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Abstract. The nonlinear dynamics of resonant slow MHD waves in weakly dissi-
pative plasmas is investigated in cylindrical geometry with a twisted equilibrium
magnetic field. Linear theory has shown that the wave motion is governed by conser-
vation laws and jump conditions across the resonant surface considered as a singu-
larity – first derived in linear ideal MHD theory by Sakurai, Goossens and Hollweg
[Solar Phys. 133, 227 (1991)]. By means of the simplified method of matched asymp-
totic expansions, we obtain the generalized connection formulae for the variables
across the dissipative layer, and we derive a non-homogeneous nonlinear partial
differential equation for the wave dynamics in the dissipative layer.

1. Introduction
A continuous field distribution is a superposition of elemental flux tubes, each tube
crowding against its neighbors with pressure B2/2µ and striving to shorten its
length with tension B2/µ. In many circumstances in nature, such as the solar at-
mosphere, magnetic fields are observed to split into separated flux tubes (sunspots,
magnetic knots, spiculae, coronal loops, etc.). Thus the dynamic properties of the
individual tubes provide an understanding of large-scale continuous field distri-
bution. The concentration of the magnetic field into flux tubes occurs sponta-
neously, in opposition to the considerable magnetic pressure of the concentrated
field. This phenomenon challenges our understanding of the basic physics of flux
tubes. Owing to the complexity of the problem, in general, the effect of the magnetic
twist is neglected.

The study of the twisted tubes can be important in the context of controlled
fusion physics, astrophysics and, in particular, solar physics. For example, many
observational studies have revealed that the solar magnetic field is twisted. This is
manifested in various kinds of observations, such as the morphology of Hα struc-
tures, the morphology of filaments and coronal loops, and the signs of current
helicity derived from vector magnetograms. All these observations demonstrate a
hemispheric preference of the sense of the twist, i.e. left-handedness in the northern
hemisphere and right-handedness in southern hemisphere in the current solar cycle.
It is most likely that the sense of the twist is associated with the solar dynamo and
physical conditions in the convection zone.
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Two mechanisms have been proposed to explain the formation of the twist,
namely vertical motions of the magnetic plasma and the emergence of subsurface
twisted flux. Many recent investigations of the emerging flux regions have showed
that the magnetic flux may already be twisted below the photosphere.

The solar corona is a very hot tenuous plasma at a typical temperature of (2–3)×
106 K, much higher than that of the underlying layers (the transition region, the
chromosphere and the photosphere), so the nonthermal energy must be transported
into the corona and dissipated there. The high-temperature coronal plasma mainly
radiates in the soft X-ray range corresponding to typical wavelengths of the order
of 10–100 Å. This radiation is not homogeneous either in space or in time, with
a wide range of spatial and time scales. Large-scale structures of typical lengths
106–108 m persist during a characteristic time much longer than the Alfvén time,
while small bright points of dimension of the order of 104 m evolve on a few Alfvén
times and in some cases even more rapidly. High-resolution observations have now
given an image of the solar corona as a rapidly evolving dynamic plasma where
energetic phenomena occur mainly on very ‘small’ scales.

The main problem related to the understanding of the coronal heating mechanism
is to perform sufficiently high-resolution observations (i.e. observations at typical
wavelengths of the order of the dissipative length scales), capable of shedding light
on the physical dissipative process at work in the solar corona. As a consequence,
no realistic models, even very simplified, have been developed so far, while a num-
ber of conceptual models starting from the available data try to roughly describe
the small-scale dynamics and to derive all the possible consequences on the mean
dynamics in order to fit the observational large-scale constraints.

Nevertheless, some basic ideas have now reached a large general consensus. First
of all, photospheric and sub-photospheric random motions are considered as the
energy source of the heat deposited into the corona, since the corresponding energy
flux flowing outwards from the photosphere towards the outer layers of the Sun
is large enough to compensate the radiative and conductive energy losses in the
corona. The second important point that is now accepted is the key role of the
magnetic field as the link between the energy source, the photosphere and the region
where the energy is converted into heat, the corona, as well as the main agent in
the energy-transfer process from the injection scales to the small dissipative scales.
Many proposals have been made in the last few decades concerning the nature of
the mechanism acting to dissipate the energy in the solar corona.

The possible heating mechanisms can be classified as a function of the character-
istic time tph of the photospheric random perturbations with respect to the Alfvén
time tA defined as tA = l/vA, where l and vA are a characteristic length of the
system and the Alfvén velocity. In the limit of ‘slow’ perturbations, tph� tA, the
large-scale coronal structures can evolve through a series of magnetostatic force-
free equilibria. The typical case is that of a coronal loop continuously stressed at
its footpoints. Eventually, strong current sheets are generated near the separatrix
and magnetic energy is released, for example via magnetic reconnection. However,
further dynamical investigations of the evolution of such magnetostatic configur-
ations are necessary in order to estimate the characteristic time needed to generate
the current sheets and to dissipate the magnetic energy.

In the limit of ‘fast’ photospheric perturbations, tph� tA, most of the energy is
converted into MHD waves, which propagate outwards. It is still an open problem
how MHD waves can reach the upper part of the solar atmosphere. It is believed
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that only the Alfvén waves, owing to their highly anisotropic dispersion relation,
are able to reach the corona, the other MHD waves being dissipated or reflected at
lower altitudes. Recently, however, it was realized that part of the coronal MHD
waves may be generated in the corona itself by, for example, small and large magnetic
reconnection events, solar tornados or wave transformation due to nonlinear effects.
This may turn out to be important for coronal heating, since it removes the diffi-
culty of energy transfer from the turbulent convection zone through the transition
region to the corona. The problem is then how to dissipate the energy carried by the
Alfvén waves due to their strong dissipative inefficiency in a perfectly homogeneous
plasma, even when considering nonlinear interactions. For this reason, wave heat-
ing theories, faced with the problem of how to speed up the dissipative effects, have
mostly considered the interaction of Alfvén waves with an inhomogeneous medium.
In this context, the most promising mechanisms are the phase mixing and the res-
onant absorption that occur whenever the wave propagates along a magnetic field
inhomogeneous in the transverse direction. In particular, phase mixing appears as
a result of the spontaneous decay of the free oscillations of the system. If oscilla-
tions on different magnetic surfaces are initially excited coherently (i.e. in phase),
then, in time, the oscillations become gradually out of phase among neighboring
surfaces because each surface oscillates with a different eigenfrequency. As a conse-
quence, large gradients develop across the magnetic surfaces. Owing to progressive
creation of smaller length scales comparable to the scales where resistivity and
viscosity operate, this process will lead to wave damping.

Resonant transfer of energy is a natural phenomenon of interacting dynamic
systems. In the solar atmosphere, where the excited and propagating MHD waves
interact with an inhomogeneous plasma, these waves can transfer their energy to
each other. The energy transfer from the waves to the background plasma is related
to the fact that in inhomogeneous plasmas externally driven waves can resonantly
interact with the local oscillation eigenmodes. After all, resonant absorption can be
considered as an effective process of generation of small length scales comparable
to the dissipation length scales.

The local oscillation modes of an inhomogeneous plasma are represented by con-
tinuous spectra for slow MHD and Alfvén waves and a discrete spectrum for fast
MHD waves. Resonant absorption occurs when the frequency of a laterally driven
oscillation matches the local slow and/or Alfvén frequency and a resonant field line
is created that transfers energy from the surface disturbance to its environment.

In ideal plasmas, the resonant waves are confined to an individual magnetic sur-
face that cannot interact with its neighbors. Since we suppose that a driven external
mode can exist for an infinitely long period, this energy accumulation results in an
infinite wave amplitude at the resonant position. But a real plasma is far from be-
ing an ideal medium. To describe a realistic situation, dissipative effects have to be
taken into account. Usually, the importance of dissipation is characterized by the
viscous and magnetic Reynolds numbers (if viscosity and magnetic diffusion are
considered as dissipative effects). Dissipative effects cause coupling of the resonant
magnetic surface to neighboring magnetic surfaces, and the disturbance provoked
at the resonant surface is transmitted to neighboring field lines. We can define a
‘resonant layer’, considering that region where the disturbances do not go out of
phase relative to the driven oscillations. For large values of the viscous and mag-
netic Reynolds numbers (as in the solar atmosphere or in tokamak physics), this
coupling is weak and the local resonant slow and Alfvén oscillations are character-

https://doi.org/10.1017/S0022377802001629 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377802001629


82 I. Ballai and R. Erdélyi

ized by steep gradients across the magnetic field. Now, the energy of the external
oscillations is dissipated to the plasma and can be converted into heat.

Ionson (1978) pointed out first that resonant absorption can be a viable candidate
for coronal heating. Since then, this process has become one of the most popular
mechanisms to explain the anomalous behavior of the coronal temperature (see e.g.
Kuperus et al. 1981; Davila 1987; Narain and Ulmschneider 1990, 1996; Hollweg
1991; Goossens 1991; Goossens and Ruderman 1995; and references therein). The
same mechanism is used to explain the observed energy loss of p-modes in the
vicinity of sunspots (see e.g. Hollweg 1988; Lou 1990; Goossens and Poedts 1992;
Goossens and Hollweg 1993; Erdélyi and Goossens 1994).

A turning point in the study of resonant absorption was the development of so-
called connection formulae by Sakurai et al. (1991) for ideal plasmas and by Goossens
et al. (1995) and Erdélyi (1997) for dissipative plasmas. This approach is based on
the very simple idea that a thin dissipative layer acts as a surface of discontinuity
when solving the MHD equations. At both sides of this surface of discontinuity, the
plasma motion is governed by the ideal MHD equations. The solution of dissipative
MHD inside the dissipative layer is used to obtain the connection formulae that
provide boundary conditions at the surface of discontinuity.

The linear theory of resonant absorption has shown that in the vicinity of a
resonant position, perturbations have steep gradients and large amplitudes, and
therefore linear theory can break down in this region and nonlinear theory has to
be considered. Nonlinearity in the dissipative layer was first taken into account
in the theory of resonant absorption by Ruderman et al. (1997a), who studied
the nonlinear evolution of slow resonant MHD waves in a dissipative layer using
Cartesian geometry and considering isotropic dissipative effects. Later, this theory
was extended to anisotropic plasmas (e.g. the solar corona) by Ballai et al. (1998a),
where anisotropic viscosity and field-aligned thermal conductivity played the role
of dissipative effects. These theories were applied to study the resonant absorption
of sound and fast magnetoacoustic waves in solar structures (see e.g. Ruderman et
al. 1997b; Ballai et al. 1998b; Erdélyi and Ballai 1999; Erdélyi et al. 2001). One of
the main results was that, in contrast to linear theory, the coefficient of wave energy
absorption was dependent on the particular type of dissipation. It was also found
that the general tendency of nonlinearity is to decrease the absolute value of the
coefficient of wave energy absorption when the wavelength of the incoming wave
is much larger than the characteristic scale of the inhomogeneity and nonlinearity
is considered weak. This is no longer the case in the limit of strong nonlinearity,
as pointed out by Ruderman (2000), at least for intermediate wavelengths. In the
long-wavelength approximation, nonlinearity again decreases the net coefficient of
energy absorption, and the difference relative to the result found by means of linear
theory is about 20%.

The characteristic quantities used in the present paper are the thickness of the
dissipative layer, ldis, the characteristic length scale of the inhomogeneity, linh, and
the dimensionless amplitude of the oscillations far away from the dissipative layer,
ε. The total Reynolds number, which measures the magnitude of the dissipative
effects, is defined by

1
R

=
1
Rv

+
1
Rm

, (1.1)

where Rv and Rm are the viscous and magnetic Reynolds numbers respectively.
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Since solar observations reveal that R is very large in astrophysical plasmas (106

in the photosphere and up to 1012 in the corona), we can use the approximation of
a weakly dissipative plasma.

The goal of the present paper is to investigate how nonlinearity affects the dynam-
ics of resonant slow MHD waves in twisted magnetic flux tubes and to investigate
the effect of magnetic twisting on the connection formulae. The paper is organized
as follows. In the next section, we introduce the basic equations and the equilibrium
state. In order to obtain an equation that contains the effects of the nonlinearity
and dissipation, a scaling law is introduced in this section. In Sec. 3, we calculate
the governing equations for the wave dynamics outside and inside the dissipative
layer. Since the resonant surface acts as a singular surface, the connection formu-
lae are calculated by means of the method of asymptotic expansions. Finally, we
summarize and discuss our results.

2. Basic equations
In what follows, we adopt cylindrical coordinates (r, ϕ, z) and restrict our analysis
to a static equilibrium state, i.e. v0 = 0. The effect of gravity is also neglected. The
components of the background magnetic field are (0, B0ϕ(r), B0z(r)), and the other
equilibrium quantities depend on the radial coordinate only.

We use the full set of nonlinear viscoresistive MHD equations

Dρ̄

Dt
+ ρ̄∇ · v = 0, ∇ · B̄ = 0, (2.1)

ρ̄
Dv
Dt

= −∇p̄ +
1
µ

[(∇× B̄)× B̄] + ρ̄ν̄[∇2v + 1
3∇(∇ · v)], (2.2)

∂B̄
∂t

=∇× (v× B̄) + η̄∇2B̄, (2.3)

D

Dt

(
p̄

ρ̄γ

)
= 0, (2.4)

where D/Dt = ∂/∂t + v ·∇ is the convective derivative. In the above equations, v
and B̄ are the velocity and magnetic induction vectors, p̄ and ρ̄ are the pressure and
density, and ν̄, η̄ and γ are the coefficient of kinematic shear viscosity, the coefficient
of magnetic diffusion and the adiabatic index respectively. The perturbations of the
magnetic field and velocity are denoted by b = (br, bϕ, bz) and v = (u, v, w). In spite
of the presence of dissipation, we use the adiabatic equation as an approximation
of the energy equation. Ballai et al. (2000) have shown that the dissipation due to
viscosity and finite electrical conductivity present in the energy equation does not
lead to a significant change in the behavior of nonlinear slow resonant MHD waves
in a driven problem.

We consider finite perturbations of the form

f̄ = f0(r) + f (r, ϕ, z, t), (2.5)

where f0 is the equilibrium value of a variable and f its Eulerian perturbation.
The equilibrium variables satisfy the radial force balance

d

dr

(
p0 +

B2
0

2µ

)
= −B

2
0ϕ

µr
, (2.6)
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where B0 = (B2
0ϕ + B2

0z)
1/2. With these variables, we can define the total pressure

perturbation as

P = p +
B0 · b
µ

+
b2

2µ
. (2.7)

In linear theory, all physical variables oscillate with the same real frequency ω
and they can be Fourier-analyzed. However, in nonlinear theory, this procedure
cannot be applied, since the oscillations are no longer in phase. To be as close as
possible to the linear theory, we suppose that the oscillations are plane-periodic
propagating waves with permanent shape, and we take all variables to depend on
the combination θ = mϕ + kz − ωt of the independent variables ϕ, z and t rather
than on ϕ, z and t separately. Here m and k are the azimuthal and longitudinal
wavenumbers. Convenient quantities for later use are

fB =
m

r
B0ϕ + kB0z, gB =

m

r
B0z − kB0ϕ. (2.8)

In this notation, the squares of the Alfvén speed, the sound speed, the Alfvén and
the cusp frequencies are defined as

v2
A =

B2
0

µρ0
, c2

S =
γp0

ρ0
, ω2

A =
f2
B

µρ0
, ω2

T =
ω2
Ac

2
S

v2
A + c2

S

.

Let us introduce the parallel and perpendicular components of the velocity and
magnetic field relative to the equilibrium magnetic field as

(v‖, b‖) = (v, b) · B0

B0
, (v⊥, b⊥) =

1
B0

[(v, bϕ)B0z − (w, bz)B0ϕ]. (2.9)

With these considerations, the modified MHD equations are

ρ0

(
1
r

∂(ur)
∂r

+
1
B0

∂

∂θ
(fBv‖ + gBv⊥)

)
+ u

dρ0

dr
− ω∂ρ

∂θ
= N1t, (2.10)

∂P

∂r
− ρ0

∂

∂θ

(
ωu +

fB
µρ0

br

)
+

2B0ϕγ
⊥
‖

B0µr
= N2t +D1t, (2.11)

∂

∂θ

(
fB
B0
P − ωρ0v‖ − fB

µ
b‖

)
− B2

0ϕ

B0µr
br − 1

µ

dB0

dr
br = N3t +D2t, (2.12)

∂

∂θ

(
gB
B0
P − ωρ0v⊥ − fB

µ
b⊥

)
− B0ϕB0z

B0µr
br−

B2
0ϕ

µ

d

dr

(
B0z

B0ϕ

)
br = N4t+D3t, (2.13)

B0fB
∂

∂θ

(
u +

ω

fB
br

)
= N5t +D4t, (2.14)

gB
∂

∂θ

(
v⊥ − ω

gB
b‖

)
+
dB0

dr
u +

B0

r

∂(ur)
∂r

− B2
0ϕ

B0r
u = N6t +D5t, (2.15)

fB
∂

∂θ

(
v⊥ +

ω

fB
b⊥

)
−B2

0ϕ
d

dr

(
B0z

B0ϕ

)
u− B0ϕB0z

B0r
u = N7t +D6t, (2.16)

ω

(
∂p

∂θ
− c2

S

∂ρ

∂θ

)
− u

(
dp0

dr
− c2

S

dρ0

dr

)
= N8t, (2.17)

P − p− B0

µ
b‖ = N9t, (2.18)
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where

γ⊥‖ = b‖B0ϕ + b⊥B0z, (2.19)

and we have collected all nonlinear terms (Nit, i = 1, . . . , 9) on the right-hand side
of the equations, and Djt, (j = 1, . . . , 6) denote the dissipative terms. The exact
expressions for the nonlinear and dissipative terms are given in Appendix A.

This set of equations is used to derive the governing equation for slow MHD wave
dynamics in the dissipative layer in the following sections.

3. Wave dynamics in the dissipative layer
The mathematical procedure used to derive the equation that describes nonlinear
resonant slow-wave motion in the dissipative layer is based on the simplified method
of matched asymptotic expansions developed by Ballai et al. (1998a) from a more
general method due to Ruderman et al. (1997a). The method consists of finding
the so-called inner and outer expansions and matching them in the overlap regions.
Adapted to our problem, the inner and outer expansions will mean the expansions
of the solution inside and outside the dissipative layer.

The simplified version of the method of matched asymptotic expansions is based
on very simple ideas. Since we are dealing with a weakly dissipative plasma, the
viscosity and the magnetic diffusivity are essential only in the dissipative layer.
Far from the dissipative layer, the amplitudes of perturbations are small. These
two facts enable us to consider that outside the dissipative layer the plasma motion
is described by the ideal linear MHD equations. Another assumption is related to
the behavior of the equilibrium quantities. We suppose that each of these variables
changes only slightly across the dissipative layer and can be approximated by the
first non-vanishing term in its Taylor series expansion with respect to the inhomo-
geneity coordinate r. Similar to the linear theory, we assume that these expansions
provide suitable approximations for the equilibrium quantities in the region em-
bracing the ideal resonant position, which is much wider than the dissipative layer.
This implies that there are two overlap regions on both sides of the dissipative layer
where both the outer (the solution of linear ideal MHD) and inner solutions (the
solution of nonlinear dissipative MHD) are valid. The two solutions have to coincide
in the overlap regions, which provides the matching condition.

Let us proceed to the derivation of the governing equation. In the first step, we
obtain the solution outside the dissipative layer. As has been pointed out, in this
region, the wave dynamics is described by ideal linear MHD, so we set Nit = 0 and
Djt = 0 in (2.10)–(2.18).

The system of linearized ideal MHD equations can be reduced to a system of two
coupled first-order partial differential equations for the radial component of the
velocity u, and the Eulerian perturbation of the total pressure P :

D
∂(ur)
∂r

= C1ur + ωC2r
∂P

∂θ
, (3.1)

ωrD
∂2P

∂r ∂θ
= C3ur − ωrC1

∂P

∂θ
, (3.2)

where

D = ρ0DADC , DA = ω2 − ω2
A, DC = (c2

S + v2
A)(ω2 − ω2

T ), (3.3)
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and

C1 = 2ω4B
2
0ϕ

µr
− 2

mfBB0ϕ

µr2 DC , C2 = ω4 −
(
m2

r2 + k2
)
DC ,

C3 = D

[
ρDA

∂2

∂θ2 +
2B0ϕ

µ

d

dr

(
B0ϕ

r

)]
− 4ω4

(
B2

0ϕ

µr

)2

+
4ρ0DCω

2
A

µr2 B2
0ϕ. (3.4)

All the other variables can be calculated in terms of these two variables:
∂v‖
∂θ

=
ωfBc

2
S

ρ0B0DC

∂P

∂θ
+

2B0B0ϕ

µrD

(
ω2B0zgB
µρ0

+
m

r
c2
SDA

)
u, (3.5)

v⊥ =
gBω

ρ0B0DA
P, br = −fB

ω
u, (3.6)

∂b‖
∂θ

=
B0(ω2v2

A − ω2
Ac

2
S)

ρ0v2
ADC

∂P

∂θ

+
B0ϕρ0

ωfBB0rD
[B0ϕfBDA(ω2v2

A − c2
SDA)− 2ω2B0zgBDC]u +

u

w

dB0

dr
, (3.7)

∂b⊥
∂θ

= − fBgB
ρ0B0DA

∂P

∂θ
+
B0ϕB0z

rωB0
u +

B2
0ϕ

ω

d

dr

(
B0z

B0ϕ

)
u, (3.8)

∂p

∂θ
=
ω2c2

S

DC

∂P

∂θ
+

B2
0ϕ

ω2µrDC
[ω2(c2

S − v2
A) + ω2

Ac
2
S]− B0

µω
u
dB0

dr
, (3.9)

∂ρ

∂θ
=
ω2

DC

∂P

∂θ
+

2B2
0ϕω

µrDC
u +

u

ω

dρ0

dr
. (3.10)

Eliminating the pressure from (3.1) and (3.2), we obtain a second-order differen-
tial equation for the radial component of the velocity:

∂

∂r

[
f (r)

∂(ur)
∂r

]
− g(r)∂

2(ur)
∂θ2 = 0, (3.11)

where

f (r) =
D

rC2
, g(r) =

∂

∂r

(
C1

rC2

)
− 1
rD

(
C3

ω
− C2

1

C2

)
. (3.12)

If we eliminate the radial component of the velocity, we obtain a second order
differential equation for the Eulerian perturbation of the total pressure

∂

∂r

(
f̂ (r)

∂P

∂r

)
− ĝ(r)∂

2P

∂θ2 = 0, (3.13)

where

f̂ (r) =
rD

C3
, ĝ(r) = − ∂

∂r

(
rC1

C3

)
− r

D

(
C2 − C2

1

C3

)
. (3.14)

We are interested in the solutions of the system (3.1) and (3.2) in the vicinity
of the slow-wave resonant point, i.e. at r = rc determined by the condition ω =
ωT (r = rc), where ω is the driver frequency. The waves that satisfy this condition
are called resonant waves. We introduce a new radial variable s, defined by

s = r − rc. (3.15)
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The point s = 0 (the condition for resonance) is a regular singular point of the
system (3.1)–(3.2) and therefore we look for solutions in the form of a Fröbenius
expansion around the resonant position s = 0. The solutions take the form

P = P1(θ) + P2(θ)s ln |s| + P3(θ)s + . . . (3.16)

and

u = u1(θ) ln |s| + u2(θ) + u3(θ)s ln |s| + . . . . (3.17)

Here dots (· · ·) denote terms that are of higher order with respect to s. In general,
the coefficient functions of θ in (3.16) and (3.17) are different for s < 0 and s > 0.

Using the relations (3.5)–(3.10), we eventually find that the perpendicular compo-
nents of the velocity and magnetic field perturbation behave like the total pressure
perturbation, so they are regular at s = 0. The other quantities are singular. The
quantities u and br behave like ln |s|, while the quantities v‖, b‖, p and ρ have an
s−1 singularity. These quantities are called large variables.

The outer solution is the so-called large-scale mode, because the transverse scale
of this motion is of the order of the characteristic domain of interest (e.g. the
diameter of a coronal loop). However, near the resonant position, in the inner region,
the characteristics of the solutions are changed and the assumption of ideal MHD
is no longer valid. In this region, we must include the dissipative, small-scale inner
solution.

The magnitude of the dissipation is given by the total Reynolds number defined
in Sec. 1, where the magnetic and viscous Reynolds numbers have the properties

Rm ∼ 1
η̄
, Rv ∼ 1

ν̄
. (3.18)

If f is a large variable with the dimension of velocity (e.g. the parallel compo-
nent of the velocity relative to the equilibrium magnetic field lines), then a typical
representation of the large nonlinear terms is of the form f∂f/∂z. The typical rep-
resentation of large dissipative terms is of the form ∂2f/∂s2 multiplied by one of
the dissipative coefficients. Since inside the dissipative layer the large variables are
of the order of f ∼ εR1/3 and ∂/∂z ∼ l−1

inh, ∂/∂s ∼ l−1
dis , the ratio of the nonlinear

terms to the dissipative terms is estimated to be

f∂f/∂z

ν̄∂2f/∂s2 ∼ εR2/3, (3.19)

and εR2/3 emerges as the nonlinearity parameter.
If the condition εR2/3 � 1 is satisfied, then linear theory gives an adequate

description of the motions in the dissipative layer. However, for combinations of ε
and R such that εR2/3 ∼ 1, and definitely for εR2/3 � 1, nonlinearity has to be
taken into account when studying resonant waves in the dissipative layer. Linear
theory is a valid approximation for the description of the wave dynamics in the
dissipative layer if the dissipative terms are much larger than the nonlinear terms,
and so linear theory can be used if ε�R−2/3.

In linear theory, the terms describing dissipation in the MHD equations are
retained inside the dissipative layer to remove the singularity. The nonlinear terms
have to be taken into account in the dissipative layer if they are of the same order
as or larger than the dissipative terms, so that εR2/3 ∼ 1, i.e. R ∼ ε−3/2. Linear
studies of velocity scaling laws (v ∼ R1/3) indicate that the predicated velocities
in the dissipative layer are several orders of magnitude larger than the observed
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nonthermal velocities if the linear results are scaled to match the observed heating
rate. This leads to the suggestion that nonlinear effects, important in the dissipative
layer, might enhance dissipation and alter the linear velocity scaling law. Therefore,
according to (3.18), we can scale the dissipative coefficients as

v̄ = ε3/2ν, η̄ = ε3/2η. (3.20)

In order to obtain the solutions in the internal region, we introduce a new stretch-
ing variable in the system (2.10)–(2.18). The thickness of the dissipative layer is of
the order of linhR

−1/3, and, since we assume that in the dissipative layer the non-
linear and dissipative terms are of the same order (R ∼ ε−3/2), the new variable is
τ = ε−1/2s, i.e. r = r′ = rc + ε1/2τ . The new form of the MHD equations is given in
Appendix B.

The above equations contain ε1/2, so we use this quantity as an expansion param-
eter. To describe the expansion form for the variables in the dissipative layer, we
have to analyze the form of the outer expansions given by (3.16) and (3.17). Since
the quantities v⊥, b⊥ and P are regular in the vicinity of s = 0, their amplitudes
in the dissipative layer have to be the same as the amplitudes outside this layer.
Therefore, the expansion of these quantities is

f = εf (1) + ε3/2f (2) + · · · . (3.21)

It is easy to verify that the amplitude of the large variables in the dissipative layer
is of the order of ε1/2, so we can write the expansions for v‖, b‖, p and ρ in the form

h = ε1/2h(1) + εh(2) + · · · . (3.22)

The quantities u and br have a ln |s| behavior near the resonant position s = 0, so
they are of the order of ε ln ε in the dissipative layer, which means that we have to
start the expansions of these quantities with this term. It was shown by Ruderman
et al. (1997a) that the expansions (3.21) and (3.22) also contain terms proportional
to ε3/2 ln ε and ε ln ε. However, it was shown by Ballai et al. (1998a) that in the
simplified version of the method of matched asymptotic expansions we can use
ln |ε|� ε−κ for any positive κ and ε → +0, and we consider ln ε to be of the order
of unity in the dissipative layer. This enable us to write the expansions for u and
br in the form (3.21).

In the first-order approximation, we obtain a system of homogeneous linear equa-
tions for the variables with the superscript (1). The quantities that we need to ex-
press the variables of second order can be written with the aid of P (1), u(1) and v(1)

‖
as

b
(1)
‖ = −ωfB

ω2
A

v
(1)
‖ , b(1)

r = −fB
ω
u(1), (3.23)

p(1) =
B0ωρ0

fB
v

(1)
‖ , ρ(1) =

B0ωρ0

c2
SfB

v
(1)
‖ . (3.24)

The radial component of the momentum equation connects the derivative of the
total pressure perturbation and the parallel component of the velocity,

∂P (1)

∂r
=

2B2
0ϕωρ0

B0fBrc
v

(1)
‖ , (3.25)
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and the equation that relates the normal and parallel components of velocity is

∂u(1)

∂τ
+
ω2

ω2
A

fB
B0

∂v
(1)
‖
∂θ

= 0, (3.26)

where the equilibrium quantities are evaluated at the resonant point. We can see
that for B0ϕ = 0 we recover the results found for a straight equilibrium magnetic
field by Ballai et al. (2000). Combining the last two equations, we obtain a conser-
vation law similar to the linear theory, i.e.

dP (1)

dθ
+

2B2
0ϕ

ωµrc
u(1) = C(1)(θ), (3.27)

where C(1)(θ) is the first term in a series expansion of the coefficient C(θ), i.e.
C(θ) ≈ εC(1)(θ).

In the second-order approximation, we use only the equations obtained from
(B 1), (B 3), (B 6), (B 8) and (B 9) and the relations (3.23)–(3.27), and we have

ρ0
∂u(2)

∂τ
− ω∂ρ

(2)

∂θ
+
ρ0fB
B0

∂v
(2)
‖
∂θ

=
ρ0mB0ϕ

B0r2
c

τ
∂v

(1)
‖
∂θ

+
fB
µv2

A

dB0

ds
τ
∂v

(1)
‖
∂θ

+
ω3ρ0

c2
Sω

2
A

v
(1)
‖
∂v

(1)
‖
∂θ
− ρ0

rc
u(1)

− fBv
2
A

B0(v2
A + c2

S)
dρ0

ds
τ
∂v

(1)
‖
∂θ
− ρ0gB

B0

∂v
(1)
⊥
∂θ
− ρ0

B0

(
m

rc

dB0ϕ

ds
+ k

dB0z

ds

)
τ
∂v

(1)
‖
∂θ

−dρ0

ds
u(1) − B0ωρ0

c2
SfB

u(1)
∂v

(1)
‖
∂τ
− 2ωρ0

c2
S

v
(1)
‖
∂v

(1)
‖
∂θ

, (3.28)

ωρ0

∂v
(2)
‖
∂θ

+
fB
µ

∂b
(2)
‖
∂θ

= −ωρ0mB0ϕ

r2
cfB

τ
∂v

(1)
‖
∂θ
− ωdρ0

ds
τ
∂v

(1)
‖
∂θ

=
fB
B0

C(θ) +
ωρ0

fB

(
m

rc

dB0ϕ

ds
+ k

dB0z

ds

)

− fBB
2
0ϕ

B0µωrc
u(1) +

fB
µω

dB0

ds
u(1) − ρ0

B2
0
ν
∂2v

(1)
‖

∂τ 2 , (3.29)

ω
∂b

(2)
‖
∂θ
−B0

∂u(2)

∂τ
= gB

∂v
(1)
⊥
∂θ
− ω2fB
B0ω2

A

dB0

ds
τ
∂v

(1)
‖
∂θ

+
dB0

ds
u(1)

+
B2

0z

B0rc
u(1) +

fBv
2
A

ω(c2
S + v2

A)
u(1)

∂v
(1)
‖
∂τ

− ωB0

c2
S + v2

A

v
(1)
‖
∂v

(1)
‖
∂θ

+ η
ω

fBv2
A

∂2v
(1)
‖

∂τ 2 , (3.30)
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ω

(
∂p(2)

∂θ
− c2

S

∂ρ(2)

∂θ

)
= −B0ω

2

fB

dρ0

ds
τ
∂v

(1)
‖
∂θ
− γω2B0B

2
0ϕ

µc2
SfBrc

τ
∂v

(1)
‖
∂θ

−B0

µ

dB0

ds
u(1) − c2

S

dρ0

ds
u(1) − γω2B2

0

c2
SfBµ

dB0

ds
τ
∂v

(1)
‖
∂θ
− B2

0ϕ

µrc
u(1)

+
ω3v2

Aρ0

ω2
Ac

2
S

(γ − 1)v(1)
‖
∂v‖
∂θ

, (3.31)

∂p(2)

∂θ
+
B0

µ

∂b
(2)
‖
∂θ

=
ωρ0

fB

dB0

ds
τ
∂v

(1)
‖
∂θ
− ω2ρ0

ω2
A

v‖
∂v

(1)
‖
∂θ

+ C(θ)− 2B2
0ϕ

ωµrc
u(1). (3.32)

In the above equations, all equilibrium quantities and their derivatives are calcu-
lated at the resonant position s = 0.

The left-hand sides of the set of equations (3.28)–(3.32) can be obtained from
the left-hand sides of the corresponding equations of the first-order approxima-
tion by substituting variables with superscripts (2) for the corresponding variables
with superscripts (1). Since the set of first-order approximation equations possess a
nontrivial solution, (3.28)–(3.32) are compatible only if their right-hand sides sat-
isfy a compatibility condition. In order to derive this condition, we first express
b

(2)
‖ and ρ(2) in terms of v(2)

‖ and variables of the first-order approximation using
(3.29), (3.31) and (3.32). Subsequently, we introduce these expressions into (3.28)
and (3.30). In this way, we obtain two equations with the same left-hand sides.
Subtracting these two equations, we obtain an equation that connects v(1)

‖ and C(1),
which constitutes the compatibility equation for the system obtained in the second-
order approximation:

∆τ
∂v

(1)
‖
∂θ
− ω3B0[(γ + 1)v2

A + 3c2
S]

fBc2
S(c2

S + v2
A)

v
(1)
‖
∂v

(1)
‖
∂θ

+ ω

(
ν +

ω2
T

ω2
A

η

)
∂2v

(1)
‖

∂τ 2

=
ω3B0

ρ0v2
AfB

C(1)(θ), (3.33)

where

∆ = −dω
2
c

ds
(s = 0).

Similar to the B0ϕ = 0 case investigated by Ballai et al. (2000), the driving term is
the quantity that does not change across the dissipative layer. Equation (3.33) is
the nonlinear governing equation for the parallel velocity in the dissipative layer
for slow resonant waves. The second term on the left-hand side is the nonlinear
term and the third term is the dissipative term. The term on the right-hand side of
(3.33) is determined by the solution outside the dissipative layer, and its form can be
prescribed. Neglecting the driving term (necessary for resonance) in a homogeneous
plasma, (3.33) becomes very close to another very important family of nonlinear
wave equations describing solitons in dissipative media (e.g. the Korteweg–de Vries–
Burgers and Benjamin–Ono–Burgers equations). The only difference is that in the
present case, the dispersion is not present and the plasma is inhomogeneous.

Inspecting this formula and the result obtained by Ruderman et al. (1997a)
and Ballai and Erdélyi (1998), we can conclude that the equation, first found by
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Ruderman et al. (1997a), has an universal character describing nonlinear resonant
slow waves in the dissipative layer in static and steady-state isotropic plasmas. It is
independent of the actual structure of the geometry and magnetic field.

The resonant surface s = 0 can be considered as a surface of discontinuity when
solving the system of equations that govern plasma motion outside the dissipative
layer. Therefore, we have to calculate the jumps in the perturbation of the total
pressure and radial component of the velocity.

The jump of a function f (r) across the dissipative layer is defined by

[f ] = lim
s→+0

{f (s)− f (−s)}. (3.34)

Let us introduce new dimensionless variables

σ = δ−1
c ε1/2τ, q = ε1/2ωδc

v2
A

v
(1)
‖ , (3.35)

where δc, measures the thickness of the dissipative layer in isotropic plasmas and
is defined by the condition that the first and third terms on the left-hand side of
the governing equation (3.33) are of the same order. Its form is given by

δc =
{
ω

|∆|
(
v̄ +

ω2
T

ω2
A

η̄

)}1/3

. (3.36)

Let r0 be the characteristic width of the overlap regions to the left and right of the
dissipative layer, where both the linear ideal and the nonlinear and dissipative MHD
equations with coefficients approximated by the first nonzero terms of the Taylor
expansions are valid. The main property of the variable σ introduced in (3.35) is
that σ = O(1) in the dissipative layer, while |r| → r0 corresponds to |σ| → ∞. In
agreement with the matching procedure, the inner and outer solutions have to be
the same in the overlap regions. This condition provides us with another expression
for the jump in the function f (r) across the dissipative layer:

[f ] = lim
σ→∞{f (σ)− f (−σ)}. (3.37)

In the new variables, the governing equation becomes

σ
∂q

∂θ
+ Λq

∂q

∂θ
− ∂2q

∂σ2 = − ω4B0

v4
AfBρ0|∆|C(θ), (3.38)

where we have used the fact that outside the dissipative layer the approximations
u ≈ εu(1) and C(θ) ≈ εC(θ)(1) are valid.

In order to derive the two connection formulae, we introduce the new variables
in the relations (3.25) and (3.26), and, using (3.37), we finally obtain

[P ] =
2B2

0ϕB0

µrcfB
P

∫ ∞
−∞

q dσ, (3.39)

and

[u] = −ωfBv
2
A

ω2
AB0

P

∫ ∞
−∞

∂q

∂θ
dσ, (3.40)

where we have used the symbol for the Cauchy principal part P since the integrals
are divergent at infinity. We can see that for a magnetic field with straight lines
(B0ϕ = 0), the jump in the total pressure becomes zero, i.e. this quantity is con-
served across the singularity. These two equations are the nonlinear analogues of
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the connection formulae for the radial component of the velocity and the total pres-
sure perturbation obtained in linear theory by Sakurai et al. (1991). However, in
contrast to linear theory, where the jump conditions were given in terms of equilib-
rium quantities and the perturbation of the total pressure, the nonlinear connection
formulae are given in term of integrals of an unknown function q. Therefore, we
have to solve simultaneously the system (3.1), (3.2) describing wave motion out-
side the dissipative layer and the equation (3.38) describing wave dynamics inside
the dissipative layer, with (3.39) and (3.40) providing boundary conditions for the
problem.

It is straightforward to see from (3.38) that the nonlinearity parameter, which is
the ratio of the second term to the third term in (3.38), is

λ = O(ε1/2R1/3), (3.41)

which means that the nonlinearity is important if λ > 1; otherwise, the nonlinear
term in (3.38) can be neglected, and the system is described fully by linear theory.
This result is in perfect agreement with the result obtained in Sec. 2 from qualitative
considerations.

4. Conclusions
The aim of the present paper was to study analytically the nonlinear behavior of
resonant slow MHD waves in twisted magnetic flux tubes. The present study is a
natural extension of the work of Ballai et al. (2000).

The applied scaling method divides the domain of interest into two regions, where
the wave behavior and dynamics are governed by different sets of equations.

In the outer domain, i.e. outside the dissipative layer, the wave motion is described
by the ideal linear MHD equations, which can be reduced to a pair of coupled first-
order partial differential equations derived, for example, for the radial component
of the velocity and the total pressure perturbation.

In the inner domain, i.e. in the dissipative layer, the wave dynamics is governed
by an inhomogeneous nonlinear partial differential equation derived for the paral-
lel component of the velocity, where the inhomogeneous part originates from the
driving term. Since the dissipative layer embracing the resonant surface is very
narrow, it can be considered as a surface of discontinuity when solving the gov-
erning partial differential equations outside the dissipative layer. The connection
formulae obtained for example for the total pressure perturbation and the radial
component of the velocity give the jumps in these quantities across the dissipative
layer, thereby providing boundary conditions at the resonant surface of discontinu-
ity. In contrast to the case with a straight equilibrium magnetic field, the Eulerian
perturbation of the total pressure is no longer a conserved quantity. Instead, we
have found the conserved quantity to be a combination of the total pressure and
the radial component of the velocity, similar to its counterpart in linear theory.

Acknowledgements

I. Ballai acknowledges financial support from the UK PPARC. This work was
partly carried out while I. Ballai was supported by ‘Onderzoeksfonds’ K. U. Leuven.
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Appendix A. The nonlinear and dissipative terms in the governing
equations outside the dissipative layer
The nonlinear quantities Nit(i = 1, . . . , 9) in the case of a twisted equilibrium mag-
netic field are as follows:

N1t = −u∂ρ
∂r
− 1
B0

(
fB
∂(v‖ρ)
∂θ

+ gB
∂(v⊥ρ)
∂θ

)
− ρ

r

∂(ur)
∂r

, (A 1)

N2t = ρω
∂u

∂θ
− ρ̄

(
u
∂u

∂r
+ (fBv‖ + gBv⊥)

∂u

∂θ
− v2

r

)

+
1
µB0

(fBb‖ + gBb⊥)
∂br
∂θ
− b2

ϕ

µr
+
br
µ

∂br
∂r

, (A 2)

N3t = ρω
∂v‖
∂θ
− ρ̄

[
B2

0ϕ

B2
0

d

dr

(
B0z

B0ϕ

)
uv⊥ + u

∂v‖
∂r

]
+
fBv‖ + gBv⊥

B0

∂v‖
∂θ

+
uvB0ϕ

rB0
+
brbϕB0ϕ

µrB0
+

br
µB0

[
B2

0ϕ

B0

d

dr

(
B0z

B0ϕ

)
b⊥ +B0

∂b‖
∂r

]

+
fBb‖ + gBb⊥

µB0

∂b‖
∂θ

, (A 3)

N4t = ρω
∂ω

∂θ
− ρ̄

[
uvB0z

rB0
− B2

0ϕ

B2
0

d

dr

(
B0z

B0ϕ

)
uv‖ + u

∂v⊥
∂r

+
fBv‖ + gBv⊥

B0

∂v⊥
∂θ

]

+
brbϕB0z

µrB0
− B2

0ϕ

µB2
0

d

dr

(
B0z

B0ϕ

)
brb‖ +

br
µ

∂b⊥
∂r

+
fBb‖ + gBb⊥

µB0

∂b⊥
∂θ

, (A 4)

N5t =
m

r

∂

∂θ
(vbr − ubϕ)− k ∂

∂θ
(ubz − wbr), (A 5)

N6t =
B0z

B0
(wbr − ubz) + v‖

∂br
∂r

+
br
B0

[
B2

0ϕ

B0

d

dr

(
B0z

B0ϕ

)
v⊥ +B0

∂v‖
∂r

]

− u

B0

[
B2

0ϕ

B0

d

dr

(
B0z

B0ϕ

)
b⊥ +B0

∂b‖
∂r

]
− b‖ ∂u

∂r
− gB
B0

∂

∂θ
(b‖v⊥ − b⊥v‖), (A 6)

N7t =
B0ϕ

B0
(wbr − ubz)− v⊥ ∂br

∂r
+ b⊥

∂u

∂r
+
br
B0

[
B2

0ϕ

B0

d

dr

(
B0z

B0ϕ

)
v‖ −B0

∂v⊥
∂r

]

− u

B0

[
B2

0ϕ

B0

d

dr

(
B0z

B0ϕ

)
b‖ −B0

∂b⊥
∂r

]
− fB
B0

∂

∂θ
(v⊥b‖ − v‖v⊥), (A 7)
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N8t =
1
ρ0

[
ω

(
γp
∂ρ

∂θ
− ρ∂p

∂θ

)
+ u

(
ρ
dp0

dr
− γpdρ0

dr
+ ρ̄

∂p

∂r
− p̄γ ∂ρ

∂r

)
−
(
p̄γ
∂ρ

∂θ
− ρ̄ ∂p

∂θ

)
fBv‖ + gBv⊥

B0

]
, (A 8)

N9t =
1

2µ
∂

∂θ
(b2
r + b2

ϕ + b2
z). (A 9)

The dissipative terms Di(i = 1, . . . , 6) in the MHD equations are given by

D1t = ρ̄ν̄

[
1
r

∂

∂r

(
r
∂u

∂r

)
+
(
m2

r2 + k2
)
∂2u

∂θ2 −
2m
r2

∂v

∂θ
− u

r2

+
1
3
∂

∂r

(
1
r

∂(ur)
∂r

+
m

r

∂v

∂θ
+ k

∂w

∂θ

)]
, (A 10)

D2t = ρ̄ν̄

[
1
r

∂

∂r

(
r
∂v

∂r

)
+
(
m2

r2 + k2
)
∂2v

∂θ2 +
2m
r2

∂u

∂θ
− v

r2

+
1
3
m

r

(
1
r

∂2(ur)
∂r∂θ

+
m

r

∂2v

∂θ2 + k
∂2w

∂θ2

)]
, (A 11)

D3t = ρ̄ν̄

[
1
r

∂

∂r

(
r
∂w

∂r

)
+
(
m2

r2 + k2
)
∂2w

∂θ2 +
k

3

(
1
r

∂2(ur)
∂r ∂θ

+
m

r

∂2v

∂θ2 + k
∂2w

∂θ2

)]
,

(A 12)

D4t = η̄

[
1
r

∂

∂r

(
r
∂br
∂r

)
+
(
m2

r2 + k2
)
∂2br
∂θ2 −

2m
r2

∂bϕ
∂θ
− br
r2

]
, (A 13)

D5t = η̄

[
1
r

∂

∂r

(
r
∂bϕ
∂r

)
+
(
m2

r2 + k2
)
∂2bϕ
∂θ2 +

2m
r2

∂br
∂θ
− bϕ
r2

]
, (A 14)

D6t = η̄

[
1
r

∂

∂r

(
r
∂bz
∂r

)
+
(
m2

r2 + k2
)
∂2bz
∂θ2

]
. (A 15)

Appendix B. The modified MHD equations in the dissipative layer

−ωτ ′ε1/2 ∂ρ

∂θ
+ ρ̄

(
∂(τ ′u)
∂τ

+
m

B0
ε1/2

∂Γ⊥‖
∂θ

+
k

B0
τ ′ε1/2

∂Γ̃⊥‖
∂θ

)

+uτ ′ε1/2 dρ0

dr
+ uτ ′

∂ρ

∂τ
+
m

B0
ε1/2Γ⊥‖

∂ρ

∂θ
+

k

B0
τ ′ε1/2Γ̃⊥‖

∂ρ

∂θ
= 0, (B 1)

−ωρ̄τ ′ε1/2 ∂u

∂θ
+ ρ̄

(
uτ ′

∂u

∂τ
+
m

B0
ε1/2Γ⊥‖

∂u

∂θ
+

k

B0
ε1/2τ ′Γ̃⊥‖

∂u

∂θ
− ε1/2

B2
0

Γ⊥2
‖

)
= −τ ′ ∂P

∂τ
+

1
µ

(
−2ε1/2B0ϕ

B0
γ⊥‖ + ε1/2(mB0ϕ + kB0zτ

′)
∂br
∂θ

+
mε1/2

B0
γ⊥‖

∂br
∂θ

+
k

B0
ε1/2τ ′γ̃⊥‖

∂br
∂θ

+ τ ′br
∂br
∂τ
− ε1/2

B2
0
γ⊥2
‖

)
, (B 2)
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−ωρ̄ε1/2τ ′
∂v‖
∂θ

+ ρ̄

[
uτ ′

∂v‖
∂τ

+ ε1/2τ ′
B2

0ϕ

B2
0

d

dr

(
B0z

B0ϕ

)
uv⊥

+
m

B0
ε1/2Γ⊥‖

∂v‖
∂θ

+
k

B0
ε1/2τ ′Γ̃⊥‖

∂v‖
∂θ

+ u
B0ϕ

B2
0
ε1/2Γ⊥‖

]

= −ε
1/2

B0
(mB0ϕ + kτ ′B0z)

∂P

∂θ
+

1
µ

[
ε1/2(mB0ϕ + kτ ′B0z)

∂b‖
∂θ

+ ε1/2B
2
0ϕ

B0
br

+ε1/2τ ′
dB0

dr
br + ε1/2B

2
0ϕ

B0
γ⊥‖ br +

m

B0
ε1/2γ⊥‖

∂b‖
∂θ

+ τ ′br
∂b‖
∂τ

+ε1/2τ ′
B2

0ϕ

B2
0

d

dr

(
B0z

B0ϕ

)
brb⊥ +

k

B0
ε1/2τ ′γ̃⊥‖

∂b‖
∂θ

]
, (B 3)

−ωρ̄ε1/2τ ′
∂v⊥
∂θ

+ ρ̄

[
uτ ′

∂v⊥
∂τ
− ε1/2τ ′

B2
0ϕ

B2
0

d

dr

(
B0z

B0ϕ

)
uv‖ +

mε1/2

B0
Γ⊥‖

∂v⊥
∂θ

+
k

B0
ε1/2τ ′Γ̃⊥‖

∂v⊥
∂θ

+ u
B0z

B2
0
ε1/2Γ⊥‖

]

= −ε
1/2

B0
(mB0z − kτ ′B0ϕ)

∂P

∂θ
+

1
µ

[
ε1/2(mB0ϕ + kτ ′B0z)

∂b⊥
∂θ

+ ε1/2B0ϕB0z

B0
br

−ε1/2τ ′B2
0ϕ
d

dr

(
B0z

B0ϕ

)
br + ε1/2B0z

B2
0
γ⊥‖ br +

m

B0
ε1/2γ⊥‖

∂b⊥
∂θ

+ τ ′br
∂b⊥
∂τ

−ε
1/2

B2
0
τ ′B2

0ϕ
d

dr

(
B0z

B0ϕ

)
brb‖ +

k

B0
ε1/2τ ′γ̃⊥‖

∂b⊥
∂θ

]
, (B 4)

− ωB0ε
1/2τ ′

∂br
∂θ

= mε1/2 ∂

∂θ
(uγ⊥‖ − brΓ⊥‖ )

−kε1/2τ ′
∂

∂θ
(brΓ̃⊥‖ − uγ̃⊥‖ ) + ε1/2B0(mB0ϕ + kτ ′B0z), (B 5)

− ωε1/2τ ′
∂b‖
∂θ

= −ε1/2(mB0z − kτ ′B0ϕ)
∂v⊥
∂θ
− ε1/2τ ′

dB0

dr
u− τ ′B0

∂u

∂τ

−ε1/2B
2
0z

B0
u + ε1/2B0z

B2
0

(brΓ̃⊥‖ − uγ̃⊥‖ )

−ε
1/2

B0

∂

∂θ
(v⊥b‖ − v‖b⊥)(mB0z − kτ ′B0ϕ)

−ε1/2τ ′
B2

0ϕ

B2
0

d

dr

(
B0z

B0ϕ

)
(ub⊥ − brv⊥)− τ ′ ∂

∂τ
(ub‖ − brv‖), (B 6)
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−ωε1/2τ ′
∂b⊥
∂θ

= ε1/2(mB0ϕ + kτ ′B0z)
∂v⊥
∂θ

+ ε1/2τ ′
B0ϕ

B0

d

dr

(
B0z

B0ϕ

)
− ε1/2B0ϕ

B2
0

(brΓ̃⊥‖ − uγ̃⊥‖ )

+
ε1/2

B0

∂

∂θ
(v⊥b‖ − v‖b⊥)(mB0ϕ + kτ ′B0z) + ε1/2τ ′

B2
0ϕ

B2
0

d

dr

(
B0z

B0ϕ

)
(ub‖ − brv‖)

−τ ′ ∂
∂r

(ub⊥ − brv⊥) + ε1/2B0ϕB0z

B0
u, (B 7)

[
uτ ′

∂

∂τ
− (ωτ ′ −mv − kτ ′w)ε1/2 ∂

∂θ

]
p̄

p̄γ
= 0, (B 8)

P = p +
B0

µ
b‖ +

1
2µ

(b2
r + b2

‖ + b2
⊥), (B 9)

where

Γ⊥‖ = v‖B0ϕ + v⊥B0z, Γ̃⊥‖ = v‖B0z − v⊥B0ϕ,

γ̃⊥‖ = b‖B0z − b⊥B0ϕ, (B 10)
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