
A study in applying case-based reasoning to engineering
design: Mechanical bearing design

XIAOLI QIN and WILLIAM C. REGLI
Department of Computer Science, College of Engineering, Drexel University, Philadelphia, Pennsylvania 19104, USA

(Received April 10, 2002;Accepted January 12, 2003!

Abstract

Case-based reasoning~CBR! is a promising methodology for solving many complex engineering design problems.
CBR employs past problem-solving experiences when solving new problems. This paper presents a case study of how
to apply CBR to a specific engineering problem: mechanical bearing design. A system is developed that retrieves
previous design cases from a case repository and uses adaptation techniques to modify them to satisfy the current
problem requirements. The approach combines both parametric and constraint satisfaction adaptations. Parametric
adaptation considers not only parameter substitution but also the interrelationships between the problem definition and
its solution. Constraint satisfaction provides a method to globally check the design requirements to assess case adapt-
ability. Currently, our system has been implemented and tested in the domain of rolling bearings. This work serves as
a template for application of CBR techniques to realistic engineering problems.

Keywords: Artificial Intelligence; Case-Based Reasoning; Computer-Aided Design; Design; Variant Design

1. INTRODUCTION

Case-based reasoning~CBR! techniques are a promising
methodology for solving many problems in engineering de-
sign. CBR is a subfield of artificial intelligence~AI !, based
on the idea that past problem-solving experiences can be
reused and learned from when solving new problems. This
paper shows how to use CBR techniques to build a CBR
system to solve a domain-specific engineering design prob-
lem: the design of mechanical bearings. This paper presents
a three-phase approach to building a practical CBR system
for this domain:

1. Knowledge representation for bearing design prob-
lems:Determine the key parameters in the design prob-
lem and use them to build a knowledge base.

2. Case-based reasoning engine:Design and implement
a case-based reasoner that can retrieve and adapt past
design knowledge.

3. Implementation and examples: Develop a prototype
based on this approach and show how the CBR sys-
tem can be used during the design phase of product
development.

In presenting technical solutions to each of these prob-
lems and the system prototype, this work serves as an ex-
ample for others to use in applying case-based techniques
to more complex engineering design problems.

2. BACKGROUND

Case-based and knowledge-based systems have been an
active research area for the past 15 years~Hammond, 1989;
Riesbeck & Schank, 1989; Bardasz & Zeid, 1991, 1992;
Hinrichs & Kolodner, 1991; Slade, 1991; Kolodner, 1993;
Pu, 1993; Aamodt & Plazas, 1994; Maher et al., 1995; Leake,
1996!. This work represents a foundation of structures, al-
gorithms, and techniques for reasoning about and adapting
archived knowledge. An area of considerable interest has
been engineering, design, and manufacturing, which pro-
vides a vast array of challenging, real-world problems that
test theoretical developments and create new technologies.

Reprint requests to: William C. Regli, Department of Computer Sci-
ence, College of Engineering, Drexel University, 3141 Chestnut Street,
Philadelphia, PA 19104. E-mail: regli@drexel.edu

Artificial Intelligence for Engineering Design, Analysis and Manufacturing~2003!, 17, 235–252. Printed in the USA.
Copyright © 2003 Cambridge University Press 0890-0604003 $16.00
DOI: 10.10170S0890060403173064

235

https://doi.org/10.1017/S0890060403173064 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060403173064

This section will first review a subset of CBR literature
driven by engineering, design, and manufacturing most rel-
evant to this paper and then provide a primer on bearing
design.

2.1. Previous work on CBR in engineering

CADET ~Navin-Chandra et al., 1991; Navin-Chandra,
1992a; Sycara et al., 1992; Sycara & Navin-Chandra, 1992;
Miyashita & Sycara, 1993! and its descendent projects fo-
cus on conceptual design solving problems using relation-
ships that capture function, structure, and behavior. CADET
builds solutions to new design problems from pieces taken
from previous design cases. CADET’s representations are
behavioral and functional, with input to the system consist-
ing of symbolic descriptions of the desired device along
with some physical constraints. The design knowledge base
of CADET is a store of function, behavior, and the device’s
structural relationships. Indexing and retrieval are per-
formed using linguistic descriptions of these properties as
well as queries on the symbolic information and param-
eters. The retrieval and indexing methods are based on vari-
ations of graph matching and support retrieval at different
degrees of abstraction.

Goel et al.’s KRITIK and its descendent systems~Chan-
drasekaran et al., 1993; Bhatta and Goel, 1994; Goel, Bhatta,
et al., 1996; Goel, Gomez de Silva Garza, et al., 1996; Goel
& Stroulia, 1996; Goel, 1997! operate on design problems
using a case base of designs represented by symbolic com-
ponent descriptions and their relationships and behaviors.
A central contribution of KRITIK was the formalization of
a structure–behavior–function model for designs, in which
design cases can be indexed according to the functions they
deliver. The functional representation is hierarchical, con-
sisting of a component-substance model to capture the struc-
ture and performance of a given device.

KRITIK’s design domain is not linked to specific CAD
geometry and topology specifications~such as are captured
in current engineering databases and product data manage-
ment systems! and is limited to devices whose functions
can be characterized as a flow of substances between com-
ponents. The more recent work has extended many of the
earlier KRITIK concepts; however, their powerful reason-
ing techniques are still primarily symbolic and have not
been coupled with detailed engineering data.

Other systems include those for assembly~REV-ENG;
Kim, 1997!, architecture~Archie, Arichie II, Domeshek &
Kolodner, 1997; CADRE, Hua & Faltings, 1993; Fabel,
Voss, 1997!, and civil engineering~Cadsyn, Casecad,
Gencad; Maher & Zhang, 1993; Maher et al., 1995; Gomez
de Silva Garza & Maher, 1996; Maher & Gomez de Silva
Garza, 1996!, among other engineering disciplines~Hen-
nessy & Hinkle, 1992; Shi et al., 1997!. Smithers~1989!
describes the need to unite geometry with richer AI repre-
sentations; Silverman and Mezher~1992! overview the work
on design critics.

Work by Bose, Gini, and Riley~1997! applies CBR to
the design of planar linkage assemblies. In this work, pla-
nar linkages are stored as parametrized 2-dimensional geo-
metric information, along with functional information about
the elements. The case storage structure is also multilevel,
allowing for problem specification and retrieval at varying
levels of abstraction. Case retrieval is executed using an
algorithm that is a traversal of a variation of a KD tree,
which hierarchically stores the cases.

Other case-based systems for problems in design and man-
ufacturing include the case-based assembly planner of Pu
and Reschberger~1991a, 1991b!, Falting’s Design-CADRE
System~Hua & Faltings, 1993!, and the Tsatsoulis applica-
tion of the TOLTEC Planner~Tsatsoulis & Kashyap, 1993!
to manufacturing problems. Lambright and Ume~1996! ap-
plied CBR0KBR to the design of flat panel displays. In
addition, issues ofIEEE Expert and Intelligent Systemshave
emphasized past accomplishments and current challenges
in the extension of AI and CBR to complex engineering
problems~Brown & Birmingham, 1997; Goldman & Boddy,
1997; Lee, 1997; Maher & Gomez de Silva Garza, 1997;
Sauer & Bruns, 1997; Umeda & Tomiyama, 1997; Wiel-
inga & Schreiber, 1997!. Some of the observations in this
series of articles include the following:

1. although there has been much research in knowledge-
based engineering systems, the integration of this re-
search into existing computer-aided design~CAD! tools
has yet to really begin~Brown & Birmingham, 1997!;

2. existing research systems still have great difficulty in
scaling to complex design cases such as those posed
by large CAD systems~Maher & Gomez de Silva
Garza, 1997!;

3. current CAD systems and their underlying represen-
tations are predominantly geometric and integrating
knowledge about form and function is a major open
research challenge~Umeda & Tomiyama, 1997!; and

4. solving even the simplest design problems, such as
the creation of a part configuration layout, requires
advanced AI technology and novel extensions to the
state of the art.

In a survey of work on variant and case-based design,
Fowler ~1996! makes several similar observations: better
abstract models are needed for mechanical artifacts so that
function information can be stored in the CAD knowledge
base~in much the same way that functional indices are
computed in KRITIK!. Complex issues need to be consid-
ered to develop systems for automatically retrieving and
applying existing designs to solve new design problems.
Augmenting CAD systems with CBR0case-based design
techniques can lead to great benefits to designers.

2.2. The CBR method

The CBR Cycle~Aamodt & Plaza, 1994! is a methodology
to build a CBR system for a given domain. A CBR system

236 X. Qin and W.C. Regli

https://doi.org/10.1017/S0890060403173064 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060403173064

can be viewed as a combination ofcase-baseand knowl-
edge reasoningprocess modules. These modules form a
CBR (or reasoner!, and they form the functions used to
manipulate the knowledge in the case base. They act to
processuser inputs,recall similar cases,retrieve the most
similar case, andevaluate and adaptthe retrieved case and
update the case memory.

Normally, the following problems must be addressed in
the development of a CBR system:knowledge acquisition,
knowledge representation, case retrieval, case adaptation,
and learning mechanisms. We review the basic aspects of
each step below:

1. Knowledge acquisition:How does one acquire useful
knowledge from the application problem domain? This
activity often consists of manual indexing of past de-
sign knowledge; sometimes automated or semiauto-
mated indexing of design knowledge is possible.

2. Knowledge representation:How does one use a for-
mal language, such as first order logic, to represent
domain knowledge? The knowledge representation
methodologies used in CBR systems are primarily con-
cerned with how to structure knowledge stored in the
case base to facilitate effective searching, matching,
retrieving, adapting, and learning. One influential
knowledge representation model is thedynamic mem-
ory model~Riesbeck & Schank, 1989!, based on Mem-
ory Organization Packet~MOP! theory.

3. Case retrieval:Once we have determined how to rep-
resent knowledge and have populated a knowledge
base with cases, how do we efficiently retrieve the
case most similar to the current problem? There are
two subprocesses involved in case retrieval: how to
retrieve a set of similar cases from the case base and
how to find the most similar case in this set. The first
subprocess is accomplished by designing an appropri-
ate index scheme for the domain problem. The second
task is often done using techniques such as theNear-
est Neighbor Matching Algorithm~NNM; Kolodner,
1993!.

4. Case adaptation strategies:After a CBR system re-
trieves the most similar case from the case base, it
normally needs to perform some modification on this
retrieved case to adapt it to the new problem. There
are several adaptation strategies that can be used in
a CBR system. They include Simple Substitution,
Parameter Adjustment, and Constraint Satisfaction
~Kolodner, 1993!.

5. Learning mechanisms:Learning is the last step in the
CBR system. In a CBR system, after a new problem is
solved, the case base is changed by adding the new
case into it. In this way, the system can retain more
knowledge along with problem-solving augmentation
and achieve learning.

A CBR engine forms the control system that allows de-
signers to use archived cases to solve new bearing design
problems. Once domain knowledge has been used to build
the case base, organize memory, build indices, and so forth,
the reasoning engine can execute searches based on the
index scheme. The engine also performs the other reason-
ing processes, including case retrieval, adaptation, and sys-
tem learning.

2.3. Bearing design

Bearings are standard mechanical elements that play a very
important role in product design and are used extensively
in a wide array of mechanical artifacts. They usually sup-
port rotating shafts and make relative rotation possible among
shafts and other parts~i.e., gears!. Whenever a newly de-
signed machine requires rotational function, it also requires
bearings. A bearing designed for a certain machine must
satisfy the requirements of the overall assembly structure
and working environment. The basic way to solve this prob-
lem is to perform intensive calculations based on the work-
ing conditions and develop a bearing configuration which
can satisfy these working requirements. Some computer pro-
grams have been developed to help deal with these inten-
sive calculations~HEXAGON, 1999!. Although these
approaches release human engineers from manual math-
ematical calculation, they cannot perform higher level de-
sign actions.

Because of the complexity of the bearing design prob-
lem, the knowledge space in this domain is incomplete and
dynamic. Therefore, knowledge acquisition has to be
achieved by specifying only the important features relevant
to solving the specific problem. Knowledge not directly
related to solving the problem is discarded. In this work, we
predefine a set of important features for the bearing design
problem, and knowledge acquisition is done manually by a
knowledge engineer.

3. CASE REPRESENTATION FOR THE
BEARING DESIGN PROBLEM

3.1. Problem formulation

There are two basic types of bearings commonly used in
industry:rolling bearings andsliding bearings. This paper
consider only the former. Rolling bearings are further di-
vided into subcategories according to the geometric shape
of their rolling components. Some have rolling components
that are cylinders and some are spheres, called ball bearings.

The basic components of a bearing are aninner ring, an
outer ring, the rolling componentsand asupporting cage,
which keeps the rolling components distributed uniformly.
Figure 1 depicts the bearings, but the cages are not shown.

Normally, the bearings are installed on a rotating shaft.
The inner ring of a bearing is fastened on a shaft, and the
outer ring is installed in a housing. The fundamental pur-

Case-based reasoning for bearing design 237

https://doi.org/10.1017/S0890060403173064 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060403173064

pose of a bearing is to transmit the load between a station-
ary part of a machine~commonly a housing! and the rotating
part of the machine~commonly a shaft! with the minimum
resistance.

3.1.1. The bearing design problem

Bearing design is interpreted from the perspective of an
application engineer, that is, he or she designs bearings for
machines or any applications where bearings are needed.
When performing design, he or she must consider:

1. the working environment for the design problem, in-
cluding ambient conditions, load conditions, and so
forth;

2. based on this information and information given by a
manufacturer’s catalog~which gives different bear-
ings’ maximum load capacity, speed limit, etc.!, how
to design and calculate the size of a bearing that is
suitable for the specified shaft diameter, maximum
dynamic life under the working load, maximum speed,
and so forth.

The goal is to make correct decisions in regard to bearing
type, size, and material, through analysis of the working
environment and extended calculation based on the given
working conditions. Appropriate bearing design is vital to
the trouble-free operation of the machinery.

3.1.2. Important design factors

The inputs include the working conditions, load to be
applied on the bearings, shaft speed, lubrication~i.e., oil or
grease!, assembly space, ambient temperature, corrosive at-
mospheres and vibrations, and so forth. There are also other

important factors that must be considered, such as misalign-
ment, quiet running, and so forth. The primary design fac-
tors that are considered in this research are the following:

1. Load: The magnitude of the load is the factor that
usually determines the size of the bearing to be used.
The direction of loads applied on the bearings is also
very important.

2. Speed: The speed at which rolling bearings can oper-
ate is limited by the permissible operating temperature.

3. Available space: When radial space is limited, it is
necessary to choose bearings with a small cross sec-
tion, particularly those with low cross section height
~i.e., needle roller bearings; see Fig. 2!.

These design parameters, although not exhaustive, cover
the major aspects of most bearing design problems.

3.1.3. Design calculations

The primary calculations are to predict the probability of
bearing failure: “How long can a bearing be used in a cer-
tain working environment?” The first step in predicting bear-
ing life expectancy is to calculate the equivalent load applied
on the bearing. Figure 3 illustrates this calculation. Any
load applied on a bearing can be decomposed into aradial
load and anaxial load. The radial load and axial load are
the component forces of an equivalent compound force
whose directions areradial and axial. Normally, a radial
load and an axial load can be obtained from a special test-
ing instrument and the equivalent compound load can be
calculated from these measurements.

The variants of the formula given in Figure 3 can be
expressed with two formulae. The first is the theoretical

Fig. 1. The bearings and where they are installed.

238 X. Qin and W.C. Regli

https://doi.org/10.1017/S0890060403173064 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060403173064

formula for computing equivalent load applied on a bearing
~Wilcock & Booser, 1957!:

W 5
~12 sina!Fr 1 ~cosb!Ft

~2.52 sina!

or

W 5 Fr , if Fr . W.

The second is the heuristic formula for computing an equiv-
alent load applied on a bearing~Wilcock & Booser, 1957!:

W 5 0.37Fr 1 2.0Ft

or

W 5 Fr , if Fr . W,

whereW is the bearing load~N!, Fr is the radial load ap-
plied to bearing~N!, Ft is the axial load applied to bearing
~N!, a is the operating contact angle~rad!, and b is the
initial contact angle~rad!.

The formula for computing bearing life can be expressed
as~Wilcock & Booser, 1957!

Ln 5 S C

W
D3

~millions of revolutions!

or

L10 5
C3 3 106

603 N 3 W3 ~h!

whereLn is the bearing life in millions of revolutions,L10 is
the bearing life~h!, C is the load rating constant~N!, N is
the speed of the shaft~rpm!, andW is the equivalent load
imposed on the bearing~N!.

Although other calculations do exist that are involved in
bearing design problems, these calculations are omitted in
order to simplify discussion of how we will represent do-
main knowledge for use in a case-based design system.

3.2. Case representation schema

The knowledge pertaining to bearing design problems can
be represented in any kind of formal knowledge represen-
tation language. We have chosen to use CBR Language
~CASL; Center for Intelligent Systems, 1999!, a language
specially designed for CBR. CASL can be used to define
the contents of the case base~in a case file!, and the rea-
soner uses this case file to create a case base to be accessed
and adapted in order to solve design problems.

Fig. 2. The available space in the design configuration.

Fig. 3. The calculations for the equivalent load applied on the bearing.

Case-based reasoning for bearing design 239

https://doi.org/10.1017/S0890060403173064 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060403173064

3.2.1. General syntax and semantics of CASL

Like any other representation language, CASL has strict
syntax, semantics, keywords, and operators. The syntax of
CASL specifies the grammar rules of organizing knowl-
edge, and the semantics of CASL give the concise interpre-
tation of a sentence written in CASL with correct grammar.
CASL defines some basic types in the language: identifiers,
strings, numbers and operators, and so forth.

CASL normally divides a case base into several modules,
each of which has its own syntax features and semantic
explanations. These modules are the following:

Introduction

Case Definition

Index Definition

@Modification Definition #

@Preprocessing Rule Definition#

@Repair Rule Definition#

Case Instance

CASL semantics define the meaning of a sentence by
specifying the interpretation of the keywords and basic types
and specifying the meanings of operators. In the syntax
blocks of CASL, all keywords and literals are given in bold
type. Brief explanations of the primary modules are given
below:

Introduction defines introductory text that documents to
the user understand the contents of the case base or
anything else of note.

Case Definitiondefines the problem features contained
in a case.

Index Definition defines which fields are to be used as
indices.

Modification Definition The purpose of this block is to
define rules used to modify a retrieved case from the
case base to make it fit the current problem specifica-
tions. Theglobal repair rule definitiondefined in this
module allows adaptation rules to be applied on any
modified case. The rules defined here are derived from
domain knowledge, formulae and constraints.

Case Instance Definitiondefines the structure of a case
instance. A case must contain two parts: the problem
part and the solution part. Thelocal repair rule defi-
nition defined in this module allows adaptation rules
to be associated with a case. These rules are invoked
after theglobal adaptations have run their course.

3.2.2. Examples for bearing design
domain representation

The feature definitions for user input.When a bearing
for a machine is designed, working conditions are specified
and given to theCBR reasoner. Thecase definition isblock

in CASL is used to structure the input specifications. It
structures the knowledge about case instances and input
problems by defining the primary features of a problem.
Following thecase definition iskeyword is the definition
of problem features, which can have differentweightsac-
cording to their importance in the problem definition. The
weight iskeyword is used to specify the weight of a feature.

In the bearing design problem, the most important fea-
tures are axial load and radial load. These features’ weight
values are set to be 5~the reference weight!. Load direc-
tion, shaft housing diameter, allowed radial limited space,
and so forth are not that important, comparatively speak-
ing. Therefore, their weight values are set to be 0~the ref-
erence weight!. A sample case definition using CASL can
be given as:

case definition is

field shaft_housing_diametertype is

~d_12_24,d_12_28! weight is 5;

field load_directiontype is

~radial,axial,combined! weight is 0;

field radial_limited_space_requirementtype is

~Yes,No! weight is 0;

field radial_loadtype is number

weight is 5;

end;

Explanations of the case definition include the following:

1. The feature shaft_housing_diameter defines shaft and
housing diameters. The purpose of this field is to de-
fine a series of possible shaft and housing diameters
that may appear in the problems.

2. The load_direction field defines the load direction that
is applied to the bearing. The purpose of defining this
field is that some bearings can only carry axial direc-
tion loads, some can only carry radial direction loads,
and some can carry loads in both directions.

3. The feature radial_limited_space_requirement de-
fines the available radial space in the machine in which
the designed bearing can be assembled. In some cases,
the design has certain assembly space requirements
for special purposes. That is, the available space for
bearing design may be restricted in a certain dimen-
sion. These space requirements can help a designer
predetermine his choice of bearing.

4. The field radial_load defines the magnitude of the
load that is applied to the bearing in the radial direc-
tion. This is the most important factor in deciding the
bearing design for a machine, and in this work the
reference weight is specified as to be 5.

The index feature definition.This part defines the fields
that are used as indices when searching for a matching case.

240 X. Qin and W.C. Regli

https://doi.org/10.1017/S0890060403173064 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060403173064

The index scheme defines the methods by which the rea-
soner should access the case memory. Indices are intended
to streamline the matching process. The index features are
parts of the new problem specification. For example, we
use the features shaft_housing_diameter and load_direction
as main indices to search the knowledge base. The sample
representation is given below:

index definition is

index on shaft_housing_diameter;

index on load_direction;

The definitions of adaptation rules.When the old bear-
ing design whose “description of problem definition” part
is the most “similar” to the current problem definition is
retrieved from the case base, its solution part must be mod-
ified to fit the current problem definition. The reasoner per-
forms adaptations to an old solution according to certain
rules defined by domain experts. Therepair rule defini-
tion is block of CASL can be used to define those rules. In
the bearing design problem, the following strategies are
defined:

1. Perform simple parameter substitution: substitute pa-
rameters of old problem definition into new user input.

2. Perform old solution adjustment to make it fit substi-
tuted user input~the current problem! according to
domain formulae.

3. Check global constraints defined in the case base to
guarantee that no conflicts result.

In the sample given in Algorithm 1,change_value_1 is
an adaptation rule. It tests a certain condition~represented
by a formula! first; when the condition is satisfied, the ac-
tion is fired. The action here is the recalculation of bearing
life ~represented by a formula! according to the current user
input.

Algorithm 1. Representation of adaptation rules
~1! repair rule definition is
~2! repair rule 6change_value_16 is
~3! when
~4! ~0.37*radial_load1 2*axial_load! $ radial_load
~5! then
~6! evaluate6bearing_life6 to

~7!
106*support_value_dynamic_C3

~0.37*radial_load1 2*axial_load!360*average_speed
~8! repair;
~9! end;
~10! end;

The definition of a stored case.An experience~case!
includes a problem statement part and a solution part. The
case instance isblock of CASL provides a kind of structure
and function. This block defines the same structure of prob-
lem statement as thecase definition isblock defines.

In a bearing design for an application, some relationships
between the problem statement and the solution are unique
only for this design~case!. For this reason, some features of
a case are defined as “local,” meaning the attributes for
these features are valid only for this design. For example,
the featuresaverage_speed andexpected_bearing_life are
defined as local because every bearing designer specifies
his or her own shaft speed and requires his or her own
expected bearing life. In addition, every bearing has its own
permissible speed limitation defined by the manufacturer
and its own life expectancy according to the working
environment.

If it is necessary to define some rules to adapt local fea-
tures, then these rules must be specified as local. That is,
the local rules are defined in acase instance isblock. In the
given sample below, the rulerule_1 is local because this
rule checks the constraints for local features~i.e.,expected_
bearing_life!. A sample representation of a case is Algo-
rithm 2.

Algorithm 2. Case instance representation
~1! case instance6needle_roller_hk15126 is
~2! 6shaft_housing_diameter5 d_15_21;6
~3! 6load_direction5 combined;6
~4! 6radial_limited_space_requirement5 Yes;6
~5! 6axial_limited_space_requirement5 No;6
~6! 6radial_load5 550;6
~7! 6axial_load5 100;6
~8! local field definition is
~9! field 6average_speed6 type is number;
~10! field 6expected_bearing_life6 type is number;
~11! solution is
~12! 6bearing_type5 needle_roller_hk1512;6
~13! 6calculation_speed5 10000;6
~14! 6drill_hole_diameter5 15;6
~15! 6outer_diameter5 21;6
~16! 6width 5 12;6
~17! 6support_value_dynamic_C5 7650;6
~18! 6permissible_speed5 11000;6
~19! 6bearing_life5 11350;6
~20! local repair rule definition is
~21! repair rule 6rule_16 is
~22! when
~23! expected_bearing_life $ bearing_life
~24! then
~25! print 6‘Abandon your selection!’;6
~26! print 6‘Bearing life can not meet your requirement!’;6
~27! reselect;
~28! repair;
~29! end;
~30! end;

4. PROTOTYPE BEARING DESIGN SYSTEM

4.1. System overview

The CBR engine allows the designer to navigate and
manipulate the case base through a graphical user interface.

Case-based reasoning for bearing design 241

https://doi.org/10.1017/S0890060403173064 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060403173064

In this work, our CBR engine is implemented with C and
the Microsoft Visual C11 programming environment. Our
system uses CASL~Center for Intelligent Systems, 1999!
to represent our design knowledge and the case base and
MOP theory~Riesbeck & Schank, 1989! to develop a struc-
ture of the case base. The kernel of the CBR engine is based
on the CASL environment from the University of Wales
~Center for Intelligent Systems, 1999!.

Once the user enters the problem specifications and pro-
vides a case base, the reasoner analyzes the problem and
returns an answer to the user automatically. Our reasoning
engine consists of four process modules, each performing
certain functions to implement the complete CBR cycle.
The first module,Retrieved Case, takes the current problem
specifications as input and outputs a retrieved case. The
second module,Solved Case, decides whether a retrieved
case needs to be adapted. This module either returns the
user a solution without further modification or passes a
solution to the next module, which will perform adaptation
on the case. The third module,Repaired Case, performs the
adaptation and returns an adapted case to the next module.
The fourth module,Learned Case, decides whether this
new resolved case needs to be stored in the case base. The
following sections will detail how these modules are
implemented.

4.2. Reasoning engine

The flowchart in Figure 4 shows the main algorithm behind
the implementation of a reasoning engine. The two hollow
arrows in the figure illustrate that the reasoning engine must
interact with the case base.

The flowchart shows that the requirements of a module
can be broken into pieces or procedures called by the main
function. It also shows that a CBR engine forms a reason-
ing loop. This reasoning loop begins with the procedure
User Specificationand ends with the procedureAdd Case.

4.3. Building the case index

The performance of a CBR system is determined by the
CBR reasoning engine whose efficiency in turn is deter-
mined by the design of theindex schemeand case-base
memory organization. The index scheme design includes
how to specify index features and how to build them in
computer memory. The index features are set by domain
experts and are represented by the blockindex definition
is of CASL. The procedureBuild Indicestakes the repre-
sentations of index features as input and uses these to build
the index scheme. A linked list data structure holds the
index feature input. The procedureBuild Indicesplaces all

Fig. 4. The primary functions of the CBR engine.

242 X. Qin and W.C. Regli

https://doi.org/10.1017/S0890060403173064 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060403173064

the index features into the list and, at the same time, builds
the case-base memory organization~shown in Fig. 5!.

In this CBR system, two features have been specified as
index features:shaft diameterand load direction. Each in-
dex feature is a node in the list and the feature’s attributes
are associated with the nodes. Figure 5 shows this data
structure for the index features and case-base memory. The
procedureBuild Index first links the index featuresshaft
diameterand load direction. It then checks every attribute
of the index features. For each attribute,Build Indexsearches
for all the cases with the same attribute value in the case-
base file and links all of these together.

4.4. Case matching, ranking, and retrieving

The purpose of building an index scheme is to speed up
searching. Here, searchingmeans to find a set of cases
from the case base that are similar to the current input case.
However, the goal here is to find the case which has the
maximum similarity to the input case. Thus, a mechanism
to rank the similarity of cases is needed. In section presents
how to achieve these two goals: finding a similar case set
and finding the most similar case in this set.

A mathematical model is first presented to show how to
find a set of similar cases in the case base. What are similar
cases?Given an input case with certain index features and
their attributes, similar cases are those cases whose index
features and attributes are exactly the same as the corre-
sponding input case.Figure 6 shows these ideas.

The upper part of Figure 6 presents the mathematical
model for finding similar cases. The left and right circles
represent attributesF~A! andF~B! of index featuresA and
Bof an input case, respectively; andC~n! represents a casen.
If the left circle includesC~b!,C~d!,C~h!, andC~a!, which
are the cases with attributeF~A! of featureA, and the right
circle includesC~i !,C~ j !,C~a!, andC~h!, which are the

cases with attributeF~B! of featureB, then their intersec-
tion contains casesC~a! andC~h!, which have both attributes
F~A! andF~B!:

$C~a!,C~h!% , F~A! ù F~B!.

The lower part of Figure 6 gives a corresponding exam-
ple that illustrates how this process occurs in the case base.
After all similar cases are found, a mechanism to find the
most similar case in this set is needed. We used the NNM
algorithm~Kolodner, 1993!. Figure 7 shows how this algo-
rithm works in our CBR system for bearing design. To sim-
plify discussion, we assume that all the component loads
~axial load and radial load! applied on the bearing are in the
same direction.

The basic idea of the NNM algorithm is to compare the
attribute value of each feature of each case in the set of
similar cases to every corresponding feature’s attribute of
the input case, calculate the comparison values, and then
sum them for each case to get a total comparison value.

In the upper part of Figure 7 the circles represent cases,
the dots represent attribute values of features, indexi rep-
resents the input case, indexj represents cases in the set of
similar cases, and indexk represents the features in a case.
CaseA and caseB in the figure are the cases from the set of
similar cases. The functiond~k!~ ij ! represents the at-
tribute’s comparison value of one of the features~featurek!
between the input case and caseA, which is equal to the
following formula ~Kolodner, 1993!:

W~ij ! 3 sim~F~k!~R! i, F~k!~I ! j !,

wherek is a feature of a case;W~ij ! is the weight of a feature,
defined in the case-base file; and sim~F~k!~R! i, F~k!~I ! j !
is the degree of similarity between one of the features in the
input case and the corresponding feature in a case from the
similar case set.

Fig. 5. The index building and case-based memory organization.

Case-based reasoning for bearing design 243

https://doi.org/10.1017/S0890060403173064 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060403173064

The total attributes’ comparison value for a case is
D~k!~IA!, which is equal to the numeric function

(
k51

n

W~ij ! 3 sim~F~k!~R! i, F~k!~I ! j !.

The NNM algorithm ranks the case that has the highest
value ofD~k!~ij ! as the most similar to the query case.

The key computation in the NNM algorithm determines
the distance between the feature attributes for the input case
and the cases in the case-base. Arelevance matrix, shown
in the lower part of Figure 7, is used to explain how to
calculate every feature’s attribute comparison value. In the

matrix, F~k!~R! i represents “the featurek of a case from
the similar case set that has possible attributei , where the
range ofi can be from 1 to some finite number.” Except in
reference to the input case,F~k!~I ! j has a similar meaning.
Thus, the first row of the matrix represents all the possible
attributes of featurek of a similar case, and the first column
represents all the possible attributes of featurek of the input
case. The intersection of row and column is the compari-
son value of the featurek. ExpressionW~ij ! is the weight
of a feature in a similar case. The degree of similarity,
sim~F~k!~R! i, F~k!~I ! j !, has three possible values. First, if
two features match exactly, the degree of similarity equals 1.
Second, if twoabstract symbolsare similar, its value is34

_.

Fig. 6. The mathematical model and an example of searching similar cases.

Fig. 7. The nearest neighbor matching algorithm.

244 X. Qin and W.C. Regli

https://doi.org/10.1017/S0890060403173064 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060403173064

Third, if two numbersare similar~i.e., both fall within the
range defined in themodificationblock!, then a value is
calculated that reflects how close they are in proportion to
the range. Then, the sim~F~k!~R! i, F~k!~I ! j ! can be calcu-
lated by

12
Dd

Dr
,

whereDd is the difference of the feature values between the
input case and the retrieved case andDr is the difference
range value. For example, if the attribute value of feature
radial load for the input case is 100 N and the correspond-
ing value for a similar case is 120 N, thenDd 5 120 2
1005 20. If the definition for the range of similarity is from
90 to 140, thenDr 5 1402 90 5 50, where the similarity
ratio is computed as 12 ~20050! 5 0.6.

Algorithm 3 defines the functions that implement the
finding of similar cases and the most similar case, as
mentioned above. The procedureIndex_List_Searching~!
performs searching on the linked list of index features. Pro-
cedureCase_List_Searching~! searches out cases whose
attribute value for certain features is the same as the input
case. ProcedureComputing_Weight_Cases~! performs cal-
culation of the weight of a retrieved case. ProcedureEval-
uating_Similar_Cases~! performs ranking for a case with a
weight. ProcedureRetrieving_Heaviest_Case~! retrieves the
case with the highest rank.

Algorithm 3. Case matching, ranking and retrieving
Input. User’s input problem specification.
Output. The retrieved case with highest weight.
Matching_Ranking_Retrieving~UserInput!
~1! begin
~2! while true
~3! do
~4! 6Index_List_Searching~!;6
~5! 6Case_List_Searching~!;6
~6! 6Computing_Weight_Cases~!;6
~7! if Case_Matching_Exact5 True;
~8! return Retrieving_Case~!;
~9! else
~10! 6Evaluating_Similar_Cases~!;6
~11! 6Retrieving_Heaviest_Case~!;6
~12! end

4.5. Adaptation of cases

Very rarely, a retrieved case is exactly the same as the
newly defined problem. Most of the time, however, the
retrieved case is only a similar situation and so problem
definitions and corresponding solutions need to be modi-
fied so that the modified case fully fits the current situa-
tion and its solution fully satisfies the current problem
requirements. This procedure as a whole is called the case
adaptation~or repair! process. A series of rules are defined

for adapting cases. These rules are provided by domain
experts or domain axioms and are applied to each case
whenever it is necessary.

Adaptation rules are divided intoglobal rulesand local
rules The reasoner usesglobal rulesto examine the prob-
lem fields and solution fields of the retrieved case. These
rules are also used to adapt the parameters of the retrieved
case and check constraints satisfaction conditions that are
specified by the knowledge base. If there are any constraint
conflicts, the repair rules provide a new problem-solving
proposal. Otherwise, they adapt the solution of the re-
trieved case to the new problem. The sample adaptation
rules for global repair are described in Algorithm 1.

After the reasoner finishes checking the global rules, it
immediately checks the local rules defined in the retrieved
case. It applies these local rules to the retrieved case to
perform local adaptation~i.e., unique to this case!. Some
sample local adaptation rules are given in Algorithm 2.

Figure 8 shows that a linked list data structure is used to
store these adaptation rules. In the figure, every node has
two fields: one stores the condition of a rule, and the other
stores the action. The procedure given in Algorithm 4 scans
the rule list repeatedly as it performs adaptation on a re-
trieved case; if the condition part is true, it executes the
corresponding actions on the case.

Algorithm 4. Algorithm for case adaptation
Input. Retrieved case.
Output. The modified case.
Case_Adaptation~RetrievedCase!
~1! begin
~2! while true
~3! do
~4! if Global_Rules5 True;
~5! 6Finding_Global_Rule_Headpointer~!;6
~6! 6Searching_Global_Rules~!;6
~7! 6Apply_Modifying_Retrieved_Case~!;6
~8! 6Parametric_Adaptation~!;6
~9! 6Constraints_Adaptation~!;6
~10! 6Evaluating_Solutions~!;6
~11! else
~12! 6Finding_Local_Rule_Headpointer~!;6
~13! 6Searching_Local_Rules~!;6
~14! 6Apply_Modifying_Retrieved_Case~!;6
~15! 6Parametric_Adaptation~!;6
~16! 6Constraints_Adaptation~!;6
~17! 6Evaluating_Solutions~!;6
~18! return 6Modified_Satisfied_Case6;
~19! end

5. AN EXAMPLE RUN

This section describes the implementation of the CBR sys-
tem and gives some examples. A sequence of screen shots
is used to show how the system operates.

Case-based reasoning for bearing design 245

https://doi.org/10.1017/S0890060403173064 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060403173064

5.1. Building the case repository

Initially, the system allows designer to choose the search
method. This function provides the designer with the flex-
ibility to search the case base according to his or her own
needs. If the designer chooses “Search for matching case,”
the system will ask the designer to input problem defini-
tions. If the designer selects “Search specifying indexes
separately,” the system will ask the designer to specify the
indexes and their desired values. Figure 9 illustrates how to
select searching methods. In this window example, we se-
lect “Search for matching case.”

5.2. Problem specifications

5.2.1. Global problem specifications

Knowledge is acquired through user interaction, as shown
in Figure 10. The designer is prompted to input the problem

specifications, like shaft~bearing bore! diameters, load di-
rection, allowed bearing axial0radial space, and the amount
of loads. Here, different inputs will bring up various other
windows and message boxes to indicate different reasoning
results.

Shaft (bearing bore) and shaft diameter: The diameter is
d_20_52, which means that the shaft diameter~bear-
ing bore diameter! is 20 mm and housing diameter is
52 mm.

Load direction: Combined, which means that the loads
applied on the bearing are combined~can be decom-
posed into an axial load and a radial load!.

Required radial space: No, which means that bearing is
designed without a radial space requirement, that is, it
is rigidly mounted on the shaft.

Required axial space: No; see above explanation.

Fig. 8. The data structure of global and local rules.

Fig. 9. A system overview: the window for selecting searching methods.

246 X. Qin and W.C. Regli

https://doi.org/10.1017/S0890060403173064 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060403173064

Radial load: 1000, which means the external radial load
applied on the bearing is 1000 N.

Axial load: 500, which means the external axial load ap-
plied on the bearing is 500 N.

After the designer inputs all the above parameters, the
system performs the following actions:

1. search the index list using the index features about the
shaft ~bearing bore! diameter and housing diameter
~in this example, their values are 20mm and 52mm!;

2. search the index list with the index feature load direc-
tion ~in this example, its value is “combined”!;

3. link all the cases satisfy above indices requirements;

4. compare other features to each case selected accord-
ing to index features;

5. calculate the weight of each case; and

6. list the ranking of each case.

5.3. Local problem specification

After the designer finishes the global problem specifica-
tions, another message box will be brought up. It asks
whether the designer wants to use the “Weight Algorithm.”
If the designer’s answer is “Yes,” the system will perform
actions based on the NNM algorithm~Kolodner, 1993!. If
the designer’s answer is “No,” the system will simple as-
sign all the features’ weight as 0 and find similar cases
based on the numbers of matched features. Figure 11 shows
a message box that asks the user whether to use the weight
algorithm. In this window example, we select “Yes.”

In our prototype, there are two local fields that define the
specific features for each case. In this window, we input the

Fig. 10. A system overview: the window for problem specifications.

Case-based reasoning for bearing design 247

https://doi.org/10.1017/S0890060403173064 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060403173064

rotation speed of the shaft and the bearing life that the de-
signer expects. See Figure 12 to input local problem
specifications.

5.4. Case adaptation

Although the details of the adaptation procedures are hid-
den from the designer, the system presents a series of mes-
sage boxes that indicate which case it is using to performing
adaptation. In addition, the system keeps track of which
cases that have failed during adaptation. This loop contin-
ues until the system finds a case that satisfies the problem
specification or announces it failed to find any case that
could fit the current problem~shown in Fig. 13!.

After the system has found a set of retrieved cases and
performed successful adaptation on one of them, it auto-
matically returns the adapted case. The system can also
return a successful or failed case to the designer, allowing
the designer to understand why the case is successful or
why it failed. Hence, the designer can use these cases as a
starting point for creating new designs. Figure 14 shows
how the adaptation of successful cases is tracked. Figure 15
shows a case that failed adaptation.

6. CONCLUSIONS, CONTRIBUTIONS,
AND FUTURE WORK

This paper presented a system that uses CBR as both a
cognitive model and problem-solving methodology to deal

with the bearing design problem found in mechanical de-
sign. We believe that this work has produced several in-
sights into how AI and CBR techniques can be better applied
to more realistic engineering problems:

1. Knowledge capture:Because the knowledge space for
the bearing design domain is extremely incomplete
and dynamic, it is difficult to formalize general,a
priori , rules to help the designer solve problems or
automate the design process. In contrast, by using CBR
techniques, a set of bearing design experiences can be
stored in a case library to guide the designer. Through
building a knowledge acquisition system, an autono-
mous CBR intelligent system can evolve and grow
more easily than a traditional, knowledge-based
system.

2. Adaptability: CBR techniques can integrate knowl-
edge acquisition, reasoning mechanisms, knowledge
storage, and learning in one platform. Therefore, a
system using CBR techniques can possibly grow
and be expanded to encompass a wider variety of as-
semblies without changing the fundamental system
structure.

3. Augmenting intelligence:Our system, rather than be-
ing completely autonomous, interacts with the user to
obtain knowledge. It provides the flexibility to draw
design conclusions either from the reasoning system
itself automatically or by allowing the designer to di-
rectly choose a past case as his problem solution.

4. Human-guided search:Our system also provides the
flexibility to allow the designer to loosen index con-
straints to continue reasoning when an exact search
fails. In this manner, the designer has the most oppor-
tunities to obtain a design solution that is useful for
the current problem. This solution also can be used as
a reference for her current design.

Fig. 11. A system overview: the window for the weight algorithm.

Fig. 12. A system overview: the window for the input of local problem
specifications.

Fig. 13. A system overview: the message box shows the system is per-
forming an adaptation on a retrieved case.

248 X. Qin and W.C. Regli

https://doi.org/10.1017/S0890060403173064 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060403173064

The contributions of this research touch on both AI0CBR
and engineering design. We view the system for CBR de-
sign as a template for other CBR environments to create
design aides focused on different design problems. We see
the following areas as opportunities for future research:

1. Knowledge engineering:Because of the limitations of
the CASL used to build our system, there are still
many limitations in expressing design intent. The case
collection process is quite complicated and inefficient
and case-base maintenance is very unstructured, which
makes debugging the case base very difficult. Better
methodologies for case collection and good protocols
to maintain the case base are needed.

2. Knowledge acquisition:We built attribute~features!
pairs at design time to allow the user to interactively
input this knowledge. For larger problems, autono-

mous knowledge acquisition system will become
important.

3. Indexing:We built a fixed feature-based index scheme
at design time to speed up searching. Scaling the sys-
tem would require a more dynamic index scheme and
more flexibility in feature specification.

4. Intelligent CAD:Because almost every designer uses
CAD or other graphical software to conduct the de-
sign, a future goal is to better integrate CBR tools
with CAD tools.

5. Cross-domain reasoning:The system presented in this
article operates in a very specific domain; expansion
of this system to other similar design domains is an
important area to explore as well. Because we will
correspondingly need to develop cross-domain knowl-
edge representations and adaptations, a cross-domain

Fig. 14. A system overview: the window shows the successful case.

Case-based reasoning for bearing design 249

https://doi.org/10.1017/S0890060403173064 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060403173064

reasoning system becomes very complicated but also
very useful.

ACKNOWLEDGMENTS

This work was supported in part by National Science Foundation
Knowledge and Distributed Intelligence in the Information Age

Initiative Grant~CISE0IIS-9873005!; a CAREER Award~CISE0
IIS-9733545!, an engineering Grant~ENG0DMI-9713718!, and
an Office of Naval Research Grant~N00014-01-1-0618!.

Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author~s! and do not
necessarily reflect the views of the National Science Foundation,
Office of Naval Research, or the other supporting government and
corporate organizations.

Fig. 15. A system overview: the window shows the failed case.

250 X. Qin and W.C. Regli

https://doi.org/10.1017/S0890060403173064 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060403173064

REFERENCES

Aamodt, A., & Plaza, E.~1994!. Case-based reasoning: Foundational is-
sues, methodological variations, and system approaches.Artificial In-
telligence Communications 7(1), 39–59.

Bardasz, T., & Zeid, I.~1991!. Applying analogical problem solving to
mechanical design.Computer Aided Design 23(3), 202–212.

Bardasz, T., & Zeid, I.~1992!. Cognitive models of memory for mechan-
ical design problems.Computer Aided Design 24(6), 327–342.

Bhatta, S., & Goel, A.~1994!. Discovery of physical principles from de-
sign experiences.Artificial Intelligence for Engineering Design, Analy-
sis and Manufacturing 8(2)@Special issue on Machine Learning in
Design# Available on-line at ftp:00ftp.cc.gatech.edu0pub0ai0students0
bhatta0dp-aiedam94.ps

Bose, A., Gini, M., & Riley, D.~1997!. A case-based approach to planar
linkage design.Artificial Intelligence in Engineering 11(2), 107–119.

Brown, D.C., & Birmingham, W.P.~1997!. Understanding the nature of
design.IEEE Expert and Intelligent Systems 12(2), 14–16.

Center for Intelligent Systems, University of Wales~1999!. Available on-
line at http:00www.aber.ac.uk0dcswww0Research0arg0cbrprojects0
getting_caspian.shtml

Chandrasekaran, B., Goel, A.K., & Iwasaki, Y.~1993!. Functional repre-
sentation as design rationale.IEEE Computer 26(1), 48–56.

Domeshek, E., & Kolodner, J.~1997!. The designer’s muse. InIssues and
Applications of Case-Based Reasoning in Design~Maher, M.L., & Pu,
P., Eds.!, pp. 11–38. Hillsdale, NJ: Erlbaum.

Fowler, J.E.~1996!. Variant design for mechanical artifacts: A state-of-the-
art survey.Engineering with Computers 12, 1–15.

Goel, A. ~1997!. Design, analogy, and creativity.IEEE Expert and Intel-
ligent Systems 12(3), 62–70.

Goel, A., Bhatta, S., & Stroulia, E.~1996!. KRITIK: An early case-based
design system. InIssues and Applications of Case-Based Reasoning to
design~Maher, M.L., & Pu, P., Eds.!. Hillsdale, NJ: Erlbaum. Avail-
able on-line at ftp:00ftp.cc.gatech.edu0pub0ai0goel0murdock0kritik.ps

Goel, A., Gomez de Silva Garza, A., Grue, N., Murdock, J.W., Recker, M.,
& Govindaraj, T.~1996!. Explanatory interface in interactive design
environments. InFourth Int. Conf. Artificial Intelligence in Design,
AID ’96 ~Gero, J.S., & Sudweeks, F., Eds.!. Boston: Kluwer Academic.
Available on-line at ftp:00ftp.cc.gatech.edu0pub0ai0goel0murdock0
aid96.ps

Goel, A., & Stroulia, E.~1996!. Functional device models and model-
based diagnosis in adaptive design.Artificial Intelligence for Engineer-
ing Design, Analysis and Manufacturing 10, 217.

Goldman, R.P., & Boddy, M.S.~1997!. A constraint-based scheduler for
batch manufacturing.IEEE Expert and Intelligence Systems 12(1),
49–56.

Gomez de Silva Garza, A., & Maher, M.~1996!. Design by interactive
exploration using memory-based techniques.Knowledge-Based Sys-
tems 9(3).

Hammond, K.J.~1989!. Case-based planning: Viewing planning as a mem-
ory task. Boston: Harcourt Brace Jovanovich.

Hennessy, D., & Hinkle, D.~1992!. Applying case-based reasoning to
autoclave loading.IEEE Expert and Intelligence Systems 7, 21–26.

HEXAGON. ~1999!. Bearing Calculation. Available on-line at http:00
www.hexagon.de

Hinrichs, T., & Kolodner, J.~1991!. The roles of adaptation in case-based
design.AAAI-91, Proc. Ninth National Conf. Artificial Intelligence.

Hua, K., & Faltings, B.~1993!. Exploring case-based building design-
cadre.Artificial Intelligence for Engineering Design, Analysis and Man-
ufacturing 7(2), 35–43.

Kim, G.J. ~1997!. Case-based design for assembly.Computer Aided De-
sign 29(7), 497–506.

Kolodner, J.L.~1993!. Case-Based Reasoning. San Mateo, CA: Morgan
Kaufmann.

Lambright, J.P., & Ume, C.~1996!. A flat composite panel design advisory
systems using knowledge based and case based reasoning.Transac-
tions of the ASME, Journal of Mechanical Design 118, 461–469.

Leake, D.B.~Ed.!. ~1996!. Case-Based Reasoning: Experiences, Lessons,
and Future Directions. New York: AAAI Press0 MIT Press.

Lee, J.~1997!. Design rationale systems: Understanding the issues.IEEE
Expert and Intelligence Systems 12(3), 78–85.

Maher, M., & Gomez de Silva Garza, A.~1996!. Developing case-based
reasoning for structural design.IEEE Expert and Intelligent Systems
11(3).

Maher, M., & Zhang, D.~1993!. Cadsyn: A case-based design process
model.Artificial Intelligence for Engineering, Design, and Manufac-
turing 7(2), 97–110.

Maher, M.L., Balachandran, M.B., & Zhang, D.M.~1995!. Case-Based
Reasoning in Design. Mahwah, NJ: Erlbaum.

Maher, M.L., & Gomez de Silva Garza, A.~1997!. Case-based reasoning
in design.IEEE Expert and Intelligent Systems 12(2), 34–41.

Miyashita, K., & Sycara, K.~1993!. Case-based incremental schedule re-
vision. In Knowledge-Based Scheduling~Fox, M., & Zweben, M.,
Eds.!. San Mateo, CA: Morgan Kaufmann.

Navin-Chandra, D.~1992a!. Innovative design systems, where are we and
where do we go from here? Part I: Design by association.Knowledge
Engineering Review 7(3), 183–213.

Navin-Chandra, D.~1992b!. Innovative design systems, where are we and
where do we go from here? Part II: Design by exploration.Knowledge
Engineering Review 7(4).

Navin-Chandra, D., Sycara, K.P., & Narasimhan, S.~1991!. Behavioral
synthesis in CADET, a case-based design tool.Proc. Seventh Conf.
Artificial Intelligence Applications, pp. 217–221, Miami, FL, April
1991. New York: IEEE.

Pu, P.~1993!. Introduction: Issues in case-based design systems.Artificial
Intelligence for Engineering Design, Analysis and Manufacturing 7(2),
79–85.

Pu, P., & Reschberger, M.~1991a!. Assembly sequence planning using
case-based reasoning techniques.First Int. Conf. Artificial Intelli-
gence in Design, Edinburgh, United Kingdom.

Pu, P., & Reschberger, M.~1991b!. Case-based assembly planning.1991
DARPA Workshop on Case-Based Reasoning, Washington, DC.

Riesbeck, C.K., & Schank, R.C.~1989!. Inside Case-Based Reasoning.
Hillsdale, NJ: Erlbaum.

Sauer, J., & Bruns, R.~1997!. Knowledge-based scheduling systems in
industry and medicine.IEEE Expert and Intelligent Systems 12(1),
24–31.

Shi, Z., Zhou, H., & Wang, J.~1997!. Applying case-based reasoning to
engine oil design.Artificial Intelligence in Engineering 11(2), 167–172.

Silverman, B.G., & Mezher, T.M.~1992!. Expert critics in engineering
design: Lessons learned and research needs.AI Magazine 13(1), 45–62.

Slade, S.~1991!. Case-based reasoning: A research paradigm.AI Maga-
zine, 42–55.

Smithers, T.~1989!. AI-based design versus geometry-based design or
why design cannot be supported by geometry alone.Computer-Aided
Design 21(8), 141–149.

Sycara, K., & Navin-Chandra, D.~1992!. Retrieval strategies in a case-
based design system. InArtificial Intelligence in Engineering Design
~Tong, C., & Sriram, D., Eds.!, Vol. II. New York: Academic.

Sycara, K., NavinChandra, D., Guttal, R., Koning, J., & Narasimhan, S.
~1992!. CADET: A case-based synthesis tool for engineering design.
International Journal of Expert Systems 4(2), 157–188.

Tsatsoulis, C., & Kashyap, R.~1993!. Case-based reasoning and learning
in manufacturing with the TOLTEC planner.IEEE Transactions on
Systems, Man and Cybernetics 23(4), 1010–1023.

Umeda, Y., & Tomiyama, T.~1997!. Functional reasoning in design.IEEE
Expert and Intelligent Systems 12(2), 42–48.

Voss, A. ~1997!. Case design specialists in fabel. InIssues and Applica-
tions of Case-Based Reasoning in Design. ~Maher, M.L., & Pu, P.,
Eds.!, pp. 11–38. Hillsdale, NJ: Erlbaum.

Wielinga, B., & Schreiber, G.~1997!. Configuration-design problem solv-
ing. IEEE Expert and Intelligent Systems 12(2), 49–56.

Wilcock, D.F., & Booser, E.~1957!. Bearing Design and Applications.
New York: McGraw–Hill.

Xiaoli Qin received her MS in computer science from Drexel
University in Philadelphia, PA. Her main research interests
are in knowledge-based systems, knowledge acquisition,
knowledge representation, machine learning, and intelli-
gent database applications, particularly as applied to engi-
neering design problems.

William C. Regli is an Associate Professor in the De-
partment of Computer Science at Drexel University. He

Case-based reasoning for bearing design 251

https://doi.org/10.1017/S0890060403173064 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060403173064

holds a courtesy appointment in the Department of Me-
chanical Engineering and Mechanics and is Director of
Drexel’s Geometric and Intelligent Computing Laboratory.
Dr. Regli received his PhD in computer science in 1995
from the University of Maryland at College Park and his
BS ~cum laude! in mathematics and computer science in
1989 from Saint Joseph’s University in Philadelphia. He
is the recipient of a 1998 National Science Foundation

CAREER Award, the University of Maryland Institute for
Systems Research Outstanding Graduate Student Award
~1994–1995!, a NIST Special Service Award~1995!, and a
General Electric Corporation Teaching Incentive Grant
~1994–1995!, among other awards. He is a member of
ACM, IEEE Computer Society, AAAI, and Sigma Xi. Dr.
Regli has authored or coauthored more than 100 technical
publications.

252 X. Qin and W.C. Regli

https://doi.org/10.1017/S0890060403173064 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060403173064

