
NOMENCLATURE
,        velocity expansion coefficients
,   velocity expansion coefficients

[D] damping matrix 
E error norm

coefficients
i imaginary number

Legendre constant
influence coefficient matrix

[M] mass matrix
m order of Legendre function (harmonic number)
N highest value of subscript n
Ne highest value of subscript n with m + n = even
n degree of Legendre function (Polynomial number)
p pressure (N/m2)
P pressure, nondimensionalised as 

, associated Legendre functions
, normalised associated Legendre functions

R rotor radius (m)
t time (sec)

velocity perturbation, nondimensionalised as 
total velocity vector (ms–1)
velocity perturbation (ms–1)

V∞ free-steam velocity (ms–1)
χ inflow angle
δij Kronecker delta

ABSTRACT
In the field of rotorcraft dynamics, it is significant that the induced
inflow field is well understood and modeled. A large number of
methodologies have been developed in the past years, among which
the state-space model is recognised for its advantage in real-time
simulation, preliminary design, and dynamic eigenvalue analysis.
Recent studies have shown success in representing the induced flow
field everywhere above the rotor plane even with mass source terms
on the disk as long as they have zero net flux of mass injection when
integrated over the disk. Nevertheless, non-zero net mass influx is
expected in numerous situations, such as ground effect, tip drive 
rotors, etc; and the incapability of previous models limits the utilisa-
tion of the methodology in these cases. This work presents an 
extended potential-flow, state-space model derived from the poten-
tial-flow momentum equation by means of a Galerkin approach. The
induced velocity and pressure perturbation are expanded in terms of
closed-form, time-dependent coefficients and space-dependent asso-
ciated Legendre functions and harmonics. Non-zero net mass flux
terms are represented by the involvement of associated Legendre
functions with equal degrees and orders. Validation, as well as dis-
crepancies, of the inclusion of such terms is investigated. Numerical
simulation of frequency response in axial and skew-angle flight is
presented and compared with exact solutions obtained by the convo-
lution integral. Also the study shows that, unlike other pressure 
distribution responses, non-zero mass influx exhibits a high sensitiv-
ity to the choice of the number of states in the velocity expansion.
Error analyses are performed to show this sensitivity.
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pressure functions (potential functions)
v, η,  ellipsoidal co-ordinates
ρ density of fluid (kg/m3)

normalisation factors
, change of variable constants

τ time, nondimensionalised as 
,  pressure expansion coefficients

unit vector in upstream direction
velocity potential functions

Operators

Laplace operator

Superscripts and Subscripts

( )c cosine terms
( )s sine terms
( )m harmonic number
( )n polynomial number
( )z axial component
( )r radial component
( ) azimuthal component

1.0 INTRODUCTION
An understanding of the flow field during flight is necessary in order
to make design improvements to the performance and maneuverability
of a helicopter. This is a crucial topic in preliminary design and
flight test. As with other topics in research, there is more than one
approach to the understanding of the flow field. CFD is probably the
most fundamental method available. Nevertheless, the flexibility of
CFD is offset by the large computational effort and the difficulty in
capturing free vorticity. Vortex lattice results are another approach
with great utility, but they can often be computationally prohibitive
for analyses that require real-time simulation or eigenvalues. In these
cases, a finite-state model of the inflow is required. This paper con-
centrates on finite-state modeling.

Sissingh(1) first proposed a simple, first-harmonic inflow and lift
distribution without any dependence on the radial position along the
rotor blade. That model assumed an instantaneous relationship 
between perturbations of induced velocity and perturbations in
thrust. Sissingh showed good correlation of predicted data with
flight measurements. In the early 1970s, Ormiston and Peters(2) in-
troduced the idea of expressing the induced flow in state-variable
form. The first theory was a quasi-steady formulation with the as-
sumption of a linear relationship between perturbations of inflow
components and of rotor thrust. This formulation represents the in-
duced flow by a truncated Fourier series and assembles a theory that
relates the inflow field at blades to the lift and circulation developed
on the blades. This significantly simplifies the analysis of dynamic
inflow. Peters later extended this model to the unsteady condition(3)

by addition of the apparent mass of the inflow distributions. Though
good correlation was obtained at axial or edgewise flow, a transition
between these conditions was not allowed by this model.

In the 1980s, Peters and Pitt developed a linear, unsteady theory
that relates transient rotor loads to the overall transient response of
the rotor induced flow field(4-6). This model is based on unsteady 
potential flow theory with the assumption that the total pressure due
to a velocity field can be formed by superimposing the unsteady
pressure and the static pressure of that field. Even though this theory
proved to be practical and easy to use with good correlations, it is a
low-order approximation and is limited to only the crudest wake de-
scription of uniform flow with one simple gradient. In 1987, Peters
and He(7) turned to a higher-harmonic theory of dynamic inflow. The

pressure distribution, as well as the inflow field, is extended to in-
clude an arbitrary number of harmonics and an arbitrary number of
radial functions per harmonic. This new model gives excellent corre-
lation on the rotor disk plane and in a more detailed fashion than
does the Pitt model. However, it obtains only the normal component
of flow at the rotor disk and does not provide all three components
of flow on and above the rotor disk plane. In addition, it cannot be
applied to cases with mass injection at the rotor. In 2001, based on a
two-dimensional model studied by Nelson(8), Morillo extended the
Peters-He Model to include an additional set of functions, which 
enabled the new model to remove most of the limitations of the pre-
vious model(9).  

No net mass flow terms were considered in these models. However,
some rotors have tip jets or blade slats with suction or blowing.
These require that mass be injected into the wake. Also, some repre-
sentations of ground effect require a source potential on the ground
plane. These two types of rotors could not be handled by the state-
space models of that time. This research reviews and extends Moril-
lo’s work, rather than build an entirely new model, since a good cor-
relation has already been established. Net mass flow components are
considered in the flow field by presence of certain pressure terms.
Numerical results are compared with those from the convolution 
integral, and in some special cases, an exact solution in closed-form.
Also, the influence of the choice of number of states, including num-
ber of discontinuous functions and mass injection functions, is inves-
tigated through error analysis. Optimised results for individual pres-
sure distributions of net mass influx are obtained and compared to
results from the original formation. 

2.0 ORIGINAL STATE-SPACE MODEL
The derivation of the original state-space model is given in detail in
Ref. 9. An abridged rendering is given below. We start with the 
incompressible potential flow equations, continuity and momentum.

. . . (1)

. . . (2)

The induced velocity,     , is assumed to be small compared to the
free-stream velocity, V∞, which is taken along the negative     axis

. . . (3)

Thus, Equation (2) linearises to:

. . . (4)

In non-dimensional form, this becomes

. . . (5)

It is straightforward to show from Equation (5) and continuity that
∇2P = 0. Thus, pressure is a potential function. It further follows that
v– can be written as the gradient of a velocity potential,
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In order to obtain the final equations, Equations (7–8) are substi-
tuted into the nondimensional potential flow equations. Then, a
Galerkin approach is applied. In particular, the equation is dotted
from the left by       and integrated over the upper-half space above
the plane of the rotor. The Divergence Theorem is used to bring the
integrals down to only integrals on the rotor disk, which can be done
in closed form. The result is the following where all coefficients are
known explicitly, Appendix A.

. . . (15)

The derivation of Equation (15) utilises a change of variable from
to     .

. . . (16)

where

. . . (17)

. . . (18)

and

. . . (19)

. . . (20)

This change of variable allows the representation in Equation (10) to
be known in closed form everywhere in the flow field.

Superscripts ‘c’ in matrix notation imply these are cosine compo-
nents of the complete equation. However, Equations (7-8) imply that
the sine and cosine terms are completely decoupled, so an identical
set of equations for sine components could be written. The spatial
variables in an ellipsoidal coordinate system are shown in Fig. 1
where Ψ– is the azimuthal angle measured counterclockwise from
negative x-axis in x-y plane.

The state-space model represented by Equation (15) yields excel-
lent correlation for all three components of velocity perturbations
everywhere in the flow field above the rotor plane for various pres-
sure distributions, which are determined uniquely by rotor conditions
(i.e. number of blades, sectional lift, blades rotating frequency, etc).
However, the net mass flow terms, which are presented by associat-
ed Legendre functions with equal orders and degrees, i.e., m = n, in
pressure expansions, are not adopted in this formulation. This is
based on the fact that these terms yield infinite kinetic energy in the
flow field, as shown below.

Without losing generality, assume a pressure distribution 
The vertical component of induced velocity yields

. . . (21)

. . . (6)

where ∇2Ψ = 0.

Since we are looking for pressure functions that have discontinuities
in pressure or lift across a circular disk (the former being lift sources
and the latter being mass flux sources) it is natural to use a set of 
ellipsoidal coordinates for the solutions to Laplace equation,          .

3.0 EXTENDED STATE-SPACE MODEL
A state-space model is developed with velocity perturbation and
pressure perturbation expanded in series such that

. . .  (7)

. . . (8)

where

. . . (9)

. . . (10)

and             are normalised associated Legendre function of the
first and second kind, respectively,

. . . (11)

. . . (12)

with

. . . (13)

. . . (14)

and     ,     and      are time-dependent pressure coefficients and
velocity coefficients, respectively. These coefficients are governed
by the final non-dimensionalised matrix-form momentum equation.
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Equation (15). Therefore, it might be possible to include m = n in  
without introducing corresponding velocity potentials of the same

order.
The justification for this is as follows. There are no singularities

or mathematical difficulties in including      in the pressure function
on the right-hand side. These are valid solutions to Laplace’s equa-
tion that satisfy the boundary conditions. Although it is tempting to
add a parallel set of functions to the velocity potential,    , such that 

, such functions would involve        , Equation (16),
which is not defined, and this results in singularities in the matrices
that are due to the infinite kinetic energy. Therefore, we add      but
do not take any       terms.

To include net mass flux terms, i.e.            and            ,  in the
pressure distribution, the damping coefficient matrix [Dc] on the
right hand side of Equation (15) will be required to have extra
columns. Based on the goal that the new model should reduce to
Equation (15) if net mass flux terms are not considered, these new
entrees are desired to follow the same formulation of [Dc]. The for-
mulation in Appendix A indeed does not exclude any equal degree-
order associated Legendre functions either in its closed-form repre-
sentation or derivation; and therefore, the net mass flux terms could
be included in the pressure distribution. The extended momentum
equation is thus expressed as

. . . (25)

where [D̄ c] is the extended matrix to include n = m. Equation (25) is
now the extended dynamic wake model.

4.0 ERROR ANALYSIS AND SIMULATION
The validity of the proposed state-space model, Equation (25), is 
investigated by an error analysis. In this study, error is defined by

. . . (26)

where vs and ve are velocity perturbations from state-space model
and convolution/closed-form solution, respectively, r is the radial 
location, and A and B are the range of desired area of investigation.
Since the accuracy of the model is of less importance off the disk,
errors are multiplied by the weight coefficient             . Therefore,
the further from the disk, the less error is counted in the analysis.
From this point, for the sake of convenience, m + n = even and 
m + n = odd terms will be called ‘even’ and ‘odd’ terms, respectively.

It should be noted that optimum truncation strategies are discussed
in detail in Ref. (9). Basically, that reference shows that in axial
flow, the number of even and odd terms should be equal, with even
terms dropped as skew angle increases until no even terms are pre-
sent when χ = 90°. We take basically this same strategy here, but
with some studies as to whether the old strategy needs to be modi-
fied in any way to accommodate the new mass injection terms.

The previous Peters-He state-space model yields the exact solu-
tion at edge-wise inflow if there are no even terms in the velocity ex-
pansion. Morillo expanded the model to include mass injection terms
in the pressure expansion, which demands involvement of even as
well as odd terms in velocity. It is intuitive that the number of even
terms will change the correlation with the exact solution. Verifica-
tion of this assumption is done by error analyses with various num-
bers of even terms in the state-space model. In this study, the num-
ber of even and odd terms is represented by the number of terms in
the zeroth harmonic, that is, how many odd or even terms with m = 0
are included.

336 THE AERONAUTICAL JOURNAL JULY 2004

and therefore, on the upper surface of the plane of the disk

. . . (22)

There is, of course, a jump for below the disk. 
For the off-disk area in the plane of the disk, and if a Taylor series

is used for large η

. . . (23)

then the kinetic energy per unit area crossing the off-disk rotor plane
(v = 0, a ≤ η < ∞) is that

. . . (24)

Equation (24) fully expresses the major problem with including non-
zero net mass flux terms in the model. In particular, the involvement
of net mass flux terms, which happens in practical cases, will theo-
retically introduce infinite energy in the flow field. However, the in-
finite result only occurs if the media field does not dissipate energy
at all, and if the whole system, including the media field, is taken to
a distance of infinity. In reality, damping of air, even though very
small under the conditions of helicopter operation, will dissipate the
energy; and the induced velocity decreases much faster away from
the rotor than shown in Equation (23). Secondly, the operating peri-
od of a helicopter is not infinite. Furthermore, the study of induced
flow is not the final goal in the study of helicopter performance —
the ultimate goal is to see how it affects the behaviour of helicopter
blades, fuselage or personnel on the ground if it is close to the
ground. Therefore, the most important concern is the area on or close
to the actuator disk, not in the far field. Based on this aspect, if the
results have good correlation in the on-disk, or close-to-disk, area,
the involvement of net mass flux could be tolerated.

The variable change shown in Equation (16) prohibits any m = n
terms in the velocity expansion in Equation (8). However, this prohi-
bition is only for the mass matrix [Mc] and the influence coefficient
matrix [L

~ 
c] and has no bearing on the matrix [Dc], which is the coef-

ficient matrix of the pressure coefficients on the right-hand-side of

Figure 1. Ellipsoidal coordinates viewed in x-z plane
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For all of the illustrations shown, the pressure distribution is such
that

. . . (27)

To examine the generality of the proposed model, various excitation
frequencies, as well as skew angles along with different pressure dis-
tribution, are evaluated and discussed.

Figure 2 shows an example of error analysis for the pressure dis-
tribution             with zero and infinite frequencies during axial flow.
In this case, N and Ne represent the highest subscripts of       for odd
terms and for even terms, respectively. Thus, there are roughly half
as many odd (or even) terms as the value of N (or Ne). Figure 2(a)
shows the analysis with equal numbers of odd and even terms in the
model, while Fig. 2(b) shows the effect of number of even terms in
the model as the number of odd terms is fixed at 11. From Figs 2(a)
and 2(b), it is shown that the precision of results follows a rather
smooth trend within a certain range of number of states that yields
convergence. Within that range, the precision intends to increase
with more terms included. Numerical simulation verifies that, 

beyond the range of convergence, (for example, number of states
greater than 20 as shown in 2(a)), the convergence starts to break
down and collapse rapidly if the number of states goes even higher.
However, Figs 2(c) and 2(d) do not follow this same pattern. The 
accuracy of simulation oscillates with change in the number of
states. This is because the case ω = ∞ is the far limit of applicability
which can never be approached in practice. The ω = ∞ case has ex-
treme singularities of the rotor edge which are not well modeled by a
Galerkin approach.

Figures 2(e) and 2(f) give the errors with frequency ω = 2·3. Plots
show that the error becomes, in general, smaller and smaller with 
increase in the number of states. In other words, the error analysis
suggests that the convergence of the model is not monotonic with 
respect to the number of states adopted in the model — it depends on
both the number of states of choice and frequency/skew-angle of
flight. Other simulation results verify that increase of frequency or
skew angle shrinks the range of convergence. If the skew angle is
changed, the number of even terms included becomes more and
more important to the model’s convergence. Some of these phenom-
ena, like the effect of skew angle on convergence, agree with that of
zero net mass flow pressure distributions. 

Figures 3–8 illustrate the on-disk optimised frequency responses
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Figure 2. On-disc error analysis comparing results from state-space model and convolution integral. Pressure distribution              with ω = 0 ((a) and
(b)), ω = ∞ ((c) and (d)) and ω = 2•3 ((e) and (f)). The state-space model in (a), (c) and (e) uses various but equal numbers of even and odd terms (N)

in the zeroth harmonic; In (b) it has 22 odd terms and various number of even terms (Ne) in the zeroth harmonic; In (d) it has 20 odd terms and 
various number of even terms (Ne) in the zeroth harmonic; In (f) it has 25 odd terms and various number of even terms (Ne) in the zeroth harmonic.

Responses are evaluated with z = 0� (on the actuator plane), x = 0 (axial inflow), ψfl = 0�, 180� (along fore-and-aft axis).

0
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of pressure distribution               with various system configurations.
In all plots, circles are results from a closed-form convolution inte-
gral, Appendix B; triangles are results from closed-form solutions,
which are available in limited cases; and dots represent results of the
proposed state-space model from the Galerkin approach.

From Figs 2(a) and 2(b), it is observed that, when the odd terms
and even terms are each 11 in the zeroth harmonic, the state-space
model yields the highest accuracy for the zero frequency response
with respect to the exact solution. Numerical verification, plotted in
Fig. 3 shows that, even though this is the optimal choice, visible 
errors still exist in both on-disk and off-disk area. As discussed, the
velocity expansion includes no terms with m = n. Notice if the pres-
sure distribution is             , from Equation (16), the closed-form 
solution of the z-component of on-disk velocity perturbation is uni-
form. However, there is no function in the velocity expansion that
has property of being uniform on-disk. Therefore, it requires a large
number of terms in the velocity expansion to yield a good approxi-
mation. On the other hand, error analysis suggests that the conver-
gence collapses after the number of states goes beyond a certain
range. These two facts contribute to this error shown in Fig. 3(a). On

the off-disk area, the Galerkin approach decays into the far field
faster than the exact solution. This is expected and has been dis-
cussed in the previous section on infinite kinetic energy. 

Figure 4 is the frequency response for an infinite frequency. Based
on the fact that the response actually becomes zero in this case, ωvi, 
i = z, r, ψ– is plotted. It shows that the on-disk and far off-disk areas
have good correlation with the exact solution, yet relatively large os-
cillations appear at the edge of actuator. This is a consequence of the
singularity at the disk edge when ω = ∞.

Figure 5 is the optimised state-space simulation with frequency at
ω = 2·3, and it exhibits excellent correlation with convolution 
results. The total number of odd and even terms is 12 and 10, respec-
tively. The error analysis indicates about 1% error.

Based on individual error analyses, optimised results of frequency
response under various conditions are obtained and plotted in Figs
6–8. Figure 6 shows the response one disk radius above the rotor
plane in axial flow. Again it is noticed that the error is consistent, but
it is of the same order as the off-disk error in Fig. 2(a). The fact that
our shape functions cannot die out as 1/r whereas the true vz does,
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0
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0
0P = −Φ

Figure 2(e). Figure 2(f).

Figure 3. Frequency response of pressure distribution               with ω = ∞. All other components of induced velocities are zeroes. Both number of odd
and even terms included in state-space model are 11. Highest power of radial polynomials is 22. Responses are evaluated with z = 0�(on the actua-

tor plane), χ = 0 (axial inflow), ψfl = 0�, 180� (along fore-and-aft axis). Circles present values of convolution integral results at locations; triangles 
present results of closed-form solution; and dots present results obtained by Galerkin approach.
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Figure 4. Frequency responses of pressure distribution               with ω = ∞. All other components of induced velocities are zeroes. Number of odd
terms included in the state-space model is 10; Number of even terms is 3. Highest power of radial polynomials is 20. Responses are evaluated with 
z = 0� (on the actuator plane), χ = 0 (axial inflow), ψfl = 0�, 180� (along fore-and-aft axis). Triangles present results of closed-form solution; and dots 

present results obtained by Galerkin approach.

0
0P = −Φ

Figure 5. Frequency responses of pressure distribution               with skew angle χ = 0� , frequency ω = 2•3. Number of odd terms is 25; number of
even terms is 20. Highest power of radial polynomials is Nr = 25. Evaluation is performed on the actuator plane, z = 0�. Plots (a) and (b) are real and
imaginary parts, respectively, of vertical component of induced velocity. Plots (c) and (d) are those of radial component of induced velocity. Circles

present values of convolution integral results at locations; and dots present results obtained by Galerkin approach.

0
0P = −Φ
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explains why vz is underestimated at one radius above the disk.
Figure 7 shows the response at zero frequency in skewed flight.

Considering that the vortices do not die out in the skewed wake, the
induced flow will be larger in the trailing edge. Morillo showed that,
in skewed flow, the number of even terms should be reduced to 
obtain optimum convergence. However, it is also desired to have a
certain number of even terms in the velocity expansion because of
the inclusion of even terms in the pressure distribution. A compro-
mise can be found, but the error off-disk especially at the trailing
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edge is amplified. The accuracy of the model is evaluated on-disk in
this research; and, indeed, Fig. 6 shows this. In further research, an
over-all error analysis could be performed to find another optimised
number of states to give better correlation off-disk, with certain 
accuracy loss in the on-disk area.

Figure 8 shows response at a higher frequency, skewed-angle
flight. Figure 8 shows good correlations in all four non-zero compo-
nents. This is a direct result of increase of excitation frequency. For
any non-zero frequency, the response is of the form

Figure 6. Frequency response of pressure distribution               with ω = 0. All other components of induced velocities are zeroes. Both number of odd
and even terms included in state-space model are 11. Responses are evaluated with z = �1 (one radius above the actuator plane), χ = 0 (axial in-

flow),  ψfl = 0�, 180� (along fore-and-aft axis). Circles present values of convolution integral results at locations; triangles present results of closed-form
solution; and dots present results obtained by Galerkin approach.

0
0P = −Φ

Figure 7. Frequency responses of pressure distribution              with ω = 0. All other components of induced velocities are zeroes. Number of odd
terms included in the state-space model is 12; Number of even terms is 5. Highest power of radial polynomials is 24. Responses are evaluated with 
z = 0� (on the actuator plane), χ = 45, ψfl = 0�, 180� (along fore-and-aft axis). Circles present results of convolution integral; and dots present results

obtained by Galerkin approach.

0
0P = −Φ
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. . . (28)

and the error, if any, is decreased by factor of

. . . (29)

as long as ω does not approach infinity.
As long as the state-space model is within convergence range, the

increase of frequency always plays a role in reducing the error. This
also explains the excellent correlation shown in Fig. 5.

For purposes of illustration of generality of the model, Figs 9 and
10 are presented to show the responses of pressure distribution  

Cos ψ– with zero and infinite frequencies. From all the plots,

it can be seen that the radial components always have good correla-
tion with the exact solution, even when the axial components yield
large error. The errors for         are less than those for      .

5.0 CONCLUSIONS
It is shown that the proposed state-space model is capable of treating
non-zero net mass flux terms in the pressure distribution. Validation
is performed through error analyses and numerical verification.
Based on the results obtained, the following conclusions are made

The proposed state-space model with the extended damping 
matrix is capable of including non-zero mass flux terms in the pres-
sure distribution. The fact that these terms yield infinite kinetic ener-
gy is considered. Numerical results nevertheless agree with exact 
solutions for practical applications.

Figure 8. Frequency responses of pressure distribution              with skew angle χ = 45 , frequency ω = 4. Number of odd terms is 12; number of even
terms is 4. Highest power of radial polynomials is Nr = 24. Evaluation is performed on the actuator plane, z = 0�. Plots (a) and (b) are real and imagi-
nary parts, respectively, of vertical component of induced velocity. Plots (c) and (d) are those of radial component of induced velocity. Circles present

values of convolution integral results at locations; and dots present results obtained by Galerkin approach.
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The convergence of the model is not ideal with low frequency or
large skew-angle flight. Error on the trailing edge becomes signifi-
cant in these cases. 

A trade-off sometimes exists during optimization. The choice of
number of states is based on the importance of location of induced
flow. On-disk optimization usually gives excellent correlation on-disk,
but loses convergence off-disk. If an overall optimisation is adopted,
the excellence of on-disk correlation will be reduced.

Other adjustments and calibrations are always of interest to 
improve the proposed model. However, a major future work is to 
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apply the complete state-space model with blade element theory and
blade dynamics, and experimented results if available, to verify the
complete validity of model. 
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Figure 9. Frequency response of pressure distribution             with ω = 0. All other components of induced velocities are zeroes. Numbers of odd and
even terms included in state-space model are 11 and 10, respectively. Highest power of radial polynomial is 21. Responses are evaluated with z = 0�

(on the actuator plane), χ = 0 (axial inflow), ψfl = 0�, 180� (along fore-and-aft axis). Circles present values of convolution integral results at locations;
triangles present results of closed-form solution; and dots present results obtained by Galerkin approach.

1
1P = −Φ

Figure 10. Frequency response of pressure distribution              with w = ∞. All other components of induced velocities are zeroes. Numbers of odd
and even terms included in state-space model are 12 and 4, respectively. Highest power of radial polynomial is 23. Responses are evaluated with 

z = 0� (on the actuator plane), χ = 0 (axial inflow), ψfl = 0�, 180� (along fore-and-aft axis). Circles present values of convolution integral results at 
locations; triangles present results of closed-form solution; and dots present results obtained by Galerkin approach.
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APPENDIX A: CLOSED-FORM 
COEFFICIENTS

1. Mass matrix [M]

(A.1)

(A.2)

(A.3)

(A.4)

2. Damping matrix [D]

(A.5)

(A.6)

(A.7)

3. Influence coefficient matrix [L]

(A.8)

(A.9)

(A.10)

where

(A.11)

(A.12)

(A.13)

(A.14)

APPENDIX B: CONVOLUTION AND EXACT
SOLUTION
The solution for simple harmonic excitation is found by applying a
complex harmonic balance. 
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(B.10)

(B.11)

(B.12)

with the relationship

(B.13)

(B.14)

where (x0, y0) is the location of point under investigation on the rotor
disk. It yields

(B.15)

Noticing that, at azimuthal angle    on the surface of interest, the 
relationship between Cartesian coordinates and cylindrical coordi-
nates gives

(B.16)

(B.17)

and hence it gives

(B.18)

(B.19)

If the pressure excitation is expressed in form

(B.1)

where               .  The velocity will therefore be in form

(B.2)

Substituting Equations (B.1) and (B.2) into Equation (5) will give

(B.3)

In scalar form Equation (B.3) becomes

(B.4)

where ( ),k denotes component in k– direction. Assume the solution of
Equation (A.4) is

(B.5)

Substitution of Equation (B.5) back into Equation (B.4) and separa-
tion of real and imaginary parts yield

(B.6)

Solving        and       , respectively, will give

(B.7)

If Laplace transform is used with initial conditions at ζ = +∞, which
are all zeroes, it gives

(B.8)

where                        .  If the convolution theorem is used to solve Equa-
tion (B.8), the components of the complex velocity can be computed by

(B.9)

This integral can be done numerically for the convolution solution 
To evaluate           in Equation (B.9) for the cosine part of a pres-

sure distribution, the following relationship will be used
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