ratio of
particle inertia to viscous forces, defined in the next section) is small, then viscous
dissipation will eventually bring the relative motion to rest, so that the gaps no
longer decrease and the spheres remain agglomerated or stuck together. However, if
the Stokes number is large, the particles have sufficient inertia that the gap between a
particle pair will continue to decrease until a critical or minimum separation, hmin, is
reached and rebound is initiated. As described by Donahue et al. (2010b), there are
(at least) three different physical scenarios that would give rise to a minimum gap
and subsequent rebound: (i) solid–solid contact – although lubrication forces would
prevent physical contact (i.e. hij → 0) between smooth surfaces, particles typically
have microscopic roughness elements that will touch the opposing surface while
the gap between the nominal particle surfaces is non-zero, (ii) elastohydrodynamic
deformation – if the relative velocity remains large enough when the gap becomes
small enough, then the lubrication force exerted by the thin liquid layer will become
sufficiently large that it will deform the solid particles in the region of near contact,
and the particle will then rebound when the energy of elastic deformation is released
and (iii) glass transition – for many fluids, the viscosity increases with pressure, and
may even undergo a glass transition at large pressure, so that a solid-like collision
takes place. The dominant criterion employed in a given situation is typically based
on which occurs first (i.e. which has the largest critical separation).
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Simultaneous and sequential collisions of three wetted spheres 987

Although the transition from a liquid-mediated interaction of undeformed spheres
to solid deformation and then release of this deformation requires time, it is assumed
that this process is short compared to the time scale for the relative motion to squeeze
the viscous fluid out of the gap separating the sphere surfaces. This assumption is
expected to hold for relatively stiff materials, as justified in § 6.4 with quantitative
estimates of the time scales involved. Then, the transition is nearly instantaneous,
and the collision and rebound process between two wetted spheres has three stages:
(i) an initial soft-sphere stage in which the striker sphere moves through the liquid
layer toward the target sphere until the gap reaches hmin, (ii) a hard-sphere collision
that is essentially instantaneous and causes reversal of the relative velocity, multiplied
by a dry coefficient of restitution, edry, once the gap decreases to hmin and (iii) a
second soft-sphere stage in which the striker sphere rebounds through the liquid layer
away from the target sphere and ultimately either is brought to rest within the liquid
layer (agglomeration) or escapes the liquid layer (separation). With the simultaneous
collision of three wetted spheres, there is an even richer array of interactions and
possible outcomes, as described below.

4. Solution method
To reduce the number of parameters, equal spheres are considered, with a1 = a2 =

a3= 2a and m1=m2=m3= 2m, where a and m are the reduced radius and mass of a
particle pair. The governing equations are then non-dimensionalized, using h0

12 as the
length scale, v0

1 as the velocity scale and h0
12/v

0
1 as the time scale. Combining (2.2)

and (2.3) then yields

St
dv̂12

dt̂
=−v̂12(1− ĥ12)

2/ĥ12 +
1
2
v̂23(1− ĥ23/ĥ

f
23)

2/ĥ23, (4.1a)

St
dv̂23

dt̂
=−v̂23(1− ĥ23/ĥ

f
23)

2/ĥ23 +
1
2
v̂12(1− ĥ12)

2/ĥ12, (4.1b)

where St = mv0
1/(6πµa2) is the Stokes number, ĥij = hij/h0

12, v̂ij = vij/v
0
1 , t̂ = tv0

1/h
0
12

and ĥ f
23 = h f

23/h0
12. It is noted that, if any quantity in parentheses in (4.1) becomes

negative, then it is replaced by zero (because the spheres have then separated and the
lubrication force is zero). In dimensionless form, the initial conditions become

v̂12 = 1, v̂23 = 0, ĥ12 = 1, ĥ23 = ĥ0
23 at t̂= 0, (4.2a−d)

where ĥ0
23 = h0

23/h
0
12.

Equations (2.4) and (4.1) are solved numerically (a simple, second-order Runge–
Kutta method suffices), starting from the initial conditions. If and when the rebound
criterion, ĥij = ĥmin (where ĥmin = hmin/h0

12), is met for either particle pair, then
an instantaneous hard-sphere collision is assumed at that time point. Then, using
conservation of momentum and the definition of the coefficient of restitution, the
relative velocities for equal spheres become

va
ij =−edryv

b
ij, va

jk = v
b
jk + (1+ edry)v

b
ij/2, (4.3a,b)

where edry is the solid or dry coefficient of restitution and the superscripts ‘a’ and
‘b’ refer to immediately after and before the hard-sphere collision, respectively, with
i–j the colliding pair and j–k the adjacent pair. In practice, edry is typically near unity
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FIGURE 3. Dimensionless separation gaps versus dimensionless time for the simultaneous
collision of three wetted spheres that have edry = 1 and equal initial and final separation
gaps (h0

23 = h f
23 = h0

12 = h f
12) and a bounce criterion of hmin = 0.05h0

12.

for many materials at slow impact speeds (< 0.1 m s−1) and then gradually decreases
with increasing impact speed (e.g. Brake, Reu & Aragon 2017; Bordbar & Hyppänen
2007). In the present simulations, a constant or average value of edry is used for each
set of calculations, but it would be simple to use a variable value, if the dependence
of edry on impact speed was known. The simulations are continued until the relative
velocities of both pairs reduce to zero (FA), both pairs separate beyond their liquid
layers (FS) or one pair separates and the other has zero relative motion (NC or RNC).
As will be shown, there are also cases where FS occurs, but is then followed by FA,
NC or RNC due to subsequent collisions.

5. Results and discussion
5.1. Simultaneous collisions

We first consider d0
12 = d0

23 = 0, so that there is simultaneous interaction of all three
spheres (that is, the 2–3 collision starts at the same time as the 1–2 collision).
Figure 3 shows example results when ĥmin = 0.05 and ĥ0

23 = ĥ f
23 = 1 (meaning the

combined liquid-layer thicknesses on the 1–2 and 2–3 pairs are the same). For St= 4,
the 1–2 gap decreases quickly as sphere 1 approaches sphere 2, until t̂= 1.01, when
the minimum gap is reached (ĥ12 = 0.05) and rebound occurs. During the initial
phase, ĥ23 decreases only slowly, as spheres 2 and 3 are initially motionless and
have considerable inertia that resists motion. However, when the 1–2 collision occurs,
the momentum of sphere 1 is transferred to sphere 2. The latter then moves quickly
toward sphere 3 and makes contact at t̂ = 2.64, although with reduced velocity due
to viscous losses. Moreover, the relative velocity of the 1–2 pair as it rebounds apart
is slowed considerably, not just by tensile lubrication in the 1–2 film resisting this
separation but also by compressive lubrication in the 2–3 film resisting the movement
of sphere 2 away from sphere 1. The 2–3 pair then bounces slowly apart while
particles 1 and 2 again move toward one another due to the reversal of motion of
sphere 2. However, neither pair has enough kinetic energy to overcome the viscous
losses and separate, so this interaction ends in the fully agglomerated state.
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FIGURE 4. Dimensionless separation gaps versus dimensionless time for the simultaneous
collision of three wetted spheres with edry = 1, a thicker combined layer on the 2–3 pair
(h0

23 = h f
23 = 2h0

12) and a bounce criterion of hmin = 0.05h0
12.

A different outcome occurs when St=8. There is again collision and rebound of the
1–2 pair (at t̂= 0.98), followed by collision and rebound of the 2–3 pair (at t̂= 2.17).
In this case, rebound of the 2–3 pair is quite strong, and the pair separates (ĥ23 > 1)
at t̂ = 4.41. The 1–2 pair almost separates after its collision and rebound. However,
when the 2–3 collision occurs, sphere 2 rebounds back towards sphere 1, so that ĥ12
no longer increases and the 1–2 pair remains agglomerated. Thus, the outcome is
Newton’s cradle, with the 1–2 pair remaining together and the third sphere separating
after the collision.

If the liquid-layer thicknesses on the 2–3 pair are larger, then rebound of this pair
will not be as strong, due to greater viscous dissipation. Figure 4 shows simulation
results for the simultaneous collision of three equal spheres but with the combined
liquid layer on the 2–3 pair twice as thick as on the 1–2 pair (ĥ0

23 = ĥ f
23 = 2), again

with ĥmin=0.05. For St=4 (not shown) the result again is FA. In contrast, the 1–2 pair
separates (ĥ12 > 1) after rebound for St= 5, while the 2–3 pair remains agglomerated.
Thus, this case yields RNC, while St= 5 with ĥ0

23= ĥ f
23= 1 still yields FA (not shown).

When the Stokes number is increased further for ĥ0
23 = ĥ f

23 = 2, the spheres have
enough inertia to overcome the viscous resistance and fully separate after the collision,
as shown in figure 4 for St= 8.

A wet coefficient of restitution maybe defined for each pair of spheres,

eij = |v
f
ij |/v

0
12, (5.1)

where v
f
ij is the relative velocity of the i–j pair after the collisions (either zero if

the pair does not separate, or non-zero if the pair separates). To clarify, v f
ij is the

final relative velocity, after the three-sphere interaction is complete. The initial relative
velocity of the 1–2 pair, v0

12 = v
0
1 , is used in (5.1) for both the 1–2 and 2–3 pairs, as

the initial velocities of spheres 2 and 3 are zero in these simulations.
Figure 5 provides a plot of the coefficients of restitution versus the Stokes number

for the conditions of figure 3. For films of equal thickness, only two outcomes are
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FIGURE 5. Wet coefficients of restitution versus Stokes number for the conditions
of figure 3.
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FIGURE 6. Wet coefficients of restitution versus Stokes number for the conditions of
figure 4. The dotted line represents an initial or temporary restitution coefficient of the
1–2 pair, immediately after it first separates.

observed: FA and NC. For St 6 4.8, all three spheres stick together (FA), due to
viscous losses. For St> 4.8, the 1–2 pair sticks together, while sphere 3 bounces away
as in the conventional Newton’s cradle. The velocity at which sphere 3 moves away
from the 1–2 pair is reduced by viscous losses, but e23 increases with increasing St
as inertia becomes more important relative to the viscous forces.

A very different scenario is shown in figure 6, when there is a thicker combined
liquid layer on the 2–3 pair. Full agglomeration occurs for St 6 4.8. However, for
4.8 < St < 6.0, reverse Newton’s cradle is observed, with sphere 1 bouncing away
from the 2–3 agglomerated pair. Then, for St> 6.0, full separation of all three spheres
is obtained. The shaded region, for 4.55 < St < 4.80, marks an interesting scenario,
not present for two-sphere collisions. In it, sphere 1 initially collides, rebounds and
separates (ĥ12 > 1) from sphere 2. Shortly thereafter, sphere 2 collides with sphere 3
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FIGURE 7. Wet coefficients of restitution versus Stokes number for the simultaneous
collision of three wetted spheres that have edry= 1, equal initial and final separations gaps
(h0

23 = h f
23 = h0

12 = h f
12) and bounce criteria of hmin/h0

12 = 0.005, 0.01, 0.02, 0.05 and 0.1.

and partially rebounds. During the 2–3 collision, sphere 1 catches back up with
sphere 2, and their liquid layers again overlap (h12 < h0

12), with the pair remaining
agglomerated for this range of Stokes numbers. For St > 4.8, sphere 1 remains
separated from sphere 2, but e12 is substantially reduced by the 2–3 interaction. The
dotted line in figure 6 shows es

12, which is the temporary coefficient of restitution
immediately after the 1–2 pair first separates. The much lower solid line is the final
value of e12, after the 2–3 interaction. Finally, for St > 6.0, the 2–3 pair also has a
strong enough collision to rebound and separate, resulting in full separation of all
three spheres. Then, e23 increases with increasing St, but e12 decreases due to stronger
rebound of the 2–3 pair. This behaviour of e12 and e23 crossing was observed by
Donahue et al. (2010b) in experiments with a pre-existing liquid bridge, so that the
final film thickness on the 2–3 pair was relatively large.

Figure 7 shows the coefficients of wet restitution for simultaneous three-sphere
collisions in which the initial and final liquid-layer thicknesses are the same for
both pairs, but with various values of the minimum separation at which contact and
bounce occur. As also seen in figure 5, the only outcomes are full agglomeration
(FA, e12 = e23 = 0) for Stokes numbers below a critical value, and Newton’s cradle
(NC, e12= 0, e23> 0) for Stokes numbers above the critical value. The critical Stokes
number is larger, and the 2–3 rebound velocity is lower, for smaller values of the
minimum gap, due to the greater viscous dissipation when a deeper penetration into
the liquid layer is required for rebound.

Figure 8 shows an outcomes map for the simultaneous collision of three spheres,
when the 2–3 pair has initial and final liquid-layer thicknesses twice that of the 1–2
pair. In this case, full agglomeration (FA, e12= e23= 0) is predicted for small Stokes
numbers, reverse Newton’s cradle (RNC, e12> 0, e23= 0) is predicted for intermediate
Stokes numbers and full separation (FS, e12 > 0, e23 > 0) is predicted for large Stokes
numbers. The range of Stokes numbers for RNC has a nearly constant, small span as
the minimum gap is increased, but shifts toward lower Stokes numbers due to reduced
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FIGURE 8. Outcomes map of Stokes number versus minimum gap for simultaneous
collision of three wetted spheres with a 2× thicker combined layer on the 2–3 pair than
on the 1–2 pair. Three outcomes were observed: FA (p), RNC ( ), FS (@).

viscous dissipation. The different set of outcomes for this case compared to that of
figure 7 shows both quantitative and qualitative sensitivity to the relative thickness of
the liquid layers.

5.2. Pairwise sequential collisions

In this subsection, we consider d0
23 > 0, so that there is an initial air gap between the

liquid layers of spheres 2 and 3. Of most relevance, the 2–3 collision is then initiated
after the 1–2 collision has started (and maybe even finished). Figure 9 shows a repeat
of the simulations in figure 3, but with d0

23 = h0
23 = h0

12 (so that the initial air gap is
of the same thickness as the combined liquid film). The result for St= 4 is the same
(FA) as when d0

23 = 0, but it takes longer before the 2–3 collision occurs (at t̂= 4.31
versus 2.64) and arrests the separation of the 1–2 pair. The result for St=8 is different
(FS versus NC), however, because the 1–2 pair bounces and separates before the 2–3
pair collides (at t̂= 3.42 versus 2.71), with the delay in the 2–3 collision due to the
time required for sphere 2 to move across the air gap between it and sphere 3. In
what follows, we first consider the latter case, with sequential pairwise collisions. The
former case, when the 2–3 collision is initiated before the 1–2 collision is complete,
is considered in § 5.3.

Collision of 1–2 pair – if the initial air gap between spheres 2 and 3 is large
enough, then the 1–2 pair may collide and bounce apart before encountering the third
particle. Since the collisions are then pairwise, the analysis is simplified and yields
analytical results. Considering first the 1–2 collision, equation (4.1a) becomes

St
dv̂12

dt̂
=−v̂12(1− ĥ12)

2/ĥ12. (5.2)
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FIGURE 9. Dimensionless separation gaps versus dimensionless time for the sequential
collisions of three wetted spheres with edry= 1, equal initial and final film thicknesses, an
initial air gap of d0

23 = h0
12 and a bounce criterion of hmin = 0.05h0

12.

Dividing (5.2) by (2.4) to eliminate time yields

St
dv̂12

dĥ12

= (1− ĥ12)
2/ĥ12. (5.3)

Using the initial condition v̂12 = 1 when ĥ12 = 1, equation (5.3) may be integrated to
give

St(1− v̂12)= (1− ĥ2
12)/2− 2(1− ĥ12)− ln ĥ12 (5.4)

for the approach stage of the collision.
In order for the 1–2 pair to bounce apart, the gap must first decrease to hmin during

approach, and then increase back to h0
12 during rebound. For contact (h12 = hmin) to

occur, it is necessary that v12 > 0 when h12 = hmin, which requires St> Stc, where

Stc = (1− ĥ2
min)/2− 2(1− ĥmin)+ ln(1/ĥmin) (5.5)

is the critical stokes number for contact. The dimensionless contact time, t̂c, is
determined by integrating the dimensionless form of (2.4) from ĥ12 = 1 at t = 0 to
ĥ12 = ĥmin at t̂= t̂c, using (5.4) for the relative dimensionless velocity,

t̂c =

∫ 1

ĥmin

dĥ

1− (ln(1/ĥ)− 2(1− ĥ)+ (1− ĥ2)/2)/St
. (5.6)

Upon contact for St> Stc the relative velocity changes sign, and the 1–2 pair bounces
apart, starting from ĥ12 = ĥmin and

v̂12 = v̂
a
12 =−edryv̂

b
12 =−edry(1− Stc/St), (5.7)

where v̂b
12 and v̂a

12 are the relative velocities just before and after contact occurs,
respectively. Then, equation (5.3) may be integrated subject to this initial condition
to give

St(v̂12 − v̂
a
12)= ln(ĥ12/ĥmin)− 2(ĥ12 − ĥmin)+ (ĥ2

12 − ĥ2
min)/2 (5.8)
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FIGURE 10. Dimensionless contact and separation times versus the Stokes number scaled
with the minimum Stokes number for rebound and separation for the collision of two
perfectly elastic spheres (edry=1) covered with a thin layer of viscous liquid. The different
curves are for ĥmin=0.005, 0.01, 0.02, 0.05 and 0.1 (bottom to top for t̂c near St/Sts=0.5,
then crossing for larger St/Sts, and top to bottom for t̂s).

during the rebound stage. Separation of the 1–2 sphere will occur if the magnitude
of v12 does not decline to zero by the time that ĥ12 = 1 is reached, which requires
St> Sts, where

Sts = Stc(1+ edry)/edry (5.9)

is the critical Stokes number for separation. The dimensionless separation time is then
found by integrating (2.4) from ĥ12 = ĥmin at t̂= t̂c to ĥ12 = 1 at t̂= t̂s using (5.8) for
the relative velocity, along with (5.5), (5.7) and (5.9),

t̂s = t̂c +

∫ 1

ĥmin

dĥ

edry(1− Sts/St)+ (ln(1/ĥ)− 2(1− ĥ)+ (1− ĥ2)/2)St
. (5.10)

Figure 10 shows plots of t̂c and t̂s versus the Stokes number (normalized by Sts,
so that the curves nearly collapse) for various values of the minimum gap, assuming
perfectly elastic solid–solid contacts (edry= 1) where Sts= 2Stc. For large St (St� Sts),
t̂c≈ 1− ĥmin and t̂s≈ 2− 2ĥmin, as there is sufficient inertia that the relative velocity is
not significantly reduced in magnitude as the striker sphere penetrates the liquid film,
hits the target sphere and then rebounds. In contrast, for St only slightly greater than
Stc and Sts, t̂c and especially t̂s, respectively, are larger due to the viscous resistance
slowing down the approach and rebound. Note that there is a weak singularity in
the contact time, t̂c = O(ln(1/(St − Stc))), and a strong singularity in the separation
time, t̂s =O(1/(St− Sts)), near the critical Stokes number for contact and separation,
respectively.

Moreover, the relative velocity for separation, v̂s
12, is given by (5.8) with ĥ12 = 1,

which allows for the wet coefficient of restitution to be determined,

e12 = |v̂
s
12| =−v

s
12/v

0
1 = edry(1− Sts/St). (5.11)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

78
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.784


Simultaneous and sequential collisions of three wetted spheres 995

Of course, equation (5.11) only applies if St> Sts as given by (5.5) and (4.2). When
St 6 Sts the colliding spheres do not have enough inertia to overcome the viscous
losses and so the 1–2 pair remains agglomerated (e12 = 0). Also, capillary forces
would come into play for St≈ Sts, which would cause a small increase in the critical
Stokes number required to overcome both lubrication and capillary forces and thereby
allow separation.

Collision of 2–3 pair – we next consider the 2–3 pair, so that we can determine
its collision profile and also the conditions required for the 1–2 pair to separate prior
to the 2–3 pair interacting. At the time ts, when the 1–2 pair separates, sphere 2 has
travelled a distance v0

1 ts/2, or t̂s/2 in dimensionless terms. This result follows from the
fact that the centre of mass of the 1–2 pair necessarily moves at constant velocity v0

1/2
(due to conservation of momentum), and that the centre of sphere 2 is at a distance
a2+ δ12/2 from the centre of mass at both t= 0 and t= ts. Thus, the criterion for the
1–2 pair interaction to be completed before the 2–3 pair interaction begins is simply

d0
23 > v

0
1 ts/2, or d̂0

23 > 0.5t̂s. (5.12a,b)

If this criterion is met, then sphere 2 will have separated from sphere 1 before
striking sphere 3, and so we have sequential pairwise collisions. Since v1 + v2 = v

0
1

(from conservation of momentum) and v2 − v1 = edry(1− Sts/St)v0
1 from (5.11), upon

separation of the 1–2 pair and prior to contact of the 2–3 sphere, the individual
sphere velocities are

vs
1= v

0
1(1− edry(1− Sts/St))/2, vs

2= v
0
1(1+ edry(1− Sts/St))/2, vs

3= 0. (5.13a−c)

Using these initial conditions, the 2–3 collision proceeds with a similar description
as above for the 1–2 collision. There is a caveat, however. Sphere 2 is slowed when it
collides with sphere 3, presenting the possibility that sphere 1 catches back up and hits
the 2–3 pair! To check this scenario, note that conservation of momentum requires that
(v2 + v3)/2= v0

1(1+ edry(1− Sts/St))/4. On average, from when the 2–3 liquid films
first touch until they separate, sphere 2 has this speed (assuming h f

23 = h0
23). Sphere 1

can then catch up with the 2–3 pair only if v1 from (5.13) exceeds this value, which
requires that

St< 3edrySts/(3edry − 1), or St< 3Stc/2 for edry = 1. (5.14a,b)

Since St> Sts is required for the 1–2 pair to bounce and separate, (5.14) shows that
the range of allowing for sphere 1 to catch up to the 2–3 pair is quite narrow for
edry ≈ 1 (as was seen in figure 5). The range becomes larger when edry is reduced,
because the velocity of sphere 2 after separation is reduced while that of sphere 1 is
increased. For edry 6 1/3, sphere 1 has a larger velocity than does the 2–3 pair for all
St > Sts. Of course, whether or not sphere 1 catches and collides with the 2–3 pair
depends on the initial separation and the duration of the 2–3 collision, as described
later.

If (5.12) is met, the 1–2 pair separates before encountering the third sphere.
Sphere 2 then travels at the speed vs

2 given by (5.13) and encounters the third sphere
at time t23,

t23 = ts + (2d0
23 − v

0
1 ts)/v

s
2. (5.15)

Assuming that the initial separation is large enough that sphere 1 does not catch
the 2–3 pair, the 2–3 collision is then described by the same analysis as for the
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1–2 collision, except that the impact velocity is given by vs
2 from (5.13) instead of v0

1 ,
and the initial film thickness is given by h0

23 instead of h0
12. It is assumed that the final

film thickness for separation is the same as the initial film thickness, h f
23=h0

23, because
there would not be excess fluid in the 2–3 gap if the spheres initially are separated. A
modified Stokes number, St∗ =mvs

2/(6πµa2) and a modified dimensionless minimum
separation, h∗min = hmin/h0

23, are defined as governing parameters for the 2–3 collision.
The critical Stokes number for separation is then

St∗s = [ln(1/h
∗

min)− 2(1− h∗min)+ (1− (h
∗

min)
2)/2](1+ edry)/edry, (5.16)

where the 2–3 pair will bounce and separate only if St∗ > St∗s . Note from (5.13) that

St∗ = (St(1+ edry)− edrySts)/2. (5.17)

Moreover, for equal film thicknesses (h0
23 = h0

12), combining (5.5), (5.9) and (5.16)
yields St∗s = Sts. Then, St∗ > St∗s is equivalent to

St> Sts(2+ edry)/(1+ edry), if h0
23 = h0

12, (5.18)

for the isolated 2–3 pair to separate. Now, comparing (5.14) and (5.18), it is seen
that sphere 1 is only able to catch up to the 2–3 pair for edry = 1 under conditions
for which the pair remains agglomerated (St< 3Sts/2). For edry < 1, however, there is
a window for which sequential pairwise collisions are possible,

(2+ edry)/(1+ edry) < St/Sts < 3edry/(3edry − 1), (5.19)

where Sts is given by (5.5) and (5.9).
When St∗ > St∗s , an isolated 2–3 pair will eventually bounce apart, with a wet

coefficient of restitution of

e∗23 =−v
s
23/v

s
2 = edry(1− St∗s/St∗), or (5.20a)

e23 =−v
s
23/v

0
1 = edry(1− St∗s/St∗)(1+ edry(1− Sts/St))/2, or (5.20b)

e23 =
edry

2

[
1+ edry(1− Sts/St)− 2Sts/St

]
, if h0

23 = h0
12. (5.20c)

And, the duration of the 2–3 collision (from when the liquid films first overlap until
they separate) is t∗s , given by (5.6) and (5.10) but with St∗, St∗s and h∗min replacing
St, Sts and ĥmin, respectively; here, t∗ = vs

2t/h0
23 is the modified dimensionless time.

Figure 11 shows the wet coefficient of restitution for the 1–2 pair from (5.11) and
for the 2–3 pair from (5.20c) for various values of edry. Both coefficients are zero
for Stokes numbers below the critical value for separation (St < Sts for the 1–2 pair,
and St< Sts(2+ edry)/(1+ edry) for the 2–3 pair) and then increase toward edry as the
Stokes number increases. The critical value for rebound of the 1–2 pair, Sts, increases
with decreasing minimum gap and dry coefficient of restitution, as given by (5.5) and
(5.9). The critical Stokes number for rebound of the 2–3 pair increases even further
with decreasing dry coefficient of restitution, as given by (5.16).

5.3. Non-pairwise sequential collisions
We can now determine if sphere 1 will catch back up to the 2–3 pair before it
separates. In this case, the sequential 1–2 and 2–3 collisions are not solely pairwise.
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FIGURE 11. Coefficient of wet restitution versus the scaled Stokes number for different
values of the dry restitution coefficient (edry= 0.5, 0.7, 0.9 and 1.0). The solid curves are
for the 1–2 pair, and the dashed curves are for the 2–3 pair. It is assumed that the initial
separation is large, so that there are sequential pairwise collisions; the values of e23 are
for equal film thicknesses: h f

23 = h0
23 = h0

12.

Sphere 2 travels a distance of vs
2(h

0
23t∗s /v

s
2)/2 from the time it first encounters sphere 3

until this pair separates. During this time, sphere 1 travels a distance vs
1(h

0
23t∗s /v

s
2), but

it starts at a distance (d0
23− v

0
1 ts/2)(1− vs

1/v
s
2) separating its liquid layer from that of

sphere 2 when the 2–3 encounter begins. Thus, the criterion for sphere 1 to collide
with the 2–3 pair is

d0
23 < h0

23t∗s (v
s
1/v

s
2 − 1/2)/(1− vs

1/v
s
2)+ h0

12 t̂s/2. (5.21)

If d0
23 is instead larger than the right-hand side of (5.21), and with St∗> St∗s , then the

2–3 pair bounces and separates before sphere 1 collides again with sphere 2.
These concepts are illustrated in figure 12, which presents a regime map or ‘phase

diagram’ for d̂0
23 versus St/Sts for ĥmin = 0.05, equal layer thicknesses and various

values of edry. There are several noteworthy features.

(i) For St/Sts< 1, the 1–2 pair remains agglomerated and eventually strikes sphere 3,
even for large initial separations, resulting in full agglomeration of the triplet.

(ii) For edry = 1, there is a single branch, d̂0
23 = 0.5t̂s below which sphere 1 catches

the 2–3 pair for a second time and above which it does not.
(iii) For edry < 1, there is a second branch, d̂0

23 = t∗s (v
s
1/v

s
2 − 0.5)/(vs

1/v
s
2 − 1) + 0.5t̂s,

above which the 2–3 pair rebounds and separates before sphere 1 catches it again.
(iv) The two branches co-exist only in the window of St given by (5.19), and between

these branches sphere 1 catches back up and collides with the 2–3 pair before it
can separate.

(v) For St > Sts, the ultimate outcome depends on the Stokes number and other
parameters.
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FIGURE 12. Regime map of initial air gap between the 2–3 pair versus the scaled Stokes
number for hmin= 0.05h0

12, equal liquid layers (h f
23= h0

23= h0
12) and various dry coefficients

of restitution (edry = 1.0, 0.9, 0.1 and 0.5, from left to right). The solid lines are given
by (5.12) and the dashed lines by (5.21).

As seen above, pairwise sequential collisions occur only when both conditions
St > Sts and d0

23 > h0
23t∗s (v

s
1/v

s
2 − 1/2)/(vs

1/v
s
2 − 1)+ h0

12 t̂s/2 are met. For St < Sts, the
1–2 pair remains agglomerated indefinitely and so eventually traverses the d0

23 gap and
then encounters sphere 3 in a ternary collision. In contrast, when St/Sts and (5.21) is
satisfied, the 1–2 pair separates but then sphere 1 collides again with sphere 2 when
it is still agglomerated with sphere 3. Figure 13 illustrates these different outcomes
for ĥmin = 0.05, edry = 0.5 and a dimensionless initial air gap of d̂0

12 = 3. Under these
conditions, Sts = 4.78, the first branch is at St/Sts = 1.50, and the second branch is
at St/Sts = 2.27. When St = 6, St/Sts < 1.50, and the 2–3 pair collides and begins
to separate before the 1–2 pair is able to separate, and so full agglomeration results
(ĥ12 < 1 and ĥ23 < 1). For St = 8, 1.50 < St/Sts < 2.27, and the 1–2 pair separates
before the 2–3 collision begins. However, once the gap between the 2–3 pair reaches
hmin and the spheres begin to rebound, the 1–2 separation decreases and so full
agglomeration is again the ultimate outcome. This behaviour is denoted as FS/FA,
as a full separation occurs after the 1–2 collision but before the 2–3 collision and
full agglomeration. For St= 10, we again have 1.50< St/Sts < 2.27 and the 1–2 pair
re-agglomerates after the 2–3 pair begins to separate. For this St, however, the 2–3
pair has sufficient inertia to separate after collision; the ultimate outcome is then
Newton’s cradle. Similar behaviour, but with a more rapid separation of the 2–3 pair
occurs for St = 12 and 16, for which St > 2.27Sts. This new behaviour is termed
FS/NC, as the 2–3 pair separates before the 1–2 pair collides for a second time when
St > 2.27Sts, and so there is a period of full separation before the final outcome of
Newton’s cradle.

5.4. Outcomes maps for sequential collisions
An outcomes map for sequential collisions is provided in figure 14. Here, equal
liquid-layer thicknesses and ĥmin= 0.05 are again assumed, but with edry= 0.9. In this
case, the critical Stokes number for pairwise rebound and separation is Sts = 3.37.
From (5.19), the window in which pairwise sequential collisions are possible is
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FIGURE 13. Dimensionless separation gaps versus dimensionless time for the sequential
collisions of three wetted spheres with equal liquid-layer thicknesses (h f

23 = h0
23 = h0

12),
initial air gap of d0

23 = 3h0
12, minimum separation for rebound of hmin = 0.05h0

12, dry
restitution coefficient edry= 0.5 and St= 6, 8, 10, 12 and 16 (bottom to top on right-hand
side of figure). Separation occurs when the dimensionless gap exceeds unity (horizontal
line).
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FIGURE 14. Outcomes map of Stokes number versus the initial air gap between the 2–3
pair for sequential collisions of three wetted spheres with hmin = 0.05h0

12, edry = 0.9 and
equal liquid-layer thicknesses (h f

23 = h0
23 = h0

12). Four outcomes were observed: FA (p),
FS/FA ( ), NC ( ), FS/NC (@).

extremely narrow: 5.14 < St < 5.35. For smaller St, full agglomeration is always
the ultimate outcome of the simulations, though for d̂0

23 > 1.88 (where the two
branches in figure 12 separate) there is a narrow range of St that yields FS/FA
due to temporary separation of the 1–2 pair before collision with the third sphere.
For larger St, Newton’s cradle is the ultimate outcome of the collisions, although
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FIGURE 15. Outcomes map of Stokes number versus the initial air gap between the
2–3 pair for sequential collisions of three wetted spheres with hmin = 0.05h0

12, edry = 0.9
and unequal liquid-layer thicknesses (h f

23 = h0
23 = 2h0

12). Five outcomes were observed: FA
(black), FS/FA (diagonal), RNC (grey), FS/RNC (dotted), FS (white).

FS/NC is observed for the larger St and non-zero d̂0
23 as there is then a period of

full separation after the initial 1–2 collision and rebound but before the final 1–2
collision and agglomeration.

Figure 14 is for liquid films of equal thickness, and the ultimate outcome is FA for
St < 5.35 and NC for St > 5.35. A very different set of outcomes is achieved for a
thicker film on the 2–3 pair, as shown in figure 15. When h f

23 = h0
23 = 2h0

12, still with
hmin= 0.05h0

12 and edry= 0.9, FA is again the ultimate outcome for St< 5.35, but now
RNC occurs for 5.35< St < 6.55 and then FS for St > 6.55. The initial 2–3 air gap
does not have a significant impact on the final outcome, but a gap of d0

23 > 1.8h0
12

allows for FS prior to the ultimate outcome.

6. Additional considerations
The current work has several assumptions or restrictions, which may be of practical

importance in physical systems. These issues include (at least) the role of capillary
forces, the possibility of cavitation during rebound, and the criterion selected for
rebound. Each of these issues is discussed below, not as a full analysis but rather to
point to considerations for future research.

6.1. Capillary forces
A good discussion of capillary forces is provided by Buck et al. (2018). They
include both a direct contribution from surface tension and an indirect contribution
from capillary pressure in the liquid bridge between two wetted spheres. Both of these
effects act in the normal direction, typically inward along the line of centres between
two spheres, and so aid in the approach stage and resist the rebound stage. For a
thin liquid layer, the capillary pressure force dominates and is of order Fc ≈ 2πaσ .
The viscous lubrication force scales as Fv ≈ 6πµa2vr/h, from (2.2), where vr is the
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relative velocity and h the separation gap. Thus, Fv/Fc ≈ Ca = 3µavr/(hσ). As an
example, consider µ = 0.01 g cm−1 s, σ = 73 g s−2 (water in air), h/a = 0.01 and
vr= 100 cm s−1. Then, Ca≈ 4, indicating that viscous forces are larger than capillary
forces but perhaps not dominant as assumed in the current work. For more viscous
fluids, such as the oil used by Donahue et al. (2010a,b) or liquid polymers, Ca>1000
and viscous forces are expected to dominate. However, for water or other low-viscosity
liquids and larger values of h/a, such as employed by Buck et al. (2018), capillary
forces may be comparable to viscous forces. Indeed, Buck et al. (2018) calculated
dissipative energies for collisions of glass particles with water layers of thickness
approximately 20 % of the particle diameter, and found comparable capillary and
viscous effects with collision velocities of about 1 m s−1, but with viscous effects
becoming more important with increasing impact velocity.

Of further note is that the relative velocity during rebound can become small near
the critical condition for separation: St = Sts. Then, capillary forces would become
important during the final stages of rebound, even if they are negligible in the initial
stages of the collision process. Donahue et al. (2012a,b) investigated an interesting
twist on this issue by considering oblique collisions of two wetted particles at large
capillary numbers and subcritical Stokes numbers. Then, the colliding pair initially
agglomerated and rotated as a doublet, with capillary forces as well as viscous forces
playing a role in determining whether or not the rotating doublet would subsequently
de-agglomerate due to centrifugal forces.

6.2. Cavitation
During the approach stage of collision, the pressure that builds up in the intervening
liquid layer is positive and slows the approach. During the rebound stage, however,
the dynamic pressure is negative and draws fluid back into the gap between the
receding surfaces of the two spheres. If the absolute pressure drops below the vapour
pressure of the liquid, then cavitation bubbles may form. Indeed, Marston et al.
(2011) observed cavitation during the rebound of a sphere from a wetted surface
and presented high-speed photographs of the cavitation structure for different fluids
and conditions. The possibility of cavitation may be determined from the maximum
dynamic pressure. From lubrication theory (Kantak & Davis 2006) the maximum
dynamic pressure is along the line of centres and equal to

pd = 3µavr(1− (h/h0)
2)/h2, (6.1)

where h is the instantaneous distance between the sphere surface and h0 = h0
12 is the

fluid-layer thickness. When St� Stc, so that there is strong rebound, vr≈−edryv
0
12 just

after velocity reversal, and |pd| is maximum when h = hmin. For typical conditions
of h0 = 100 µm, h = 3 µm, |vr| = 1 m s−1, a = 10−3 m and µ = 10−3 kg (m s−1)
(water), |pd| ≈ 3 × 105 kg m−2 (approximately 3 atm). Thus, cavitation is a realistic
consideration and would be even more important for higher impact velocities, larger
spheres or more viscous fluids.

As a result of estimates like the one above, early models assumed that cavitation
occurred during rebound and neglected or partially neglected viscous resistance during
the rebound stage (Barnocky & Davis 1988; Davis et al. 2002; Kantak & Davis
2006). However, the more recent study by Donahue et al. (2010a) demonstrated via
modelling and experiment that the fluid resistance during the rebound stage cannot
be completely neglected due to presumed cavitation. Moreover, the experiments of
Marston et al. (2011) support this view, by showing images in which the cavitation
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microstructure is quite complex, indicating that it would still impart substantial
lubrication resistance. Thus, recent comparisons between theory and experiment on
collisions between particles and a wet surface (e.g. Cruger et al. 2016; Buck et al.
2018), or between two wet particles (Donahue et al. 2012a), neglect the effects of
cavitation on the viscous lubrication resistance during rebound, but they typically
match the critical Stokes number for separation, Sts, or some related quantity, to the
experimental results as a fitting parameter, since hmin is often not known (or only
known as an approximation).

6.3. Rebound criteria
In the current work, a relatively simple rebound criterion has been employed. Namely,
when the nominal separation distance between two colliding surfaces is reduced to
hmin, the spheres are assumed to have made contact, and their relative velocity is
instantly reversed and multiplied by edry. This criterion is consistent with the view
that (Barnocky & Davis 1988; Ma et al. 2016)

hmin = hb, (6.2)

where hb is the minimum bump or roughness height on the sphere surfaces that could
arrest the relative motion (i.e. support the required contact force). The dimensionless
minimum separation, ĥmin = hmin/h0

12, may then be varied independently of the Stokes
number simply by varying the film thickness, h0

12.
Previous work has explored two other reversal criteria, as summarized by Donahue

et al. (2010b). The first is from the elastohydrodynamic collision theory first proposed
by Davis et al. (1986),

hmin = he = (3πθµa3/2vr/
√

2)2/5, (6.3)

where θ = 2(1− ν2)/(πE), ν = Poisson’s ratio, E= Young’s modulus of the colliding
spheres. In the original theory, the elastic deformation and release occur gradually due
to dynamic lubrication pressure in a soft-sphere collision. For the current criterion,
however, they are assumed to occur instantaneously in a hard-sphere collision at the
point when the nominal separation between the surfaces decreases to the elastic length
scale given by (6.3).

The other reversal criterion is based on the glass transition, in which the liquid film
becomes solid like when the dynamic lubrication pressure reaches a glass-transition
pressure, pgt. Then, using (6.1) with h� h0, this rebound criterion becomes

hmin = hg = (3µavr/pgt)
1/2. (6.4)

Again, this criterion is applied instantaneously (Donahue et al. 2010b), though a more
complete consideration involves a soft-sphere collision using elastohydrodynamic theory
coupled with a pressure-dependent viscosity increase (Barnocky & Davis 1989).

The rebound criterion is selected as the largest of hb, he and hg in a given
situation. For the experiments of Donahue et al. (2010b) with silicon oils and
steel balls, reported parameters are: ν = 0.35, E = 1.93 × 1011 Pa, a = 0.00635 m,
µ= 12 Pa s, pgt = 500 MPa and vr = 0.5 m s−1. Under these conditions, he ≈ 5 µm
and hg≈18 µm, both larger than the roughness size of hb≈1 µm. Note that, when he
or hg dominates as in this case, increasing St by increasing vr (with all else constant)
also increases hmin, which strengthens the rebound. Thus, Donahue et al. (2010b)
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used the glass-transition criterion and saw (by both simulation and experiment) a
faster increase in the wet coefficient of restitution with increasing Stokes number
than predicted for hmin fixed.

A very different situation occurs for low-viscosity liquids. In the experiments of
Buck et al. (2018) with glass beads and water, for example, typical parameters are
E= 7× 109 Pa, ν = 0.2, µ= 1 mPa s, a= 0.001 m, vr = 1 m s−1 and pgt = 900 MPa
(at 20 ◦C). Then, he = 0.2 µm and hg = 0.06 µm are both smaller than the average
surface roughness of a few microns. Thus, a constant value of hmin (and, hence, Sts)
may be employed.

6.4. Comparison with experiments
As noted previously, experiments on collisions of three wet spheres were reported by
Donahue et al. (2010a,b). They used a pendulum setup to achieve Stokes numbers
in the desired range and to keep the collisions rectilinear (as long as the departures
of the pendulum strings from vertical were small, so that long strings were used).
As a first test of the model, and to find the glass-transition pressure, figure 16
shows the wet coefficient of restitution for the collision of two stainless-steel spheres
(edry = 0.90, E = 1.93 × 1011 Pa, ν = 0.35, a = 0.00635 m, m = 0.0336 kg) or two
chrome-steel spheres (edry = 0.99, E = 2.03 × 1011 Pa, ν = 0.28, a = 0.00635 m,
m = 0.0328 kg). The stainless-steel spheres had combined oil layers of thickness
h0

12 = 294 µm and viscosity 12 Pa s. The chrome-steel spheres had a combined
oil-layer thickness of 180 µm and viscosity of 5.1 Pa s. The symbols are the
experimental data from figure 7 of Donahue et al. (2010b). The solid lines are
the analytical theory from the current work (equations (5.5), (5.7) and (5.11)) with
hmin = hg given by (6.4) and thus varying with impact velocity, and the dashed lines
are the analytical theory with hmin fixed at its value for St= Sts. Following Donahue
et al. (2012a), the value of pgt = 21 MPa was selected so that Sts = 1.7 matches the
experimental results for when rebound of the chrome-steel spheres was first observed.
For the stainless-steel spheres and more viscous oil, the corresponding fit is Sts= 1.5
and pgt = 26 Mpa. Note that these values are lower than typical glass-transition
pressures of 300–700 MPa at room temperature reported for other lubricating and
silicon oils (Angel et al. 2007; Bair 2019). However, since the viscosity of a fluid
increases very rapidly with pressure within 1–2 orders of magnitude of its glass
transition (Bair 2019), it is anticipated that high lubrication forces would arrest the
relative motion before the full glass transition is reached. Moreover, these pressures
are lower than the yield strength (∼300–400 MPa) of the steel spheres, and so plastic
deformation was not anticipated (nor observed). As expected, the agreement between
theory and experiment in figure 16 is better when hmin varies according to (6.4) than
when it is fixed. The rate of increase in the wet coefficient of restitution with Stokes
number is higher for the chrome-steel spheres, due to their higher value of edry.

In the three-sphere experiments of Donahue et al. (2010a,b), the liquid layers on the
target and far-side spheres were initially in contact, so that d0

23 = 0 and simultaneous
collisions were the norm. The coating process gave an excess of fluid in the vicinity
of contact for the 2–3 pair, so h f

23>h0
12. Also, due to capillary forces that drew the 2–3

pair together prior to the collision, h0
23� h0

12. The very small initial separation of the
2–3 pair meant that this pair was essentially in solid–solid contact before the collision,
either on roughness elements or more likely such that a glass transition would prevent
any significant relative motion toward one another. To model this situation, the 2–3
pair was treated as a doublet without relative motion, until the striker sphere 1 made
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FIGURE 16. Wet coefficient of restitution versus Stokes number for the head-on collision
of two stainless-steel (u) or chrome-steel (E) balls coated with a viscous oil. The
experimental data are from Donahue et al. (2010b), the solid lines are the current theory
with hmin = hg from (6.4) and the dashed lines are the theory with hmin fixed.

contact with the target sphere 2, at which point its momentum was transferred to
sphere 3 and the 2–3 pair began to separate. The simulation of the first stage of
approach is still governed by (4.1) in this situation, except that v̂23= 0 and the Stokes
number is replaced by 4/3 of the original value, to account for the combined mass
of the 2–3 doublet. The post-contact velocities of (4.3) are replaced by

va
12 = [(1+ edry)

2/4− edry]v
b
12, va

23 =−edry(1+ edry)v
b
12/2 (6.5a,b)

as momentum is transferred from sphere 1 to sphere 2 and then sphere 2 to sphere 3
in a double collision. The subsequent relative motion of both pairs was then analysed
using (4.1) without modification. Figure 17 provides an example comparison between
the present experiments and the current theory for the chrome-steel spheres and the
oil of viscosity 12 Pa. The combined film thicknesses are h0

12 = 412 µm and h f
23 =

1534 µm, with a nominal initial separation of the 2–3 pair of h0
23= 10 µm (but with

a measurement uncertainty of 10 µm). The glass-transition pressure used in the model
is pgt = 26 MPa, as determined from the two-sphere results for the more viscous oil.
From (6.4), the glass transition and, hence, collision and rebound of the i–j pair occur
when

hij 6 (3µavij/pgt)
1/2. (6.6)

This equation may be rearranged and non-dimensionalized as

v̂ij/ĥ2
ij > Pg= Pgref /St, (6.7)

where Pg=pgt(h0
12)

2/(3µav0
1) is a dimensionless glass-transition pressure. For comparison

to a set of experiments in which v0
1 (and, hence, St) is varied, but all other physical

parameters are fixed, it is convenient to define Pgref = pgt(h0
12)

2/(3µavref )=mpgt(h0
12)

2/

(18πµ2a3) as a reference pressure and vref = 6πµa2/m as a reference velocity that
yields St= 1. In the experiments of Donahue et al. (2010a,b), Pgref =O(102), indicating
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FIGURE 17. Wet coefficients of restitution versus Stokes number for the head-on collision
of three chrome-steel spheres covered with oil layers of viscosity 12 Pa s and thicknesses
h0

12= 412 µm and h f
23= 1534 µm. The nominal initial separation of the 2–3 pair is h0

23=

10 µm, but it may vary in the range 1–20 µm. The symbols are experiments from
Donahue et al. (2010b) and the curves are the current theory with h0

23 = 10 µm (thick
lines) and 20 µm (thin lines).

that substantial penetration into the liquid layer (ĥij� 1) is required for the rebound
criterion to be met. Note that Pgref is independent of particle size but has strong
dependence on the liquid-layer thickness and viscosity.

As seen in figure 17, there is qualitative agreement between theory and experiment
when h0

23= 10 µm is used as the initial separation for the 2–3 doublet. According to
the theory, full agglomeration with e12= e23= 0 occurs for St< 1.6, reverse Newton’s
cradle with e12 increasing and e23=0 occurs for 1.6<St<3.8, and full separation (FS)
with e12 nearly flat and e23 increasing occurs for St> 3.8. The experimental data show
the same behaviour, except the boundaries between the different outcomes are shifted
to lower Stokes numbers. This difference could be due to cavitation or another factor
reducing the viscous resistance to rebound or to the uncertainty in the very small
initial gap between the 2–3 pair. Donahue et al. (2010b) noted that the uncertainty
in measuring the initial gap and oil-layer thickness is approximately 10 µm, so that
the actual value of the initial 2–3 gap could be in the range 1 µm < h0

23 < 20 µm
(where the lower limit is an estimated minimum roughness height). Rerunning the
simulations for h0

23 = 20 µm gives qualitatively similar results as for h0
23 = 10 µm,

but the separation of the 2–3 pair is stronger and that of the 1–2 pair is weaker, with
somewhat better agreement with experiments.

Figure 18 provides a further comparison of the current model with experimental
data. For this figure, the oil had lower viscosity (µ = 5.1 Pa s) and thinner layers
(h0

12 = 280 µm and h f
23 = 1106 µm). The nominal initial separation between the

2–3 pair is again h0
23 = 10 µm. Simulations with this value again yield qualitative

agreement with the experiments. However, simulations with h0
23 = 20 µm, which is

at the upper range of measurement uncertainty, show relatively good agreement with
the experiments. The agreement between the present model and the experiments is
better than found in the prior work of Donahue et al. (2010b). One reason for the
improved agreement is that the present work treats the glass-transition pressure as
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FIGURE 18. Wet coefficients of restitution versus Stokes number for the head-on collision
of three chrome-steel spheres covered with oil layers of viscosity 5.1 Pa s and thicknesses
h0

12 = 280 µm and h f
23 = 1106 µm. The nominal initial separation of the 2–3 pair is

h0
23 = 10 µm, but it may vary in the range 1–20 µm. The symbols are experiments from

Donahue et al. (2010b) and the curves are the current theory with h0
23 = 10 µm (thick

lines) and 20 µm (thin lines).

a fitting parameter found from the two-sphere experiments. Another reason is the
simultaneous treatment of the three-sphere interaction in the present work, rather than
modelling it as a series of two-body interactions. In particular, after sphere 1 hits the
2–3 doublet, sphere 3 begins to move away from sphere 2. The lubrication suction
force then pulls sphere 2 away from sphere 1, which in turn creates a lubrication
suction force between the 1–2 pair. The ultimate outcome (FA, NC, RNC or FS)
depends on a sensitive interplay of these simultaneous forces.

Finally, the underlying assumption that the collisions may be treated as soft-sphere
collisions during the approach and rebound through the intervening liquid layers, and
as hard-sphere collisions when contact and velocity reversal occur, was checked. From
Hertzian impact theory for the collision of two solid spheres, the solid–solid contact
time scales as th=O[(ρ2

s θ
2/vr)

1/5a] (Davis et al. 1986), where ρs is the solid density.
For the experiments of Donahue et al. (2010b), this hard-sphere contact time scale is
th ≈ 10−5 s. In contrast, the soft-sphere collision time scale is ts =O(vr/h0)≈ 10−3 s.
Since th � ts, the approximation of the contact/reversal stage as an instantaneous,
hard-sphere collision is justified. For collisions with softer materials such as glass
(Buck et al. 2018), this condition is still met, but the difference is only one order of
magnitude.

7. Concluding remarks

The rectilinear collision of three spheres covered with thin liquid layers has been
investigated by analytical (sequential doublet collisions) and numerical (simultaneous
triplet collisions) methods. As originally demonstrated by Donahue et al. (2010a,b),
four primary outcomes are observed: full agglomeration of all three spheres, full
separation of the three spheres, Newton’s cradle where the striker and target sphere
stick together but the third (far-side) sphere separates and reverse Newton’s cradle
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where the target and far-side sphere stick together while the striker sphere rebounds
away. When there is an initial air gap between the target and far-side sphere, which is
expected to be important in practice but not previously studied, more exotic behaviour
is observed, such as FS/FA or FS/NC, where the three spheres fully separate after the
initial collision(s) but then undergo subsequent collisions that result in full or partial
agglomeration.

The results are presented in dimensionless form, with several governing parameters.
As with prior studies on wet two-sphere or sphere-surface collisions, the most
important parameter is the Stokes number, representing the ratio of inertia and
viscous forces. In physical terms, the Stokes number increases with increasing sphere
density, radius and impact velocity, and decreases with increasing fluid viscosity.
For Stokes numbers below a critical value, full agglomeration is observed, whereas
large Stokes numbers yield full separation and/or Newton’s cradle. Reverse Newton’s
cradle is predicted for intermediate Stokes numbers, but only when there is a thicker
combined final liquid layer on the target and far-side spheres than on the striker
and target spheres. Reverse Newton’s cradle was demonstrated (via simulation and
experiment) by Donahue et al. (2010a,b) and results from the thicker liquid layer
dampening the collision and holding the target–far-side pair together.

Another parameter in the analysis is the dry coefficient of restitution, as a
hard-sphere reversal of the relative velocity and with energy loss described by this
coefficient were assumed when contact was made. A decrease in the dry coefficient of
restitution increases the critical Stokes number for separation in a simple, predictable
manner. The dry coefficient of restitution was treated as a constant in the present
work, but a relatively simple change would be to allow it to vary with impact speed.

Yet another key parameter is the minimum separation of the nominal sphere surfaces
at which contact and velocity reversal are assumed to occur. When this value made
dimensionless with the liquid film thickness is small, the critical Stokes number
for rebound and separation is proportional to its natural logarithm. Thus, smaller
values of the minimum separation yield larger critical Stokes numbers, because
there are greater viscous losses as the colliding surfaces penetrate further into the
liquid film. Following prior work, three mechanisms are presented for the minimum
separation: a bump or roughness height, an elastohydrodynamic deformation length,
and a glass-transition separation distance, with the dominate mechanism based on the
largest of these values. For low-viscosity liquids, or rough surfaces, the roughness
height is expected to dominate. Then, the dimensionless minimum separation is easily
varied in practice, independently of the Stokes number, simply by varying the liquid
film thickness. For high-viscosity liquids and smooth surfaces, the glass-transition
or elastohydrodynamic minimum separation is expected to dominate. Then, both the
minimum separation and the Stokes number depend on physical quantities such as
the sphere radius, relative velocity and fluid viscosity. The present analysis still holds,
but the dimensionless minimum separation at which rebound is initiated as part of
the relative-velocity versus separation-gap solution and depends on a dimensionless
glass-transition or elasticity parameter. This finding leads to the question of whether
or not glass-transition and/or elastohydrodynamic deformation needs to be considered
in simulations of flows of particles or grains fully immersed in a fluid. The key to
addressing this issue is to estimate the maximum lubrication pressure and compare it
to the glass-transition pressure of the liquid and the Young’s modulus of the solid. For
example, if µ= 0.1 Pa s (100 times the viscosity of water), a= 10−2 m, vr= 1 m s−1

and h = 3 µm, then the dynamic lubrication pressure is pd = 3µavr/h2
≈ 300 MPa,

which is comparable to typical glass-transition pressures but small compared to
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Young’s moduli of hard materials. For collisions in less viscous fluids or with small
relative velocities, these effects are likely negligible.

Finally, the current analysis points the way for a variety of future studies. One is
the inclusion of capillary forces in collisions of wetted spheres when the modified
capillary number is of order unity, and also for larger capillary numbers but near
the critical conditions for rebound and separation. Another is to examine the effects
of rotation and sliding lubrication forces (along with frictional contact forces) for
oblique collisions of multiple wetted spheres. Then, once these collision mechanisms
and models are sufficiently understood, they may be incorporated in discrete-element
models to improve the simulations of wet granular flows involving many wet particles
(e.g. Anand et al. 2009; Kantak, Hrenya & Davis 2009; Radl et al. 2010; Liu et al.
2013).
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