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Marine ice sheets are continent-scale glacial masses that lie partially submerged
in the ocean, as applies to significant regions of Antarctica and Greenland. Such
ice sheets have the potential to destabilise under a buoyancy-driven instability
mechanism, with considerable implications for future sea level. This paper and
its companion present a theoretical analysis of marine ice sheet dynamics under the
effect of a potentially dominant control of the buttressing force generated by lateral
stresses on the downstream floating component of the ice sheet (the ice shelf). The
analysis reveals critical conditions under which ice-shelf buttressing suppresses the
buoyancy-driven collapse of an ice sheet and elucidates the implications of lateral
stresses on grounding-line control and overall ice-sheet structure. Integrations of a
suitably simplified quasi-two-dimensional model are conducted, yielding analytical
results that provide a quick assessment of steady-state balances for a given ice-sheet
configuration. An analytical balance equation describing the spectrum of marine ice
sheet flow regimes spanning zero to strong ice-shelf buttressing is developed. It
is determined that the dynamics across this spectrum exhibits markedly different
flow regimes and structural characteristics. For sufficient buttressing, the grounding
line occurs near to where a lateral-drag controlled section of the ice shelf meets
the bedrock, implying an independent control of the grounding line by the ice
shelf. The role of basal stresses is relegated to controlling only the thickness of
the ice sheet upstream of the grounding line, with no significant control of the
grounding line itself. It is further demonstrated that lateral stresses are responsible
for inducing additional secondary contacts between the ice shelf and the bedrock
downstream of the grounding line, resulting in a rich variety of additional steady states.
These inducements generate a further stabilising mechanism that can fully suppress
grounding-line retreat and eliminate otherwise irreparable hysteresis effects. The
results provide a conceptual framework for numerical and observational interpretation
of marine ice sheet dynamics, and clarifies the manner in which ice shelves can
control grounding-line positions independently. It is thus indicated that a full
resolution of the fine details of the flow of ice shelves and the processes controlling
their erosion and disintegration is necessary for the confident forecasting of possible
ice-sheet collapse over the course of the next few centuries.
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606 S. S. Pegler

1. Introduction
Understanding the mechanics of marine ice sheets – those that lie predominantly

submerged in the ocean – is vitally important if we are to predict contributions to
future sea level with any confidence. The West Antarctic Ice Sheet (WAIS) is a
continent-scale marine ice sheet that sits on bedrock at an average depth of one
kilometre below sea level (Bamber et al. 2009). The total or partial collapse of
the WAIS as a consequence of its detachment from the bedrock under buoyancy
has the potential to outstrip other contributions to global sea-level rise over the
course of the next few centuries (Hanna et al. 2013). Recent unprecedented thinning
and retreat of its constituent Pine Island and Thwaites Glaciers may be independently
contributing as much as 6 % of the present total rate of global sea-level rise. However,
the future contributions of the WAIS are uncertain owing to significant challenges in
characterising and parametrising the phenomena controlling its evolution. A potentially
dominant phenomenon is an effect of the peripheral floating regions of the ice sheet –
the ice shelves – in creating a buttress that protects the considerably larger grounded
interior against surging outwards into the ocean. The role of this effect in controlling
the future of the WAIS is presently an open question. This paper and its companion
will explore the influence of lateral stresses and ice-shelf buttressing, and elucidate
the critical conditions under which it protects a marine ice sheet from triggering
runaway buoyancy-driven collapse.

Concerns over the essential stability of the WAIS are rooted in the hypothesis of
the marine ice sheet instability (MISI). Simply put, a grounding-line retreat driven
by buoyancy has the potential to manifest rapidly and with irreversible change,
particularly for regions where the underlying bedrock slopes upwards in the direction
of flow (a positive slope) (Weertman 1974; Thomas & Bentley 1978). The runaway
retreat of a grounding line underlying the MISI principle can be motivated on the
basis of an increasing relationship between the grounding-line thickness and the
rate of thinning of ice at the grounding line. Much of the bedrock underlying the
WAIS deepens towards the centre of the continent owing to isostatic depression,
creating prevailing regions of positive bed slope. If a grounding line retreats on a
positive bed slope then, since it moves into deeper water, the larger buoyancy forces
act to stimulate a yet faster retreat, producing a positive feedback. The potential
for this positive feedback has led to the hypothesis that regions of the WAIS may
collapse rapidly across parametric ‘tipping points’. It has been suggested that ice-shelf
buttressing may be necessary to suppress a potential full-scale or regional collapse of
the WAIS (Hughes 1981; Stuiver et al. 1981).

The viscous creep of marine ice sheets can be modelled using a system of thin-film
viscous flow equations known as the shallow-stream or shallow-shelf approximation
(SSA). The equations describe the interactions between gravitational stresses, basal
drag stresses and extensional (stretching) stresses under a shear-thinning flow model
(e.g. Morland 1987; MacAyeal 1989). In situations where the ice shelf undergoes
unconfined, horizontally one-dimensional flow, these equations predict that the
hydrostatic pressure of the ocean simply transmits directly through the ice shelf
to the grounding line (MacAyeal & Barcilon 1988; Chugunov & Wilchinsky 1996;
Wilchinsky & Chugunov 2000; Schoof 2007a,b; Robison, Huppert & Worster 2010;
Tsai, Stewart & Thompson 2015). The removal of a one-dimensional ice shelf thus
has no influence on the dynamics of the grounding line. The only resistance to
flow across the grounding line in this case stems from the longitudinal extensional
(stretching) stresses associated with the non-Newtonian creep of ice near the front of
the grounded region. In light of this simplification, it follows that the rate of extension,
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Marine ice sheet dynamics: the impacts of ice-shelf buttressing 607

and hence the rate of thinning, at an unbuttressed grounding line is controlled by the
hydrostatic pressure drop between the front of the grounded region and the ocean in
front of it, indicating the potential for runaway feedback between thinning and retreat
on a positive bed slope. This mechanism can be embodied within a relationship
between the flux and thickness at an unbuttressed grounding line derived from a
scaling analysis of the steady-state equations (e.g. Chugunov & Wilchinsky 1996;
Wilchinsky & Chugunov 2000; Schoof 2007a,b). By applying this flux relationship
in the context of a time-dependent marine ice sheet under suitable approximations
(Schoof 2007a,b), it can be argued that the retreat of the grounding line on a positive
bed slope increases the flux across the grounding line, consistent with a mechanism of
positive feedback between increasing flux and grounding-line retreat. Grounding lines
can therefore transition to positive-feedback retreat, leading to rapid and potentially
permanent changes in grounding-line positions (Schoof 2007a).

However, observational evidence and the results of numerical simulations have
indicated that a number of properties of one-dimensional flow do not hold as a
consequence of two-dimensional stresses generated by lateral contact. A significant
proportion of the ice shelves surrounding Antarctica are confined by rock or
near-stationary ice, resulting in lateral-drag forces, which accumulate to generate
a buttressing force that provides a direct resistive force, additional to the extensional
stress, that suppresses flow across the grounding line. The effect was demonstrated
by the significant accelerations of feeding ice streams following the collapse of
the Larson B Ice Shelf (Rignot et al. 2004; Scambos et al. 2004), accelerations
which are also illustrated by simulations of this configuration (de Rydt et al.
2015). Two-dimensional modelling of the SSA equations (e.g. MacAyeal 1989;
Goldberg, Holland & Schoof 2009; Gagliardini et al. 2010; Gudmundsson et al.
2012; Gudmundsson 2013; Favier et al. 2014) has indicated the significance of
a buttressing ice shelf and, in turn, the melting and calving rates that control its
magnitude. An interesting conclusion is that buttressing can allow a grounding line
to settle stably on a positive bed slope (Goldberg et al. 2009; Gudmundsson et al.
2012), deviating qualitatively from one-dimensional predictions. Idealised radially
flowing marine ice sheets, in which buttressing is generated by viscous hoop stresses,
also leads to stabilisation on non-negative slopes (Pegler & Worster 2012, 2013).

The effects of ice-shelf buttressing from lateral stresses can also be encapsulated
within so-called flow-line models, which form a mathematically one-dimensional
system of equations in which lateral drag stresses are incorporated in the form of
a Navier-type drag law (e.g. van der Veen 1999; Dupont & Alley 2005; Nick et al.
2010; Hindmarsh 2012; Pegler et al. 2013; Walker et al. 2013; Kowal, Pegler &
Worster 2016; Pegler 2016; Schoof, Davis & Popa 2017). The model incorporates the
effect of lateral stresses within a framework that yields considerably faster numerical
implementation than the full SSA equations, eases the physical interpretation of
results and creates analytical and asymptotic inroads. The development of analytical
inroads has been demonstrated in the context of a steady-state ice shelf (Pegler
2016), where it is determined that the floating component can be integrated to
yield exact or asymptotic solutions describing the structure of a buttressing ice
shelf. Across the spectrum of relative buttressing strength, the solutions were
determined to undergo a transition from the broadly concave solution describing
a non-buttressing ice shelf (van der Veen 1983), which has no sensitivity to its
downstream calving position, to a regime containing a prevailing internal section of
relatively milder slope that is controlled to leading order by the calving position.
The connection between the prevailing internal region and the grounding line
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608 S. S. Pegler

takes place through a short transitional boundary layer in which the divergence
of extensional stresses attains magnitudes several orders larger than elsewhere in the
ice sheet as the flow adjusts to the lateral-stress-dominated regime. The boundary
layer is distinct from the extensional boundary layer of the kind discussed in the
context of the grounded region upstream of the grounding line (cf. Schoof 2007b)
and involves considerably larger gradients in extensional stresses. For a narrow
geometry, a more reduced, nonlinear diffusive form of a flow-line model of a marine
ice sheet can be formulated (Pegler et al. 2013) in which buttressing provides the
dominant resistance to flow across the grounding line and the migration of the
grounding line is controlled by the time-dependent evolution of the ice shelf. Since
the rate of thickening of the ice shelf is independent of the basal slope, it is clear
from the perspective of this reduced model that the possibility of a grounding line
to form a stable steady state does not depend on the local basal gradient. Across
the spectrum of aspect ratios, there is thus a complete switch in the control of a
grounding line from being insensitive to the ice shelf to being entirely controlled
by it. In a recent study, Schoof et al. (2017) consider a flow-line model in which
the control of a grounding line is examined subject to two alternative calving laws
different to the case of a direct imposition (e.g. Goldberg et al. 2009; Gudmundsson
et al. 2012). This includes a consideration of the case of a tidewater glacier with
no ice-shelf buttressing but with lateral stresses in the grounded region, which are
found to affect the relationship between thickness and flux at the grounding line. The
second is the situation where an ice shelf forms and calves under a hydrofracture
model (Nick et al. 2010), which, for steady-state analysis, can be reduced to the
imposition of a calving thickness. The results show that a stable grounding line is
possible in this case on a retrograde slope despite the loss of a necessary relationship
between grounding-line retreat and increasing buttressing.

The present study extends the analytical results for steady-state solutions and
buttressing forces given by Pegler (2016) to the context of a full ice-sheet model
and explores the dominant flow balances, regimes and ice-sheet flow structures that
arise. The aim is to investigate the variation in these properties across the spectrum
of relative buttressing strength bridging the unbuttressed limit (Schoof 2007b) to
the limit of strong buttressing (Pegler et al. 2013). An overarching objective is to
clarify the fundamental switches in dynamical characteristics and parameter controls
resulting from the introduction of lateral stresses. By incorporating the buttressing
stress resulting from the steady-state integration (Pegler 2016), an algebraic equation
for buttressed grounding lines is obtained that allows for a rapid determination of
steady states without the need for any consideration of a differential equation. These
results differ in methodology from the kind of analysis based on direct numerical
solution of a flow-line model (e.g. Dupont & Alley 2005; Nick et al. 2010; Pegler
et al. 2013; Walker et al. 2013; Schoof et al. 2017). Relationships between the force
balances and the asymptotic structure of the ice shelf are investigated, with the finding
that buttressing is linked to three specific thicknesses defining the structure of the ice
shelf: the grounding-line thickness, the calving thickness and the thickness in front
of the input boundary layer of the ice shelf. It is shown that the grounding line can
be set directly by the prevailing profile of the ice shelf (Pegler 2016), elucidating
a complete switch in the mechanical role of the ice shelf between weak and strong
buttressing from having no control to having a completely independent control of the
grounding line. It will be explained why lateral stresses specifically in ice shelves –
even if orders of magnitude smaller than resistive stresses in the grounded region –
have such a major role in maintaining ice-sheet stability. The flow-line predictions
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and the reduced analytical predictions are benchmarked against direct numerical
simulations of the full two-dimensional SSA equations (Gudmundsson et al. 2012),
with limitations discussed. The configurations are also shown to partition between
consistent steady-state solutions with a continuously floating ice shelf (for which
the reduced analytical theory applies) and those where lateral stresses in the ice
shelf are sufficient to induce it to reground downstream of the primary grounding
line. The generation and sustainment of ice rises is thus linked to the sustainment
of lateral stresses. The critical prediction of regrounding can result in considerably
greater buttressing than the direct non-local integration of lateral stresses along the
ice shelf, and is shown to produce a rich variety of additional steady-state solutions
than predicted by the simplest forms of the analytical theory. The potential for lateral
stresses to eliminate hysteresis effects is discussed.

I begin in § 2 by developing the quasi-two-dimensional marine ice sheet model from
first principles, corroborating its predictions against full SSA equations and discussing
its limitations. An overview of the time-dependent phenomena is provided in § 3.
This is followed in § 4 with a development of the reduced analytical descriptions of
steady-state grounding-line forces, and a discussion of the fundamental differences
between unbuttressed and buttressed grounding-line dynamics. Section 5 details the
effects of lateral stresses on the structure of a marine ice sheet. Section 6 discusses
the concurrent phenomenon of ‘secondary grounding’ whereby lateral stresses induce
further contacts between an ice shelf and the bedrock. The theory is demonstrated in
§ 7 for an illustrative nonlinear bedrock topography. The implications of the results
to the geophysical context are described in § 8. The key conclusions are summarised
in § 9.

2. Theoretical development
Consider a marine ice sheet comprising a viscous, incompressible fluid layer (ice)

of density ρ flowing over a rigid bed z= b(x) and lying submerged in an effectively
inviscid fluid (the ocean) of larger density ρw and upper surface z= 0 (figure 1). The
domain of the ice sheet is assumed to extend from a line symmetry or ice divide at xD
to a termination or calving front xC. The ice sheet has a free upper surface z= h(x, t)
and a partially floating, partially grounded lower surface z = l(x, t). Let the vertical
thickness distribution of the ice sheet be denoted H(x, t)≡ h(x, t)− l(x, t). A marine
ice sheet comprises two regions: the upstream grounded region, wherein l = b, and
the downstream ice shelf or floating region, wherein l> b. The grounded and floating
regions connect at the grounding line x= xG(t).

The flow is confined laterally between margins along y = ±w(x), representing
either rock or near-stationary grounded ice, as illustrated in the planform schematics
of figure 2. The calving front (terminus) of the ice shelf can either lie exterior to
the confining region (figure 2a) or interior to it (figure 2b). In the former case, the
ice shelf fills the channel fully and detaches from the boundaries at or near the
channel exit, as is characteristic of some ice shelves (e.g. the Amery Ice Shelf).
For the case of interior calving, the ice shelf instead calves without detaching, a
feature characteristic of Pine Island Glacier, for example. Interior and exterior calving
introduce slightly different modelling considerations, which will be detailed in § 2.1.

The equations of momentum and mass conservation governing the viscous flow are

∇ · σ − ρgẑ= 0, ∇ · u= 0, (2.1a,b)

where ∇ is the gradient operator, u(x, t) is the three-dimensional velocity of the flow,
σ ≡ −pI + τ is the stress tensor, p is the pressure, τ = 2µe is the deviatoric stress
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FIGURE 1. (Colour online) Schematic cross-section of a marine ice sheet.
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FIGURE 2. (Colour online) Plans showing (a) an ice shelf calving exterior to its region of
confinement, and (b) interior to it. The grounding line is illustrated by a solid red curve.
In (a), lateral stresses terminate at the detachment points of the ice shelf near the channel
mouth. For this case, the detachment point determines where condition (2.15) is applied.
For (b), equation (2.15) is imposed directly at the calving front itself.

tensor, µ(x, t) is the effective viscosity, e≡ (1/2)[∇u+ (∇u)T] is the strain-rate tensor,
ẑ is the vertical unit vector and g is the gravitational strength. In accordance with
Glen’s law, I allow for a viscous power-law fluid defined by the relationship for the
effective viscosity

µ=µ0
(

1
2 e : e

)[(1/n)−1]/2
≡µ0

(
1
2 e : e

)(m−1)/2
, (2.2)

where µ0 is the coefficient of viscosity, n the power-law exponent and m≡1/n (Cuffey
& Paterson 2010). For glacial flow, the shear-thinning case n= 3 [m= 1/3] is most
commonly assumed, and µ0 ∼ 108 Pa s1/n is representative.

The zero-stress condition along the free top surface of the ice sheet is given by

n · σ = 0 on z= h(x, t), (2.3)

where n is the unit outward normal to the surface.
The base of the ice sheet is subject to different conditions depending on whether

it is grounded or floating. In the grounded region, I apply the Weertman drag law
(a nonlinear Navier condition),

t · σ · n= τb(t · u)=C−(t · u)m− on z= l(x, t)= b(x), (2.4)
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where t and n are the unit tangent and normal to the lower surface, C− is the
basal-drag coefficient and m− is the basal drag-law exponent. Models of this kind
are standard in ice-sheet simulation, and aim to parametrise processes of glacial
slip, such as regelation and sliding over rough bedrock (Weertman 1957; Lliboutry
1987; Gudmundsson 1997). It is usual to identify the slip-law exponent with the
rheological exponent, m− = m, which is the case commonly applied in modelling
the water-lubricated ice streams that typically feed ice shelves. Here, I will focus
the examples on cases where m− = m and C− is uniform. Drag coefficients of
C− = 105–106 Pa (m s−1)−m− are representative (Cuffey & Paterson 2010). These
drag coefficients are sufficiently small that the velocity profile of an ice stream is
free of vertical shear to leading order (u≈ u(x, y, t) only).

The floating region has a free lower boundary, which differs mechanically from the
grounded region in being both geometrically unconstrained and subject to negligible
tangential stresses from the ocean below it. Assuming a purely hydrostatic ocean
pressure, pw = −ρwgz, I impose continuity of stress along the base of the floating
region with

n · σ =−pwn= ρwgln on z= l(x, t) > b(x). (2.5)

The new effects explored in this paper stem from the drag forces exerted by the
lateral margins, y=±w(x). Velocimetric observations (Rignot, Mouginot & Scheuchl
2011) indicate that a no-slip condition, u = 0, may be the most widely relevant
condition at ice-shelf margins. However, localised softening or damage may in
principle lead to more slip-like behaviour in ice streams and ice shelves. For any of
these cases, a drag law of the form

t · σ · n= τs on y=±w(x) (2.6)

can be proposed, where τs is the lateral stress. A specific model for τs will be
discussed below. Some previous modelling studies (e.g. MacAyeal 1989) prescribe
τs directly, but this does not describe the viscous resistance to shearing of the flow
consistently.

Assuming sufficiently weak basal drag, equation (2.1a,b) can be depth integrated to
yield a simplified system of thin-film viscous flow equations commonly referred to
as the ‘shallow-stream’ or ‘shallow-shelf’ approximation (SSA), which are provided
in the supplementary document (https://doi.org/10.1017/jfm.2018.741) (see DiPietro &
Cox (1979), MacAyeal (1989) or Pegler & Worster (2012) for alternative derivations
of these equations).

The first of two thin-flow simplifications underlying this model is that the
leading-order vertical stress is hydrostatic, σzz = ρg(h− z). Under this approximation,
the height in floating regions conforms to Archimedes’ principle of flotation,
h = (1ρ/ρw)H. For the grounded region, the trivial relationship of h = b + H
applies instead. The thickness and upper-surface height can generally be related by
the conditional expression

h=
{

b+H if H > d(x) (grounded region),
(1ρ/ρw)H if H < d(x) (floating region). (2.7)

The function d(x)≡−(ρw/ρ)b(x) is referred to as the flotation profile. A grounding
line xG(t) occurs where the ice thickness H(x, t) and flotation profile d(x) coincide,
giving the flotation condition

H(xG, t)= d(xG)≡−(ρw/ρ)b(xG). (2.8)
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612 S. S. Pegler

The second simplification is the depth- and width-integrated form of the longitudinal,
x-component of the Stokes’ equation (2.1a), which I write as

∂

∂x

(
4wHµ

∂u
∂x

)
︸ ︷︷ ︸

Extensional
stress

− Hτs(u)︸ ︷︷ ︸
Lateral
stress

− wτb(u)︸ ︷︷ ︸
Basal
stress

= ρgwH
∂h
∂x︸ ︷︷ ︸

Gravitational
force

, (2.9)

where the effective viscosity µ = µ0|∂u/∂x|m−1. This equation is equivalent to the
one-dimensional form of a standard ice-stream model (e.g. Muszynski & Birchfield
1987; MacAyeal 1989), except augmented to include the drag force owing to lateral
stresses τs.

The direct incorporation of basal stress τb within the one-dimensional extensional
flow model (2.9) can be justified formally on the basis of a leading-order vertical plug
flow arising from sufficient basal lubrication. By analogy, the direct incorporation of
lateral stress τs within (2.9) could be justified, at least mathematically, on the basis
of an assumption that lateral stresses are much smaller than the stress associated with
shearing transversely across the channel, i.e.

τs� τ shear
s ≡µ0(w−1u)m, (2.10)

where τ shear
s is the intrinsic scale of transverse shear stress that would arise for a

condition of no lateral slip. In this limit of weak lateral drag, the flow is transversely
plug-like to leading order. While considerable softening of ice (e.g. by viscous heating)
may theoretically allow for this limit, I anticipate that the more broadly relevant case
for an ice shelf is a no-slip condition. However, this entails τs ∼ τ

shear
s , and thus

does not satisfy any asymptotic condition that might allow for the incorporation of
the lateral stress τs into the width-integrated formulation (2.9) to be justified in any
general asymptotic limiting sense. In principle, all components of the horizontal stress
tensor may become important in either the stress divergence or the determination of
the effective viscosity µ through different regions of the flow. On this basis, it might
be anticipated that explicit two-dimensional modelling is necessarily in order to
accommodate the effects of zero lateral slip in marine ice sheets (e.g. Gudmundsson
et al. 2012). Nevertheless, it will be demonstrated below that the shear stress for no
lateral slip can, under situations to be discussed, be modelled accurately by applying
the heuristic shear-drag parametrisation

τs =µ0(λ
−1
+

ū)m ≡C+ūm where λ+ = λsoft
+
+

w
2n−1(n+ 2)

(2.11a,b)

is an ‘effective slip length’ representing the sum of a ‘softening slip length’ λsoft
+

and a cross-channel average slip associated with a local approximation of plane
(two-dimensional) Poiseuille flow (Pegler 2016). Here, the overbar denotes the width
average

ū(x, t)≡
1

2w

∫ w

−w
u(x, y, t) dy. (2.12)

The term λ
soft
+ is included here to represent a possible effect of lateral softening

and will be neglected henceforth. A similar expression to (2.11) based on centreline
velocity is used by Hindmarsh (2012) for the purpose of a scaling analysis with a
different prefactor. While appropriate for u interpreted as the centreline velocity and
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sufficient for the scaling analysis, the form given there leads to an inconsistency
with the width-integrated mass-conservation equation (2.18) that does not arise with
the prefactor of (2.11b). The shear-drag parametrisation (2.11) is applied here as an
explicit closure condition within the context of solving a full mathematical model, and
will be benchmarked against the full SSA model. The model formed by combining
(2.9) and the parametrisation (2.11) will be referred to as the quasi-two-dimensional
(Q2D) model.

As noted above, the model of (2.11) is not based on any asymptotic approximation.
The relationship depends in particular on neglecting the longitudinal extensional
stress in formulating (2.11) despite its retainment in the force-balance equation (2.9).
For n 6= 1, the model also depends on the neglect of transverse shear stress in the
expression for the effective viscosity µ in the term representing the divergence of
extensional stresses, namely, the first term of (2.9). Despite the neglect of these
contributions, the model does, by design, consistently recover both the purely
extensional (wide) and the transverse-shear-dominated (narrow) limits (Pegler 2016).
However, an ice shelf will naturally undergo transitional balances involving mixtures
of these stresses, particularly in the immediate front of a grounding line (Pegler
2016). It is possible, at least in principle, for the model to be less accurate in
such regions. In order to reveal any significant disparities, I conducted a series of
numerical benchmarks against the full, unsimplified two-dimensional thin-flow (SSA)
equations for n = 3 applied across a wide spectrum of planform aspect ratios and
compared the results with the predictions of the Q2D model defined by (2.9) and
(2.11). As reported in the supplementary document, excellent agreement is generally
found across the complete range of aspect ratios. The best relative agreement occurs
for wide embayments and a slight discrepancy applies for the narrow limit. Just
two localised regions of the flow exhibit minor discrepancies. One is the so-called
input boundary layer of the ice shelf immediately in front of the grounding line
(Pegler 2016). The other is near the calving front, where the corner singularity at the
margins causes the transverse velocity to become large. It should be noted that the
comparisons provided in the supplementary results focus on the case of a uniform
width. It is likely that abrupt transitions from narrow ice streams to wide ice shelves
will involve additional stresses not described by the Q2D model. Subject to this
caveat and others summarised in § 8.3, the analytical framework provided by (2.9)
and (2.11) provides a good description of the dynamics of outlet systems spanning
narrow to wide embayments.

For small lateral softening, λsoft
+ �w, the effective slip length λ+ defined by (2.11b)

is a scaled surrogate for the channel half-width w. For example, n = 3 yields λ+ ≈
w/20. For representative values of w = 20–200 km, λ+ ≈ 1–10 km. The associated
effective lateral-drag coefficient C+ = 106–107 Pa (m s−1)−m is much larger than the
upper bound of the typical values of the basal-drag coefficient given above. Therefore,
as expected, the lateral condition in an ice shelf generates more shear (i.e. is ‘harder’)
than the basal condition in the grounded ice stream. The relative significance of basal
stress compared to lateral drag, as described by (2.9), is measured by the ratio of the
width-integrated basal drag 2wτb to the sum of the two depth-integrated lateral-drag
stresses from the margins, 2Hτs, namely,

R≡
2wτb

2Hτs
=

wC−
HC+

=

{
1–100 if H > d(x) (grounded region),
0 if H < d(x) (floating region). (2.13a,b)

It should be noted that the basal stress is modelled using a prescribed drag coefficient
C−, while the lateral stresses in the ice shelf, being shear dominated, is controlled
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geometrically by the half width, λ+ ∝ w. The dimensionless basal strength R thus
involves a mixture of the transverse aspect ratio and the ratio of drag coefficients.
In view of the considerable lubrication typical at the base of an ice stream, it is
possible for the overall effect of lateral stresses to be comparable to that of basal stress
despite the much shorter length scale (the glacier’s height) over which they are applied
compared to the basal stress. The estimates of R in the grounded regions (2.13a)
follow from the ranges of values of C− and C+ given above and typical thickness
scales of H ∼ 102–103 m. The prediction that R & 1 indicates that the overall effect
of basal drag in the ice stream is comparable to or larger than the lateral drag. It is
important to note that, irrespective of the relative magnitude of lateral stress in the
grounded region, the lateral stresses in the ice shelf have a central role in ice-sheet
stability. This is because the force against which they compete for significance is not
the basal stress but the extensional stress resisting flow across the grounding line (the
only resistance to flow across the grounding line in the absence of buttressing). The
magnitude of the extensional stress can become readily matched and/or exceeded by
the buttressing force generated by lateral stresses through the length of the ice shelf.
A sufficient resistance to flow across a grounding line forms an independent necessary
condition for maintaining a large ice sheet. Thus, in providing a potentially dominant
contribution to this resistance, lateral stresses exerted in the ice shelf, even if relatively
small compared to the lateral and basal stresses upstream of the grounding line or
exerted over a relatively short ice shelf, have the potential to dominate control of the
large-scale mass balance.

Using (2.5) and (2.6) to substitute for the drag laws τb(u) and τs(u) in (2.9),
dropping the overbars and using (2.7) to substitute for the surface height h in favour
of the thickness H, I obtain

4
∂

∂x

(
µwH

∂u
∂x

)
=


(C−w+C+H)um

+ ρgwH
(
∂H
∂x
+

db
dx

)
if H > d(x),

C+Hum
+ ρg′wH

∂H
∂x

if H < d(x),
(2.14a,b)

where g′ ≡ (ρw − ρ)g/ρw is a reduced gravity. Equation (2.14) is a generalisation
of one-dimensional ice-sheet models to allow for lateral drag (C+ = 0 recovers the
unbuttressed case). As discussed above, the key new effects stem from the lateral
stress exerted in the floating component, given by the first term on the right-hand side
of (2.14b).

2.1. Dynamic condition at the calving front or detachment location
Whether the calving front of the ice shelf lies exterior to its embayment (exterior
calving) or interior to it (interior calving), the lateral stresses will cease to be
exerted beyond a position denoted xC. These two situations are illustrated respectively
in figure 2(a,b). Exterior calving characterises the Amery Ice Shelf, for example.
Interior calving characterises the Ross and Filchner–Ronne ice shelves. For exterior
calving, I identify xC as the position of detachment of the ice shelf from the lateral
boundaries (a position coincident with the mouth of an outlet channel, as illustrated
by experiments in Pegler 2016). For interior calving, I identify xC as the calving
front itself.

At xC, I impose the stress condition

µ
∂u
∂x
=
ρg′

8
H at x= xC. (2.15)
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Accumulation

Ice divide

FIGURE 3. (Colour online) Schematic of a marine ice sheet at large scales, illustrating
the ice divide xD and the grounding line xG. The schematic illustrates the truncation of
the domain at a position close to the grounding line x0, which underlies the steady-state
simplification represented by (2.21).

For interior calving, xC depends on the calving processes that control the calving
position. By treating xC as a parameter (cf. Gudmundsson et al. 2012), my analysis
will determine the regimes that arise as a consequence of any specified calving
position xC. An alternative calving model, such as a condition based on a prescribed
calving thickness (Schoof et al. 2017) can be specified by replacing the imposition
of xC by the implicit condition H(xC)=HC, where xC is then treated as an unknown
and HC is a prescribed parameter. In my illustrative examples, I will initialise the
system with no ice shelf and allow it to develop to an imposed calving position xC.
During the development of the ice shelf, it will be assumed that calving does not
occur. The front of the ice shelf xN(t) is then propagated according to ẋN = u(xN, t)
for xN(t) < xC.

At the ice divide, I impose the symmetry conditions

τxx = µ
∂u
∂x
= 0 at x= xD, (2.16)

Hu= 0 at x= xD, (2.17)

representing a no-stress and no-flux condition, respectively.

2.2. Flow evolution and input specifications
The evolution of the thickness is described by the mass-conservation equation

∂H
∂t
+

1
w
∂

∂x
(wHu)= f (x, t), (2.18)

where f (x, t) is the net ice accumulation per unit width (snowfall accumulation minus
melting). For the main illustrative examples of this paper, I will specify a localised
input concentrated at the ice divide,

f (x)= 2Qδ(x− xD), (2.19)

where δ is the Dirac delta function (cf. Nowicki & Wingham 2008; Katz & Worster
2010; Robison et al. 2010; Pegler & Worster 2012, 2013; Pegler et al. 2013; Kowal
et al. 2016; Pegler 2016). Ice sheets are typically fed in a distributed manner across
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their full extent, f (x) 6= 0. However, the case (2.19) is useful within the context
of illustrative examples because it confers the advantage of maintaining a specified
control condition of the input flux. The examples will thereby be distilled to illustrate
the effects of lateral stresses. The assumptions of a uniform basal-drag coefficient
C− and flow width w will be made likewise for distilling the illustrative examples to
the effects of interest. An example of a distributed accumulation field f (x) 6= 0 will
be provided in the supplementary examples of Pegler (2018). With (2.19) imposed,
equation (2.17) can be replaced by Hu = Q at x = xD+, where the plus subscript
denotes approach from the positive x direction.

2.3. Steady-state reductions
By integrating the steady-state form of (2.18) and applying (2.17), we can determine
the integral expression for the volumetric flux of ice per unit width in steady state,

q(x)=Hu=
1

w(xG)

∫ xG

xD

w(x′)f (x′) dx′. (2.20)

The approximation of a nearly constant channel width, w′(x) = 0, will be applied
henceforth, but can be reinstated within the general balance equation developed for
w′(x)� 1. The theoretical development of § 4 will be conducted in two stages: the
first will involve a determination of the depth-integrated extensional resistive stresses
associated with the steady states of the grounded region. The second will address the
steady-state forces exerted by the floating region. For the latter, the full distribution
field f (x) can be incorporated directly into an expression for the buttressing force
determined in § 4.2. For steady-state analysis of the flow in the grounded region, it
is possible to focus on a demarked region of the ice sheet nearer the grounding line
through which the variation in the flux (2.20) can be neglected to leading order. Let
x0 = xG −L denote the left-hand edge of a truncated numerical domain. The integral
defining the flux (2.20) across the interval [x0, xG] can be split according to

q(x)=
∫ xG

xD

f (x′) dx′ −
∫ xG

xG−x
f (x′) dx′ = q(xG)+O( fL). (2.21)

Thus, if L is much less than the length scale of the ice sheet as a whole,
L� (xG − xD), the flux across the demarked region [x0, xG] can be approximated as
equal to q(xG). For the analysis of steady-state regimes and balances, one can therefore
specialise to a domain closer to the grounding line, [x0, xG], and apply a condition
of uniform flux, q0 = q(x0), to leading order, where x0 is chosen to be an order of
L upstream of the grounding line. It should be noted that this option to specialise
to a demarked region of the ice sheet nearer the grounding line is only generally
applicable for steady states. A resolution of the transient evolution of the ice sheet
depends on a consideration of the flow evolution across the full domain spanning ice
divide to terminus. Thus, for the illustrative examples shown in this paper and the
companion, where time-dependent solutions will be used to verify the steady-state
results and their stability properties, a demarcation will not be used and the numerical
domain will be specified as the full ice sheet, [xD, xC]. However, the possibility to
demarcate in steady states to excellent approximation will be implicit in applying the
steady-state analytical results of § 4.1 for situations involving a sheet-wide distributed
accumulation. A similar approximation of neglecting accumulation was used in
describing a quasi-steady inner region of the grounded ice sheet near the grounding
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line (Schoof 2007b), and can be interpreted as a boundary-layer property. It should
be noted that this property of neglecting small increases in flux near the grounding
line is conceptually distinct from a boundary-layer property of there existing a
region through which the terms in the governing equation (2.9) change their order of
magnitude. The existence of a boundary layer of this second kind will be scrutinised
in § 4.1.2.

2.4. Dimensionless model system
By forming scaling relationships between the extensional stress, basal stress and
gravitational forces in the equation governing the grounded region (2.14a), and the
flux scale hu ∼ Q specified by (2.19), I determine the intrinsic scales of thickness
and horizontal length given by

H≡
[
µ0Cm

−

(
Qm

ρg

)m+1
]1/km

, L≡
[
µm+2

0 Qm

ρg Cm+1
−

]1/km

, (2.22a,b)

respectively, where km ≡ (m + 1)(m + 2) − 1. I also define the associated velocity
and time scales, U ≡ Q/H and T ≡ L/U . These scales are intrinsic to regions of
the flow in which the stresses due to extension, basal drag and gravity are mutually
comparable.

The mathematical specification also depends on the bed profile b(x) appearing in
(2.14a). The dynamics will primarily be illustrated using a linear bed specified by
b(x) = b0 + ax, where |b0| is the depth of the ocean at the calving position and a
is the basal slope.

I use (2.22) to define dimensionless variables by

(H, b)≡H(H̃, b̃), u≡ U ũ, x≡Lx̃, t≡ T t̃. (2.23a−d)

On dropping the tildes, the governing equation (2.14) becomes

4
∂

∂x

(
µH

∂u
∂x

)
=


(1+ SH)um

+H
(
∂H
∂x
+

db
dx

)
if H > d(x),

SHum
+ δH

∂H
∂x

if H < d(x),
(2.24a,b)

where µ = |∂u/∂x|m−1, δ ≡ g′/g ≈ 0.1. The key dimensionless parameter is the
dimensionless lateral shear drag coefficient

S≡
HC+
wC−

≡ c
(
L
w

)(m+1)

, (2.25)

where c≡ 2(1+ n/2)1/n. The parameter S sets the significance of lateral-drag stresses,
with S = 0 reducing the model to the one-dimensional, unbuttressed case. The
parameter is affected by the channel half-width w and bridges weak to strong lateral
stresses. For the representative values of C− and C+ given above and fluxes of
Q ∼ 10−3–10−2 m2 s−1, I estimate S = 0–10−2. The value of S is small because the
ratio of depth-integrated lateral drag to width-integrated basal drag is typically small.
As noted above, lateral stresses in the ice shelf nonetheless have a major effect
on the large-scale dynamics because of its specialised role in resisting flow across
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the grounding line: without it, the resistance to flow across the grounding line is
exclusively reliant on the resistance to extensional stretching.

The input symmetry conditions at the ice divide, equations (2.16) and (2.17), and
the stress condition of (2.15) become

u = 0 at x= xD, (2.26)

µ
∂u
∂x
= 0 at x= xD, (2.27)

µ
∂u
∂x
=
δ

8
H at x= xC. (2.28)

The evolution equation (2.18) becomes

∂H
∂t
=−

∂

∂x
(Hu)+ F(x, t), (2.29)

where F(x, t)≡Lf (x, t)/Q is the dimensionless net accumulation.
Two further dimensionless parameters specify the linear bed profile,

b(x)=−β + αx, where α ≡ (L/H)a, β ≡−b0/H, (2.30)

are a scaled bed slope and dimensionless terminal ocean depth, respectively. By
considering sections of data for the depth of the Antarctic bedrock below sea level
(Fretwell et al. 2013), I estimate |α| ≈ 10−1–10−3 and β =O(10).

For the choice of distribution (2.19), F= 0 and (2.26) can be replaced by

Hu= 1 at x= xD+. (2.31)

3. Phenomena
As a preliminary overview of the kinds of time-dependent evolutions that arise, I

present a series of numerical solutions of the initial-value problem (2.24)–(2.29). The
phenomena are illustrated in this section using Newtonian rheology, n= 1, ice-divide
position xD =−800 and calving position xC = 0. A numerical scheme was employed
in which the thickness H(x, t) is represented nodally on an irregularly spaced grid. At
each time step, equation (2.24) is first integrated subject to (2.26)–(2.28) for u using
finite differences. In order to discretise the differentials to second-order accuracy
for the irregularly spaced grid, quadratic interpolants were used. The forwards time
stepping was conducted using a Lagrangian approach of evolving each node xi(t)
time-dependently with the velocity field ẋi = u(xi, t) and evolving the thickness at
each node Hi(t) using the material form of (2.29), namely, Ḣi =DH/Dt=−H∂u/∂x.
The advantage of this approach is that it avoids the numerical instability inherent in
attempting to integrate (2.29a) using a fixed grid.

A suite of four solutions illustrating the key phenomena is shown in figure 4. As a
benchmark, panel (a) illustrates the evolution of a marine ice sheet for no lateral stress
S= 0 (producing a non-buttressing ice shelf) and a negative bed slope. Here, I have
chosen α = −2 × 10−3 and β = 2.8, but the solution captures the general behaviour.
The flow is initialised from a purely grounded state indicated by a dashed curve, with
grounding line at xG(0) = −700. The right-hand panel shows the evolution of the
grounding line, xG(t). The ice sheet evolves towards a steady state shown as a dashed
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FIGURE 4. (Colour online) Evolutions of a marine ice sheet as described by the numerical
integration of (2.24)–(2.29) for Newtonian rheology n = 1 and xD = −800. Case (a)
represents a negative bed slope α = −2 × 10−3, a terminal ocean depth β = 2.8 and a
non-buttressing ice shelf, S= 0. Case (b) represents the same geometry but with a positive
lateral-drag coefficient, S= 2× 10−3, producing a buttressing ice shelf. Case (c) shows a
positive bed slope α = 2× 10−3 and β = 1.4 for an unconfined ice shelf, S= 0. Case (d)
shows the corresponding buttressed case with S=2×10−3. In each panel, the dashed curve
shows the initial state. The profiles are shown at times t= 103, 2× 103, 4× 103, 8× 103

and 16× 103. The stable steady states in (a) and (b) and the front section of the unstable
steady state in case (c), as predicted by (3.1a,b)–(3.2a,b), are shown as dotted blue curves.
No steady state exists in case (d) because of the invalidation of the only candidate steady
state by secondary grounding, resulting in unconditional advance of the grounding line
(a phenomenon to be discussed in § 6 and Pegler (2018)). The right-hand plots show
the grounding-line evolutions xG(t), with the asymptotic steady states shown as horizontal
dashed lines. In case (c), the evolution of xG(t) for a second solution initiated downstream
of the unstable steady state is shown as a thinner curve. A blow-up showing the early-time
retreat of the grounding line while the ice shelf forms is shown in case (d).
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blue curve. The solution illustrates the concave profile of the ice shelf characteristic
of a one-dimensional extensional flow and the approach towards a stable steady state.

The steady state can be determined directly by substituting the condition of uniform
flux H = 1/u into (2.24) to yield the steady-state equation

4(µu−1u′)′ =
{
(S+ u)um−1

+ u−1(−u′ + b′) if u−1 > d(x),
Sum−1

− δ u−3u′ if u−1 < d(x),
(3.1a,b)

where µ= |u′|m−1. The steady-state forms of (2.17) and (2.28) are

[u−(m+3)(u′ + b′u2)]x=xD = 1, µu′(xC) = (δ/8)u(xC)
−1. (3.2a,b)

Equations (3.1)–(3.2) were solved numerically by shooting using the Matlab routine
ode15s and treating the input thickness H(xD) as a bisected iteration variable. The
bisection was continued until (3.2b) is adequately satisfied. The steady state is shown
as a dashed blue curve for the example of figure 4(a) and confirms the long-term
convergence of the time-dependent numerical solution.

I now introduce lateral stresses. Panel (b) shows the solution for the equivalent
geometry as case (a) except with the positive lateral-drag parameter S = 2 × 10−3.
The grounding line is found to advance and settle towards a steady position xG ≈

−120 further downstream than in case (a). The shelf develops a relatively shorter,
thicker, and approximately wedge-shaped profile. The later-time profile of the shelf
contains a short region of relatively rapid spatial change in front of the grounding line,
representing the input transitional boundary layer (Pegler 2016). The general structural
characteristics of the ice shelf thus differ from the non-buttressing ice shelf in case
(a) and produces a more advanced grounding line.

Panels (c) and (d) show examples of a positive (reverse) bed slope, which introduces
the interesting possibility of a runaway grounding-line retreat. The unbuttressed case
is shown first in (c). Here, I set α = 2 × 10−3, reference depth β = 1.4 and initial
grounding-line position xG(0) = −380. In this case, the grounding line retreats
continuously from its starting position. As shown by the inset of (b), the rate of
retreat accelerates with time, ultimately culminating in complete detachment of the
ice sheet from the bed. The calculation was terminated once the grounding line
coincides with the ice divide, xG = xD, at t ≈ 9 × 103. A second solution initiated
slightly further downstream, xG(0) = −340, instead advances continuously forwards,
as shown by the dotted curve in the right-hand plot of (c). The computation was
terminated once xG = xC. If calving were to persist at xC subsequently, then the flow
would continue to evolve towards a steady state with a terminal position at x= xC and
a terminal thickness larger than the flotation thickness, forming a so-called tidewater
glacier. The results here demonstrate the runaway retreat and ultimate collapse of an
unbuttressed marine ice sheet on a positive bed slope, and its strong sensitivity to
initial conditions.

Panel (d) shows the equivalent parameters to the calculation above except with
the positive drag parameter S = 2 × 10−3. To best illustrate the evolution, I initiated
the grounding line further upstream than case (c) at xG(0) = −700. Similarly to
case (c), the grounding line initially retreats, as shown by the right-hand plot of (d).
At t ≈ 250, the retreat ceases and the grounding line reverses direction. Its advance
continues all the way to the channel exit xG=0, at which time (t≈9700), I terminated
the computation with the conclusion that the ice sheet is secure. The stark contrast
between the final state obtained here and that of the unbuttressed case (c) illustrates
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the potential for even slight lateral stresses (S ≪ 1) to stabilise an ice sheet in
situations that would otherwise readily destabilise. In fact, there is no steady-state
solution to the equations in case (d). The reason for this is that the ice-shelf profile
necessary to sustain the only candidate steady state would penetrate the bedrock.
This invalidation represents a distinct physical effect induced by lateral stresses –
additional to ice-shelf buttressing per se – referred to as secondary grounding, which
will be detailed in § 6 and its implications for grounding-line dynamics discussed
further as a component of Pegler (2018).

4. The general grounding-line balance equation
This section develops a reduced analytical theory describing the steady-state

grounding-line positions for a given configuration. Conducting a definite integral of
(2.24b) over the interval [xG, xC] and applying the frontal stress boundary condition
(2.28), I obtain

4µH
∂u
∂x
+

∫ xC

xG(t)
Hτs(u) dx=

1
2
δH2 at x= xG(t). (4.1)

The left-hand side represents the sum of two distinct stresses that resist flow across
the grounding line. The first is the depth-integrated viscous resistance to longitudinal
extension at the grounding line. The second is the horizontal integral of the lateral
stresses along the ice shelf (cf. Thomas 1973), referred to as the buttressing force.
For a one-dimensional marine ice sheet, τs≡ 0 and (4.1) reduces to a stress condition
of equivalent form to the frontal stress condition of the ice shelf (2.28). In this case,
the condition at the grounding line is the same as that which would apply if calving
occurred immediately at the grounding line (xC = xG) because a one-dimensional ice
shelf simply transmits the hydrostatic pressure of the ocean through to the grounding
line. The collapse of a one-dimensional ice shelf thus has no effect on the grounded
region or the grounding line (e.g. MacAyeal & Barcilon 1988).

In steady state, the resistive stresses on the right-hand side of (4.1) can be expressed
in terms of analytical functions of the grounding-line position xG. This will be
demonstrated in the subsequent analysis, which will reduce (4.1) to an algebraic
equation for xG,

E[d(xG)] + B[xG, xC] =
1
2δd(xG)

2, (4.2)

where E and B are referred to as the steady-state extensional-resistance function and
the buttressing resistance function, respectively. As a guide, I have here provided a
preliminary indication of the primary dependences of these functions on the grounding-
line position xG, calving position xC and grounding-line thickness d(xG), which will
be determined in the analysis.

4.1. The extensional-resistance function E
For an unbuttressed marine ice sheet, the only resistance to flow across the grounding
line is the stress due to longitudinal extension E. In physical terms, the balancing
of the depth-integrated hydrostatic pressure between the front of the grounded region
and the hydrostatic pressure of the ocean is given by the viscous resistance to
stretching the flow over a region very close to the front of the grounded region. For
no ice-shelf buttressing, the flow across the grounding line is entirely resisted by the
rate of stretching in this short section of the ice sheet. Similarly to a thread of honey
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falling from a spoon, the basal drag just upstream of this region acts to pin the ice
to the bedrock. The control of the flow rate in front of the pinning point is then
predominantly controlled by the resistance to extension. An unbuttressed steady-state
grounding-line balance arises where the extensional resistance in this localised region
balances the driving hydrostatic-pressure discontinuity between the ice sheet and
the ocean, as represented by the right-hand side of (4.2). In considering how the
extensional stress is generally controlled in steady-state balances, it is helpful to note
first that the grounded region always assumes the same steady-state shape for any
given value of n (at least for the general situation representing the limits of α � 1
and S� 1, which I will assume for the time being). The only degrees of freedom for
variation in the grounded profile are the thickness at which it is truncated (i.e. the
location of the grounding line), and the degree of horizontal translation, which are set
by the stress condition (2.28) and the flotation condition, H(xG, t)= d(xG). A general
relationship between the local extensional resistance E and the ice-sheet thickness –
applicable at any position in the grounded ice sheet including the grounding line –
can be derived from a consideration of this ‘universal’ shape of the grounded region.

In order to determine this universal profile for n=1 for S�1 and b′�1, I integrate
(3.1) forwards from an arbitrary thickness H = H∞, chosen as 10. This forwards-
marching integration attracts rapidly to the universal profile for any upstream condition
on H′ (H′ = 0 suffices, for example). The solution for α = 0, which is representative
of shallow slopes, α = |b′| � 1, is shown in figure 5. The extensional resistance E
occurring at any given position in the steady state can now be ‘read off’ from this
universal profile and related to the local thickness. To this end, I write E as

E[H(x)] = 4µH
∂u
∂x
=−4µH−1 dH

dx
=−4µH−1ζ (H), (4.3)

where I have used the steady-state condition u = 1/H, and ζ (H) = dH/dx(x) is
the relationship between the thickness gradient and thickness determined from the
universal profile. Using the relationship of ζ (H) obtained above, I determine the
extensional-resistance function E= E[d(xG)] shown as a solid black curve in figure 6.
This function can be interpreted as a database that returns the extensional stress at the
grounding line for a steady state with any given grounding-line thickness d(xG). Its
decrease with d is consistent with the rate of extension of the ice sheet increasing as
one move downstream. Each value of n has a different extensional resistance function
E[d(xG)]. A more general expression for E that includes a dependence on local basal
slope and general n is obtained in appendix A.

With E(d) determined, one can explore the predictions of the grounding-line balance
(4.2) for different levels of buttressing B. For zero buttressing, B= 0, equation (4.2)
simplifies to

E(d)= 1
2δd

2. (4.4)

In this special situation, all the steady-state grounding-line forces depend purely on
the grounding-line thickness d. Therefore, there is a special balancing value of d
given by the solution of the algebraic equation (4.4). The individual variations of
the sides of the balance as functions of d are shown in figure 6, where (δ/2)d2 is
shown as a blue curve and E(d) as a black curve. Their intersection yields the critical
balancing value dG = d0 ≈ 2.345 for n = 1, which universally describes the steady
thickness at an unbuttressed grounding line (for S� 1 and b′� 1). The dimensional
expression of this result, namely d/H= d0, represents the scaling between grounding-
line flux Q and thickness dG given by Schoof (2007b). For the bed profile (2.30), the
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FIGURE 5. (Colour online) The universal solution describing the thickness profile of the
grounded region of the ice sheet. The grounded region of a marine ice sheet will be
described by this solution subject to horizontal translation and truncation at a certain
thickness controlled by the buttressing force. The leading-order solution for n = 1 and
shallow bed slopes |b′|� 1 is illustrated here. It is obtained by solving (3.1) numerically
by marching forwards until H= 0, a location set here as the reference position x= 0. The
minimum thickness of truncation in the unbuttressed case occurs at thickness d0 ≈ 2.345,
which is illustrated by a vertical dashed line (the region to right of this line is therefore
impossible to arise in steady states). The truncating position for a buttressing force B=2 is
also illustrated, corresponding to the case of figure 6. The solution is used to determine the
general relationship between the thickness and the thickness gradient, ζ [H(x)]= dH/dx(x),
of a steady grounded region, and, in turn, the extensional-resistance function (4.3).
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FIGURE 6. (Colour online) The extensional-resistance function E(d) as a function of
grounding-line thickness d for n = 1, as calculated in § 4.1 (the solid black curve). Its
analytical approximation (4.9) is shown as a dotted black curve. Its intersection with
(δ/2)d2

− B yields the unbuttressed steady-state grounding-line thickness dG = d0 ≈ 2.345
for B= 0 and the larger balancing value dG ≈ 3.45> d0 for B= 2.

solution of d(xG) = d0 is given by xG = [β − (1 − δ)d0]/α, which is within 1 % of
the numerically determined grounding-line position for the examples of figure 4(a,c).
The ‘universal profile’ derived above applies for |b′| � 1 and S� 1. The estimates
given in § 2.4 indicate that these parameter limits may be broadly relevant to many
geophysical settings. Nevertheless, the analysis above can be repeated for α, S 6= 0 to
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FIGURE 7. (Colour online) Panel (a) shows the general relationship for n = 1 between
the balancing steady-state grounding-line thickness dG and the applied buttressing force B,
as described by the algebraic equation (4.5a) in which the extensional-resistance function
E(d) is represented using its numerical solution obtained in § 4.1. The plot shows the
increase of the grounding-line thickness dG from the special unbuttressed thickness d0
given by the solution of (4.4). The simplified relationship implied by the strong-buttressing
limit of (4.6) is shown as a dashed blue curve. Panel (b) shows the corresponding
relationship between the relative buttressing Ω defined by (4.5b) and dG.

yield a more general form of the extensional-resistance function E[d(x), α, S] that can
differ from E[d(x), 0, 0]. For example, the first-order correction to the unbuttressed
balance E[d(x), α, 0] = (δ/2)d2 for n= 1 yields dG(α)∼ d0 + 2.78α, for α→ 0. This
represents a correction to the prefactor of the grounding-line flux formula of Schoof
(2007b) owing to the local basal slope. For |α| = |b′| . 10−2, the case E[d(x), 0, 0]
shown in figure 6 provides an excellent approximation.

We can deduce some essential effects of ice-shelf buttressing by considering the
function E(d) in conjunction with the steady-state grounding-line balance equation
(4.2) with (for now) a specified buttressing force B,

E(d)+ B= 1
2δd

2 or
E(d)
1
2δd

2
+

B
1
2δd

2︸ ︷︷ ︸
Ω

= 1, (4.5a,b)

where Ω is referred to as the relative buttressing. Application of a numerical root
finder to (4.5a) yields the general relationship between the grounding-line thickness
dG and the buttressing force B for n= 1 shown as a solid curve in figure 7(a). The
plot illustrates the increase of the grounding-line thickness dG from the unbuttressed
value d0 as the buttressing force B is increased.

For sufficiently strong buttressing, equation (4.5a) predicts a dominant grounding-
line balance between the buttressing force and buoyancy alone, namely,

B≈ 1
2δd

2. (4.6)

This balance represents the strong-buttressing control of a grounding line underlying
the reduced nonlinear diffusive flow-line model of Pegler et al. (2013). This balance
represents a fundamentally different mode of grounding-line control compared to
the unbuttressed balance (4.4). A simplified interpretation of the nature of this
control as stemming directly from the structure of the ice shelf will be reserved for
§ 4.3. It follows that there is a complete transition from the ice shelf playing no role
whatsoever for a one-dimensional marine ice sheet to playing a potentially completely
dominant role for two-dimensional dynamics.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

74
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.741


Marine ice sheet dynamics: the impacts of ice-shelf buttressing 625

A key question for marine ice sheet dynamics is the proportion of the driving
buoyancy drop (δ/2)d2 that is balanced by buttressing, as measured by Ω . The
general relationship between Ω and dG, as derived from the relationship between B
and dG determined numerically above, is plotted in figure 7(b). The parameter Ω
describes a spectrum of balances bridging two limits: weak buttressing, Ω ≈ 0 to
strong buttressing Ω ≈ 1. It is related to a quantity Θ ≡ (1−Ω) used in the literature
to impose a buttressing force as a multiplicative reduction of the driving buoyancy
force [E(d)= (Θδ/2)d2] (e.g. Dupont & Alley 2005). The relationship of figure 7(b)
gives a prediction for Ω in terms of the dimensionless grounding-line thickness dG.
In this case, for >90 % of the resistance to flow across the grounding line to stem
from extension, dG must lie in the narrow range d0 = 2.35 < dG < 2.40. For >90 %
to stem from buttressing, dG > 3.8.

4.1.1. The force-balance structure
Let the four forces comprising the governing force-balance equation be denoted

according to
4(Hµux)x︸ ︷︷ ︸

Ex

−Hτs − τb = Hhx︸︷︷︸
Gx

. (4.7)

This section will focus on discussing the force balance specifically in the grounded
region and hence τs will be set as zero for the time being (its effects on force-balance
structure are reserved for § 5). The three remaining forces are plotted for the final
steady state for the unbuttressed example (τs ≡ 0) shown earlier in figure 4(a). Here,
the divergence of the depth-integrated extensional stress Ex is shown as a solid curve,
the basal stress τb is shown as a dashed curve and the gravitational term Gx as a
dotted curve. Upstream, the divergence of extensional stresses Ex is small and hence
the flow is dominated by a balance between the total drag and gravity, τb ∼ Gx, for
which (2.24a) reduces to the simplified flow equation

τb ≈−H
∂h
∂x
. (4.8)

This drag-dominated balance is mathematically similar to the balance associated
with the shallow-ice-approximation, which refers specifically to a leading-order
balance between vertical shear stresses and gravity (Fowler & Larson 1978; Cuffey &
Paterson 2010). Towards the grounding line, Ex increases very slightly, but remains
small. Therefore the approximation of (4.8) holds all the way up to and including
the grounding line. Across the grounding line, basal stress vanishes abruptly, τb ≡ 0
and Ex ≡ Gx for x> xG. The steady-state grounding-line position xG is set by where
the extensional stress E balances the buoyancy force in accordance with (4.4). It is
therefore interesting that its divergence Ex remains uniformly small throughout the
grounded region. As a consequence, there is no boundary layer through which the
basal-drag-dominated approximation of (4.8) breaks down. The lack of this boundary
layer can be attributed to the smallness of the dimensionless density difference δ≈0.1,
which appears as a prefactor to the gravitational term in (2.28) but not in (2.24a).
As a consequence, Ex = O(δE) at the location where the grounding-line balance of
(2.28) is satisfied, and is therefore small. By rewriting (2.28) as H = 8δ−1µ∂u/∂x, it
is explicitly seen that (2.28) is attained for a relatively larger thickness H as δ→ 0. In
other words, the universal profile of the grounded region shown in figure 5 is truncated
further upstream for smaller δ. The geophysical value of δ= 0.1 is sufficiently small
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FIGURE 8. (Colour online) The profiles of forces comprising the force-balance equation
(4.7) along the length of an unbuttressed marine ice sheet, S = 0. The divergence of
extensional stresses Ex is shown as solid black curve, basal stress τb is shown as a dotted
blue curve and gravity Gx is shown as a dashed black curve. Panel (a) illustrates the
satisfaction of the basal-drag-dominated balance (τb ≈Gx) given by (4.8) for x< xG. The
enlargement of (b) shows the jump to an extension-dominated ice shelf (Ex ≡Gx).

that the grounding line occurs at a thickness where Ex is still small (the value of Ex
only becomes important in the ‘hypothetical region’ residing to the right of the vertical
dashed line in figure 5). The limit of δ→ 0 thus represents an asymptotic condition
under which the basal-drag-dominated zone can be matched to the extensional ice
shelf formally, and to excellent approximation, using a direct patching condition. In
this regard, there is no boundary layer through which terms in the governing equation
(2.14a) change their order of magnitude. It should be emphasised that the notion of
an extensional boundary layer discussed here is conceptually distinct from the notion
of a boundary layer described in § 2.3, which is used only to neglect accumulation
near the grounding line.

It will be verified later in § 5.1 that the force balance throughout the grounded
region is qualitatively similar with buttressing. Indeed, buttressing strengthens the drag-
dominated approximation (4.8) even more because it causes the universal profile to be
truncated at a yet thicker grounding line dG > d0, as illustrated for B= 2 in figure 5.
However, lateral stresses fundamentally complicate the force-balance structure of the
ice shelf (Pegler 2016), an aspect reserved for § 5.

4.1.2. Analytical approximation for E
By using (4.8) to evaluate the thickness-gradient function ζ (H) in (4.3), one obtains

the analytical approximation for the extensional-resistance function

E(d)≈ 4d−3, (4.9)

given here for n= 1. This approximation is plotted alongside the numerical solution in
figure 6 as a dotted curve. The generalisation of this result to other values of n, and
an effect of local slope b′, is obtained in appendix A. The approximation provides an
excellent representation of the numerically determined curve. To illustrate its accuracy,
note that a substitution of (4.9) into (4.4) and rearrangement for d0 yields d0≈ (8/δ)1/5,
which is within 15 % of the exact value. The corresponding result for n= 3 is within
a mere 0.1 % of the exact result (see appendix A). Thus, the neglect of the divergence
of extensional stresses, which is responsible for long-range communication of forces
in the grounded region of an ice sheet, has practically no effect on the predictions of
the SSA model (at least for steady or near-steady grounding-line balances).
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FIGURE 9. (Colour online) The relationship between the buttressing force (4.10) and shelf
length L≡ xC − xG for grounding-line thicknesses of dG = 4 (solid) and 16 (dashed) and
power-law exponent n = 3 obtained by repeatedly solving (3.1) and (4.11) numerically
and evaluating the integral in (4.10) using quadrature. The analytical approximation
(4.13) is shown as a dotted blue curve, illustrating its excellent representation of the
buttressing force.

4.2. The buttressing resistance function B
This section determines the steady-state buttressing force B in terms of the parameters
specifying the ice-shelf dynamics. In steady state, the integral form of the buttressing
force defined in (4.1) is given by

B[xG, xC, dG] =

∫ xC

xG

Hτs(u) dx= S
∫ xC

xG

Hum dx, (4.10)

where u(x) is the solution to the steady-state system describing the ice shelf (3.1b)
integrated subject to a ‘prescribed’ grounding-line thickness dG and the frontal stress
condition (3.2a), namely,

u(xG)= d−1
G , u′(xC)= [δ/8u(xC)]

1/m. (4.11a,b)

The system defined by (3.1) and (4.11a,b) depends on xG, xC and dG, and hence the
steady-state buttressing force (4.10) is a function of these variables alone. The function
B[xG, xC,dG] can be interpreted as a ‘database’ giving the steady-state buttressing force
for any given xG, xC and dG. A similar method of constructing database functions for
steady-state buttressing forces was developed for a radially spreading ice shelf (Pegler
& Worster 2012, 2013), for which a reduction to an algebraic system analogous to
(4.2) was obtained.

The translational invariance of the system defined by (3.1) and (4.11a,b) implies that
the dependences of B on xG and xC can be combined into a single dependence on shelf
length, L≡ xC− xG. Integrating (3.1b) subject to (4.11a,b) numerically using a scheme
similar to that described earlier in the text below (3.1) and evaluating the integral of
(4.10) using quadrature over a range of L, I determine the general relationship between
B and shelf length L for two illustrative fixed values of dG= 4 and 16 in figure 9. The
numerical similarity of the two curves indicates a very weak dependence of buttressing
on grounding-line thickness dG. In other words, for each value of n, there is a near-
universal relationship between buttressing and shelf length spanning fully the limit of
a short, weakly buttressing ice shelf to a long, strongly buttressing ice shelf.

For n= 1, equation (4.10) can be integrated directly to give (Pegler 2016)

B= S(xC − xG), (4.12)
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FIGURE 10. (Colour online) Panels (a–c) illustrate the profile of the marine ice sheet
as the dimensionless lateral-drag coefficient S is increased through 0, 2 × 10−3 and
10−2, respectively, for topography defined by α = −2 × 10−3 and β = 2.8. The plot
illustrates the change in form of the ice sheet from zero buttressing to positive buttressing.
Panel (d) shows the corresponding grounding-line position xG across this range. The
strong-buttressing prediction of (4.6) is shown as a curve of blue circles. Panel (e) shows
the corresponding variation of the relative buttressing parameter Ω defined by (4.5). The
threshold (4.15) for large S is shown as a horizontal dashed line.

showing that, for linear rheology, the buttressing force is directly proportional to the
length of the ice shelf. The possibility of this simple integration applies uniquely for
n= 1 because the integrand of (4.10) is uniformly proportional to the width-averaged
flux Hu= 1. Expression (4.12) implies that there is no dependence of the steady-state
buttressing force for n= 1 on the grounding-line thickness dG.

For n> 1, one can develop the generalised analytical approximation

B≈
δ

2

{[
NS
δ
(xC − xG)+HN

C

]2/N

−H2
C

}
, (4.13)

where N ≡ (n+ 1)/n, HC ≈ 81/N2
η is the calving thickness and η ≡ δ−1/NS1/nN2 . This

excellent approximation follows from substitution of the analytical solution for the
prevailing interior of the ice shelf derived in Pegler (2016) into the buttressing integral
(4.10), as detailed in appendix A. The result of (4.13) is shown as a dotted blue
curve in figure 9 and closely approximates the two numerical curves. The lack of a
dependence of (4.13) on dG corroborates the very weak dependence of the numerical
solutions on dG. The weak dependence occurs because dG only affects flow in the
transitional boundary layer in front of the grounding line, which provides a relatively
small contribution to the buttressing integral (4.10). For n> 1, equation (4.13) shows
that a shear-thinning rheology causes B to depend nonlinearly on the shelf length
(xC− xG) and introduces a dependence on the calving thickness HC (a known quantity
that is determined as part of the analytical solution of the universal profile (A 4)).

Net accumulation in the ice shelf has a direct dynamical effect via its control of ice-
shelf buttressing. By integrating the steady-state form of (2.18), one obtains the non-
uniform flux per unit width q(x)=Hu= 1+

∫ x
xG

F(x′) dx. With this, the generalisation
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of (4.13), derived in appendix A, is

B≈
δ

2

{[
N
δ

∫ xC

xG

Sq(x′)(1/n) dx′ +HN
C

]2/N

−H2
C

}
, (4.14)

which relates the distribution of melting F(x) to the buttressing force. This expression
embodies the key link between the oceanographic control of melting (e.g. Jenkins
1991) and glacial dynamics. The result shows that buttressing generally depends on the
integral of the flux along the ice shelf q(x). An interesting implication is that melting
near the grounding line, which can be the most significant along the ice shelf, has a
larger effect on the buttressing than melting further downstream because of the longer
region over which it reduces the flux of the ice shelf.

4.3. Dynamical variation across the spectrum of relative buttressing strength

When the function (4.12) (or one of its generalisations, (4.13) or (4.14)) is
incorporated into (4.2) along with E[d(x)], the full equation provides a closed
algebraic equation for the position of steady-state grounding lines xG. The equation
bridges the complete spectrum connecting unbuttressed to strongly buttressed ground-
ing lines. This equation incorporates ice-shelf buttressing predictively, contrasting
with a direct prescription of Θ (e.g. Dupont & Alley 2005).

To demonstrate the application of the balance equation (4.2), I solve it for xG for
the illustrative example of the negative slope α = −2 × 10−3 and reference ocean
depth β = 2.8. The predicted grounding-line position xG is plotted as a function of
the dimensionless lateral-drag coefficient S in figure 10(d), showing the positioning of
the grounding line in deeper water for larger S. Panels (a–c) illustrate the flow profile
of a marine ice sheet as S is increased, showing the transition from the broadly
concave ice-shelf profile of a non-buttressing ice shelf (van der Veen 1983) to the
more wedge-shaped profile of a buttressing ice shelf (Pegler 2016). The corresponding
relative buttressing Ω is shown in figure 10(b). The plot shows a sharp increase in
the relative buttressing with S towards the regime of strong buttressing. As S is
increased, Ω asymptotes towards the value 0.7 shown as a horizontal dashed line.
Perhaps surprisingly, this value is less than unity. This upper bound on the relative
buttressing arises because the buttressing cannot balance the hydrostatic pressure drop
between the calving front and the ocean immediately in front of it. This property will
be discussed further in the text below (5.4). The asymptotic value of Ω is obtained
by substituting the flotation depth of the ocean at the calving front, dC ≡ β/(1− δ),
into (4.5b) to determine that

Ω 6ΩC = 1−
E(dC)
1
2δd

2
C
. (4.15)

For β = 2.8, ΩC ≈ 0.7, in agreement with the asymptotic behaviour of Ω determined
numerically. The large-S solution can be approximated by the strong-buttressing
limiting balance of (4.6), which is shown as a curve of blue circles in figure 10(d).

As S is increased, there is a fundamental switch in the dominant forces controlling
the grounding line. To illustrate this, I express the limiting end-member balances
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FIGURE 11. (Colour online) Suites of steady-state profiles of a marine ice sheet for (a)
zero lateral stress, S=0, and (b) a positive lateral stress, S=2×10−3 shown as the calving
position xC is varied. The plot illustrates the complete independence of the grounding line
from the calving position xC for case (a) and the considerable sensitivity to it in case (b).
Overlaid as a red dotted curve in (b) is a solution with the same parameters as the case
xC = 400 but with the basal stress set identically equal to zero to leave just the lateral
drag, illustrating the effective independence of the grounding line from the nature of the
drag force in the grounded region.

predicted by (4.2) in their dimensional forms. For n= 1, these are given by

E(d)=
4µ0Q2C−
ρgd(x)3

∼
ρg′d(x)2

2
(Ω = 0),

B(xC − xG)=
3µ0Q

w2
(xC − xG)∼

ρg′d(x)2

2
(Ω ≈ 1).

 (4.16a,b)

The extension-dominated unbuttressed balance of (4.16a) recovers the expression
for Q as a function of grounding-line thickness d given by Schoof (2007b). This
first result shows that an unbuttressed grounding-line position is influenced by the
viscosity of the ice µ0 and the basal-drag coefficient C−. In this case, the balance can
be interpreted as an expression for the grounding-line thickness, as represented by the
special dimensionless thickness d0 discussed above. The pure dependence of (4.16a)
on the single dependent variable d(x) is consistent with the simplified situation of an
unbuttressed grounding being controlled directly by the local grounding-line thickness.
The strong-buttressing expression of (4.16b) represents a completely different physical
control of the grounding-line position dominated instead by the ice-shelf dynamics.
This includes an inherent dependence on the calving position xC and width of the ice
shelf w, and a loss of dependence on the basal drag coefficient C−. Thus, there is a
full switch in dynamical control from the calving position playing no role whatsoever
for a one-dimensional or non-buttressing marine ice sheet to playing a dominant
control under the effect of even relatively weak lateral stresses on the ice shelf.

It should be noted that the application of the augmented expression for grounding-
line flux in a form that incorporates the multiplicative reduction in the hydrostatic-
pressure drop owing to buttressing Θ (Schoof 2007b), and used in simulations (e.g.
DeConto & Pollard 2016), becomes degenerate for sufficiently strong buttressing.
The general balance equation in the form (4.2) will seamlessly incorporate both
unbuttressed and strongly buttressed situations.

The key switch in parametric dependence from the ice shelf playing a non-existent
role to a dominant role is illustrated explicitly by the variation of the steady-state
solutions for a selection of calving positions xC shown in figure 11 for (a) S = 0
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and (b) S = 2 × 10−3. For the unbuttressed case (a), there is no change in the
grounding-line position xG. In the buttressing case (b), a considerable change in
grounding-line position occurs. As the calving position is varied, the change in
grounding-line position is in fact larger than the change in the ice-shelf length. In
this same plot, I illustrate as a red dotted curve a solution in which the basal stress,
given by the third term in (3.1a) is set identically equal to zero for the case xC= 400.
The grounding-line position is essentially unaffected despite the complete removal of
basal stress. The grounding line is therefore being controlled completely by the ice
shelf.

5. Marine ice sheet structure
Analysis of the solutions of the floating component of the Q2D model (Pegler

2016) shows that the form of a buttressing ice shelf differs from the broad concave
profile of a non-buttressing ice shelf (e.g. van der Veen 1983) in containing a short
region of rapid thinning in front of the grounding line connected to a prevailing
region of relatively mild slope leading to the calving front. This section will review
this structure and draw connections between certain variables defining the structure
of an ice shelf and the relative strength of buttressing that it generates.

5.1. Effect of lateral stresses on the structure of the ice sheet
To illustrate the force-balance structure with lateral stresses, I show the profiles of the
four individual forces comprising the continuum balance (4.7) for the illustrative case
of S= 2× 10−3 in figure 12, where the lateral stress τs is indicated by a red dashed
curve, which is horizontal for x> xG. In common with the unbuttressed case shown
earlier in figure 8, the grounded region is basal-drag-dominated, with the divergence
of extensional stress Ex being negligible along its full length. However, the ice shelf
forms two distinct regions: the ‘input boundary layer’ in which extensional stresses
are important and the prevailing ‘universal profile’ of the ice shelf further downstream
(Pegler 2016) in which the transverse shear stresses provide the dominant resistance
to flow.

To analyse this asymptotic structure, I first recall the general analytical solution
describing the confined ice shelf for n= 1 given by solving (3.1) subject to (4.11a,b),
namely,

H(x)= η
[

ex̃2/4

(
d̃−2

G e−x̃G/4 +
1
2

∫
−x̃G/2

−x̃/2
e−ξ

2
dξ
)]−1/2

, (5.1)

where η≡ (S/δ2)1/4, (x̃, x̃G)≡ S1/2(x, xG), d̃G≡ η
−1dG (Pegler 2016). The solution (5.1)

is illustrated for two shelf lengths L= 100 and 500 in figure 13(b,c). The solution for
L = 100 clearly illustrates the inlet boundary layer of rapid thinning. The prevailing
downstream region is independent of the grounding-line thickness dG and dominantly
controlled by the calving position xC. By considering the asymptotic structure of (5.1),
one can determine the solution for the prevailing downstream region,

HU(x)= η
[

1
4

√
π erfcx (− 1

2 x̃)
]−1/2

(∆. x 6 xC), (5.2)

where erfcx ζ ≡ eζ 2
(1− erf ζ ) and ∆ is the length of the inlet boundary layer, which

varies depending on the solution (Pegler 2016). The downstream solution (5.2) is
shown as a dashed blue curve in figure 13(b,c) and is confirmed to describe the
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FIGURE 12. (Colour online) Panel (a) shows the numerical solution for β = 2.8, α =
2 × 10−3 and S = 2 × 10−3, and illustrates the three-component structure of a buttressed
marine ice sheet. The profiles of forces, as defined in (4.7), are shown in (b). Here,
the divergence of extensional stresses Ex is shown as solid black curve, basal stress τb
is shown as a dotted blue curve, the dimensionless depth-integrated lateral stress Hτs
is shown as a dotted red curve and the gravitational force Gx is shown as a dashed
black curve. The plots illustrate the basal-drag-dominated grounded balance (τb≈Gx), the
extensional inlet boundary layer in front of the grounding line, xG < x< xG +∆, and the
lateral-drag-dominated region downstream (Hτs≈Gx). The enlargement given in (c) shows
the extensional balance (Ex ≈Gx) in the inlet boundary layer.

prevailing shape. The corresponding analytical result for power-law fluid (Pegler
2016) is reviewed in appendix A. If the ‘matching thickness’ of the universal profile
(5.2) extrapolated to the grounding line, namely H+ ≡ HU(xG), is less than the
grounding-line thickness, H+ < dG, then the flow through the inlet boundary layer is
characterised by thinning and acceleration. This situation, referred to as ‘over-thick’,
corresponds to the profile of an ice shelf typically observed in nature. On this
basis, it was hypothesised in Pegler (2016) that the predictions of a full marine ice
sheet model for steady-state balances should only produce this situation. If instead,
H+ > dG, then the inlet involves thickening and deceleration, and was referred to as
‘under-thick’. An under-thick input is a theoretical possibility only if one has full
control over the specification of the inlet thickness and position, and may never arise
in the glaciological context. However, for input configurations involving the direct
input at an imposed position or along a back wall, an under-thick flow is possible;
this situation was observed in the laboratory experiments of Pegler (2016) and may
occur in float-glass manufacture.

To illustrate the variation in the ice-shelf structure as the shelf length L is increased
from zero, I show the grounding-line thickness dG predicted by the grounding-line
balance equation (4.2) alongside the matching thickness H+ predicted by (5.2) against
L for S = 2 × 10−3 in figure 13(a). The results show that dG > H+, confirming the
hypothesis that only over-thick input boundary layers can arise in the glacial context
(at least in steady state). It should be noted that the inlet boundary layer is clearly
defined only for a sufficiently long ice shelf, L & S−1/2L̂ ≈ 44, a value indicated by
the vertical dashed line in figure 13(a) (this corresponds to the length of the ice
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FIGURE 13. (Colour online) Panel (a) shows the steady-state grounding-line thickness dG
as a function of the shelf length L = xC − xG for S = 2 × 10−3, compared alongside the
value of the universal profile (5.2) extrapolated to the input H+ ≡ HU(xG). It is found
that dG >H+, implying that only over-thick regimes of input occur for marine ice sheets.
The vertical dashed line indicates the characteristic length 2S−1/2

≈ 44 above which the
distinction between the universal profile and the inlet boundary layer is clearly developed.
The inset shows the relative buttressing parameter Ω defined by (4.5) plotted as a function
of shelf length and the associated approximation based on (5.4). Panels (b,c) show the
analytical solution (5.1) (solid black curve) and the universal profile (5.2) (dashed, blue
curves) for L= 100 and 500, respectively.

shelf being greater than approximately one third of its width). For sufficiently large
L, figure 13(a) shows that the extrapolated and grounding-line thicknesses become
similar, H+ ≈ dG. The grounding line then occurs to excellent approximation where
(5.2) intersects the bedrock, as illustrated in figure 13(c), implying that the grounding
line is being controlled independently by the lateral-drag-dominated section of the ice
shelf (cf. Pegler et al. 2013).

5.2. Relationship between the buttressing force and the structure of the ice shelf
Analogously to the simplifications arising from the basal-drag-dominated approxima-
tion in the grounded region (4.8), analytical results can be determined using the
uniform smallness of Ex throughout the component of the ice shelf downstream of
the inlet boundary layer. Similarly to that case, the divergence of extensional stresses
Ex remains small throughout the flow downstream of the input boundary layer, as
shown in figure 12. It was noted in § 4.1.2 that this could be justified on the basis
of the smallness of δ. However, in the purely floating context there is no parameter
limit analogous to δ → 0 to justify the uniform smallness of Ex. Despite this, the
numerical value of Ex ≈ 10−2E at x = xC for n = 3, is verifiably small (in a sense,
‘δ= 1’ is small enough). Thus, the analytical approximations for the universal profiles
resulting from the neglect of Ex, as derived in Pegler (2016) and reviewed by (A 4) in
appendix A, provide practically exact descriptions of the prevailing region of the ice
shelf downstream of the inlet boundary layer (there is a maximum error of just 2 %).

The neglect of Ex in (2.24b) yields the lateral-drag-dominated flow approximation

τs ≈−δH′, (5.3)
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which is the floating analogue of (4.8). Since this approximation applies uniformly
downstream of the inlet boundary layer (Pegler 2016), one can evaluate (4.13) as

B≈
∫ xC

xG+∆

Hτs dx≈
[
−

1
2
δH2

]xC

xG+∆

≈
1
2
δ[HU(xG)]

2
−

1
2
δH2

C (5.4)

on neglecting the contribution over [xG, xG + ∆]. The result of (5.4) shows that the
buttressing force can be related straightforwardly to the difference in depth-integrated
hydrostatic pressure between the ends of the lateral-drag-dominated region of the
ice shelf. The function HU(x) used to determine these thicknesses is given by
the analytical solution for the drag-dominated region (A 4). The implied relative
buttressing, Ω = d−2

G (H2
+
− H2

C), where H+ ≡ HU(xG) is illustrated by the green
dashed curve in the inset of figure 13(a) and provides an excellent approximation.
The result shows that the relative significance of buttressing can be linked to the
three thicknesses dG, H+ and HC defining the ice-shelf structure. In addition to
providing an insightful representation of the buttressing force, equation (5.4) also
provides a helpful analytical shorthand for the evaluation of B once HU(x) has been
determined (this was employed in evaluating (5.4), as discussed in appendix A).
The effects of rheology, calving position and flux variations due to melting all
encapsulate within the solution for HU(x) given analytically by (A 4). A simple
physical interpretation of the effect of the first term on the right-hand side of (5.4)
is that the thickness at the start of the lateral-drag-dominated region, HU ‘blocks’
a certain proportion of the driving buoyancy force at the grounding line, (δ/2)d2

G.
In a sense, the residual between the driving hydrostatic stress and the ‘blocking
thickness’ HU represents the remaining effective hydrostatic-pressure drop available
to drive flow across the grounding line. The second term in (5.4) represents a further
negative contribution to the buttressing stemming from the hydrostatic-pressure drop
at the calving front. This term can be interpreted as a contribution to the overall
depth-integrated pressure drop that remains unresisted by the lateral stresses in the
ice shelf. Thus, in view of the fact that the blocking thickness cannot exceed the
grounding-line thickness, HU < dG, and a calving front HC typically has an appreciable
non-zero thickness (in accordance with observations and the analytical result of (A 4)),
it follows that a buttressing force can never fully balance the hydrostatic-pressure drop
at the grounding line completely.

6. Secondary grounding
An assumption underlying the results of (4.12)–(4.14) is that the ice shelf forms

a region of continuous flotation along a single continuous interval between the
grounding line and the calving front. This assumption is implicit in the integration
of (2.14b) leading to (4.1) and (4.2). However, it is possible that a solution to
(4.2) predicts an ice shelf that penetrates the bedrock, leading to an unphysical
solution and a breakdown of (4.1). Figure 14 shows a suite of steady-state solutions
for n = 1 with increasing lateral drag S obtained by solving (3.1b) subject to the
condition (4.2) with the buttressing force (4.12). For cases (a) and (b), the solutions
involve a single, continuous interval of flotation. Therefore, they are consistent
with the use of (4.12). However, for case (c), the ice shelf penetrates the bedrock,
implying that the solution is invalid. This phenomenon of ‘secondary grounding’ is a
distinct mechanical effect induced by lateral stresses additional to the generation of
ice-shelf buttressing per se.
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FIGURE 14. (Colour online) The steady-state solution predicted by solving the steady-state
equation (3.1) subject to the stress condition (4.2) with the buttressing force (4.13) for
n = 1. The dimensionless coefficient of lateral drag is (a) S = 0, (b) S = 5 × 10−4 and
(c) S = 10−3, and the topography has the positive bed slope α = 2 × 10−3 and β = 1.4.
Cases (a) and (b) provide consistent solutions. However, case (c) is invalidated by the ice
shelf penetrating the bedrock. This situation exhibits type-I secondary grounding, as per
the definitions of (6.1).

Secondary grounding (type I) Secondary grounding (type II)
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(a) (b)

FIGURE 15. (Colour online) Schematics illustrating the two types of secondary grounding
that invalidates a possible steady-state grounding-line position on the basis that the
ice shelf necessary to sustain it would penetrate the bedrock, corresponding to one of
conditions (6.1a,b) being satisfied. (a) Type I, where the predicted profile penetrates the
bed immediately in front of the grounding line. (b) Type II, where the predicted profile
instead penetrates the bed some distance downstream of the grounding line.

In figure 15, I illustrate the two different types of secondary grounding that
are theoretically possible. Panel (a) shows type I, in which the steady ice-shelf
profile (5.1) is predicted to penetrate the bed immediately at the grounding line.
Panel (b) shows type II, where penetration instead occurs further downstream.
Mathematically, the two types occur if

H′(xG) > d′(xG) (type I),
H′(xG) < d′(xG),

and H(x) > d(x) for some x> xG

}
(type II),

 (6.1a,b)

where H is the thickness profile of the ice shelf resulting from the assumption of
continuous flotation. It should be noted that type-II secondary grounding forms a
necessary condition for the formation of a so-called ice rise or rumple, which is
a localised region of the ice shelf that contacts the bedrock downstream of the
primary grounding line. However, it is not a sufficient condition because the resulting
(typically considerable) increase in the buttressing force resulting from a basal
contact of the ice shelf will result in a more advanced steady-state grounding line.
The advancement of the grounding line resulting from this additional buttressing can
close the gap upstream of the position of secondary basal contact where (6.1b) is
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FIGURE 16. (Colour online) The steady-state grounding-line position xG as a function
of S for (a) α = −2 × 10−3 and β = 2.8, and (b) α = 2 × 10−3 and β = 1.4. The
grounding-line positions for which the steady-state solution results in secondary grounding
(SG) is shown by the blue shading in each case. These regions were determined using the
method of finding the steady-state solutions subject to the critical cotangency condition
(6.2) described in § 6. Type-I secondary grounding (6.1a) is shown as a lighter shade
and type-II (6.1b) is shown by the darker shade. In case (b), there is a critical value
S∗≈ 6.9× 10−4, for which no steady state exists for all S> S∗ because of its invalidation
by secondary grounding.

satisfied, implying that an ice rise does not necessarily form in steady state despite
the prediction of type-II secondary grounding.

The inducement of type-I secondary grounding (6.1a) can result in a special form of
grounding-line advancement in which the ice shelf ‘regrounds’ continuously in front
of the present grounding line. This mode of grounding-line advancement differs from
the more typical mode of migration controlled by thickening of the ice sheet on the
grounded side of the grounding line. It can also result in the formation of an extended
grounding region, an aspect reserved for dedicated treatment as part of the companion
paper (Pegler 2018).

The critical regions of the space (S, xG) where secondary grounding occurs can be
examined by first determining the ‘locus’ over this space for which the ice shelf is
critically cotangent with the bedrock at the grounding line,

H(xS)= d(xS), and H′(xS)= d′(xS). (6.2a,b)

The curve of xS(S) provides both the boundary of the region for which secondary
grounding occurs as well as the boundary of the critical switch from type I to type II.
The curve of xS(S) is generally multi-valued and hence it is easier to specify xG =

xS and determine the critical drag parameter S(xS) for which (6.2a,b) are mutually
satisfied. For general n, this curve can be determined numerically by solving (3.1b)
subject to (6.2a,b) and iterating S bisectively until (3.2b) is adequately satisfied. For
n = 1, this curve can instead be obtained analytically by using the first-integral of
(3.1b), namely,

4Hu′ + S(xC − x)= 1
2δH

2 (6.3)

(Pegler 2016). Using the steady-state expression for the derivative, u′ = −H−2H′,
substituting the cotangency conditions of (6.2a,b) directly into (6.3) and rearranging,
I obtain S(xS) = ((1/2)d2

+ 4d3d′)/(xC − xS). The implied regions for which type-I
and type-II secondary grounding occur are shown by the lighter and darker shaded
regions in figure 16, respectively.
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For the negative sloped example of figure 16(a), xS < xG, and hence secondary
grounding does not interfere with the validity of any steady states. For the
positive-slope case of figure 16(b), satisfaction of (6.1a,b) occurs only for S > S∗,
where S∗ = S∗(α, β) ≈ 6.9 × 10−4 is a critical drag parameter. The sharp ‘switch-on’
of secondary grounding at S∗ abruptly removes a significant branch of consistent
steady-state grounding-line positions. These invalidated steady states are indicated
by a dashed curve in figure 16(b). This invalidation explains the lack of any steady
state in the numerical example of figure 4(d), for which S= 2× 10−3 is greater than
S∗. The critical inducement of secondary grounding by lateral stresses produces a
distinct process of grounding-line control that is additional to the direct effect of
ice-shelf buttressing generated by the integral of lateral stresses. The implications of
this phenomenon for marine ice sheet structure, grounding-line migration, and the
suppression of otherwise destabilising grounding-line retreat will be addressed as part
of the companion paper (Pegler 2018).

7. Illustrating the determination of ice-sheet balances
The two mechanically distinct effects of lateral stresses described in this paper

are, first, its direct generation of ice-shelf buttressing and, second, its inducement of
secondary grounding. The analyses of §§ 4 and 6 addressed these effects individually.
In order to determine the consistent steady-state grounding-line positions for a
given topography, it is necessary to consider these phenomena in tandem. This
section brings the different mathematical machineries used to analyse these two
phenomena together in application to establishing the consistent balances possible for
an illustrative nonlinear bedrock topography. For demonstration, I consider n= 3 and
a basal topography with a double bump defined by

b(x)= e−ξ
2
(αξ 2
+ γ ξ)− β, where ξ ≡ (x/k)− ξ0, (7.1)

α = 4e, β = 9, γ =−1, k= 103 and ξ0 = 3, which is illustrated in figure 17(b).

7.1. Steady states and the removal of hysteresis
The first step is to determine the solutions to the grounding-line equation (4.2)
with the expressions for the extensional-resistance function (A 1) and the buttressing
function (4.13), for xG. Solving this algebraic equation using a numerical root finder,
I obtain the steady-state grounding-line position xG as a function of S shown as
a thick solid curve in figure 17(a). With the candidate steady states determined,
the second step is to determine which are rendered inconsistent by secondary
grounding. To determine the locus of critical grounding-line positions for which
secondary grounding occurs, I apply the numerical method outlined below (6.1). The
grounding-line positions that would be affected by secondary grounded are overlaid
on figure 17(a) in blue, with types I and II shown by the lighter and darker shades,
respectively. The invalidated steady states are shown as dotted curves extended into
the blue region.

For the unconfined case, S = 0, equation (4.2) reduces to d(x) = d0 = 7.96. The
solutions to this equation represent the intersections between b(x) and the line
z = −d0(1 − δ), shown in figure 17(b). There are a total of four such states. As S
is increased, the first effect of lateral stresses is to cause the unbuttressed steady
states on positive bed slopes to move backwards and those on negative bed slopes
to move forwards. Another effect is to introduce a fifth steady state far upstream
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FIGURE 17. (Colour online) Panel (a) shows the steady-state grounding-line positions xG
predicted by (4.2) for the nonlinear bed topography (7.1) and the rheological exponent
n= 3 as a function of drag parameter S. The regions in which secondary grounding (SG)
invalidates the consistency of a steady state are shown by the blue shaded regions; type I
and type II are shown by the lighter and darker shades, respectively. The steady states
invalidated by secondary grounding are shown as dotted curves. The solution to the full
system (3.1), (3.2) reveals additional steady-state branches shown as red curves. Panel (b)
shows the bed topography (7.1) and its intersections with the horizontal line z=−d0(1− δ)
(dashed) producing the four steady states possible for zero buttressing, S = 0. Panel (c)
shows the state involving a secondary contact with the bedrock, corresponding to the
position of the blue circle in (a).

(not shown). At certain critical values of S, certain pairs of steady states meet and
‘annihilate’ one another. The annihilations represent saddle-node bifurcations, which
are a feature of dynamical systems with multiple steady states. The solutions near
the bifurcation points in this example are invalidated by type-II secondary grounding
causing an intersection between the ice shelf and one of the topographic maxima.
The invalidations occur sharply at critical values given by S = 4.6 × 10−5 and
S= 1.4× 10−4. For values of S> 1.4× 10−4, there is just one steady state remaining.

The existence of multiple steady states (there can be a total of five in the example
above) implies the possibility for hysteresis effects, where the system will be attracted
to a different state depending on its initial condition. For example, if a change in
climate were to induce a reduction in ice flux Q, a grounding-line retreat can be
stimulated. If the flux were to reinstate in future then, if the grounding line has
migrated upstream of an unstable steady state, then it will not return to its former
state. Instead, it will continue to retreat upstream, potentially leading to either
irreversible runaway retreat or stabilisation towards a new position further upstream.
The steady-state plot of figure 17 shows that, with just one stable state remaining
for S > 1.4 × 10−4, lateral stresses have the effect of removing the possibility for
hysteresis. Above this value, the system converges unconditionally towards this stable
steady state. Above this threshold, the possibility for hysteresis has been eliminated.
A general analysis of the conditions necessary to maintain the global stability of a
marine ice sheet under the effects of ice-shelf buttressing and secondary grounding
forms the subject of the companion paper (Pegler 2018).
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7.2. Steady secondary contact
An ice rise or rumple represents a localised region of contact between an ice shelf
and the bedrock downstream of the primary grounding line. The position of the
primary grounding line and the ice rumple for such a state are not predicted by
(4.1) because of the underlying assumption that the ice shelf forms a single region
of flotation. To inspect the possibility of states that sustain a region of secondary
grounding in steady state, I conducted a comprehensive search of the solutions to the
full steady-state equation (3.1). This was achieved using a method of shooting over
the thickness upstream, and iterating it bisectively until the frontal stress condition
(3.2) is adequately satisfied. Unlike the solutions based on (4.2) alone, this general
method of solution describes several additional solutions involving two disjoint
regions of flotation. The additional branches of steady states are shown as red curves
in figure 17(a). The additional solutions initially appear to continue the branch of
solutions of the steady states with a fully floating ice shelf for values of S above
the critical values at which secondary grounding switches on, before abruptly turning
back at saddle-node bifurcations. New solutions involving a secondary contact can
occur for values of S both above the threshold at which secondary grounding is
predicted and below it. The profile of such a state, occurring at the blue circle
in figure 17(a), is shown in figure 17(c). The solution exhibits a brief ‘glancing’
contact with the bedrock, which can be interpreted as an ice rumple. Thus, multiple
additional steady states can be produced by allowing for a secondary contact. As
shown in figure 17(c), the contacts create a sharp jump in the thickness gradient of
the ice shelf between the start and end of the secondary region of contact, implying a
considerable impact of the contact on the morphology of the ice shelf. This includes a
considerable thickening of the region of the ice shelf between the point of secondary
contact and the grounding line. Assuming an alternating pattern between stable and
unstable states, I anticipate that a subset of these additional states are stable and
the others unstable. By contributing to a larger interior thickness, lateral stresses can
thus induce the development of an ice rise or rumple. A dedicated analysis could be
conducted to investigate the local stability of these additional states and is left for
future consideration.

8. Geophysical discussion and model applicability

This section discusses the physical implications of lateral stresses within the
geophysical context and summarises the limitations of the model.

8.1. The variation in parametric control of the grounding line
In order to visualise the new parametric dependences introduced by lateral stresses in
the general balance equation (4.2), it is insightful to express it in its dimensional form.
With the power-law results of (A 2) and (4.14) incorporated, this equation reads

4
[
(MQ)n+1Cn

−

µn
0

H(n2
−3n−1)

G

]1/n2

︸ ︷︷ ︸
Extensional resistance

+
δ

2

(
M′Q
Λ

)2/n+1

B̂
(xG

Λ
,

xC

Λ

)
︸ ︷︷ ︸

Ice-shelf buttressing resistance

=
δ

2
H2

G, (8.1)

where HG ≡ d(xG) is the grounding-line thickness, M ≡ (µ0/ρg)n, M′ ≡ (µ0/ρg′)n, B̂
is the dimensionless form of the buttressing force given by (4.13) or (4.14), which
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depends purely on the geometrical specification of the ice shelf, and Λ≡ (λ+wn)1/(n+1)

is a length formed from the channel half-width w. For negligible softening and
n= 3, for example, Λ= 0.47 w. Equation (8.1) shows that the extensional resistance
and ice-shelf buttressing forces depend individually on the grounding-line flux Q.
Therefore, the relationship between Q and thickness HG depends on the solution of
the implicit algebraic equation (8.1). With Q = q(xG) represented in terms of the
grounding-line position using (2.20) and HG = d(xG) equated to the bedrock flotation
profile, equation (8.1) forms an algebraic equation that can be solved directly for the
steady-state grounding-line position xG.

For zero buttressing, B= 0, equation (8.1) can be rearranged to give

Q≈
1
M

[(
δ

8

)n2 (
µ0

C−

)n

H(n2
+3n+1)

G

]1/(n+1)

(unbuttressed), (8.2)

which recovers the unbuttressed relationship for grounding-line flux for a sliding ice
stream (Schoof 2007b). In the opposing limit of strong buttressing, equation (8.1)
predicts the distinct expression

Q≈
Λn+1

M′(Nl)n
Hn+1

G (strongly buttressed), (8.3)

where N≡ (n+ 1)/n and l≡ xC− xG is the shelf length. For the purpose of illustrating
the new parameter dependences arising for strong buttressing mathematically, I have
here neglected the contributions to B̂ due to HC (though it should be noted that this is
not a good approximation in general and can be straightforwardly retained). The result
of (8.3) illustrates that the calving position xC, as contained in the shelf length l, and
the half-width of the ice shelf, w∝Λ become central controls. Further, the absence of
C− in (8.3) shows that basal conditions have no important effect on the dynamics of
a sufficiently buttressed grounding line, thus confirming the control illustrated earlier
in figure 11.

The removal of a dependence of the grounding line on the basal stress clarifies
that the control of a marine ice sheet is based on two distinct physical processes: one
is the control of the grounding-line position; the other is the control of the degree
of ‘pile-up’ upstream of that position. Importantly, the physics controlling these
independent processes result in two necessary physical conditions for maintaining
a large marine ice sheet: one is to support a sufficiently advanced grounding line;
the other is to sustain a sufficient drag on flow in the grounded region. The failure
of either one of these physical constraints can form a ‘weak link’ that is sufficient
for collapse of a marine ice sheet. It might be anticipated that the maintenance of
an advanced grounding line is the weakest of these two links for sustaining the
WAIS. The split in necessary physical conditions for maintaining a marine ice sheet
explains why lateral stresses in an ice shelf are so much more important than those
in the grounded region. Since ice-shelf buttressing directly provides an independent
control of the grounding line, with a magnitude of force that can readily exceed the
extensional resistance to flow across a grounding line relied upon in the absence of
buttressing, it has a direct impact on the sustainment of the first of these weak-link
conditions (the sustainment of an advanced grounding line). Lateral stresses in
the grounded region, by contrast, only significantly influence the second necessary
condition representing the sustainment of a thick and steep ice sheet upstream of the
grounding line. This separation of physical controls explains why the maintenance of
a stable marine ice sheet can be dictated by the sustainment of ice-shelf buttressing.
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FIGURE 18. (Colour online) The relative buttressing parameter Ω evaluated using (8.4),
which measures the proportion of the resistance to grounding-line flow stemming from
ice-shelf buttressing. The ranges encompass the variations in parameters for the ice-shelf
systems listed in table 1.

Ice-shelf system Symbol dG (km) l (km) w (km) Q (m2 s−1) Ω

Filchner FIL 1.0–1.6 280 110–170 16× 10−3 0.23–0.50
Ronne RON 1.1–2.0 590 480–530 8.5× 10−3 0.04–0.15
Ross (main) ROS 1.0 700 300–620 6.5× 10−3 0.13–0.44
Ross (east) ROS∗ 1.0 350 110–120 2.7× 10−3 0.60–0.70

TABLE 1. Estimates of the thickness at the grounding line d, distance between grounding
line and calving front l, ice-shelf width w and volumetric flux per unit width Q for five
ice-shelf regions. The given ranges for dG and w encompass variations in values for a
given ice shelf. The relative buttressing parameter Ω evaluated using (8.4) is listed in the
final column.

8.2. Assessing the significance of ice-shelf buttressing
To indicate the locations of a selection of ice shelves on the spectrum of relative
buttressing strength, I evaluate the parameter Ω , defined by (4.5). Using the analytical
result of (4.13) for power-law fluid and negligible net accumulation, Ω can be
evaluated as

Ω ≡
B

1
2ρg′d2

G
=

1
d2

G

[(
µ0

ρg′

)n Q
Λ

]2/(n+1)
[(

HN
C +

Nl
Λ

)2/N

−H2
C

]
. (8.4)

The relative buttressing Ω is evaluated for a selection of ice-shelf systems listed in
table 1. The main central component of the Ross ice shelf is considered separately
to its smaller, channelised component east of Roosevelt Island (denoted ROS∗). The
predicted Ω are listed in the final column and plotted in figure 18. Significant
variations in its value are apparent. The smallest Ω applies to the Ronne ice shelf,
with <15 % of its resistance stemming from buttressing. This may be attributable to
its considerable width, which reduces the transverse shear stresses. The largest Ω
applies to the confined region of the Ross ice shelf for which 65 % of grounding-line
resistance is predicted to stem from buttressing.

8.3. Applicability
On the basis of the numerical comparisons given in the supplementary document, it
is likely that the model describes a large range of marine ice sheet configurations
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from those channelised in fjords in addition to larger, broader ice shelves. However,
a number of caveats should be noted. Primary anticipated limitations include: the
existence of islands or ice rises, which will change the buttressing forces generated
by the ice shelf; the more complex two-dimensional flow that may be generated by
strongly localised ice-stream inputs, which can be more typical for large ice shelves;
and the effects of significant transverse variations in basal conditions. A limitation of
the steady-state results, as represented by the general balance equation (8.1), is their
accuracy if the ice shelf or grounding line are sufficiently unsteady.

The examples of this study have focused on certain specialised situations. These
include the assumption of a localised input directly at the ice divide specified by
(2.19), and the assumption of a uniform basal coefficient of drag and flow width.
These assumptions have been made for the sake of illustrating the results and can all
be relaxed within the steady-state framework developed, which is more versatile than
the specifications considered in these examples. The framework can also accommodate
more complex rheological specifications, basal conditions and calving laws. With these
generalisations, the framework provides an efficient complement to direct numerical
analysis, with the numerical saving affording scope for thorough exploration of
scenarios and sensitivity analysis in case studies.

9. Conclusions

This paper has explored the effects of lateral stresses on the dynamics of marine
ice sheets. The primary result is an analytical toolkit for determining steady-state
grounding-line positions, which affords excellent agreement with the predictions of
full horizontally two-dimensional numerical simulation with a numerical expense that
is many orders of magnitude smaller. The analysis elucidates the steady-state regimes
of grounding-line control, and its relationship to ice-sheet flow and force-balance
structure, across a complete spectrum of relative buttressing strength. The possibility
for dominant control of the grounding line by the ice shelf was determined even when
lateral stresses are considerably weaker than the resistive stresses exerted upstream
of the grounding line. A distinct secondary mechanism of grounding-line control
by lateral stresses via its inducement of further basal contacts between an ice shelf
and the bedrock was also demonstrated. This effect was shown to provide a further
mechanism for the stabilisation of a grounding line that is entirely additional to the
effect of the ice-shelf buttressing generated already by the lateral stresses without
basal contact. The results provide essential groundwork necessary to understand the
conditions for tipping to and recovery from marine ice sheet instability, which forms
the subject of the companion paper (Pegler 2018).

The reduced equation for steady-state grounding lines (8.1) incorporates the
buttressing force and extensional stresses resisting flow at the grounding line
simultaneously using universal analytical expressions of grounding-line thickness
and shelf length, respectively. Analysis of the solutions shows that lateral stresses
fundamentally alter the characteristics of grounding-line control from an extension-
dominated balance for weak buttressing to a buttressing-dominated balance. For
sufficient buttressing, the extensional dynamics that dominates the resistance across
an unbuttressed grounding line can become negligible. There is therefore a complete
transition in dynamical control from the ice shelf playing no role in unbuttressed
dynamics to a completely dominant role for even a relatively short confined ice shelf.
The approximate position of a steady-state grounding line can lie close to the location
where the interior lateral-drag-dominated region of the ice shelf intersects the bedrock
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on extrapolation, implying that the control of the grounding line is being dominated
independently by the profile of the ice shelf. There is then no relationship between
the control of the grounding line and the mechanics of the grounded region other
than the flux of mass across the grounding line. Basal lubrication can completely
lose its effect on the grounding line for sufficient buttressing, with the potential
for the grounding line to be completely unchanged even when basal stresses are
entirely removed (see figure 11). From the perspective of the ice sheet as a whole,
lateral stresses on the ice shelf can thereby largely independently set the position
and ice-sheet thickness at the grounding line, with the role of basal stress, and the
lateral stresses exerted on the grounded region, being primarily to control the degree
of thickening of the ice sheet as one moves upstream of the grounding line.

As lateral stresses are incorporated, the ice-shelf structure transitions from the
classical extension-dominated concave solution (van der Veen 1983) towards the
regime involving a wedge-shaped lateral-drag-dominated solution connected to the
grounding line through an inlet boundary layer involving significant extension (Pegler
2016). The characteristics of this structure arise even when ice-shelf buttressing is
present but not necessarily the dominant resistance to flow across the grounding
line. A parameter Ω was formulated to measure the relative significance of ice-shelf
buttressing as a proportion of the total resistance to grounding-line flow (with the rest
provided by the extensional viscous stress). The value of the relative buttressing was
determined to be related in a simple way to features of the ice-shelf structure via
an expression (5.4) involving the grounding-line thickness, the calving-front thickness
and the thickness just downstream of the input boundary layer.

The second main result was to determine a distinct effect of lateral stresses of
inducing an ice shelf to make further basal contacts downstream of the grounding line.
This phenomenon of ‘secondary grounding’ invalidates the steady-state grounding-line
positions that are otherwise consistent with the grounding-line balance equation
applicable for an ice shelf with a single region of continuous flotation (8.1). There is
therefore a sharp switch-on of differing stability properties subject to the satisfaction
of a critical condition. Despite it not necessarily requiring strong buttressing to arise,
the controlling influence of secondary grounding is, like the lateral-stress-dominated
regime, determined independently by the dynamics of the ice shelf. The implications
of this mechanism for suppressing the unstable retreat of grounding lines will form
an aspect explored in the companion paper.

By combining the predictions of the grounding-line balance equation with conditions
for secondary grounding, the positions of consistent steady states for a generic
one-dimensional topography are determined. For an example nonlinear bedrock,
it was shown that steady-state branches of the stability diagram progressively
disappear as lateral stresses are incorporated. The steady states can disappear either at
saddle-node bifurcations or at the ‘switch-on’ of secondary grounding. The possibility
of secondary grounding downstream was found to produce multiple additional steady
states involving a brief ‘glancing’ contact with the bedrock in the manner of an ice
rise. Under this effect, a rich variety of additional steady-state regimes are revealed.
For sufficiently large lateral stresses, only one steady state survives. In this case,
the ice sheet can be expected to approach this steady state unconditionally, with the
possibility of irreparable hysteresis effects, of the kind identified previously in the
context of unbuttressed grounding-line dynamics, being eliminated. The critical loss
of a steady state dependent on buttressing following parametric variation is generally
more likely to result in the crossing of a globally unique tipping point, indicating
that an abrupt and permanent switch to large-scale collapse may be more likely
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for a buttressing-controlled tipping point than an unbuttressed tipping point, where
restabilisation upstream may be more likely.

By considering the relative buttressing Ω in the context of a selection of ice-shelf
systems, it was found that they generally lie intermediate to the end members of the
spectrum of relative buttressing strength. A majority contribution from buttressing
arises for the channelised section of the Ross ice shelf, but considerably weaker
relative buttressing is predicted for the Ronne ice shelf. These estimates indicate that
the controls provided by ice-shelf buttressing are likely to be of broad importance to
the geophysical context.

By considering the stability of a marine ice sheet in terms of two physically distinct
necessary conditions – one based on grounding-line control, the other based on the
degree of ‘pile-up’ upstream of that position – it can be explained why even slight
lateral contact of an ice shelf introduces a leading control of the large-scale stability
and mass balance of a marine ice sheet. From the perspective of the entire ice sheet,
the drag stresses owing to lateral stresses on the ice shelf are generally much smaller
in magnitude compared to those exerted by basal drag along the grounded interior of
the ice sheet and, moreover, are likely to constitute a tiny contribution to the total
drag exerted through the length of the ice sheet. However, by virtue of its exertion
at the grounding line and direct resistance to flow across it, it is readily possible,
despite their small magnitude overall, for lateral stresses on an ice shelf to impact
the large-scale stability of the ice sheet. The reason is that the resistive force provided
by ice-shelf buttressing can readily exceed the relatively weak extensional stress that
would provide the only resistance to flow across the grounding line in its absence.
The simple structural link between the drag-dominated profile of the ice shelf and the
grounding line determined in § 5 clarifies this emergent control. Variations in external
parameters associated with ice-shelf preservation, such as the control of its calving
position, basal melting and lateral conditions are thus likely to constitute leading-order
processes governing large-scale marine ice sheet dynamics and stability. Understanding
the details of these processes and resolving them accurately within models is thus
vital if we are to predict future sea levels and the potential for collapse of the West
Antarctic Ice Sheet with confidence.
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Appendix A. Analytical descriptions of steady grounding-line forces
This appendix develops generalisations of the analytical forms of the ‘database

functions’ E(d) and B(xG, xC), defined by (4.3) and (4.10), respectively. The results
yield the general equation (8.1).

A.1. The generalised extensional-resistance function
To extend the approach of § 4.1 to n 6=1, I first determine the universal shape profile of
the grounded region by numerically integrating (3.1) forwards subject to an arbitrary
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upstream thickness. The resulting profile is used to construct the gradient function
ζ (H) and, in turn, the extensional-resistance function E(d) using (4.3). With E(d)
in hand for n = 3, the special unbuttressed dimensionless grounding-line thickness
d0 ≈ 7.96 is determined by solving E(d)= (δ/2)d2 using a numerical root finder.

To develop an almost exact analytical approximation for E(d), I follow § 4.1.2 and
approximate the flow in the grounded region using a drag-dominated balance to obtain
D(u)≡ τb(u)+Hτs(u)=−H(H′ + b′), where D(u) is used to represent the combined
drag on the flow in the grounded region owing to both basal and lateral drag. Using
this expression to substitute for H′ in (4.3), with µ= (−H−2H′)(1/n)−1, I obtain

E ≈ 4d(n−2)/n

(
b′ +

D(u)
d

)1/n

(A 1)

≈ 4d(n
2
−3n−1)/n2

, (A 2)

where u = 1/d and the second result is the reduced form of (A 1) applicable for
sufficiently small b′ (for which the expression is reduced to a pure function of
grounding-line thickness E(d)) and for negligible contributions to the total drag in
the grounded region owing to lateral stresses, D(u)≈ τb(u)= d−1/n. By comparing the
result of (A 2) with my numerically determined version of E(d), I obtain excellent
agreement for all d > d0. The largest error occurs for the unbuttressed balancing
thickness d0, namely, d = d0 ≈ (8/δ)r, where r ≡ n(n + 1)/(n2

+ 3n + 1). This
‘worst-case’ error is within just 0.1 % of the numerically determined value, indicating
that the analytical prediction given by (A 1) can be treated as a practically exact
general approximation.

A.2. The generalised buttressing force with melting
The analytical approximation for the buttressing force is obtained by substituting an
analytical solution for the prevailing region of the ice shelf downstream of the inlet
boundary layer (Pegler 2016) into the buttressing integral (4.10). First recall the lateral-
drag-dominated flow approximation (5.3), which for power-law fluid reads

τs(u)= S[q(x)/H](1/n) = δH′. (A 3)

Here I have allowed for a spatially varying flux q(x) =
∫ xD

x0
F(x′) dx′ in order to

incorporate the effect of distributed melting along the underside of the ice shelf.
Integration of (A 3) subject to the frontal stress condition (3.2b) yields the general
solution describing the prevailing region of the ice shelf downstream of the inlet
boundary layer,

HU =

(
N
δ

∫ xC

x
Sq(x′)(1/n) dx′ +HN

C

)1/N

, (A 4)

where N ≡ (n + 1)/n and HC = [8q(xC)]
1/N2 . Using (A 4) to evaluate H(x) and

u(x)= q(x)/H(x) in (4.10), one obtains the result of (4.14). As a shorthand for this
calculation, one can use the expression (5.4) with (A 4) used to evaluate HU(xG).
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