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SUMMARY
The frequent use of past experience by human engineers
when solving new problems has led to an interest in the use
of case based reasoning (CBR) to help automate engineer-
ing design. In engineering design it often occurs that many
past experiences must be combined to solve a new problem,
and thus the process of case based adaptation must
efficiently and systematically combine information from
many sources. We have developed a constraint based
methodology for case combination that allows its applica-
tion across a wide range of problems. We have shown that
our approach provides an efficient adaptation methodology
that ensures convergence upon a solution if one exists,
provides a uniform representation of cases, and is general-
izable beyond just one domain. Our technique is
implemented in a case based reasoning system called
COMPOSER, which has been tested in two design domains:
assembly sequence design and configuration design.

KEYWORDS: COMPOSER; Engineering design; Case-based
reasoning; Automated design; Constraint satisfaction algorithm.

1. INTRODUCTION
Engineering design poses many challenges for researchers
developing computational models of the process. Artificial
Intelligence techniques have received much attention in the
last decade as being important for making progress in our
understanding of the design process and in the development
of computer-based tools to aid designers. However, the
complexities of engineering design often inhibit the compu-
tational feasibility of AI approaches. The large amounts of
potentially inconsistent and constantly changing require-
ments in complex domains complicate the knowledge
acquisition and representation that is critical to developing a
knowledge based system. Furthermore, the required knowl-
edge is often domain specific, limiting the applicability of a
knowledge based system to one domain. In addition, the
scale of problems in complex domains is often large enough
to be prohibitive to typical AI techniques which become
computationally infeasible as problem size grows.

The reliance on past experience that is such an integral
part of human problem solving has motivated the use of case
based reasoning (CBR) techniques. A case based reasoning
system stores its past problem solving episodes as cases
which later can be retrieved and used to help solve a new

problem. The process of adaptation, or changing the old
solutions to fit the new problem requirements, is one
component of CBR that has not yet been well addressed.
Without adaptation, a CBR system is simply a storage and
retrieval tool, leaving the difficult data synthesis to the user.
Adaptation is particularly difficult for complex problem
domains such as design, where several past experiences
must often be combined to solve the new problem. If this
combination is not performed in a systematic manner, it is
difficult to tell whether a solution is being converged upon
at all. Our goal has been to formalize the adaptation process
in order to make it efficient and reliable even in complex
domains, and to allow its applicability beyond just one
problem domain.

We have chosen a constraint satisfaction algorithm to
provide the formal methodology for adaptation. Our results,
described in the following sections, show that using
constraint satisfaction as the adaptation engine provides
many advantages:

d An efficient and generalizable methodology for adapta-
tion, applicable across a general class of problems.

d A uniform representation of cases alleviates the knowl-
edge representation issue often problematic when
combining information from various sources.

d Allows efficient combination of many cases.
d Ensures convergence upon a solution if one exists.
d Provides a way to implicitly decompose a large problem

into smaller sub-problems.
d Provides an assessment of problem adaptability.
d Reduces the reliance on domain specific knowledge.

We have shown the effectiveness of our approach by
implementing a design problem solving system COM-
POSER which has been tested in two design domains:
assembly sequence design and configuration design. We
compare and contrast our work with other similar research
in Section 2, and continue in Section 3 with a description of
the problem representation and its impact on our method-
ology. Section 4 describes the adaptation process itself,
Section 5 shows a short example of the process, Section 6
details our results, and we conclude the paper in Section 7
with a summary and some directions for future work.

2 RELATED WORK

2.1 Adaptation methodologies
Many researchers have examined and proposed method-
ologies to address the CBR process of adaptation. Three
well-known adaptation methods are derivational analogy,
substitution, and transformation. In derivational analogy, a
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new solution is computed using the same method by which
the old solution was computed. Derivational analogy is
found in the existing systems ARIES1 and PRODIGY/
ANALOGY.2 Substitution methods choose and install a
replacement for some part of an old solution that does not fit
the current situation requirements, as in CHEF,3 JUDGE,4

CLAVIER,5 and MEDIATOR.6 Transformation methods use
heuristics to replace, delete, or add components to an old
solution in order to make the old solution work in the new
situation, as in CASEY7 and JULIA.8

The main difference between many existing adaptation
approaches and the one developed for COMPOSER is that
COMPOSER begins with a set of cases, each of which
addresses some component of the new problem. Existing
approaches often begin with one old solution which is then
changed to solve the new problem.

More recent systems that have addressed the multi-case
adaptation issue are EADOCS,9 IDIOM,10 CAPlan,11 and
PRODIGY.12 In COMPOSER, the many matching cases are
retrieved at one time from the case base during retrieval, and
then these cases are all used simultaneously by the repair
algorithm to find a solution to the new problem. In
EADOCS, each case addresses one feature of the new
problem, and each case is used to adapt the corresponding
solution feature. In PRODIGY, cases are replayed at specific
choice points during the plan generation. In CAPlan, the
problem is analyzed into goals, the goals are used to retrieve
cases, and each retrieved case replays its decisions. IDIOM
is similar to COMPOSER because of the use of constraint
satisfaction during adaptation. However, dimensionality
reduction is used in IDIOM in order to eliminate constraint
inconsistencies, and continuous constraints are allowed. In
COMPOSER on the other hand, the minimum conflicts
repair algorithm is used to repair inconsistencies, and
discrete, static or dynamic constraints are allowed.

Another important comparison between COMPOSER
and other multi-case adaptation systems is in the decom-
position of the new problem. Design problems are typically
large and complex, necessitating decomposition in order to
facilitate reuse of existing cases. However, decomposition is
often difficult because the many components of a problem
have strong relations among one another.13 Therefore, it is
helpful if a case based reasoner has an efficient and accurate
method by which to decompose a new problem before
matching it against the cases in the case base. COMPOSER,
like PRODIGY, has an implicit decomposition of the new
problem. In EADOCS, the decompositions are predefined,
in IDIOM, the decomposition is delegated to the user, and in
CAPlan, the decomposition is static and domain specific,
and it is done before retrieval by decomposing the set of
goals.

A similarity in motivation exists between COMPOSER’s
approach and the approach taken in DEJA VU,14 where the
emphasis is on determining the adaptability of the retrieved
cases. In COMPOSER, the adaptability assessment has
emerged because of imposing the constraint satisfaction
problem (CSP) structure onto the adaptation process.
Adaptability can be determined once the set of matching
cases has been retrieved, while in DEJA VU,14 assessing
adaptability is used to guide retrieval.

The multi-case approach taken by COMPOSER is unique
in that it simultaneously combines solutions to several cases,
and solves the local inconsistencies between these cases to
produce a global solution to the new problem. We have
found this approach to be especially suitable to the design
domain, where one existing case rarely addresses all of the
complexities found in a design problem. Rather, many
existing cases must be efficiently and systematically
combined, and therefore COMPOSER uses a CSP algorithm
as the case combination mechanism.

2.2 Constraint satisfaction problems
The general solution to the constraint satisfaction problem is
NP-complete,15 and thus many algorithms have been
developed to tame the computational complexity of the CSP.
Arc consistency, path consistency, and k-consistency algo-
rithms attempt to eliminate inconsistencies in the constraint
network before the search for a solution begins, with the
hope of avoiding excessive backtracking.16

Other studies have focused on the constraint network
structure, to determine if any easily solved cases may exist.
Freuder investigated situations in which no backtracking is
required17 and in which the bounds on backtracking can be
determined.18 Dechter and Pearl19 investigated directional
arc/path consistency pre-processing techniques, which take
into account the direction in which backtracking will
eventually search the problem. As a result, they avoid
processing many constraints which are unnecessary for the
search. Truth Maintenance Systems (TMS) remember their
reasoning and use dependency directed backtracking to look
at the previous dead-end choices in order to change only
those values that are relevant to the current error.20 The
worst-case analysis of all of these algorithms, however, does
not reveal the merits of these techniques, as they cannot be
shown to consistently provide good results or outperform
other methods.

Dynamic CSP has been explored in the work of
Bessiere,21 which describes the algorithm for computing
arc-consistency for dynamic constraint satisfaction prob-
lems. Faltings22 explores dynamic constraint propagation in
continuous domains. Mittal and Falkenhainer23 identified
four types of dynamic constraints and implemented them
within an ATMS framework. Our research has identified a
promising CSP algorithm called the minimum conflicts
algorithm24 whose empirical computational time has been
shown to grow only linearly in the size of the problem. We
have expanded this algorithm to include dynamic constraint
capabilities and integrated it into the CBR framework as the
adaptation algorithm.

2.3 Assembly sequence problems
Assembly sequence generation is the problem of finding a
valid sequence by which to assemble a set of parts into the
final product. Typically, the assembly sequence generation
problem is viewed as a planning problem, where each step
in the sequence is planned. Two well known assembly
sequence generation methods are the feasibility testing
method25 and the user questioning method.26 Each of these
methods views the assembly sequence problem as one of

Composer system286

https://doi.org/10.1017/S0263574798000368 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574798000368


finding the disassembly sequence and then reversing it.
The feasibility testing method relies on first computing all

possible decompositions of the assembly and then checking
each decomposition in turn to determine whether it is a
feasible one. The user questioning method also begins with
a set of all possible decompositions of the assembly, and
then it continues by asking the user whether or not each
decomposition is feasible.

The intent of COMPOSER was to show that through the
use of CBR and CSP, the costly feasibility testing and the
user questioning could be eliminated, since the necessary
precedence constraints are stored in the case base with the
previously solved assembly sequence design. COMPOSER
addresses both linear and non-linear problems as well as
problems with non-monotone characteristics by formulating
them uniformly as CSPs.27 COMPOSER also uses the old
solution to generate one good assembly sequence based on
experience, eliminating the need for a human expert to later
view and edit the assembly sequence generated.

Other work on CBR in assembly sequence generation has
been addressed by using the case base at each plan step
order to determine which would be the most feasible next
connection to make.28 This again implies searching the case
base for the best match at each plan step, whereas
COMPOSER’s approach attempts to perform a simultane-
ous adaptation so that only one pass through the case base
must be made.

3 REPRESENTATION ISSUES

3.1 CSP as a formulation for design problems
The CSP is a natural formulation for design problems,
where the many interacting design constraints and design
ideas can be uniformly represented by the constraint
satisfaction paradigm, and further automatically integrated
and synthesized into a feasible design by correct and
complete CSP algorithms, thereby ensuring convergence
upon a solution if one exists.

In our test application domain of assembly sequence
design, we have formulated the assembly sequence problem
as a design problem for two reasons. First, the typical
formulation of the assembly sequence problem as a
planning problem requires extensive feasibility testing at
each plan step in order to determine the valid sub-
assemblies.25 We found that most assemblies are
decomposable, and thus lend themselves to a case combina-
tion process, which allows us to eliminate the costly
feasibility computations necessary when the problem is
formulated as a planning problem.

Second, by formulating the assembly sequence problem
(ASP) as a design problem, we can more closely integrate
the design decisions with the assembly sequence decisions,
which traditionally are separated. The assembly sequence
decision is usually made in isolation and does not have any
influence on the design decisions, even though a modifica-
tion of the design could very well simplify the assembly
sequence. By storing the information about an assembly in
the case base, one can store both design information and
assembly information, thus providing a tighter link between

the two processes. For instance, separate cases may be
stored showing assembly sequences that are more appro-
priate for slight variations in part designs, thus allowing a
designer to potentially look at the outcome of COMPOSER
to help see the impact of the design decisions on the
assembly sequence.

In our representation, the constraints specify the various
feasibility constraints placed on the product during its
assembly. Consider, for example, the receptacle product
shown in Figure 1. One of its feasibility constraints is that
the stick must be placed inside the receptacle before both
the cap and the handle are attached, otherwise there is no
geometrically feasible way to properly include the stick in
the final assembled product. The CSP graph of a product
closely resembles its connectivity graph which describes the
relationships between the parts, known as the relational
model25 shown in Figure 2.

The CSP is formulated by defining each CSP variable to
be a connection between two parts. Thus, as shown in
Figure 3, the CSP variables for the receptacle device are V1,
representing the connection between the cap and the
receptacle, V2 (connection between stick and receptacle),
and V3 (connection between handle and receptacle).

The variable takes on an integer value representing the
step number in the assembly sequence. For example, if a
variable is assigned the value 2, the two parts sharing the
connection are to be joined as the second step in the

Fig. 1. Receptacle product.

Fig. 2. Relational model of Figure 1.

Fig. 3. CSP Representation of the Receptacle Product.
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assembly process.
Constraints express precedences between operations. For

the receptacle device, there is one spatial and one opera-
tional constraint formulated as:

C1: (V2<V3) OR (V2<V1)
C2: Vi≠Vj

C1 captures the knowledge that the stick must go inside the
receptacle before both the cap and the handle are attached to
the receptacle, and C2 indicates that no two connections
may be made at the same time.

The solution to the CSP is then a valid ordering of all of
the mating connections so that none of the constraints are
violated. A valid assembly sequence for the receptacle is
(V1=1, V2=2, V3=3), indicating that the cap and the
receptacle are assembled first (connection V1), then the
stick is inserted into the receptable (connection V2), and
finally the handle is attached to the receptacle (connection
V3). Note that this is only one of the possible solutions.
COMPOSER’s CSP engine is capable of finding more than
one solution if it is not stopped after one result.

This CSP representation of design problems allows
varied designs to all be uniformly represented, thereby
allowing a common adaptation mechanism for cases coming
from different sources. The CSP formulation also sets the
stage for the use of a CSP algorithm to do the adaptation,
which ensures convergence, and provides an efficient and
generalizable method by which to combine several cases, as
we will show in Section 6 when discussing the results.

3.2 Further expansion of the CSP paradigm to
accommodate engineering design
Engineering design problems are often ones which do not fit
into a static formalism, because new design requirements
often appear later in the design process, and many design
decisions made during the design process have significant
influence on other portions of the design. For these reasons,
we chose to augment the general CSP formalism to one of
a dynamic CSP formulation, where problem values and
constraints may be added or deleted from the problem as the
problem solving progresses. An example of this dynamic
characteristic can be seen in the 4-blocks assembly diagram
shown in Figure 4.

The four blocks cannot be assembled simply by sequen-
tially inserting one block into the next, because the last
block will not fit. Therefore, the product must be assembled
by creating two sub-assemblies, and then putting the sub-
assemblies together. In the four blocks example, we must

either put together blocks [A&B], [C&D] and then put the
two sub-assemblies together, or alternatively, we must put
blocks [B&C], [A&D] together, and then put those two sub-
assemblies together. Now consider the situation where we
have chosen to make connection V1 [A&B], and then V3
[C&D], and now we choose to make connection V2.
Connection V4 then occurs automatically, and can therefore
be eliminated from further consideration in the problem—it
can in fact be deleted from the problem. This type of
dynamic deletion (or addition) of variables to the CSP
during problem solving is known as a dynamic constraint
satisfaction problem. We have incorporated dynamic capa-
bility into COMPOSER’s adaptation algorithm.

There are four types of dynamic constraints implemented
in COMPOSER, based upon those introduced by Mittal and
Falkenhainer.23 COMPOSER’s adaptation mechanism has
been designed and implemented to include these dynamic
constraint capabilities, in order to better represent a wider
variety of engineering design problems.

3.3 Case based reasoning (CBR) as a description of the
design process
While the CSP is an effective and formal method by which
to describe the design product itself, it does not necessarily
address all of the aspects involved in the design process. The
design process is one which inherently relies on expertise,
rules of thumb, and specialized knowledge, which each
designer accumulates though experience. This type of
accumulated expertise is best approximated by a CBR
system, where the past design cases are stored in the case
base for future reference. In this way, the case based
reasoner may draw upon this experience to help it
automatically solve new problems, just as the experienced
designer draws on accumulated experience when develop-
ing a new design.

In COMPOSER, the CSP representation of a design case
is stored in the case base with the variables and constraints
stored as feature-value pairs, along with the solution to the
case. The case representation of the receptacle CSP is
shown in Figure 5.

We found that by storing small cases, each of which
addresses some important design consideration and repre-
sents its solution, the case based reasoner can implicitly
decompose the new problem into its constituent parts during
matching, and then combine the many matching cases into
a design product which satisfies its requirements.

The effectiveness of the stored cases in helping to solve
new problems lies in discovering a systematic methodology

Fig. 4. 4-Blocks Example. Fig. 5. Case representation of the receptacle CSP.
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by which to combine this stored expertise into a new design
product. Our research has identified the CSP as being a
well-suited formalism for this task. It allows the cases to be
uniformly represented, and allows the rigor and complete-
ness of CSP algorithms to guide the incorporation of the
various pieces of design information stored in the many
cases in the case base. The combination of formalism and
versatility allowed by the CSP enables our methodology to
apply across a wide range of problems.

4 THE ADAPTATION PROCESS

4.1 Adaptation described
Adaptation is often considered to be the most difficult
component of a case based reasoning system. This is
especially true in complex domains such as engineering
design, where it may not be immediately apparent how a set
of cases should be combined to result in an effective new
design product. For this reason, we have chosen a formal
CSP algorithm, the minimum conflicts algorithm24 to
accomplish adaptation in our system. The issues that CSP
addresses solve many of the inherent difficulties of
adaptation. For instance, the CSP provides a common case
representation, allowing cases from many different sources
to be integrated seamlessly into a solution for a new
problem. Secondly, choosing the CSP formalism allows the
application of systematic and complete CSP algorithms,
thus ensuring convergence upon a solution which is often
problematic in adaptation methodologies.

In addition, using a CSP algorithm for adaptation reduces
the often domain-specific adaptation knowledge that must
be stored with the system. Traditionally, in order to
accomplish adaptation, a system must evaluate which
portions of a new problem need to be adapted, and must
choose how to adapt in order to fit the new problem
requirements. The formulation of adaptation as a CSP
eliminates both of these knowledge requirements, freeing
the system from being dependent on domain specific
heuristics.

In COMPOSER, the existing cases themselves provide
the necessary constraints for the new problem. This allows
the minimum conflicts repair algorithm itself to determine
what values need to be changed/adapted according to these
constraints. Furthermore, the decision about how to adapt a

piece of information from an old case is eliminated in
COMPOSER, since the minimum conflicts algorithm adapts
by choosing the value that conflicts the least with the
remaining values. Because this method remains constant
across all problem domains, the need for domain specific
heuristics is eliminated.

A further advantage of using the CSP formulation for the
cases is that it allows an implicit decomposition of the new
problem into its constituent cases in the case base. Thus,
COMPOSER can avoid the problem of an a priori
decomposition that is useless because the subdivided
problem has no corresponding cases in the case base. Lastly,
we found that imposing the formalism of a CSP on the
adaptation process allows us to make assessments about the
adaptability of the retrieved cases, a concept that has been
elusive in case based reasoning up until now. The adaptabil-
ity assessment can be used to determine whether or not it is
computationally worthwhile to do the adaptation. If not, one
approach that we are currently pursuing is to improve the
adaptability of the retrieved cases.29

The integration of CSP and CBR allows both method-
ologies to draw from each other’s strengths. The cases help
to minimize the computational complexity of the CSP, while
CSP helps to fully utilize the information in the cases to do
effective problem solving. COMPOSER’s overall problem
solving methodology is shown in Figure 6.

4.2 Motivation for COMPOSER’s adaptation mechanism
To illustrate the motivation for using the minimum conflicts
algorithm as the adaptation mechanism, let us look at an
example of a typical CSP, the map coloring problem.

If we are trying to color a map of the US with four colors
so that no two neighboring states have the same color, we
pose this as a CSP and then backtrack through all possible
combinations of colors, trying to find a combination in
which no two neighboring states have the same color. This
is a computationally complex task which grows exponen-
tially in the number of states/problem variables. To utilize
past knowledge, and to alleviate the computational com-
plexity problem, our methodology takes solutions to
previously solved subproblems and combines them into a
solution to the new problem. Thus, consider that there have
been colorings designed for the western and the eastern
portions of the US. As Figure 7 shows, these two sub-

Fig. 6. COMPOSER’s Problem Solving Methodology.
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solutions cannot simply be pasted together to form a
consistent coloring for the entire United States because of
conflicts that occur at the border of the two solutions.
Furthermore, if the conflicts are not resolved in a systematic
manner, then we cannot even tell if we are converging upon
a solution at all.

Thus, in COMPOSER’s methodology, these sub-solu-
tions are retrieved from the case base and used as an initial
starting point for the minimum conflicts repair algorithm.
The minimum conflicts algorithm then repairs these initial
conflicts using the minimum conflicts heuristic described in
Section 4.3. The appeal of the minimum conflicts algorithm
is that the number of repairs necessary to come to a solution
remains constant as the size of the problem grows, thereby
providing a mechanism which can be applied even to large
complex problems such as engineering design.

4.3 Minimum conflicts algorithm as the adaptation
mechanism
The minimum conflicts algorithm is the means by which
COMPOSER combines all of the solutions to the matched
cases into a consistent solution for the new problem. Recall
that even though the stored cases each have a consistent
local solution, when combined they exhibit global conflicts
that must be repaired in order to find a consistent global
solution for the new problem. The minimum conflicts
algorithm was chosen as the adaptation algorithm because it
has been shown to be more effective than traditional
chronological backtracking techniques, and it starts with an
initial solution, which in this framework comes from the
case base. The minimum conflicts repair strategy is shown
in Figure 8.

The original algorithm begins with an initial solution,

obtained by choosing values for each variable using a
greedy strategy in order to attempt to find a good initial
solution. It then chooses a variable that violates some of its
constraints and repairs that variable by choosing a value that
conflicts the least with the remaining values.

Conflicting variable values continue to be chosen and
repaired until no more conflicts remain, at which time the
algorithm has found a solution to the problem. Although the
general solution to the CSP has been shown to be NP-
complete, and thus traditional methods for solving the CSP
are computationally prohibitive, the empirical time of the
minimum conflicts algorithm grows only linearly with the
size of the problem, and is thus practical for use even with
large problems. This linear empirical time is attributed to
the fact that the number of repairs required remains constant
as the size of the problem grows.24 However, the worst case
complexity is still exponential, as for the other CSP
algorithms.

The minimum conflicts algorithm as implemented in
COMPOSER is the minimum conflicts heuristic embedded
within a backtracking algorithm. The initial values for the
variables come from the retrieved matching cases. Tradi-
tional chronological backtracking proceeds by trying to
assign a value to every variable so that all constraints are
satisfied. When no value can be found that satisfies the
necessary constraints, backtracking results, as is shown in
Figure 9.

In minimum conflicts backtracking, all variables begin
with an initial value, and the difference in the algorithm is
seen when moving ahead to make new choices: the
algorithm does not blindly choose the next value available.
Instead, it looks at the values chosen so far and takes that
choice that conflicts the least with current values, as is
shown in Figure 10.

The dynamic component of the backtracking algorithm
that has been added for COMPOSER affects the point in the
algorithm that undoes the consequences of withdrawing a
choice. Since variables may have been added or deleted
based on a certain choice, those variables must be put back
into or deleted from the problem as appropriate. The
changes to the algorithm are shown in Figure 11.

Fig. 7. Eastern and Western US Colorings Combined.

Fig. 8. Minimum Conflicts Algorithm.

Fig. 9. Chronological Backtracking.

Fig. 10. Minimum Conflicts Backtracking.
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By using the minimum conflicts algorithm augmented in
this way, we are able to utilize the past experience stored in
the case base, which alleviates the necessity of solving
every CSP from scratch, and it also provides a systematic
way to put more than one matching case together to solve
the new problem.

We have applied this methodology to both assembly
sequence problems and to configuration design problems,30

and the results are detailed in Section 6.

5 EXAMPLE
Consider the following example of a motor, shown in Figure
12.

Consider that we have stored in the case base the
receptacle example shown in Figure 3. Recall that the
constraints for the receptacle were such that the stick must
be placed inside the receptacle before both the handle and
the cap are attached. This same principle can be found in the
motor shown in Figure 12, where the armature assembly
must be placed inside the field assembly before both the fan
end bracket and the commutator end bracket are attached.
COMPOSER finds this correspondence between the old and
the new case using structure mapping31 and nearest neighbor
similarity metrics.

The matching process returns the variables and connec-
tions which correspond between the old and the new case.

In the current example, the matching information
obtained is:

HANDLE→COMMUTATOR
CAP →FAN-END-BRACKET
RECEPT →FIELD-ASSEMBLY
STICK →ARMATURE
V3 →V18
V1 →V19
V2 →V7

Since COMPOSER has the appropriate constraint and
solution for the existing receptacle case in the case base as
shown in Figure 13, it can automatically deduce the
constraint that exhibits the same principle in the motor case
simply by substituting the appropriate matching variables
into the old case’s constraint.

Since V3 from the receptacle case matches V18 from the
motor case, COMPOSER substitutes V18 for all V3’s in the
receptacle case’s constraint, substitutes V19 for all V1’s and
substitutes V7 for all V2’s, obtaining the following con-
straint that exhibits the geometric feasibility constraint for
the motor:

C1=(OR (V7<V19) (V7<V18))

COMPOSER also uses the matching variable information to
provide initial values for the motor problem’s variables. As
V1 was assigned the value 1 in the matching receptacle
case, V19 is assigned the value 1 in the motor problem
(because V1 was found to have matched V19), and
similarly, all of the matching variable values are transferred
for use in the new problem, resulting in the following
variable assignment obtained from the receptacle case:

(V19 1)(V7 2) (V18 3)

Now consider that there exists the following case in the case
base, as shown in Figure 14.

This example case is called the press-fit case, which
exhibits a mechanical feasibility constraint because part B
must be press-fit into part A before part C is attached to A,
otherwise the press-fit connection cannot be properly made.
There is a match between the press-fit case and a sub-
assembly of the motor problem, in that the bearing must be
press-fit into the commutator before the field-assembly is
attached to the commutator, otherwise, the press-fit connec-
tion cannot be properly made between the commutator and
the bearing. COMPOSER finds this match as before, by
structure-mapping and nearest-neighbor matching method-
ologies, to determine that the matching variables are as

Fig. 11. Dynamic Minimum Conflicts Algorithm.

Fig. 12. Motor Example.

Fig. 13. Receptacle Case Information in Case Base.
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follows:

V1→V17
V2→V18

The resulting constraint for the motor case based on the
matching variables is: C1=(V17<V18), and the initial
values obtained from the press-fit case are: (V17 1)
(V18 2).

COMPOSER continues in this manner, assigning all
appropriate constraints and variable values from matching
cases in the case base. As Figure 15 shows, there may be
overlaps between the variables that are matched by more
than one existing case in the case base. We call these
variables edge variables, because they occur at the bound-
ary of 2 sub-cases.

In our example, variable V18 is matched by both the
press-fit and the receptacle existing cases. COMPOSER
does not re-assign values that have been matched by
previous cases, and thus in our example, COMPOSER only
takes the value for variable V17 from the press-fit case, as
the value for V18 has already been assigned from the
receptacle case.

Another interesting characteristic to notice is that because
of the ordering nature of assembly sequence problems, there
can exist what we call unnatural overlaps between cases.
These unnatural overlaps occur when two cases each have
numbered a connection with the same value, even though
the two connections have no relation to one another.

For example, the receptacle case has numbered V19 as
the 1st connection, and the press-fit case has numbered V17
as the 1st connection. This causes an overlap between the
two cases, even though V19 and V17 are not the same
connection, and do not have any constraints in common. In
order to alleviate this unnecessary initial conflict, COM-
POSER begins numbering each successive case’s

contributed values at 1 plus the current maximum value of
the initial solution. So in our example, the initial values
from the receptacle case were (V19 1) (V7 2) (V18 3), and
COMPOSER now begins the matched values from the
press-fit case at ‘4’, assigning (V17 4) (and not re-assigning
V18 to 5, since it has already been given a value from the
receptacle case). The initial values for these two sub-
assemblies of the motor are therefore:

(V19 1) (V7 2) (V18 3) (V17 4)

indicating that we must first assemble the fan-end-bracket to
the field assembly, then insert the armature into the field
assembly, then attach the commutator to the field assembly,
and then finally to press fit the bearing into the commutator.
This initial solution, however, is not valid, as it does not
satisfy all of the new problem’s constraints. The minimum
conflicts algorithm now performs its repair, by choosing one
of the variables that violates its constraints. Recall that the
new problem’s constraints are:

C1=(OR (V7<V19) (V7<V18))
C2=(V17<V18)
C3=Vi ≠Vj

By examining each initial variable in turn, COMPOSER
finds that variable V18 violates its constraints, and thus
chooses to repair V18 by evaluating each possible value for
V18, and choosing the one that violates the least constraints.
As shown in the chart in Figure 16, any of the values 5
through 9 would be a good choice for variable V18, and thus
COMPOSER randomly chooses one of these, say 5.

After making this repair to the edge-variable V18, the
solution for these two sub-assemblies of the motor is:

(V19 1) (V7 2) (V17 4) (V18 5)

indicating that we should first attach the fan-end-bracket to
the field assembly, then insert the armature into the field-
assembly, then press-fit the bearing into the commutator,
and finally to attach the commutator to the field-assembly.
This one repair has resulted in a solution for this portion of
the motor problem that is consistent with all of the
constraints. In this way, COMPOSER combines the infor-
mation from the case base into valid solutions for new
problems.

6 RESULTS

6.1 CSP as a case combination/adaptation method
Various observations can be made about the behavior of the
minimum conflicts algorithm as a case combination meth-
odology. One observation confirms a previously found
result, that the minimum conflicts algorithm outperforms

Fig. 14. Press-Fit Case.

Fig. 15. Matching Cases Contribute Initial Values. Fig. 16. Values and their Constraint Violations.
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chronological backtracking.24 The result which was dis-
covered by applying COMPOSER to solve ASPs is that
using the solutions from the case base outperforms the
traditional minimum conflicts algorithm, thereby providing
the evidence that the combined CSP/CBR methodology is
an effective method by which to solve design problems that
require past experience and encompass large amounts of
variables and constraints. It must be remembered that even
in the tests where the old solutions from the case base are
not used to guide the minimum conflicts algorithm, the case
base still provides essential information (in the form of
constraints) to the algorithm. Thus, the case base is a key
input component for the minimum conflicts algorithm in
order for it to solve various design problems. The concrete
test results found in our tests run within COMPOSER are
shown in the following sections.

6.2 Minimum conflicts algorithm outperforms
chronological backtracking
We first wanted to confirm the previously found result that
the minimum conflicts algorithm outperforms traditional
chronological backtracking. This observation was con-
firmed by our experiments in COMPOSER and shows that
the minimum conflicts heuristic guides the search better
than does traditional chronological backtracking, resulting
in less backtracks and thus better performance from the
algorithm. The graph shown in Figure 17 summarizes this
result as found by running various n-queens and assembly
problems in COMPOSER, where performance was eval-
uated based on the number of backtracks. This is the
traditional evaluation measure for such backtracking algo-
rithms, since the number of backtracks is the factor which
most affects the time to find a solution. As Figure 17 shows,
the number of backtracks required by the minimum conflicts
algorithm is much smaller than the number of backtracks
required for chronological backtracking.

6.3 Minimum conflicts algorithm with solutions from case
base outperforms minimum conflicts algorithm with greedy
initialization
In our next experiments, we wished to determine whether or
not the solutions from the case base further improved the
performance of the minimum conflicts algorithm. The

experiments shown in Figure 18 confirm that starting with
solutions from the case base indeed requires fewer back-
tracks to find a solution than does starting with an initial
solution obtained by a greedy algorithm. This result justifies
the use of the minimum conflicts algorithm as a means by
which to perform case-based adaptation in the sense of
combining cases. It provides a systematic methodology
which ensures that a solution will be found if one exists,
while also providing good performance.

We have found, however, that the old solutions do not
always provide better performance than does the traditional
minimum conflicts algorithm, as shown in Figure 19. We
found that there are two factors which influence the
effectiveness of the old solutions: the number of initially
inconsistent edge variables, and the number of choices
remaining for the other edge variables. When there is a high
amount of initial inconsistency coupled with very tight
constraints on the initially inconsistent variables, the old
solutions do not provide more guidance than does the
minimum conflicts algorithm without using old solutions—
that is, there is a point at which adaptation is not cost
effective. There are situations where from-scratch problem
solving offers the same efficiency as does using the
solutions from the case base.

The deciding factor based on COMPOSER’s results was
the constrained-ness of the edge variables. If the edge
variables were overly constrained, then using the solutions
from the case base did not offer an improvement in
efficiency over the from-scratch method. To understand why

Fig. 17. Chronological BT vs. Minimum Conflicts Algorithm.

Fig. 18. Using Old Solutions vs. Greedy Initialization.

Fig. 19. Cost Effectiveness of Adaptation.
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this is so, one must consider the edge variables of the new
problem—those that are matched by many existing cases,
and thus are at the ‘edge’ between two existing solutions.
The factor that reduces the performance of using the old
solutions is the number of consistent choices available for
the remaining edge variables in the problem, which directly
relates to how constrained the edge variables are. If there are
very few remaining choices for the other edge variables,
AND there are a high number of initially inconsistent edge
variables, this means that it is likely that more variables than
just the edge variables will need to be repaired, thus
destroying the case solutions from the case base.

Our observations can be used to assess the adaptability of
the retrieved set of cases. Since considerable effort is
expended to retrieve matching cases, we would ideally like
to use the retrieved cases in all instances—even in those
situations where the retrieved cases are difficult to combine.
We have begun work on improving case combination in
these difficult situations by employing a genetic algo-
rithm.29

7. CONCLUSION
This research has investigated a methodology which allows
a case based reasoning system to be used not only as a
storage and retrieval tool, but also as a problem solving tool
through the use of the adaptation mechanism. By employing
a formalized methodology (CSP), the adaptation method
described here can be applied to any problem which can be
described as a static or dynamic, discrete CSP, thereby
providing a generalized mechanism for CBR problem
solving. We have described the system extensively in
reference 32. This article has provided a further analysis of
the results obtained by our system. We have shown that
formalizing the adaptation process allows measurement of
the adaptability of the retrieved cases—a concept that has
been previously difficult to quantify. We have also shown
that the decomposition of a new problem can occur
implicitly as a result of the matching process, and that by
using a formal CSP methodology, we were able to eliminate
some of the domain specific knowledge typically required in
case based reasoners.

Future work on COMPOSER will involve creating a
more robust matching methodology so that fewer existing
cases will be necessary in order to cover a wide range of
problems. Another aspect of the adaptation ready for further
expansion is to allow hard and soft constraints, as well as
the ability to incorporate continuous constraints.

COMPOSER has been shown to be a tool for adaptation
that can accomplish implicit decomposition of the new
problem, assessment of adaptability, guaranteed conver-
gence upon a solution if one exists, and a formalized and
generalizable approach to case representation and adapta-
tion. In this way, COMPOSER provides a methodology by
which adaptation can become a more widely applicable and
usable technique.
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