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The role of large-scale motions (LSMs) in energy transfer is investigated by analysing
wall-parallel velocity fields at low-to-moderate Reynolds number (Re, = 1200-3500),
which are obtained via a two-dimensional (2-D) particle image velocimetry measurement
with large field-of-view. Two types of energy flux, i.e. local interscale energy flux and
in-plane spatial energy flux are inspected in detail. Targeting the energy transfer in
large-scale regime, an anisotropic filter is designed based on the zero-crossing scale
boundary in a 2-D energy transfer spectrum, across which the net energy flux is
the maximum. This ‘optimal’ energy flux boundary separates the scale space into an
energy donating large-scale part and an energy receiving small-scale one. The crossover
energy flux, as well as the associated flow field structures, are studied by conditional
statistics and linear stochastic estimation, in which the statistical spanwise symmetry is
deliberately broken by designing special velocity gradient conditions for event probing.
A strong connection between large-scale energy flux events and LSMs are found.
Namely, forward scatter events have higher probability to reside on the wavy flank of
low-momentum LSMs, if compared with the scenario of being clamped in the middle of
two streamwise-aligned high- and low-momentum LSMs (Natrajan & Christensen, Phys.
Fluids, vol. 18, issue 6, 20006, pp. 299-325). Meanwhile, pairs of positive and negative
spatial transfer events tend to locate inside LSMs. It is thus argued that the meandering
nature of LSMs, which forms the necessary velocity gradient, might play a determining
role in the process of large-scale energy transfer. The spatial correlation between
them is then schematized in a conceptual model, which explains most of the present
observations.
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1. Introduction

Energy transfer in both scale and physical space is one of the central keys to
unveil the elusive multiscale nature of turbulent flows. Ever since the seminal work of
Kolmogorov (1941), knowledge has been accumulated on how turbulent kinematic energy
is redistributed among the scale space to form the so-called direct and inverse energy
cascade in homogeneous and isotropic turbulence (known as HIT), e.g. see Biferale
(2003) and Boffetta & Ecke (2012) for a thorough review. However, as summarized
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by Alexakisa & Biferale (2018), many turbulent flows deviate from homogeneous and
isotropic turbulence by much more complicated energy transfer scenarios. In the present
study, we will focus on wall-bounded turbulence due to its technological importance.
Despite the simple geometry and the absence of intricate forcing conditions, the nature
of multidimensionality, inhomogeneity and anisotropy still makes it rather challenging for
an ultimate description of the energy transfer and redistribution process in wall-bounded
turbulence (Jiménez 2012).

One of the compromises is to invoke the assumption of local equilibrium in both
physical space and scale space. The concept of locality describes that in the overlap
(logarithmic) layer intermediate between the inner layer and the outer region, most of
the turbulent kinetic energy (TKE) is dissipated at the same wall distance at which it is
produced (Jiménez 2012; Cho, Hwang & Choi 2018); meanwhile, interactions between
eddies of comparable sizes contribute a remarkable portion of the total scale-energy
transfer (Dunn & Morrison 2003). Nevertheless, this assumption is somehow challenged
by the contemporary knowledge on multiscale coherent structures.

1.1. Energy transfer related to coherent structures

Piomelli et al. (1991) may be one of the first to study the instantaneous scale-energy
transfer events in wall-bounded turbulence via an a priori test. The velocity fields of a
turbulent channel flow (known as TCF), obtained by direct numerical simulation (DNS),
were decomposed into components with resolved scales and unresolved subgrid scales
(SGS), respectively. The SGS dissipation term in the evolution equation for the total
resolved energy, es6s = —T1;;01;/dx;, with 7; being the subgrid stress tensor and i; the
filtered velocity, was analysed to characterize the energy interchange between resolved
and SGS scales. It was found that backward scatter events are comparable with forward
scatter events in both population density and strength, and the mutual cancellation leads
to a net energy flux with magnitude much smaller than that of backward/forward scatter.
Here, the term ‘forward scatter’ indicates an energy drain from resolved scales to SGS
scales, and vice versa for backward scatter (Kraichnan 1976; Leslie & Quarini 1979). This
seminal work stimulated the following studies attempting to correlate SGS energy transfer
with turbulent coherent structures.

Using a similar methodology, together with the technique of conditional averaging,
Hirtle et al. (1994) showed that in the buffer layer of a turbulent channel, the bursting
events significantly contribute to backward scatter by enforcing the alignment of SGS
stresses with the mean rate of strain. Piomelli, Yu & Adrian (1996) and Natrajan &
Christensen (2006) analysed the volumetric three-dimensional (3-D) velocity fields of
a DNS turbulent channel flow and the streamwise—wall-normal plane of a turbulent
boundary layer (TBL) measured by two-dimensional (2-D) particle image velocimetry
(PIV), respectively. These two studies suggest a strong spatial coherence between forward
and backward scatter events, both of which are related to coherent structures whose
conditional-averaged geometries are compatible with the model of hairpin-like vortex or
hairpin packet (Adrian 2007). More specifically, the most intense forward scatter events
were found to occur where sweep and ejection converge with each other, while backward
scatter events were related to diverging sweep and ejection pairs. Similar observations
were also reported in the numerical/experimental studies of the SGS energy transfer in
convective planetary boundary layer (Lin 1999), atmospheric surface layer (Carper &
Porté-Agel 2004) and rough-wall TBL (Hong et al. 2012). Dong et al. (2020) recently
provided a novel 3-D view on the conditional-averaged vortical structure associated


https://doi.org/10.1017/jfm.2020.777

https://doi.org/10.1017/jfm.2020.777 Published online by Cambridge University Press

Large-scale energy transfer in TBL 906 Al14-3

with active SGS energy transfer in a homogeneous shear turbulence, in which a pair
of streamwise-aligned inverted hairpin and upright hairpin clamp the intense forward or
backward scatter in the middle.

Based on these studies, several essential features of the SGS energy transfer in
wall-bounded turbulence can be clarified now. Firstly, forward and backward scatter are
highly coherent, compact and intermittent. Intense energy transfer events occupying only
a small fraction of the space volume were seen to contribute a considerable portion
of the total energy flux (Piomelli et al. 1996; Hong et al. 2012). This forms the need
to study the SGS energy transfer in a structural view. Secondly, the spatial correlation
between vortical structures and instantaneous energy flux is non-trivial (Natrajan &
Christensen 2006; Hong ef al. 2012; Dong et al. 2020). The preferential pairing of
intense forward and backward scatter events, which were also observed in 2-D turbulent
flows (Liao & Ouellette 2013; Fang & Ouellette 2016; Zhou et al. 2016), suggests an
intricate alignment between the SGS stress tensor and the resolved rate of strain. It
complicates the traditional viewpoint that attributes the forward cascade to the stretching
and intensification of vortices by turbulent strain (Tennekes & Lumley 1972). Lastly, the
SGS energy flux is usually displaced from the high TKE region (Hong et al. 2012). This
observation implicitly infers the non-negligible contribution of the spatial flux along the
inhomogeneous wall-normal direction. As a consequence, the local equilibrium of the
in-plane energy cascade might be ‘disrupted’ to some extent.

The last aspect has been addressed by Cimarelli and his colleagues (Cimarelli, De
Angelis & Casciola 2013; Cimarelli er al. 2015, 2016) via analysing the generalized
Kolmogorov equation of the second-order velocity structure function. Two scale energy
sources, residing in the buffer layer and overlap layer, respectively, are identified, and a
complex energy redistribution process, in which attached and detached motions jointly
contribute to the coexisting direct and reverse cascades in a spatially evolving way, were
derived. This primary finding reminds us of the important role of attached/detached
motions on the energy transfer process, which is rather intuitive since these motions
dominantly characterize the energy content from intermediate scale to very large-scale and
contribute to the interaction between different flow layers (Marusic, Mathis & Hutchins
2010; Marusic & Monty 2019).

In fact, Lin (1999) has already shown that forward scatter events conditioned on
positive vertical fluctuating velocity are physically associated with large-scale elongated
updrafts, which in a contemporary view are actually large-scale motions (LSMs) or very
large-scale motions (VLSMs) (Smits, Mckeon & Marusic 2011). Lee & Moser (2019)
recently performed a systematic spectral analysis on the TKE budget in a turbulent
channel flow with frictional Reynolds number up to Re, = 5200. They found that VLSMs
transfer TKE from streamwise-elongated modes to small-scale ones in a quasi-isotropic
way. Meanwhile, the route of the vertical energy transfer resembles those observed by
Mizuno (2016) and Cimarelli et al. (2013, 2015, 2016). Namely, VLSMs drive TKE from
the outer region towards the wall to modulate the autonomous near-wall dynamics, while
self-similar energy flux structures in the overlap region transport energy away from the
wall. Such a picture is also in accordance with the observation of Cho et al. (2018) on the
triadic wave interaction of the turbulent transport term in one-dimensional (1-D) spanwise
spectral space.

1.2. Aims of the present work and considerations on the methodology

Compared with the steady growing knowledge on the kinematics, dynamics and
self-sustaining mechanisms of LSMs and VLSMs, e.g. see Jiménez (2018) for a recent
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update of the list of related literatures, less attention has been paid to the interscale energy
transfer and spatial energy transportation that are directly related to LSMs/VLSMs. One
of the reasons, to our minds, is that an a priori test of large eddy simulation (known
as LES) models only concerns the energy transfer behaviour in the SGS-scale regime.
Nevertheless, since these energy-bearing structures seem to be in the central position
of the autonomous cycle of the outer region (Hwang & Cossu 2010; de Giovanetti,
Sung & Hwang 2017), addressing their energy transfer behaviour is still of fundamental
importance.

In this background, the present work aims at delineating the characteristics of in-plane
energy transfer that is tightly related to LSMs in a structural view. The 2-D velocity
fields in wall-parallel planes of a TBL with Re, = 1200-3500, that were measured by
2-D PIV at large field-of-view (FOV), were used to perform an a priori test. Due to
the 2-D nature of the planar velocity fields, the in-plane energy transfer considered
here only takes into account the streamwise and spanwise velocity components and their
wall-parallel gradients. This is of course a truncation of the full-order energy transfer term.
Nevertheless, a comparison with a DNS dataset obtained by Sillero, Jiménez & Moser
(2013, 2014), in which all three velocity components were well resolved, will be made in
the following. It will be shown that the essential feature of the large-scale in-plane energy
transfer can be well characterized by the present 2-D approximation.

The wall-parallel investigation seems to be another limitation, since the planar dataset
excludes the possibility of exploring the vertical energy flux, which has been inferred
to play a crucial role in the inner—outer layer interaction (Mathis, Hutchins & Marusic
2011; Cimarelli et al. 2015); but this is the first step towards a volumetric description. The
advantage, to our minds, is the avoidance of the ‘tricky’ issue of inhomogeneity, so that a
spectral analysis can be performed along two homogeneous directions, as have been done
in Mizuno (2016), Chandran et al. (2017) and Lee & Moser (2019). This approach is also
justified by other studies on scale interaction, such as Cimarelli et al. (2016) and McKeon
(2017), in which the wall-normal gradient terms are handled separately from those that
can be transformed into streamwise—spanwise scale space.

For an a priori test of energy transfer behaviour, the preliminary issue is to divide the
scale space into ‘resolved’ and ‘unresolved’ parts. Due to the strong inhomogeneity and
anisotropy of LSMs (Chandran et al. 2017; Kevin, Monty & Hutchins 2019), 2-D or 3-D
isotropic filters, which were commonly used to separate small scales from large ones (Xiao
et al. 2009; Wang et al. 2018a; Motoori & Goto 2019; Dong et al. 2020), cannot be applied
here. In the present work, we will use an anisotropic 2-D filter for scale separation. This
filter is based on an ‘optimal’ energy flux boundary, across which the maximum energy
flux occurs. As will be shown later, it is self-similar in the overlap layer and completely
encompasses the energy-bearing large-scale modes.

Finally, the statistical flow structures associated with energy flux events will be obtained
under different velocity gradient conditions. The key concept is to break the statistical
symmetry along the spanwise direction, which has not been taken into account in previous
studies (Piomelli e al. 1996; Natrajan & Christensen 2006; Hong et al. 2012; Dong et al.
2020). Recently, Kevin e al. (2019) have clarified the significance of the meandering
motion of LSMs/VLSMs in the log layer and above. Our analysis will demonstrate that
the wavy pattern of LSMs, other than streamwise aligned sweep and ejection motions
(Natrajan & Christensen 2006), contribute a significant portion of the interscale energy
transfer. Meanwhile, the in-plane energy transportation is also tightly related to the
asymmetric geometries of LSMs.
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The structure of this paper is as follows. The details of the 2-D PIV measurement, as
well as the supplemented DNS dataset, are described in § 2. Section 3 deals with the
construction of the related anisotropic scale filter via the ‘optimal’ energy flux boundary.
The statistics of interscale energy transfer and in-plane energy transportation, together
with the conditional-averaged flow field structures, will be presented in §§4 and 5,
respectively. A conceptual model relating large-scale energy transfer events to LSMs will
be formulated in § 6 with some concluding remarks.

2. Experimental set-up

The present experiment was conducted in a low-speed water tunnel in Beihang
University, whose main test section has a size of 18 m x 1.2 m x 1 m (length x height x
width). The free stream turbulence intensity of this facility is approximately 7, &~ 0.8 %
at a typical free stream velocity of Uy, = 0.5 m s~!. A hydraulic smooth acrylic flat plate
with length of 15 m, width of 1 m and thickness of 20 mm was vertically positioned in the
main test section, on the surface of which a canonical smooth-wall TBL was developed.
The leading edge of this flat plate was shaped into a 4:1 half-ellipse to prevent local
flow separation. A tripping wire with a diameter of 3 mm was glued on the working
surface at 0.4 m downstream of the leading edge. The measurement station located 12 m
further downstream, far enough to neglect the tripping condition (Schlatter & Orlii 2012).
Hereinafter, the streamwise, wall-normal and spanwise direction are denoted as x, y
and z, respectively. The corresponding instantaneous velocities are U, V and W and the
fluctuating components are u, v and w. The superscript (-)* represents a normalization by

the frictional velocity u, or the viscous length scale v/u,, and the overline (-) indicates an
ensemble average.

By varying the free stream velocity (Us, = 0.15, 0.34 and 0.52 m s™!), three frictional
Reynolds number, ie. Re, = u,6/v =~ 1200, 2400 and 3500, were tested. They are
indicated as case E1-E3. Figure 1 shows the wall-normal profiles of both the mean
streamwise velocity Ut (y™) and the streamwise velocity fluctuating intensity o (y™),
which were measured by a 1-D laser Doppler anemometry (LDA) (Dantec Flow Explorer,
Dantec, Denmark) with a probing diameter of 1.0 mm. Existing results of o (y™) obtained
by Sillero et al. (2013) (via DNS) and Osaka, Kameda & Mochizuki (1998), Hultmark
et al. (2013) and Willert et al. (2018) (via experimental measurement) at similar Re,
are superimposed in figure 1(b) for a comparison. Owing to the insufficient resolution
of the LDA, the inner peak is slightly underestimated, but . (y*) in the buffer region and
above agrees with those of previous studies within the measurement uncertainty. Table 1
summarizes the characteristic parameters of the TBLs, in which the local boundary layer
thickness 4§, the frictional velocity u, and the shape factor H were estimated by fitting
the measured U(y) profiles to the classical formulation of the composite velocity profile
(Chauhan, Monkewitz & Nagib 2009).

For each experiment case, 2-D PIV measurements were conducted in the wall-parallel
planes at four wall-normal heights, i.e. y/é§ =~ 0.03, 0.06, 0.12 and 0.24. With the lower

and upper bounds of the log layer being estimated as y* = 34/Re, and y/§ = 0.15,
respectively (Klewicki, Fife & Wei 2009; Marusic et al. 2013), these wall-parallel planes
spread from the upper bound of the buffer layer to the lower part of the wake region.
Eight synchronized CCD cameras (Imperx ICL-B2520M, Imperx, USA) amounted with
Nikkor 50 mm f/1.8D lens were arranged into a4 x 2 array to cover a FOV of AX x AZ =
636 x 268 mm?, equivalent to 3.28 x 1.48 for case E1 and 3.85 x 1.68 for cases E2
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FIGURE 1. Wall-normal profiles of (a) mean streamwise velocity and (b) streamwise fluctuating
intensity. Solid markers are obtained by LDA measurements and hollow markers by plan-view
PIV. Bold solid lines in panel (a,b) are profiles of DNS data of Sillero ez al. (2013, 2014). Dashed
lines in panel (a) represent the linear law and the logarithmic law, respectively. Dashed lines,
dotted lines and dash-dotted lines in panel (b) represent the experimental results of Osaka et al.
(1998), Hultmark ez al. (2013) and Willert ez al. (2018), respectively.

Case Uy 1) Ur Re; Rey H FOV Spatial res. TUoo/8 Tuy/é
ms™" (@m) @ms™hH (AX x AZ) (AxT|AZY)

El 0.15 0.202 0.006 1200 3000 1.35 3.2 x 1.45 1212 530 21.2

E2 034 0174 0.014 2400 5100 1.31 3.85 x 1.68 24|24 1410 58.1

E3 052 0170 0.020 3500 8550 1.28 3.85 x 1.68 32|32 2200 84.6

D1 — — — 1750 5650 1.36 46 x 2§ 714 — —

TABLE 1. Characteristic parameters of the experimental and DNS TBLSs studied here.

and E3. Each camera had a resolution of 2456 x 2048 pixels and an optical magnification

of approximately 0.0675 mm pixels—'. The spatial calibration of the imaging system was
taken by fitting second-order polynomials to the images of a customized grid-pattern
calibration plate with a size of 1 x 0.4 m. The FOV of neighbouring cameras had an
overlap of 10 mm to facilitate the velocity-field stitching in the post-process stage. As will
be demonstrated by both the instantaneous velocity fields in § 4.1 and the 2-D spectrum in
figure 2, no velocity discontinuity is seen in the overlapped FOV of neighbouring cameras.
Note that such a multicamera PIV configuration has been adopted by Cuvier et al. (2017)
and de Silva et al. (2014, 2018, 2020) in their studies on large-scale turbulent structures
in high Re regime. These well-conducted experiments have demonstrated the feasibility
of large FOV planar PIV in revealing the multiscale characteristics of wall-bounded
turbulence.

Hollow glass beads with a median diameter of 10 um and a density of 1.05 g mm~
were used as seeding particles. The illuminating laser sheet had a thickness of around
1 mm. It was emitted from a double-pulsed Nd: YAG laser generator (Beamtech Vlite-500,
Beamtech, China) with energy output of 500 mJ pulse™', and was directed toward

3
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FIGURE 2. Comparison of the premultiplied 2-D spectra of the in-plane fluctuating
velocity components at y/§ ~ 0.12 of all the studied cases: (a) kik,®@,,(1:/8, A;/8);
(b) kyk; Dy (A /8, A;/5). Here, @y, are normalized by their individual peak value @4y .
In panel (a,b), solid contour is for case E1, dotted contour for case E2, dashed contour for case
E3 and colourmap for case D1. The contour levels are from 0.1 to 0.85 with a gap of 0.15. Solid
straight line denotes A, = A, and dashed straight line is A, = /lf /5. The ‘optimal’ boundary B
to be discussed in figure 3(a) is superimposed as a bold solid curve in panel (a).

upstream by a reflective mirror being positioned 0.8 m downstream of the end of the FOV.
Details about the special treatment of the optical lens to maintain the desired laser-sheet
thickness over a relative large streamwise span and the precise positioning of the laser sheet
along wall-parallel planes, as well as the minor favourable pressure gradient condition
due to the long developing distance of the TBL, can be found in Wang, Pan & Wang
(2018b). In each case, 3600 pairs of particle images were recorded at a repetition rate of
5 Hz, corresponding to a normalized sampling duration of TU,/§ ~ 530-2200 or an eddy
turnover time of Tu, /§ ~ 21.2-84.6.

The 2-D in-plane velocity fields were calculated from particle image pairs via a graphics
processing unit (GPU) accelerated optical flow solver based on Lucas—Kanade algorithm
(Pan et al. 2015). The nominal interrogation window was 48 x 48 pixels, corresponding to
a spatial resolution of 12-32 wall units/velocity vector. With the maximum straddle-image
particle offset being kept as 14—16 pixels in the image plane, the relative error of the
velocity measurement was estimated to be around 1 %. The Kolmogorov length scale
in the log layer is estimated as n* = (ky*)!/* (Stanislas, Perret & Foucaut 2008).
The PIV resolution is approximately 5-9n/velocity vector at y/§ ~ 0.12 and relaxes to
4-Tnlvelocity vector at y/§ ~ 0.24. Although the dissipation scale is not well resolved, the
present spatial resolution is comparable to several recent multicamera PIV measurements
(de Silva et al. 2014, 2018; Cuvier et al. 2017; Zhu et al. 2018). On considering the fact
that the minimum scale ‘optimal’ energy flux boundary is far beyond # (to be presented in
§ 3), the PIV resolution is adequate for the current research purpose of addressing energy
transfer associated with large scales. On the other hand, the thickness of the laser sheet
is approximately 2-5n (6-20 wall units), two orders smaller than the boundary layer
thickness. Furthermore, the laser sheet is placed beyond the upper bound of the buffer
layer, where the wall-normal gradient of both U and o, is insignificant if compared with
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that in the vicinity of the wall (see figure 1 for illustration). Therefore, the effect of the
wall-normal averaging across the laser sheet thickness is regarded as mild.
Owing to the large FOV, each PIV frame contains approximately 1 x 10° velocity

vectors. The variation of local U and o, within a streamwise span of 3.88 is less than
5 %. This infers the quasi-parallel (and in-plane homogeneity) condition of the mean flow
for the present FOV. Recalling that de Silva et al. (2014) used 1650 side-view snapshots,
each of which contained 1.5 x 10° velocity vectors, for statistical analysis, while Cuvier
et al. (2017) acquired 30 000 side-view velocity fields with 5.5 x 10° instantaneous vectors
in their measurement of a TBL under adverse pressure gradient. In the present work, each
experimental case contains 3600 plan-view frames, the total velocity vectors at each flow
layer is 3.6 x 108, all of which are used for statistical analysis. It has been checked that
the convergence of the third-order moments of # and w can be roughly achieved via 1000
statistical independent frames. An estimation of the uncertainty of the third-order statistics
by bootstrap analysis, following the procedure proposed by Hong, Katz & Schultz (2011),
is approximately 5 % at a confidence level of 95 % for the whole dataset ensemble. As
shown in figure 1, the yielded U and o, at the middle x station of the FOV presents
reasonable agreement with the LDA results. Moreover, as will be shown in § 3.2, the
probability density function (p.d.f.) of the energy transfer events of the PIV case collapses
well with that of the reference DNS case, which further verifies that the quality of the
present PIV dataset is adequate to address the statistics and characteristics of energy
transfer events that are associated with LSMs.

A DNS database of a spatially developing TBL with zero pressure gradient (known
as ZPQ) is used as a supplementation. It was obtained by Sillero et al. (2013, 2014),
and serves as a benchmark for 2-D truncated experiment cases by providing an access
to full-order velocity gradient tensors. However, it is noted that the DNS case has a
comparably lower Reynolds number. Here, 29 volumetric velocity fields in this database
were tailored into an ensemble of 232 smaller volumes with a size of AX x AY x AZ =
45 x § x 26, in the middle of which the nominal Reynolds number is Re, = 1750. This
dataset is denoted as case DI. Its characteristic boundary layer parameters are listed in
table 1, and the corresponding U and o, profiles are shown in figure 1.

Figure 2 compares the premultiplied 2-D spectra of u and w, i.e. k.k,®,,(1,/5, 1,/3)
and k.k,®D,,,(1,/8,4,/8), at y/§ ~ 0.12 of all the studied cases (case E1-E3 and case
D1). The spectra of streamwise and spanwise velocity, ®@,, and ®,,,, are defined as (uu*)
and (ww*), where & and w are 2-D Fourier transform of u(x, z) and w(x, 7). Note that
both spectra are calculated from in-plane fields without invoking Taylor’s hypothesis. In
general, the outer-scaled k. k. ®,, and k. k.®,,, are less sensitive to Re, in the intermediate
scale of A, ~ 0.26 ~ 6 and A, =~ 0.1-0.55. This observation provides a justification for
the accuracy of the present PIV measurement. The slight offset of the spectral peak in the
experiment contours from the DNS ones is attributed to both the insufficient resolution of
larger scales (4, > 38) and the different tripping conditions. The scaling of 4, = A, (bold
solid lines in figure 2) and A, = A2/5 (bold dashed lines) clamp the plateau region of the

k.k,®,, spectra in between, similar to the observation in del Alamo et al. (2004). The
linear scaling of A, = A, also well characterizes the ridges of the k.k,®,,, spectra, which
indicates a constant aspect ratio of the energy-bearing w modes. This is consistent with the
so-called y-scaling law of 1-D spectrum of wall-parallel velocity components (Agostini &
Leschziner 2017; Baars, Hutchins & Marusic 2017) that are believed to be attributed by
wall-attached eddies. Due to the limited FOV (AX = 3.2-3.84), scales associated with
VLSMs are not fully resolved in case E1-E3. This is a practical limitation when obtaining
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a 2-D spectrum via PIV measurement. Nevertheless, it is stressed that the ‘optimal’ energy
flux boundary (bold yellow lines in figure 2, to be explained in § 3) is on the small-scale
side of the energy peak of k. k.®,,. Therefore, the energy flux across this boundary is
expected to be less sensitive to structures larger than the extent of FOV. This issue will be
further addressed in appendix C by evaluating the DNS dataset truncated at various FOV.

3. Scale decomposition for energy transfer related to LSMs
3.1. ‘Optimal’ spectral energy flux boundary

Most of the previous studies used a small-scale isotropic filter (17,,. ~ O(10?)) for scale
separation (Piomelli ef al. 1996; Natrajan & Christensen 2006; Dong et al. 2020). This
is not suitable for the purpose of investigating the energy transfer behaviour associated
with larger-scale structures. Therefore, we revisit the inertial energy transfer term in the

evolution equation of TKE in shear flows, whose formulation in spectral space is

D (k,, k., Ay ] duw . ouu”
( Z y):_(u*v+uv*) ( )__<u* I/iu] Iy ou>

at 2dy 2\ ax ' ax
P 7
d (po+p o\ v [ | u o
S (el (e A VY it B (e A e A A 3.1)
dy 2p dy? [ 2 \dx; dx;  dx; dx;
) —
1, L. ;

This formulation can be derived by applying a 2-D Fourier transform to the evolution
equation of the in-plane two-point velocity correlation function for shear flows (Monin
& Yaglom 1975). In (3.1), @ is the spectral TKE, i.e. the density of TKE at a set of

wavenumbers (k,, k) and a particular flow layer of y, (T) indicates a variable in 2-D
spectral space with the dependent variables k,, k; and y being omitted, (-)* is the complex
conjugate and (-) denotes an ensemble average. On the right-hand side of (3.1), P is the
turbulence production term, T is the inertial transfer term caused by turbulent convection,
f"p is the fluctuation-pressure interaction term, and f"v or & are the viscous diffusion or
dissipation term, respectively.

Note that 7 is the only term that exclusively includes the effect of turbulent fluctuation.
It is actually a summation of nine components, i.e.

3
T (ke k) =) Ty (kes k). (32)
ij=1
For the present wall-parallel dataset, only four components with i, j =1 and 3 are

kept. This enables us to reformulate ﬁ-j in a sense of triadic interaction between three
wavenumbers &, k" and kK — kK’ (Monin & Yaglom 1975), i.e.

i-,-(kx,ka=Re<Zik,a;‘<kx,kz>a,<kx—k;,kz—k;>ai<k;,k;)>, ije(l.3). (33)

KK,

z

Such a formulation implies that the exchange of scale energy in a wall-parallel plane by
turbulent motion is embodied as the energy flux due to triadic-wave interaction, similar to
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FIGURE 3. (a) In-plane energy transfer spectrum fxz(/lx/& A;/8) at y/§ ~ 0.12 in case E3.
Bold dashed line shows the boundary between the energy donor and energy recipient modes
at y/§ ~ 0.12, while light dashed lines indicate the corresponding boundaries at other flow
layers, i.e. y/§ ~ 0.03, 0.06 and 0.24. The solid line C is an arbitrary path of the energy transfer.
(b) Wall-normal variation of the absolute value of the total Tz or T integrated over the energy
donor or energy recipient modes, which are separated by the zero-crossing boundary B shown in
panel (a). The upper half-plane is for [/ |]A";{Z|7| dk, dk; in case E3, and the lower half-plane for

If |+~ dk, dk; in case D1.

the scenario in homogeneous and isotropic turbulence (Cardesa, Vela-Martin & Jiménez
2017). Note that this form cannot be obtained if the components associated with the
vertical gradient (with j = 2) in (3.2) are included.

Here, we define the in-plane energy transfer term as

Txz(hke k) =Y Tytke k), inj € (1,3}, (3.4)

ij

which measures the rate of change of the spectral TKE (without v component) owing to
u and w component turbulent fluctuations in the x—z plane. The spectra of f"xz(kx, k.)
present similar patterns among all the studied wall-parallel planes (y/é = 0.03-0.24).
One example at y/§ = 0.12 in case E3 (with Re, = 3500) is given in figure 3(a), which
shows that Ty, (k,, k.) is characterized as one positive large-scale patch and one negative
small-scale patch divided by a zero-crossing line B (bold dashed line in figure 3a). These
two patches represent the energy donor modes and energy recipient modes (Lee & Moser
2019), respectively, and are consistent with the formal concept that on average large-scale
eddies lose energy, while small-scale fluctuations gain energy.

The integration of f"xz(kx, k;) in the whole scale space is close to zero for all the
investigated flow layers. This can be evidenced by figure 3(b), in which the magnitudes

of [ fr 0 |Ty,| dk, dk, are almost identical to that of f fT <0|sz|dk dk,. Such an
observation seems to be in accordance with the quasi-local assumptlon of the energy
cascade. However, figure 3(b) also shows that when both the v component and the

vertical gradient are taken into account in the full resolved f’, slight imbalance between
L0 |T| dk, dk. and [ Tizo |T| dk, dk, appears in the log layer and below of case D1
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(with Re, = 1750). This highlights the contribution of the wall-normal turbulent motion
on the inertial energy transfer (Cimarelli et al. 2016; Lee & Moser 2019). Nevertheless,

the overall level, as can be estimated by the difference between f f?zo If"l dk, dk, and

[l |T| dky dk,, is relatively small if compared with that of the in-plane energy
transfer. This provides a justification for neglecting the wall-normal energy transfer as
a leading-order approximation in the present study.

By superimposing the zero-crossing boundary B onto the @, spectrum (in figure 2a), it
is clearly seen that the energy-bearing large scales (with spectral peak at A, ~ 2§ and 4, ~
0.568) reside in the positive Ty region. This is consistent with previous observations that
the spectral peak of the turbulent production term locates inside the energy donor modes
(Mizuno 2016; Cho et al. 2018; Lee & Moser 2019). Denoting the minimum streamwise
and spanwise length scale of B as A%, and A%, respectively. Figure 3(a) shows that A% in
case E3 increases from 0.046 to 0.126 as the flow layer elevates from y/é ~ 0.03-0.24;
in contrast, A%, only varies from 0.158 to 0.28. Figure 15 in appendix A further shows that
for all the studied cases, A%/§ is quasi-linearly proportional to y/§ across a wide range of
y, while the variation of A%)/§ in the log layer is mild.

The zero-crossing boundary B in the Tvz spectrum is regarded as the ‘optimal’ energy
flux boundary, across which the spectral energy flux is maximum. As illustrated in
figure 3(a), this can be visualized by drawing an arbitrary path C in the 2-D wavenumber
space from the origin (0, 0) to one set of (k,, ;). The net scale energy transferred from
larger scales to (k,, k.) along C is defined as the following curvilinear integral:

=)
[, 1) = f T (ks k) dr. (3.5)

=(0,0)

It is easy to see that I1 reaches a maximum when (k,, k,) falls on B. In the following
analysis, this ‘optimal’ energy flux boundary is used as the cutting-off threshold of a 2-D
sharp-edge filter to separate large-scale modes from smaller ones at each flow layer. The
physical significance of such an anisotropic filter is that the yielded net energy exchange
is the most intense in an ensemble-averaged sense, as the ‘large’ and ‘small’ scales
are actually the energy donor modes or energy recipient modes in the energy transfer
spectrum.

3.2. Statistics of energy transfer events

In order to explore the relationship between energy transfer and LSMs, the instantaneous
energy transfer event should be properly defined at first. The evolution equation of the
‘resolved’ instantaneous TKE in physical space is

90 (x,z,y) _dU) _duu; d (py ¢*0 9 di,
— = —a—— — —— | = V— —Vv——, (3.6)
ot dy dx;  dy \ p dy? 0x; 0x;
—_— — .
P T T, T, £

in which () denotes those filtered variables including only ‘resolved’ scales and 0=
u;u;/2 (with i = 1, 3) is the ‘resolved’” TKE. The terms on the right-hand side of (3.6)
correspond to those in (3.1) in spectral space.


https://doi.org/10.1017/jfm.2020.777

https://doi.org/10.1017/jfm.2020.777 Published online by Cambridge University Press

906 Al14-12 W. Wang, C. Pan and J. Wang

According to Piomelli ez al. (1991, 1996) and Natrajan & Christensen (2006), the inertial
transfer term 7' can be decomposed as follows:

- _ﬁiaﬁ;ﬁj _ (ﬁiaﬁiﬁj n Et,-a(bﬁtj — ﬁiﬁj))
axj 8)Cj 8)6]'
BQﬁj ol (ﬁ;ﬁ] - ﬁiﬁj) N LT
( axj + an (u uj " u]) ij ( )

In (3.7), the first two terms on the second line represent the large-scale and subgrid-scale
diffusion terms, respectively, while the third term is essentially the same as the subgrid
dissipation term, i.e. £sgs, that needs to be modelled in large eddy simulations. Recalling

that 7 is the instantaneous counterpart of T being integrated in the large-scale side of the
‘optimal” energy flux boundary B; therefore, it accounts for the effect of triadic interaction
among all the scales (as shown in (3.3)). However, previous works (Piomelli ef al. 1996;
Liao & Ouellette 2013) have shown that only those scale interaction forms represented
by eggs are responsible for the net energy exchange between ‘resolved’ and ‘unresolved’
scales, which is the reason that 455 is named as subgrid energy flux. In contrast, the
large-scale and subgrid-scale diffusion terms play a role of redistributing large-scale
energy in physical space through turbulent convection.

Following Piomelli et al. (1996), we define instantaneous in-plane spatial energy flux as
I1,, instantaneous interscale energy flux as ITyss and their sum as the total energy flux I7,
ie.

aQm; i (it — ity .
I, = , ,je{l,3}, 3.8
4 ;<8xj+ o i,jefl,3) (3.8)
0
HSGS=Z_(uiMj_ui j) a, i,je{l,3}, (3.9)
i J
H - Hd+ Hscs. (310)

Note that the summation convention is not applied in (3.8)—(3.9), and the indexes (i, j) only
account for wall-parallel dimensions. Tests on the DNS dataset given in appendix A show
that for the present scale cutting-off boundary, the in-plane components (with i, j € {1, 3})
dominate over the vertical ones (with i or j = 2) in the full-resolved I1sg; however, the
contribution of the latter becomes non-negligible when a small-scale isotropic filter is
used for scale separation (see figure 16). This justifies the experimental attempt of using
only in-plane components to characterize interscale energy flux that are associated with
energy-bearing scales. On the other hand, the contributions of both in-plane and vertical
components to I, are insensitive to the scale filter (see figure 17).

The p.d.f.s of I1, IIsgs and I1, are analysed first. All the studied flow layers have
similar p.d.f. distributions; therefore, only the results at y/§ ~ 0.12 in case E3 and case
D1 are illustrated in figure 4. Satisfying collapses are observed between case E3 and
case D1 when I1, I1sss and 1, are normalized by their own root mean squared (known
as RMS) value. The p.d.f. of I1; (shown in figure 4¢) is symmetrical about the origin,
indicating a zero net in-plane energy flux, i.e. (I1,) = 0. It demonstrates that 1, does
not alter the overall level of energy but only redistributes energy in space, consistent
with the homogeneous condition in wall-parallel dimension (when only the in-plane
turbulent motion is concerned). In contrast, asymmetry between forward scatter events
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FIGURE 4. Premultiplied p.d.f. of (a) I1, (b) I1sgs and (c) I1; at y/& ~ 0.12 for both case E3
(discrete bars) and case D1 (solid and dashed curves). Positive and negative events are plotted on
the same side to highlight the symmetry condition. Owing to the premultiplication, the height of
each bar (or curve segment) measures the relative contribution of the corresponding event to the
net energy flux.

(with positive [1gss) and backward scatter ones (with negative [Tgss) iS seen in the
p.d.f. of ITgss (in figure 4b), which is inherited by the p.d.f. of IT (in figure 4a). The
ensemble-averaged (ITsgs) and (I1) are both positive, consistent with the formal energy
cascade and the fact that ‘resolved’ scales are actually those energy donor modes in the

in-plane energy transfer spectrum Tz ke, k.).

4. Interscale energy transfer structures

In this section and the next one, the planar flow structures associated with both interscale
energy transfer events (I1sgs) and in-plane energy transportation events (I1,) will be
explored individually.

4.1. Visualization of I1sgs event

Figure 5 plots one snapshot of u(x, y), ITsgs(x, y) and IT,(x, y) at different flow layers
in case E3 for a qualitative visualization. Hereinafter, only the results of case E3 are to
be presented. appendix D deals with the Re effect. It will be shown that for the present
studied flow regions, the characteristics of interscale energy transfer and in-plane energy
transportation are less dependent on Re (with Re, = 1200-3500).

As shown in figure 5, streaky-like large-scale u structures resembling LSMs are evident
from the buffer layer to the lower part of the wake region. They are highly sinusoidal in
shape, and their spanwise width presents a significant growth with the increase of y. Note
that the size of these typical & structures is fairly large compared with the ‘optimal’ energy
flux boundary; therefore, their geometries will not be significantly biased by the low-pass
sharp-edge filtering.

As for IIggs, its distribution is more trivial and chaotic in the near-wall region (in
figure 5a), but tends to be more compact and coherent in higher layers (in figure Se,g). Two
types of I1gss events are seen. Firstly, fragmented regions of I[Tgss with alternating sign
aggregate into a pattern of staggered cluster (indicated by dashed circles in figure Sc,e,g).
A mutual cancellation of 11 in the cluster yield only weak (if not zero) net interscale
energy flux. Such a pattern is similar to the spinwheel-like pattern of alternating lobes of
+TITgss in 2-D turbulence, which were found to be related to strong rotational motions by
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1.0

x/8

FIGURE 5. Instantaneous field of u« (filled contours), ITsgs (isolines in a,c,e,g) and 1, (isolines
in b,d, f,h) at (a,b) y/é ~ 0.03, (¢,d) y/§ ~ 0.06, (e,f) y/5 ~ 0.12 and (g,h) y/5 ~ 0.24 in case
E3. In panel (a,c,e,g), solid (or dashed) isolines indicate forward (or backward) scatter events
with ITsgs = £1.50 7455, while clusters of forward and backward scatter events are marked
by dashed circles, arrows highlight forward scatter events at spanwise interfaces of high- and
low-momentum regions, and solid circles highlight those at streamwise interfaces. In panel
(b,d,f.h), solid (dashed) isolines indicate positive (or negative) energy transfer events with
I, = £1.50,, solid circles indicate pairs of +1T; events inside low-momentum LSMs.

Liao & Ouellette (2013). Secondly, isolated ITsss events scatter in the flow field, among
which the population density of positive events are distinctly higher than those of negative
ones. It is this kind of event that contribute to the asymmetry of the p.d.f. of ITgss.

A careful inspection shows that these isolated [lg;s events are highly correlated
with intense local velocity gradients along either the spanwise direction or streamwise
direction, i.e. dut/dz or dit/dx. The former case (arrow-indicated regions in figure Sa,c,e,g)
usually appears on the spanwise interface between du structures, while the latter case
(regions inside solid circles in figure Se,g) prefers to appear in-between streamwise-aligned
u structures with alternating sign. Note that the latter case has been seen in the x—y plane
by Natrajan & Christensen (2006), who attributed it to the opposing Q2 and Q4 events
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FIGURE 6. The 1-D cumulative spectrum of interscale energy flux Zx ITsgs with respect
to flow conditions x in case E3. (a) x =u, (b) x = du/dz and (¢) x = du/dx. Solid line,
v/8 ~ 0.03; dashed line, y/§ ~ 0.06; dot-dash line, y/é ~ 0.12; and dotted line, y/§ ~ 0.24.
The group of profiles marked by I7 SJ“GS, Il or IlsGs represent the cumulative contribution
from forward scatter events, backward scatter events or all of the events, respectively. Velocity
gradients conditions are normalized by their root mean squared value, the same in the following
figures.

induced by hairpin vortices. Nevertheless, the former one, which seems to have higher
occurrence probability in the log layer and above, has not been reported before.

4.2. Cumulative spectrum of Ilsgs events

For a quantitative characterization of the above observation, cumulative energy flux
Zx ITscs under particular flow conditions, i.e. x = i, dut/dz and dit/dx, are shown in
figure 6 for case E3 to evaluate their individual contributions to the net interscale energy
flux (I1scs). Additionally, +=1Tss events are differentiated in the add-up process to indicate
their relative contributions. The yielded values are denoted as ) I and > s
respectively, and are also shown in figure 6. Since 0w/dx; are generally smaller than
dut/dx;, they are removed from the candidate velocity gradient conditions to be examined.
Meanwhile, the condition of u is reserved to quantify the correlation between [Tsss and
LSMs.

Figure 6 leads to several interesting observations. Firstly, the profiles of ). ITsss(it)
(in figure 6a) centre around u# = 0 with a slight left-offset. Such an asymmetry is
seen to be inherited from that of ) . ITg;¢(it) whose peaks locate at it/o; ~ —0.3. In
contrast, Y . ITy;(it) keeps a satisfying symmetry. The high magnitude of Y. ITs;s
around u# = 0 suggests a weak correlation between the core region of LSMs and [Tsgs
events. Secondly, ) .. Jo: 11, o:5(01/92) presents a bimodal profile (in figure 6b), except for
the highest flow layer (at y/§ ~ 0.24) where a plateau, instead of two isolated peaks,
appears in the range of (du/dz)/o (0u/dz) € [—1, +1]. This bimodal pattern, together
with the skewness of > . ITg;¢(it) towards the +i side, provides a statistical support for
the preferential alignment of forward scatter events along the flanks of low-momentum
LSMs, as has been visualized in figure 5(a,c,e,g) (as arrow-indicated regions). Finally,
the profiles of ) . Jox IIsgs(0i1/0x) (in figure 6¢) present an asymmetric bimodal pattern
with two peaks locating at (duz/9dx) /o (du/dx) ~ 0.5 and —1.5, respectively. This pattern
is jointly contributed by quasi-symmetric single-peak profiles of ) Jax Hss(du/dx) and
negative-skewed profiles of 3., I[Tg;(3i1/dx), the latter of which is consistent with the
visualization that forward scatter events can be found in the middle of streamwise-aligned
positive and negative LSMs (bold solid circles in figure Se,g) where duz/0x < 0.
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FIGURE 7. The 2-D cumulative spectrum of (a) positive interscale energy flux events ) IT ;_GS’
(b) negative events Yy IT sgs and (c) all of the events > Iggs in the phase space of
(0u/ox, du/dz) at y/§ ~ 0.12 in case E3. Each spectrum is normalized by its peak value. The
subpartitions marked in panel (c) are defined in table 2.

The dependency of ITgss on both di1/9x and 91/ 9z is further considered by constructing
a bivariate cumulative spectrum, i.e. ZX ITges(x) with x = [0u/dx, du/dz]. Hereinafter,
X 1s omitted in the 2-D summation operator Z for simplicity Here, u is not regarded as
one of the joint conditions due to its weak correlation with ITg., as has been shown in the
univariate cumulative profiles in figure 6(a). Figure 7 shows ) Iz sos and Z Iggs in the
phase plane of (du/dx, dit/dz) at y/8 ~ 0.12 in case E3, while figure 19 in appendix D
will summarize the cumulative spectra of ) ITs5(d11/dx, di1/9z) in all the studied cases
to evidence both a Re-independency and a flow-layer insensitivity.

The 2-D contours of both Y ITg;¢ and Y [Ty (in figure 7a,b) are symmetric in the
dit/dz dimension but asymmetric in the 9i/dx dimension. Two peaks in Y g both
locate at the +0du/dx side and straddle on each side of the du/0z axis. In contrast,
> Iy peaks at —diu/dx side with di/dz = 0. All these observations are consistent
with the findings in the univariate cumulative profiles (in figure 6), which can be
obtained by integrating the 2-D contours along one dimension. More interestingly, the
contour of Y ITgss(di/dx, dit/dz) (in figure 7c) presents a ‘pacman’ pattern; namely,
positive ) ITsss dominates the periphery of the phase plane and encompasses the central
negative »_ ITsgs region, while an extra ‘bean’ of negative ) ITsgs appears around
(0u/ox)/o(0u/dx) =2, (du/dz)/o(du/dz) = 0. Note that such a complicated pattern
cannot be easily inferred from the univariate cumulative profiles.

To measure the contribution of different velocity gradient conditions to the net interscale
energy flux, as shown in figure 7(c), the phase plane of (dit/dx, dit/dz) is divided into two
groups of subpartitions, i.e. F1-F3 for net forward flux and B1-B2 for net backward flux.
The F1 (or B2) is dominated by forward (or backward) scatter events owing to strong
negative (or positive) dut/dx; F2 and F3 are the subpartitions where large magnitudes of
ou/dz and du/dx jointly contribute to the net forward flux; B1 locates in the centre of the
phase plane, it indicates the dominance of backward scatter events that are independent
of in-plane velocity gradient conditions. Table 2 lists the contribution of each subpartition
to the total net flux (I1sss) at y/8 ~ 0.12 in case E3, the area ratio occupied by each
subpartition in the wall-parallel plane is also included. The corresponding results in all the
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Subpartition —u / < ) % o (au) (ITsgs) contribution  Area ratio
0x 0z 0z
F1 [—o0, 0 5] [-0.5,0.5] 21.7 % 12.7 %
F2 [—o0, —0.5] [—o0, —0.5], [0.5, +00] 48.1 % 16.4 %
F3 [—0.5, +00] [—o0, —0.5], [0.5, +00] 33.9% 36.6 %
Bl [—0.5,0.5] [—0.5,0.5] —0.8% 19.6 %
B2 [0.5, +o0] [—0.5,0.5] —2.9% 14.7 %

TABLE 2. Subpartitions in the phase plane of (du/dx, du/dz) at y/8 ~0.12 in case E3.
The percentage of the contribution to (ITsgs) and the spatial area of each subpartition are
also listed.

studied cases are summarized in figure 20 in appendix D. Compared with F'1 and F3 being
characterized as strong diz/dx condition, F2 has the highest contribution to (I7sss) but a
small area fraction. This observation highlights the correlation of intense forward scatter
events with strong spanwise shear diz/dz. On the other hand, among two subpartitions with
negative Y _ ITsgs, B1 has a higher contribution to (ITsss), but is still one order smaller than
those of F1-F3.

4.3. Statistical flow structures related to Ilsgs

Conditional-averaged flow structures associated with interscale energy flux under different
velocity gradient conditions can be approximated by linear stochastic estimation (LSE)
(Adrian & Moin 1988), i.e.

(u (x+r,z4+r) H;’GS)

Ry (s 72) = . : (4.1)
ngGS
(”§Gs> = Rynm,unsycs- 4.2)

In (4.1), Rynm.u is the cross-correlation coefficient between u and I'[SVGS, u = [u, w] are
in-plane velocity vectors without scale filtering, and IT§; denote those events whose
velocity gradients belong to one of the subpartitions of the du/dx—0du/9z phase plane (as
shown in figure 7¢ and table 2), i.e. y € {F1-F3, B1-B2}. In (4.2), (u};s) is the averaged
velocity field subject to the considered condition IT{;. It differs from R}; _, by a factor
of IT{;. Without loss of generality, the magnitude of [Ty in (4.2) is set to be £1 for
forward or backward scatter events. Moreover, +1155 events are not differentiated in LSE
since the net energy flux is mainly concerned here.

Figure 8 shows the statistical flow structures (uyss) belonging to each of five
subpartitions (F1-F3 and B1-B2) at y/§ ~ 0.12 in case E3. The averaged flow structures
in F1 and B2 (figure 8a,d) form a pair of mirror images that are anti-symmetric to
each other. Both structures are characterized as a pair of streamwise-aligned LSMs
with opposite signs of u component fluctuating velocity. The probing position locates at
the interface between the upstream and downstream LSMs where |dit/dx| is the local
maximum. Note that the pattern of (uk’) is frequently observed in instantaneous flow
fields (regions in solid cycles in figure 5g). It is consistent with existing observation in
the x—y plane, i.e. active scale energy transfer events prefer to reside on the interface
of Q2 and Q4 structures (Piomelli ef al. 1996; Carper & Porté-Agel 2004; Natrajan &
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FIGURE 8. Statistical flow structures (u’S’GS) obtained by LSE with flow conditions in different
subpartitions in the phase plane of (dut/9x, dit/9z) (see table 2) at y/§ &~ 0.12 in case E3: (a) F'1;
(b) B1; (¢) F2; (d) B2; (e) F3. Vectors are normalized to be unit length for a better visualization.
Here, I1 gGS in (4.2) is set to be 1 in panel (a,c,e) and —1 in panel (b,d). The contour levels are
from —1 to 1 with a gap of 0.2.

Christensen 2006; Dong et al. 2020), when regarding the observed pattern of (u%l,) as
intersections of large-scale Q2—Q4 structures at a wall-parallel plane.

What has not been observed in previous studies is the statistical structures associated
with [1gss events in F2 and F3. As shown in figure 8(c,e), the local velocity
gradient contributing to forward interscale energy flux is seen to be strongly related
to meandering-like distortion of one low-momentum LSM, on the flank of which
another high-momentum LSM also presents a synchronized sinusoidal wavy pattern.
High magnitude of dii/dz is generated at the shearing interface between low- and
high-momentum LSMs, while the d#z/0x component is attributed to these structures’
wavy geometries, which are comparably mild in the case of F3 due to the imposed
probing condition of weak duz/dx there. The instantaneous counterparts of these statistical
structures are frequently seen in figure 5(a,c,e,g) (as arrow-indicated regions). Note that
only those events with positive sign of diz/dz are included in the calculation of R}'MNI and
(uys). The LSE in the negative di1/9z side of F2 and F3 yields statistical structures that
mirror figure 8(c,e) approximately r, = 0. It is stressed that such an operation breaks the
spanwise symmetry, which will smear out the wavy pattern of individual LSMs to form
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a straight strip pattern in the unconditional cross-correlation map, as has been widely
seen in previous research (Tomkins & Adrian 2003; Hutchins & Marusic 2007). To our
knowledge, the meandering feature of LSMs is an important factor to create forward
scatter, since the subpartitions of F2 and F3 jointly contribute approximately 80 % of
the net (I1555) (as shown in table 2).

Finally, the statistical structure in Bl is characterized as a high-momentum LSM
flanked by two low-momentum ones. The flow pattern around the probing point is
rather complicated. Recalling that in B1, the in-plane velocity gradient is insignificant,
while )" ITg ¢ is comparable to Y ITg;s (shown in figure 7a,b). It can be inferred that
the complicated pattern of (ub’g) is related to the staggered [sgs clusters shown in
figure 5(a,c,e,g) (in bold dashed circles), in which the mutual cancellation between forward
and backward scatter events results in less than 1 % net contribution to (ITssg).

5. In-plane energy transportation structures

Unlike interscale energy transfer, less attention was paid to the in-plane energy flux term
I1, in the past. One of the reasons is that this part of energy transfer does not affect the total
level of resolved TKE in large eddy simulations. Nevertheless, I7, changes instantaneous
energy distribution in spatial space, which is an essential factor to characterize dynamical
evolution of resolved TKE. In the present context, it will also infer the role of large-scale
structures on spatial energy transportation. Therefore, this section focuses on a close
inspection of in-plane energy flux events via a methodology similar to that used in § 4.

5.1. Visualization and cumulative spectrum of I1,

Instantaneous snapshots shown in figure 5(b.d, f,h) visualizes a spatial coherence between
LSMs and 71, events. Namely, pairs of 11, events tend to reside inside LSMs where the
sinusoidal wavy pattern is prominent (see elliptical regions in figure 5b.d, f,h for instance).
Such a distribution implies the role of velocity gradient associated with LSMs on 1,
events.

To testify to this visualization, figure 9(a—c) shows the profiles of cumulative I1,
as a function of the condition of u, du/dz and diu/dx, respectively. In the profiles of
Y. I1; (i), two peaks appear on both sides of i axis, in distinct contrast to the observation
in figure 6 that ) . I154(i1) peaks around & = 0. It suggests that 1T, events prefer to
align with the centre of LSMs, which can be further inferred by the symmetric profiles of
Zau/az IT5(di1/dz) peaking at dii/dz = O (in figure 9b). On the other hand, the shape of
Y i 1a. T1a(01/07) and > . I, (i) jointly suggests that in general, ‘resolved’ TKE carried
by LSMs are transported from the central region (with intense |u| but weak 0di1/9z) to the
periphery part (with mild |u| but strong di1/9dz). Lastly, figure 9(c) shows that the sign of
ou/dx plays a decisive role in determining the direction of the net flux, i.e. positive di/dx
corresponds to positive ) - sa. [1a and vice versa. This aspect will be addressed in detail
in§5.2.

The 2-D cumulative spectra of Y IT; and Y I, in the phase plane of (i1, dit/dx)
are shown in figure 10(a—c), respectively. Note that di1/dz is excluded from the probing
condition due to its insignificant correlation with I7; (shown in figure 95). Both ) IT j and
> I1; present a ‘cashew nut’ shape in the i1, dii-dx plane but bend towards opposite side
of the di1/dx axis. They jointly lead to a fragmented pattern of the net flux spectrum ) [T,
with two losing-energy subpartitions (L1-L2) and three gaining-energy ones (G1-G3) (as
illustrated in figure 10c). Except for G3 that has minor i, the rest of the four subpartitions
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FIGURE 9. The 1-D cumulative spectrum of in-plane energy flux Zx I1; with respect to
flow conditions of yx in case E3. (@) x = u, (b) x = du/dz and (¢) x = du/dx. Solid line,
v/§ ~ 0.03; dashed line, y/5 &~ 0.06; dot-dashed line, y/§ =~ 0.12; and dotted line, y/§ =~ 0.24.

The group of profiles marked by H;, I1; or I, represent the cumulative contribution from
positive, negative and all of the events, respectively.
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FIGURE 10. The 2-D cumulative spectrum of (a) positive in-plane energy flux events > 1T,
(b) negative events > IT 4 and (c) all of the events > I, in the phase space of (i, dit/dx) at
y/8 =~ 0.12 in case E3. Each spectrum is normalized by its peak value. The subpartitions marked
in panel (c) are defined in table 3.

occupy four corners of the phase plane, indicating the mutual effect of du/dx and u on
the net in-plane energy flux. Table 3 further shows that L1 and G2 have more intense
contributions to ([1;) than their anti-symmetric counterparts of L2 and G1; meanwhile,
the contribution from G3 is non-negligible.

5.2. Statistical structures related to I,

The LSE is again invoked to estimate conditional-averaged flow structures (u;) that are
related to IT] events with y belonging to five subpartitions (L1-L2, G1-G3) defined in
figure 10(c) and table 3. The (u);) are calculated as

(w(x+rez+r)I))

Ry, (rer) = : : (5.1)
m;
(u)) = R, 11 (5.2)
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Subpartition % / o (g%:) u/o (i) (IT;) contribution  Area ratio
L1 [0, +o0] [0.5, +00] 48.3 % 16.1 %
L2 [0, +o0] [—o0, —0.5],[0.5, +00] 51.7 % 15.3%
Gl [—o0, 0] [0, +00],[0.5, +00] =31.1% 23.0 %
G2 [—o0,0] [—o0, 0] —57.2% 21.9 %
G3 [0, +o0] [-0.5,0.5] —11.7% 23.7 %

TABLE 3. Subpartitions in the phase space of (du/dx, u) at y/8 ~ 0.12 in case E3. The
percentage of the contribution to (I7;) and the spatial area of each subpartition are also listed.

Similar to §4.3, £11, events are not differentiated in the LSE. To break the spanwise
symmetry, only 1, events with +9du/dz (or —du/dz) are taken into account in (us”Lz) (or
(uf”Gzlm)). The reason for such a consideration will be explained later.

Figure 11 shows (&) in all the five subpartitions. The magnitude of 7} in (5.2) is set
to be 1 for L1-L2 and —1 for G1-G3. For the subpartition of G3, the yielded (u5°) (in
figure 11e) are characterized as a pair of low- and high-momentum LSMs that are aligned
spanwise with each other. The probing point (at 7, = 0, r, = 0) locates at their interface. In
contrast, the rest of the four subpartitions (L1-L2 and G1-G?2) have statistical structures
resembling one single LSM with either high- or low-momentum (in figure 11a—d). The
probing point now falls inside them.

As has been mentioned in § 5.1, an interesting observation is that the direction of the
in-plane energy flux is regulated not by the sign of u at the probing position but by the sign
of local diuz/dx. For example, the probed 1, event in L1 (or L2) locates at the upstream of
the centre of a high-momentum LSM (or the downstream of the centre of a low-momentum
LSM) to form a positive local du/dx. This velocity gradient condition guarantees that no
matter what the sign of LSM, & at the probing point will always experience a decrease as
this LSM convects along time (note that a negative LSM convects upstream if compared
with the ambient fluid). The same explanation applies for the phase shift of the probing
point from the centre of the identified LSMs in the energy-gaining subpartitions of G1 and
G2. As for (45?) in G3, the flow pattern is a bit more complicated, i.e. the local i at the
probing point is small while the local shear is intense. The particularity of the in-plane
energy transportation in this subpartition will be addressed later.

For all five subpartitions, the slanted pattern of the statistical flow structures around
the probing point is attributed to the imposed positive (or negative) dit/dz condition.
Interestingly, (usl) and (ugl) (in figure 11a,b) are anti-symmetric with each other to form
a conjugated pair, so do (u4*) and (u$?) (in figure 1lc,d). On considering the different
signs of both dit/dx and du/dz in the imposed probing conditions, such pairs of (i)
structures actually characterize one pair of +11, events locating inside the wavy part of one
instantaneous LSM, as has been visualized in figure 5(b,d, f,h) (in bold elliptical regions).
To give statistical evidence, the conditional averaged (I1)) structures are estimated by LSE
as

(Hd (x +rx,z+rz)17";)

R}/Zhnd (ry, 1) = 2 > (5.3)
Oy
11;

(IT}) =R, ,, 1. (5.4)
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FIGURE 11. Statistical flow structures (uZ) obtained by LSE with flow conditions in different
subpartitions in the phase plane of (dut/dx, it) (see table 2) at y/§ ~ 0.12 in case E3: (a) L1;
(b) G1; (¢) L2; (d) G2; (e) G3. Vectors are normalized to be unit length for a better visualization.
Here, H[}/ in (5.2) is set to be 1 in panel (a,c) and —1 in panel (b,d,e). The contour levels are from
—1 to 1 with a gap of 0.2.

Like (5.1) and (5.2), y € {L1-L2, G1-G3}. An additional condition of either du/dz > 0
for L1-L2 or 9i1/9z < 0 for G1-G3 is also implicitly imposed. For generalization, IT] at
the probing point is set as =1 for L1-L2 and G1-G3.

Figure 12 shows the yielded (/7)) map. For all subpartitions except for G3, an
additional patch of (I1}) with opposite sign is always presented on one flank of the
central auto-correlation patch. Both patches are slanted towards the same z direction. Their
asymmetric strength and size is attributed to the gradual loss of the coherency with the
increase of the distance from the probing point. Note that (I75') resembles (IT5') with
only a flip of the sign (in figure 12a,b), so do (IT}*) and (17¢?) (in figure 12¢,d). Such
a resemblance reminds us that they are actually a pair of mirror images of one physical
structure, whose slanted pattern is attributed to the wavy pattern of LSMs that forms the
necessary velocity gradient condition contributing to 1, events.

It is interesting to see that (I7¢3) in figure 12(e) is symmetric with respect to r, = 0 even
under the probing condition of dit/dz < 0. This is in distinct contrast to the wavy pattern
of the (ué”) structures in figure 11(e), and suggests a decoupling of 71, events from the
spanwise velocity condition at the boundary of LSMs. Combing with (u5?), the pattern
of three side-by-side (I71%°) patches suggests that the energy is transported from both
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FIGURE 12. Statistical structures of (172;) corresponding to different condition subpartitions in
the space of (du/dx, u) (see table 2): (a) L1; (b) G1; (¢) L2; (d) G2; (e) G3. The event 172; is 1
for panel (a,c) and —1 for panel (b,d,e). The contour levels are —1 to 1 with a gap of 0.2.

high- and low-momentum LSMs to their outboard peripheries. It can be inferred that
vortical motions, instead of the effect of streamwise convection, contribute to the spatial
energy transportation around the boundary of LSMs. Due to the lack of information about
the wall-normal dimension, the details of this particular energy transfer scenario are still
not clear.

6. Concluding remarks

From the above analysis, it can be summarized that the present study differs from
previous ones (Piomelli ef al. 1996; Natrajan & Christensen 2006; Hong et al. 2012; Dong
et al. 2020) on energy transfer in three aspects. Firstly, wall-parallel planes, which range
from the upper bound of the buffer layer to lower part of the wake region, are analysed
here. Such a configuration is based on the conventional assumption on local equilibrium
of energy transfer in the inertial layer.

This in-plane simplification, despite the lack of completeness by avoiding the vertical
flux, leads to the second particularity of the present study. Namely, the in-plane evolution
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of the energy can be projected onto scale space, so that a so-called ‘optimal’ energy
flux boundary can be identified and then used as a 2-D sharp-edge filter for scale
decomposition. This scale boundary divides the 2-D spectrum of the inertial transfer term
of the scale energy into an energy donor part and an energy recipient one, which makes
the net flux of the total energy integrated on the large-scale side of it reaching maximum.
The characteristic streamwise and spanwise scales of this scale filter are anisotropic,
self-similar in an outer scaling, and are considerably larger than those being used before.
This makes it more suitable to study energy flux related with LSMs.

Thirdly, the statistical spanwise symmetry embedded in the flow is deliberately broken
by regarding the spanwise gradient of ‘resolved’ streamwise fluctuating velocity (dit/9z)
as one of the conditions that affect both the interscale energy transfer (I1gss) and the
in-plane energy transportation (/1,). For the former, the ‘pacman’ pattern of the cumulative
spectrum of [Tggs in the (du/dx, du/dz) phase plane (in figure 7¢), the statistics of
the net contribution from each subpartition of velocity gradient conditions (in table 2)
and the LSE analysis on the corresponding conditional flow structures, all reminds us
of the dominant role of meandering-like wavy pattern of LSMs in determining the net
interscale energy flux. In contrast, the contribution from streamwise alignment of low-
and high-momentum LSMs that generates a strong streamwise gradient (di/dx) in the
between, as has been observed in Carper & Porté-Agel (2004) and Natrajan & Christensen
(2006), is comparably small. For in-plane energy transportation, pairs of 1, events with
alternating sign, that conform with the local equilibrium assumption, have high possibility
of appearing at regions with large absolute magnitudes of i and diz/dx. The statistical flow
structures yielded by differentiating £9i/9z conditions again indicate a strong coupling
between local energy transportation and the wavy pattern of LSMs.

We propose an idealized planar model for flow structures responsible for interscale
energy transfer and in-plane energy transportation at length scales comparable to LSMs.
As illustrated in figure 13, ITgss events prefer to concentrate at spanwise boundaries of
LSMs due to strong diz/dz there. Positive [Tsgs events dominate in both population density
and net contribution, while negative ones occasionally appear on the boundary of LSMs
where there is strong positive diz/dx. Pairs of intensive positive and negative 1, events
appear inside LSMs, they are side-by-side aligned, straddling the centrelines where the
absolute magnitudes of & are large. The sign of I1, is determined by local dit/dx, whose
sign changes across the centreline of one LSM if a meandering pattern is presented there.
This model conforms with both the instantaneous flow visualizations and the statistical
structures being probed at different flow conditions. It seems to work in the inertial layer
within the present studied Re, range. The essence of this model, to our minds, is that it
attempts to reflect the dependency of the energy transfer events on velocity conditions, i.e.
u, 0u/dz and di/dx, that are related to large-scale flow structures. Other scenarios, like
IIgcs clusters with alternating signs, isolated [Tsgs events in-between streamwise-aligned
high- and low-momentum LSMs (or large-scale Q2/Q4 events) and [1; pairs on the flank
of meandering-like LSMs, are not included in figure 13. Nevertheless, it is stressed that
this model incorporates flow conditions that contribute to approximately 80 % of the total
net flux in both scale space and spatial space.

An interesting implication of this model is that the meandering of LSMs is one of
the keys to promote both interscale energy transfer and in-plane energy transportation.
Here, the term of ‘meandering’ refers to the in-plane sinusoidal geometry of LSMs to
present a kinematic wavy-like pattern. Whether or not LSMs dynamically oscillate in a
spanwise direction is not concerned here. It is found here that the spanwise asymmetry
caused by large-scale meandering, which will be smeared out in unconditional statistics,


https://doi.org/10.1017/jfm.2020.777

https://doi.org/10.1017/jfm.2020.777 Published online by Cambridge University Press

Large-scale energy transfer in TBL 906 A14-25
((1) © +HSGS +Hd

Large-scale low speed region ~ TTtmeeeeee ' -

®) Large-scale high speed region

%

W

)y
\

FIGURE 13. Anidealized model for the large-scale structures related to intensive energy transfer
events. Thin solid lines denote the spanwise boundaries of LSMs, and thick lines denote their
centreline. Interscale energy transfer events are indicated by solid or dashed ellipses while
in-plane energy transportation events by shaded elliptical patches.

contributes to the spatial varying velocity conditions that are required for intense energy
transfer.

Although a clear spatial correlation between energy transfer events and the meandering
of LSMs is demonstrated, the cause-and-effect relation between them is still unveiled.
Analysis on the dynamics of both energy transfer events and LSMs is needed for this
interesting issue. Another limitation of the present study is the lack of information on the
vertical dimension. The study of Cimarelli e al. (2016) and Lee & Moser (2019) have
shown the importance of vertical flux in affecting the global picture of energy transfer.
This might be a reason for the relatively small amount of interscale energy transfer that
is related to streamwise aligned large-scale Q2/Q4 events (in the subpartition of B1 in
figure 7¢ and table 2). It is inferred that their contribution will increase if vertical flux is
taken into account.

Another unclear question is the role of VLSMs in affecting the energy transfer. Due
to the limited FOV (AX/§ = 3.8), VLSMs cannot be fully resolved in the present
experiments. Recalling that the purpose of the present study is to reveal the structural
characteristics associated with energy transfer across an intermediate scale. There is
a significant scale gap between the concerned ‘optimal’ energy flux boundary, whose
characteristic scale is A,/ ~ 0.2, and the full extent of VLSMs with A,/§ > 6. As
demonstrated by Hong et al. (2012) and Cho et al. (2018), the magnitude of ‘bypass’
energy transfer between two largely separated modes quickly decreases as their scale
gap increases. This is partly evidenced by the tests in figure 18 in appendix C; namely,
increasing the FOV of the DNS case D1 to AX/§ =8 and AZ/5 = 4 barely changes
the shape of the cumulative spectra of ) ITsss and ) I1,. However, it is stressed that
VLSMs may be more active in energy transfer between LSMs and VLSMs. Hwang &
Sung (2018) and de Silva et al. (2020) recently found that LSMs and VLSMs conform
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with the attached-eddy-type spatial organization. This provides new insights on the role
of VLSMs in the energy cascade process. Therefore, future experimental attempts with
larger FOV at higher Re are required to address this interesting problem.
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Appendix A. Characteristic scales of ‘optimal’ energy flux boundary

Recalling that the ‘optimal’ energy flux boundary B, which separates Tyz(Ay, A,) into
energy donor and energy recipient modes, is used for scale separation. Meanwhile, Ty, (in
(3.4)) only contains wall-parallel terms in 7 (in (3.1)), leaving both the v component in

TKE and the vertical transfer uncounted. The full-order spectrum T of the DNS case D1
can be calculated for an estimation of the effect of such a dimensional truncation. Note

that 7 includes both the effect of interscale energy transfer and interplane energy transfer,
while Ty, only reflects the part of the former. For a fair comparison, the interplane energy
flux need to be excluded from 7" before comparing it with Txz. According to Lee & Moser
(2019), the interscale energy transfer spectrum 7! can be formulated as

i < ity | 5, Oty > + <—a'ﬁ@ ki ﬁﬂ> (A1)

TII = (i .
Lo 0x; 29y

where the superscript || in T! denotes that the scale energy exchange within wall-parallel
planes (with all three velocity components being included).

Figure 14 compares the ‘optimal’ boundaries of the spectrum of Txz and TV in case D1.
For 0.03 < y/§ < 0.24, reasonable agreement between the two boundaries are observed,

indicating that the present analysed Tyxzisa principle component of T! so that the exclusion

of v component turbulent motion will not severely bias B. The B of 7A"xz in case E1-E3 is
also supplemented in figure 14. Satisfying collapse of B is observed for flow layers above
y/8 > 0.12 (in figure 14c¢,d), indicating a weak Re dependency that is expected for large
scales in the log layer.

The minimum streamwise and spanwise scales (4%, and A%) of the ‘optimal’ spectral
energy flux boundaries are summarized in figure 15 in either outer-scaling or inner-scaling.
Note that B is extracted from the spectrum of Ty for case E1—E3 and from the spectrum of
T! for case D1. An outer-scaled quasi-linear growth of A% is observed in the log layer and
below with weak Re dependency. Meanwhile, A5/ presents a large dispersion among
different Re, cases in the near-wall region, but converges to approximately A%,/8 = 0.2
beyond y/§ = 0.12. These observations remind us that although the ‘optimal’ spectral
energy flux boundary is mainly outer-scaled in the log layer and above, the energy transfer
spectrum in the near-wall region suffers from the mixed effect of both small-scale motions
and large-scale ones.
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FIGURE 14. Comparison of ‘optimal’ spectral energy flux boundaries B between DNS and
PIV datasets: (a) y/6 ~ 0.03; (b) y/§ ~ 0.06; (¢) y/§ =~ 0.12; (d) y/5 ~ 0.24.
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FIGURE 15. Wall-normal variation of the minimum scale, /lfo and /lf , of the ‘optimal’ spectral
energy flux boundary. Panels (a) and (b) are normalized with outer and inner scale, respectively.

Appendix B. Effect of the scale filter on the statistics of energy flux

Recall that the present used ‘optimal’ boundary for scale separation is significantly
different from the isotropic subgrid filter being used in previous research (Piomelli et al.
1996; Natrajan & Christensen 2006; Hong et al. 2012; Dong et al. 2020). Therefore,
it is necessary to inspect whether the statistics of energy transfer events are sensitive
to the choice of the scale filter. This can be done by examining the budget of the
ensemble-averaged energy flux. Recalling that the full-resolved interscale energy flux ITsgs
and spatial energy flux I1; are

0w
Hm=Z—WwwwE,w€%ML (B1)
ij J
00w, Oy (g — wiy) . |
n, = + . ijef{l,2,3), (B2)
Z ij axj

ij

which include the contribution " and p¢; from all of the velocity/velocity gradient
components. Figure 16 compares the contribution of each component of [Tgss to the total
interscale energy flux across the whole boundary layer under two kind of filters: one is a
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FIGURE 16. Wall-normal variation of Pi;j , which measures the component contribution to the

total interscale energy flux (/7sgs), under (a) small-scale isotropic filter (/l+ = /l+ 100) and

(b) ‘optimal’ boundary filter (/IIO ~ 800, /IZO 100). The numbers in the legend represent the

index pair (i, j) in ,oSGS .

small-scale isotropic filter with cutting-off boundary of A} . = Af. = 100, and the other
is the present used ‘optimal’ boundary filter. The dataset in case D1 is used for this test.

Here, o} and py are defined as
au
SGS —(_ "l"’ ~ o~ 1 B 3
o < (@, uu)axj>xz (83)
0 Oi; (w71 — it;it;
= (20 | Dl Z5) (B4)
X; 0x; o

where (-)y7 represents spatial average in wall-parallel plane of each flow layer. Note that
the ‘optimal’ spectral energy flux boundary varies with y; therefore, applying different
filters at each flow layer will introduce artificial compressibility to the decomposed field.
As a compromise, the ‘optimal’ boundary at y/8 ~ 0.1 (with A, ~ 800, A7, ~ 100) is
used as a fixed anisotropic filter throughout the whole boundary layer thickness.

As shown in figure 16(a), for the total net interscale energy flux under small-scale
isotropic filter (black bold line in figure 16a), large bulk of forward flux is observed in the
log layer and above; while a small amount of backward flux appears in the buffer region,
which is mainly contributed by p{$° involving wall-normal gradient dit/dy. Beyond the
buffer region (y* > 125, y/8 >0.07), the magnitudes of all the components of p}** ar

comparable with each other, with p{$’ and p33° owning a slightly higher weight. Under
the ‘optimal’ boundary filter, no net backward flux is evident in the buffer region, and the
level of the net forward flux in the log layer elevates remarkably. Now p{%® makes the
highest contribution to the net forward flux in the buffer region and above, 1ndlcating the
essential role of the spanwise gradient dit/dz. Meanwhile, the contribution of pSGS and
,ofgs are also significant. Such a comparison demonstrates that the dominant components
in p;; $GS depend on the choice of scale filter. Namely, the contribution of each component of

2 5G5S to the net flux in the inertial layer tends to be ‘isotropic’ under a small-scale isotropic
ﬁlter but ‘anisotropic’ under the present used ‘optimal’ boundary filter.
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FIGURE 17. Wall-normal variation of the contribution p" by each component of the spatial
energy flux I1; under (a) small scale isotropic filter (/l+ = /1+ 100) and (b) optimal
boundary filter. The numbers in the legend represent the index pair (i, j) in pfj.
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FIGURE 18. The 2-D cumulative spectra of the interscale energy flux Y Mggs (a—d) and

the in-plane energy transportation > I1; (e—h) with different FOV and spatial resolution at

y/8§ = 0.12 of case D1: (a,e) AX x AZ =26 x §; (b,f) AX x AZ =46 x 26; (¢,g) AX x AZ

= 88 x 48; (d,h) AX x AZ = 48 x 28 with spatial resolution downsampled to Ax+ x Az" x
Ayt =24 x 24 x 12 that is comparable to the experiment cases.

Moreover, the effect of the omitted components in 2-D PIV cases can be estimated. For
an ‘optimal’ boundary filter, the components available in the PIV dataset, especially pSGS
and p{S®, account for a dominant portion of the total interscale energy flux. Although pSGS
also contributes to a large amount of energy flux, which should be taken into account in
the future work, the 2-D version of [Tsgs is still a leading-order approximation to the
full-resolved one. By contrast, this approximation will deteriorate under a small-scale
isotropic filter, since the interplane component (with i = 1,j = 2) now becomes the

principle contributor.
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FIGURE 19. The 2-D cumulative spectra of the interscale energy flux )  ITsgs in the phase

space of (dit/dx, du/dz) at different y and Re;. Panels (a—d), (e—h), (i—I) and (m—p) are cases

E1, E2, E3 and D1, respectively; panels (a,e,i,m), (b, f.j,n), (c,g,k,0) and (d,h,l,p) are flow layers

at y/8 ~ 0.03, 0.06, 0.1 and 0.24, respectively. Dashed lines divide the phase plane into five

subpartitions as defined in table 2. Each spectrum is normalized by its maximum.

Similarly, figure 17 shows the budget of Pf,lj to I1; in case D1 under two filters. Unlike
pijS , pfj are rather robust against the change of the filter across the whole boundary layer
thickness. For both filters (shown in figure 17a,b), two sources of spatial energy transfer
(with positive pfj) are identified, one locates in the buffer layer (y™ = 15-50) and the
other in the wake region (y/§ = 0.15-0.5). While two sinks (with negative pfj) reside in
the viscous sublayer and the log layer, respectively. Such a scenario is consistent with the
observation of previous research (Cimarelli ez al. 2016; Lee & Moser 2019). Furthermore,
only components of Pf,lz involving wall-normal gradients contribute to the total spatial
flux (I1,). This demonstrates that I1, calculated using an in-plane 2-D PIV dataset only
account for in-plane energy flux.
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FIGURE 20. (a) Contribution of five subpartitions in the phase space of (du/dx, dit/dz)
(defined in table 2) to the net interscale energy flux (I1sgs). (b) Area ratio occupied by each
subpartition in physical space. Four stacked bars from left to right at each y station denotes cases
E1, E2, E3 and D1, respectively.

Appendix C. Effect of FOV on ) ITsgs and )_ I,

Recall that the experiment cases have limited FOV to fully resolve scales related to
VLSMs. To test whether this issue will affect the present observations that are focused on
energy flux associated with LSMs, empirical tests were taken to slice the snapshots in DNS
case D1 into frames with various FOV, i.e. AX x AZ =28 x §, AX x AZ =45 x 28
and AX x AZ = 8§ x 44. In addition, to mimic the limited spatial resolution of the PIV
measurement due to both the finite size of the interrogation window and the laser-sheet
thickness, 3-D velocity fields were filtered by a Gaussian kernel with a size of Ax* x
Azt x Ayt =24 x 24 x 12 and then downsampled to a spatial resolution comparable to
that in case E2 (with a close Re,).

The corresponding 2-D cumulative spectra of Y ITsgs and Y I1; in the probed phase
plane are shown in figure 18. Note that for a direct comparison with the experiment cases,
IIggs and I, presented here include only in-plane components. Except for the case of
small FOV (AX x AZ =25 x §) (in figure 18a,e), other cases with larger FOV present
quite similar distribution of ) ITsss and Y I1;, which are also consistent with those in
the PIV cases shown in figures 7 and 10. Moreover, degrading the spatial resolution will
not cause an observable bias (by comparing figure 18c,d or figure 18g,h). To the best
of our knowledge, this is due to the fact that we only focus on energy flux across the
‘optimal’ energy flux boundary whose characteristic scales are far from those of VLSMs.
Furthermore, the FOV of the experiment cases, as well as the spatial resolution, is believed
to be adequate for this purpose.

Appendix D. The Re independence of ) IIsgs and Y I1;

For a systematic examination, figure 19 summarizes the 2-D cumulative spectra Y [Tsgs
at all the studied flow layers of all the cases, and the contributions of each subpartition are
summarized in figure 20. Similarly, the spectra of ) _ I1, of all cases and histograms of
subpartition contributions are illustrated in figures 21 and 22, respectively. Despite some
minor variations, all the spectra in the experiment cases present a similar distribution
pattern. Moreover, the partition criterion used in y/§ ~ 0.12 of case E£3 (defined in tables 2
and 3), that divides the corresponding phase plane into five subpartitions, also applies for
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FIGURE 21. The 2-D cumulative spectra of the spatial energy flux )  IT; in the phase space
of (du/0x, u) at different y and Re. The arrangement of the plots is the same as figure 19.
Dashed lines divide the phase plane into five subpartitions as defined in table 3. Each spectrum
is normalized by its maximum.

other cases. Unlike the case in figure 18, ) ITss in case D1 shown in figure 19(m—p) is
calculated by taking into account all nine components (in (B 1)). This accounts for the
slight difference of ) ITgss to those of the experiment cases. The major discrepancy is
the disappearance (or weakening) of the subpartitions of backward scatter on the positive
side of du/dx. This implies the effect of vertical components in I7sss on the net interscale
energy flux.

The contribution of each subpartition to the net flux, i.e. (I1scs) and (I1,), as well
as their area ratio occupied in physical space, are summarized in figures 20 and 22 for
all the studied cases, respectively. A weak Re-dependency and a flow-layer insensitivity
is clearly depicted. For interscale energy flux, the subpartition of F2 in the cumulative
spectra of ) ITggs has the highest density of net forward scatter, while F3 also contributes
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a significant portion. Such an observation is also valid in case D1 even when all of
the components of [1g;s are resolved. For in-plane energy flux, the contribution of
subpartitions L1 and L2 in the spectra of ) IT, balances with those of G1-G3 in the
experiment cases E1-E3. In contrast, they do not perfectly cancel each other in case D1,
since the v component fluctuation transports TKE across wall-parallel planes. However,
it is found that the magnitude of the net interplane energy flux, as can be estimated by
the residual after the mutual cancellation of £11, events, is comparably smaller than the
absolute value of in-plane energy flux. This provides a justification for focusing on the
latter in the present study.
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