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Fluid deformable surfaces are ubiquitous in cell and tissue biology, including
lipid bilayers, the actomyosin cortex or epithelial cell sheets. These interfaces
exhibit a complex interplay between elasticity, low Reynolds number interfacial
hydrodynamics, chemistry and geometry, and govern important biological processes
such as cellular traffic, division, migration or tissue morphogenesis. To address
the modelling challenges posed by this class of problems, in which interfacial
phenomena tightly interact with the shape and dynamics of the surface, we develop
a general continuum mechanics and computational framework for fluid deformable
surfaces. The dual solid—fluid nature of fluid deformable surfaces challenges classical
Lagrangian or Eulerian descriptions of deforming bodies. Here, we extend the notion
of arbitrarily Lagrangian—-Eulerian (ALE) formulations, well-established for bulk
media, to deforming surfaces. To systematically develop models for fluid deformable
surfaces, which consistently treat all couplings between fields and geometry, we
follow a nonlinear Onsager formalism according to which the dynamics minimizes a
Rayleighian functional where dissipation, power input and energy release rate compete.
Finally, we propose new computational methods, which build on Onsager’s formalism
and our ALE formulation, to deal with the resulting stiff system of higher-order partial
differential equations. We apply our theoretical and computational methodology to
classical models for lipid bilayers and the cell cortex. The methods developed here
allow us to formulate/simulate these models in their full three-dimensional generality,
accounting for finite curvatures and finite shape changes.

Key words: capsule/cell dynamics, computational methods, membranes

1. Introduction

Fluid deformable surfaces are a common motif in cell and tissue biology. For
instance, lipid bilayers are fluid thin sheets that define the boundary of cells and
compartmentalize them. They are the base material for the plasma membrane, the
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endoplasmic reticulum, mitochondria or the Golgi apparatus. From a mechanical
viewpoint, lipid bilayers are remarkably soft materials exhibiting a solid—fluid duality:
while they store elastic energy when stretched or bent, as solid shells (Lipowsky 1991),
they cannot store elastic energy under in-plane shear, a situation under which they
flow as viscous two-dimensional fluids (Dimova et al. 2006). This solid—fluid duality
is tightly intertwined with membrane geometry: shape changes induce lipid flows that
bring material from one part of the membrane to another (Evans & Yeung 1994),
whereas flows in the presence of curvature generate out-of-plane forces, which further
curve the membrane (Rahimi, DeSimone & Arroyo 2013). The solid—fluid duality
of membranes is essential for cell function; it is required during cell motility and
migration (Arroyo et al. 2012; Lieber et al. 2015), membrane trafficking (Sprong, van
der Sluijs & van Meer 2001; Rustom et al. 2004) or to enable the mechano-adaptation
of cells to stress (Staykova et al. 2013; Kosmalska et al. 2015). Furthermore, the
in-plane fluidity of the membrane allows membrane inclusions, such as proteins,
to diffuse (Saffman & Delbriick 1975; Sens, Johannes & Bassereau 2008). On the
other hand, lipid bilayers are chemically responsive. Chemo-mechanical couplings can
trigger tubulation (Roux et al. 2002), phase separation (Bacia, Schwille & Kurzchalia
2005), budding and fission (Staneva, Angelova & Koumanov 2004; Zhou & Yan
2005) or pearling (Khalifat et al. 2014).

Another important instance of biological fluid surface is the actomyosin cortex, a
thin network of cross-linked actin filaments lying immediately beneath the plasma
membrane of animal cells (Bray & White 1988). Within this network, myosin
motors exert active forces by consuming chemical energy in the form of adenosine
triphosphate (ATP), that generate active tension (Salbreux, Charras & Paluch 2012).
Furthermore, the cell cortex undergoes dynamic remodelling, or turnover, in less than
one minute, as a result of the polymerization and depolymerization of actin and the
binding and unbinding of cross-linkers (Howard 2001). The cell cortex behaves as
an elastic network at short time scales and as a quasi-two-dimensional viscous fluid
at longer time scales due to turnover. The interplay between remodelling, elasticity
and active forces in this thin cortical layer plays a critical role in different cellular
processes such as cytokinesis (Levayer & Lecuit 2012), or migration (Bergert et al.
2015; Ruprecht er al. 2015; Callan-Jones et al. 2016), where the coupling between
shape and actin flows becomes apparent.

In summary, fluid deformable surfaces are ubiquitous interfaces in biology, adopting
three-dimensional dynamical shapes, involving chemo-mechanical couplings and
exhibiting a dual solid—fluid behaviour. The mechanics of these biological interfaces
plays an essential role in processes from the subcellular to the tissue scale (not
discussed here). However, and despite recent efforts (Salbreux & lJiilicher 2017; Sahu,
Sauer & Mandadapu 2017; Sauer et al. 2017), a general theoretical and computational
framework to describe the multiphysics and geometry-dependent mechanics of these
systems has been lacking. Towards filling this gap, here we develop a rather general
three-dimensional nonlinear modelling and simulation framework for fluid deformable
surfaces. Even though such interfacial fluids are embedded in a bulk fluid or confined
to substrates, here we focus only on the mechanics of the surface. The coupling
of interfaces with a bulk fluid (Salac & Miksis 2011; Farutin & Misbah 2012;
Woodhouse & Goldstein 2012; Reuther & Voigt 2016; Laadhari et al. 2017; Shen
et al. 2018) or a substrate (Staykova et al. 2013) has been examined extensively in
other works. We also note that in their present form, the models and computations
developed here do not address topological changes of the fluid surface.

Different mathematical formalisms have been developed to describe fluid deformable
surfaces. In a common approach (Secomb & Skalak 1982; Barthes-Biesel & Sgaier
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1985), a Cartesian description of the velocity field of the interface is considered,
and interfacial physics are recovered invoking time-dependent projection operators
and, for time-independent surfaces, tangency constraints. In this approach, Cartesian
derivatives of the velocity require that this field is defined away from the surface
(Biria, Maleki & Fried 2013). This Cartesian approach hides much of the geometric
structure of the governing equations. Furthermore, it is not obvious how to extend
it to bilayer interfaces such as lipid membranes, in which individual monolayers are
bound to a single geometric surface but can slip relative to each other. An alternative
approach, pioneered by Scriven (1960), distinguishes between the intrinsic (tangential)
velocity of particles as seen from within the surface, and the extrinsic (normal)
surface velocity, which changes its shape and thus its metric tensor (Aris 1962). This
approach, applied to lipid bilayers in various works (Hu, Zhang & Weinan 2007;
Arroyo & DeSimone 2009; Rahimi & Arroyo 2012; Sahu er al. 2017), requires the
language of differential geometry, provides a clear geometric picture of the governing
equations and eloquently shows the tight interplay between shape changes and
interfacial flows (Rahimi er al. 2013). Of course, both modelling approaches convey
the same physics and are equivalent (Jankuhn, Olshanskii & Reusken 2018). Various
formalisms for interfacial media have been proposed, which lead to a correct treatment
of inertial terms (Yavari, Ozakin & Sadik 2016; Koba, Liu & Giga 2017; Jankuhn
et al. 2018), negligible in our context of biological interfaces. Here, we show that,
by decoupling shape changes and tangential flows, Scriven’s approach can naturally
generalize arbitrarily Lagrangian—Eulerian (ALE) methods, well established for bulk
media (Hirt, Amsden & Cook 1974; Donea & Huerta 2003), to fluid deformable
surfaces. The resulting surface ALE formalism alleviates the large distortions of a
pure Lagrangian framework, which may require intensive remeshing (Rodrigues et al.
2015), and allows us to deal with multilayer systems by considering independent
tangential velocities for each monolayer. Our method is related to the ALE approach
for mass transport by Elliott & Styles (2012) and Dziuk & Elliott (2013).

To deal with the multiphysics aspects of fluid surfaces, we base our approach on
a nonlinear Onsager formalism (Doi 2011; Mielke 2012; Peletier 2014; Arroyo et al.
2018), which provides a unified variational framework for the dissipative dynamics
of soft-matter systems. In this formalism, the dynamics minimizes a Rayleighian
functional and results from the interplay between energetic driving forces, dissipative
drag forces and external forces, each of them deriving from potentials that are
the sum of individual contributions for each physical mechanism. Complex models
coupling different physics can be assembled by just adding more terms to the
energy and dissipation potentials, and encoding in them the interactions between
the different physical mechanisms. Thus, this framework provides a transparent
and thermodynamically consistent method to generate complex models. Onsager’s
formalism is applicable to capillarity, elasticity, low Reynolds number hydrodynamics,
reaction—diffusion systems, and provides a natural framework to model biological
activity. In different contexts, similar ideas have been referred to by different names,
such as extremal principles in non-equilibrium thermodynamics studied in physics
(Martyushev & Seleznev 2006; Lebon, Jou & Casas-Vazquez 2008), in materials
modelling (Ziegler 1958; Ziegler & Wehrli 1987; Ortiz & Stainier 1999; Fischer,
Svoboda & Petryk 2014) or in atmospheric transport processes (Paltridge 1975). The
Onsager formalism used here generalizes previous minimum principles identified
in low Reynolds number hydrodynamics coupled to capillary (Skalak 1970) or
viscoelastic interfaces (Secomb & Skalak 1982; Dorries & Foltin 1996). Beyond
the low Reynolds number limit, Koba et al. (2017) have recently developed a new
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variational formalism for interfacial Navier—Stokes systems reconciling a classical
approach for the Euler equations based on an inertial action and minimization of a
dissipation potential for the viscous component.

Paralleling the various mathematical descriptions of fluid interfaces discussed above,
different computational approaches have been proposed in recent years, either based
on the Cartesian approach for fixed or time-evolving surfaces (Dziuk & Elliott
2013; Barrett, Garcke & Niirnberg 2015, 2016; Burman, Hansbo & Larson 2015;
Rodrigues et al. 2015; Hansbo, Larson & Larsson 2016; Fries 2018; Olshanskii
et al. 2018), or based on Scriven’s intrinsic approach but restricted to axisymmetry
(Arroyo, DeSimone & Heltai 2010; Rahimi & Arroyo 2012), to manifolds of fixed
shape (Nitschke, Voigt & Wensch 2012; Gross & Atzberger 2018; Reuther &
Voigt 2018b) or allowing for time-evolving surfaces, albeit with prescribed shape
evolution (Reuther & Voigt 2015, 2018a). Sticking to Scriven’s approach, here we
develop computational methods in three dimensions for models that self-consistently
determine shape dynamics and interfacial hydrodynamics. The numerical treatment of
these problems is challenging because the resulting equations (i) usually involve
higher-order derivatives of the parametrization, (ii) lead to a mixed system of
elliptic and hyperbolic partial differential equations and (iii) are stiff and difficult
to integrate in time (Rahimi er al. 2013). Surface shape enters into the energy and
dissipation expressions through curvature, which involves second-order derivatives of
the parametrization. From a finite element method (FEM) perspective, this requires
the basis functions parametrizing the surface to be in H? (square-integrable functions
whose first- and second-order derivatives are also square integrable). Here, we resort
to subdivision surfaces, which have already been used to study the equilibrium shapes
of lipid bilayers (Feng & Klug 2006; Ma & Klug 2008) and to analyse thin shells
(Cirak & Ortiz 2000, 2001; Cirak & Long 2011; Zhang & Arroyo 2014; Li et al.
2018). Based on a time-incremental version of Onsager’s formalism, we develop
variational time integrators (Ortiz & Stainier 1999; Peco, Rosolen & Arroyo 2013),
which are nonlinearly and unconditionally stable and allow us to adapt the time step
spanning orders of magnitude during the dynamics of fluid deformable surfaces.

Our theoretical framework is general with regards to the geometry and topology
of the fluid interface and the magnitude of shape deformations. Our numerical
treatment, however, is limited to simply connected surfaces because it relies on the
representation of tangential velocities in terms of scalar potentials. Staying within
Scriven’s formalism, this limitation can be overcome using more general numerical
representations of tangential vector fields (Torres-Sdnchez, Santos-Olivan & Arroyo
2019). Alternatively, numerical approaches based on the Cartesian formalism can
also deal with surfaces of general topology at the expense of additional degrees of
freedom and constraints.

The paper is structured as follows. In §2, we develop a theoretical description of
fluid surfaces, including Lagrangian, Eulerian and ALE formulations. We introduce
the rate-of-deformation tensor and the Reynolds transport theorem. We also describe
a useful set of tools to represent the kinematics of fluid deformable surfaces. In
§ 3, we describe several classical models of fluid surfaces to describe the dynamics
of lipid bilayers and the cell cortex. We show how Onsager’s variational formalism
provides a direct and transparent tool to derive complex governing equations. In § 4,
we describe the discretization, both in time and space, of the equations governing the
dynamics of general fluid surfaces. We introduce a variational time integrator based
on Onsager’s formalism, and show how to discretize the different fields defined on
the surface. In § 5, we exercise the models in § 3 through several examples simulated
using the techniques described in §4. Finally, we conclude in §6 with a summary
and discussion of the manuscript, along with suggestions for future work.
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2. Mathematical description of fluid deformable surfaces

In this section, we mathematically describe fluid surfaces as two-dimensional
continua moving and deforming in Euclidean space. One way to represent this kind
of systems is through a Lagrangian parametrization of the surface, ¢(&, ¢), in which
a material particle is identified with a point &* in parametric domain and ¢(§*, ¢)
follows its trajectory in time. However, Lagrangian parametrizations present two
major drawbacks for the description of fluid surfaces. First, due to the fluid nature
of the interface, Lagrangian parametrizations suffer from very large distortions that
are difficult to accommodate with conventional discretization schemes. Second, a
single Lagrangian parametrization cannot track simultaneously all material particles
in a multilayer interface. For example, in a lipid bilayer, two material particles
representing lipid molecules from each monolayer occupy the same position on the
surface. A single Lagrangian parametrization cannot track the time evolution of both
simultaneously because they can slip relative to each other.

In this section, we examine the definition of Lagrangian, Eulerian and ALE
parametrizations of material surfaces and establish their relations. Associated with
the flow generated by these parametrizations, we define the Lagrangian, Eulerian and
ALE time derivatives of fields on the surface. We then introduce the right Cauchy
deformation tensor and the rate-of-deformation tensor, which latter characterizes the
rate at which lengths, angles and areas transform on the time-evolving surface. We
examine time derivatives of integrals on time-evolving surfaces, and derive the form
of Reynolds transport theorem and conservation of mass for the Lagrangian, Eulerian
and ALE descriptions. Finally, we introduce some mathematical tools to represent the
kinematics of fluid surfaces.

Throughout the manuscript, we use the language of the differential geometry of
surfaces, including the metric tensor or first fundamental form g, second fundamental
form or shape operator k, covariant differentiation V and Lie derivation L,, along
with push-forwards and pull-backs by maps. Contravariant components of a tensor
are denoted by superscripts, whereas covariant components are denoted by subscripts;
for instance, the components of the metric tensor are denoted by g,, whereas the
components of a tangent vector are denoted by v®. We use Latin letters to denote
indices running from 1 to 2, representing tensors on the tangent space of the surface,
and Greek letters to denote indices running from 1 to 3, used for tensors in Euclidean
space. We follow Einstein’s notation: contravariant and covariant indices with the same
label are implicitly summed 7,.T%" = ZZ:I T,.T*". We refer to do Carmo (1992,
2016) and Willmore (1996) for background texts about the differential geometry of
surfaces and manifolds.

2.1. Lagrangian, Eulerian and ALE parametrizations

We consider the parametrization of a two-dimensional continuum I deforming in R°.
A Lagrangian parametrization of I, is a map which assigns to each point § € I' C R?
in the parametric domain and to each time ¢ the position of a particle on the surface
x=¢E&, 1 eI, A point & = (&, &) € I' identifies a material particle and the
curve obtained by fixing &, ¢¢(1) = ¢(§, 1), is its trajectory in R? (see figure 1). We
focus on a specific chart, although the arguments presented in this section can be
trivially extended to surfaces covered by an atlas of charts. The time derivative of
the Lagrangian parametrization is the material velocity

_ d
VE. n=16:0)=0¢E. 0. 2.1)
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FIGURE 1. (Colour online) A Lagrangian parametrization ¢ (&, 7) maps a domain I" C R?
onto a time-evolving surface I. Fixing a point E in I', the curve in R generated by ¢
follows the time evolution of a material particle (blue). The velocity of this particle at
time 7 is given by V. An alternative parametrization ¥ (&, f) maps the parametric domain
I" onto I. The composition @ = ¥ ~' o ¢ characterizes the motion of material particles
in I". The curve in I" generated by the mapping 6 for £ fixed (green) indicates how the
parametric position of a material particle evolves with time in I". At time ¢ this curve
has a velocity ¢. The curve constructed from the map ¢ by fixing é =0(£, 1) (red) does
not follow the time evolution of any material particle in general. At time ¢ this curve
has a velocity W. The velocities V and W are related by V = W + ¢, where ¢ is the
push-forward of ¢ by ¥,.

The spatial velocity V on I is V(x,t) = f/oqﬁl‘ !(x), where we use the notation ¢,(§) =
¢(&, 7). In general, V has a tangential and a normal component to I

V=v+y,N, 2.2)

where N is the unit normal to the surface. The normal velocity v, characterizes
shape changes of I; while v represents the flow of material tangent to I;. In the
remainder of the paper we denote by upper-case letters vectors with tangential and
normal components to I; and by lower-case letters vectors that are tangent to I;. We
now introduce an alternative parametrization of the surface ¥ mapping I" C R? into
I;. The curves of constant &, ¥ () = ¥ (&, 1) do not follow trajectories of material
particles in general. The velocity fields associated with this parametrization are

- d
WE.n=¥:0=39E. 0,
W, D=Woy, ' (x) =w+w,N.

(2.3)

We can construct a map relating both parametrizations § = ¢, ' o ¢ : I'xIT—>T,a
diffeomorphism from R? to R* at each 7. The curves of constant &, 0:(r) = 0(§, 1),
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track the parametric positions of material particles evolving in I”, and have a velocity

d
cE.n= &05(1‘) =0,0(§, 1),

c, H=cob'(&).
To physically interpret ¢, we define its push-forward by ¥, as

c=[Dyiloy, ", 2.5

where Dy, stands for the differential of ¥,, a linear mapping from the tangent space
of I' at &, Tgf, to the tangent space of I at x = ¥,(§), T, I;. Thus, ¢ is tangent to
I;. Using the chain rule and previous definitions (see appendix A), we recover the
classical relation between Lagrangian and ALE parametrizations in the bulk (Donea
& Huerta 2003),

(2.4)

V=W+e, (2.6)

and thus ¢ represents the relative velocity of material particles to that of the paramet-
rization given by ¥. Since c¢ is tangent to I}, comparing (2.2) and (2.3), we conclude
that v, = w, and v =w + ¢. This reflects that, since both parametrizations describe
the same shape, their normal velocities, characterizing shape changes, must coincide.
With this in mind, we can now introduce the notion of Eulerian parametrization in the
context of a time-evolving surface. We say that a parametrization x is Eulerian if its
velocity field is always perpendicular to the surface

dxox '=v,N. 2.7

In summary, the parametrization ¢ is a Lagrangian parametrization that tracks the
evolution of material particles as they move with and along I;. On the other hand, yx
is an Eulerian parametrization whose velocity is always perpendicular to I regardless
of the tangential flows of material. These parametrizations are special cases of a
general parametrization ¥, which may present tangential movements not consistent
with the velocity of material particles. This kind of parametrization is referred to as
an arbitrarily Lagrangian—Eulerian (ALE) parametrization.

2.2. Material, Eulerian and ALE time derivatives

We introduce next the concept of the time derivative of fields on I;. Let us focus for
simplicity on a scalar field over I, f(x, ). We first note that the operator 9; acting
on f(x, t), with the usual meaning of taking the time derivative at fixed x, is not well
defined since x cannot be held fixed on a time-evolving surface in general (Cermelli,
Fried & Gurtin 2005). The idea of the time derivative can be more easily rationalized
resorting to a parametrization. Let us first consider the Lagrangian parametrization ¢.
Fixing a point § € I", we can compute how f(x, r) changes along the curve ¢;(¢). We
define the material time derivative of the scalar f as

d
D, f(x, 0= Ef (9 (1), 1) : (2.8)
d §=¢" @)
We note that f (¢ (), #) is a function of ¢ only and therefore the right-hand side of the
previous expression is the usual derivative of a function of one variable. By defining
the pull-back of f onto I' as f =f o ¢,, we can rewrite the previous expression as

d- _
Df(x,1)= $f(§, f) =3fod, ' X)=3(fod) o, '(x), (2.9)
E=¢; ' (x)
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where 9,f has the usual meaning of taking the partial derivative of f at fixed &§. The
last expression in this equation can be termed as the push-forward (composition with
@, ") of the time derivative of the pull-back of f. This is nothing but the Lie derivative
of f along the flow generated by V, usually denoted by Lyf (do Carmo 1992; Arroyo
& DeSimone 2009). We note that the Lie derivative depends on ¢ only through V.
Thus, we can write the material time derivative as

Df=Lyf =93,(fod) o '(x). (2.10)
We can equivalently define the ALE time derivative of f

Of =Lwf =8,(fo¥) o ¥, (x), @.11)
and the Eulerian time derivative

df = Lozt =03,(f o x) o x,~ (). (2.12)

On the left-hand side of this equation the meaning of the symbol 0, is clear: it
measures the rate of change of f along the flow normal to [;. If the shape of I
remains stationary, then 9, recovers the usual meaning of taking the derivative with
respect to time at fixed x. We note that the symbol 9, retains the usual meaning when
applied to fields on parametric domains, e.g. d,f = lima,o(f(&, t + Af) —f(E, 1))/ At,
and should not be confused with the definition (2.12) for fields on [;. The operators
D,, 3, and 9, are related. For instance, using previous definitions and the chain rule
(see appendix B), we find that

Df=0df+ Vf-c, (2.13)

where V denotes the covariant derivative, or here the surface gradient, of f.

2.3. Rate-of-deformation tensor

Let us define the natural basis of the tangent space of I at x induced by the
parametrization ¢, and given by the vectors e,(x) = 9,¢; 0 ¢, '(x), where 9, stands for
0¢,. An important tensor on [; is the first fundamental form or metric tensor g. Its
components in the natural basis are g, =e, - ¢,. The metric tensor induces a scalar
product on the tangent space of I;, which allows us to measure lengths, angles and
areas on ;. As shown in appendix C, see also Marsden & Hughes (1994) and Wu
et al. (2005), the rate of change of these metric quantities is characterized by the
so-called rate-of-deformation tensor defined as half of the Lie derivative of g by V,
which takes the form

d=1Lyg=1[Vv+ (V)] —vk. (2.14)

Here, k is the shape operator characterizing the local curvature of the surface, whose
components in the natural basis are defined as

ka,,z—a,,(Nod),)o(b;l ce,. (2.15)

From this expression, it is clear that the surface I, deforms through tangential flows,
which contribute to the rate-of-deformation tensor with the usual term [Vv + (Vv)T]/2,
but also through the change in shape of I, which contributes with the term —uv,k.
This relation illustrates the coupling between tangential flows and shape changes in
the presence of curvature.
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~

FIGURE 2. (Colour online) Given a domain & on [}, and a scalar function f, we can
compute the integral of f on &, I = fEde, by pulling back the domain onto I", [ =
fé fJd& (blue). The same can be done for the ALE parametrization (red). As 7 evolves,
the domain & evolves differently following the Lagrangian parametrization, ¢(=), or the
ALE parametrization, w(é ), and therefore the rate of change of / on I, D,I, and on r s
9,1, are different. These are the material and ALE time derivatives of /.

2.4. Reynolds transport theorem and conservation of mass

In this section we extend the concept of Lagrangian, Eulerian and ALE time
derivatives of integrals on [;. Consider a subset & C I}, a scalar field f: I, — R,
and define

I:/de: fT dg, (2.16)

where to write the expression on the right we have changed the domain of integration

to & =@ (&), and we define J = /det(D$TD¢) and dé = d&, d&,. We define the

material time derivative of I as

d [ -
DI= | Jidk. (2.17)

=

This expression characterizes the rate of change of the integral / when the domain &
is a material subset of I} (see figure 2). Developing the definition, we have

DtI=% / flde= [ 8,(fNde= | B.f]+f0,J)dE. (2.18)

The rate of change of J can be computed as (see appendix C)

9J=J{rdo¢,) =J[(V+-v—v,H) o], (2.19)
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where V .- v =V, v* is the surface divergence of v, and we define the mean curvature

as H = g“k,,. Then,

DI = /DJdS+ IV - v — v,H) o ¢, d&

=

= / [Df +f(V -v—v,H)]dS. (2.20)

Using (2.13) and the divergence theorem for surfaces, we can rewrite the previous
equation in different ways

DI = [ [8f +V - (fv) — fv,H]dS, (2.21)
= /ﬁ [8f — fu.H]dS + /8 fvemd, (2.22)
= /, [0f +V - (fe) +f(V +w — v,H)]dS, (2.23)
= /H[étf +f(Vew—v,H)]dS+ 3ch -mdl, (2.24)

where 0= indicates the boundary curve of = and m the outer normal to & tangent to
the surface. Equations (2.20)—(2.24) are the equivalent to Reynold’s transport theorem
for material domains in terms of the material, Eulerian and ALE time derivatives of f.
As for scalar fields, we can extend the notion of material time derivative of an integral
relative to other parametrizations. In particular, we can consider the parametric domain

E =v¢7'(&), and the time derivative

91 = £ dE, (2.25)

d
dr Jz

where J = /det(DYTDy). This time derivative characterizes the rate of change of
I when E follows the flow generated by the ALE parametrization. One can easily
prove that

DI=31+ | fc-mdl (2.26)

15

For an Eulerian parametrization, one equivalently finds

DI=0l4 | fv-mdl (2.27)

1E

From these expressions, it is clear that for an integration domain covering a closed
surface D,I = 5,[ =0,l.

The previous expression can be used to derive the statement of conservation of mass
on fluid surfaces. Indeed, in the special case of f = p, the mass density per unit area,

conservation of mass for every material sub-domain I, requires that

D, / pdS = / rds, (2.28)
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where r is the rate of creation of mass per unit area, which may for instance result
from the exchange of material with the bulk. Since this must hold for every subdomain
&, we can localize the statement to obtain Lagrangian, Eulerian and ALE forms of
local conservation of mass

O0=Dp+p(V-v—v,H)—r,

o+ V-(pv)—pv,H—r,
dp+V-(pc)+p(V-w—v,H) —r. (2.29)

For inextensible fluid surfaces in the absence of mass exchange, balance of mass
reduces to D,p =0, leading to the condition

Vev—y,H=trd=0. (2.30)

Thus, for an inextensible surface with curvature, any shape change must be
accompanied by a tangent flow to fulfil the inextensibility constraint, further
highlighting the tight coupling between tangent flows and shape changes in the
presence of curvature.

2.5. Representation of kinematics for fluid deformable surfaces

In previous sections, we have seen that Lagrangian parametrizations are natural
tools to study the kinematics of deformable surfaces, obtain expressions for the
rate-of-deformation tensor d and establish the transport theorem. A time-dependent
Lagrangian parametrization contains information about shape changes (v,) and about
interfacial flows (v). In practical computations, however, Lagrangian parametrizations
are not well suited for fluid surfaces because they exhibit large distortions, requiring
intensive remeshing (Rodrigues et al. 2015), and because a single Lagrangian
parametrization cannot describe a multicomponent system like a lipid bilayer,
where monolayers can slip relative to each other. In this case, one could consider
a Lagrangian parametrization for each component, which, however, increases the
number of degrees of freedom since each parametrization describes both tangential
motion and shape, whereas only tangential motions are independent of each other. In
the present section, we provide a set of modelling tools, which are useful for a clean
formulation of physical models of fluid surfaces and particularly for their numerical
discretization.

In the previous section, we have introduced the notion of a time-dependent ALE
parametrization ¥ to describe the time evolution of a material surface I, which can
alleviate mesh distortion when dealing with fluid surfaces since it does not follow
material particles. We note, however, that ¥ does not contain information about the
tangential motion of material particles (the interfacial flows) given by v, since v and
the tangential velocity of ¢ differ by a relative velocity ¢. This fact confronts us with
two issues. First, how to select the tangential velocity of ¥, which is arbitrary in
the sense of not being prescribed by any physical law? Second, since v needs to be
considered as an object independent of ¥, how do we parametrize tangential vector
fields? The first issue has been addressed by introducing a numerical drag, which
limits the tangential motion of ¥ (Ma & Klug 2008; Rahimi & Arroyo 2012). One
could also use the physically unconstrained tangential degrees of freedom of ¢ to
perform dynamical mesh adaptation (Barrett, Garcke & Niirnberg 2008; Veerapaneni
et al. 2011). These approaches, however, increase the number of essential degrees of
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(@) (b)

X =Xxq+ hM

FIGURE 3. (Colour online) Surface parametrization in terms of an offset. (a) The field
of directors M represents the direction in which the point x, € I3, can evolve. The height
function h, which may be negative, represents the distance between the point x on I;
and [}, in the direction of M. (b) In this example [I; lies at the limit of the tubular
neighbourhood to I, for the given director field.

freedom required to describe shape changes (from one to three) and require parameter
tuning. Instead, in §2.5.1 we develop a special kind of ALE parametrization based on
an offset (Rangarajan & Gao 2015), which parametrizes ¥ using a scalar field over
I,. Regarding the second issue, we note that interpolating tangent vector fields in a
system with multiple charts, as in isoparametric finite elements, is delicate (Torres-
Sanchez et al. 2019). In §2.5.2, we introduce the Hodge decomposition of vector
fields in terms of scalar fields valid for simply connected surfaces (of genus zero),
whose interpolation is straightforward.

2.5.1. An ALE parametrization based on an offset

We define next a restricted ALE parametrization, which by construction is devoid
of the arbitrary freedom associated with tangential motions. Let us consider the state
of the surface at a given time ¢y, I, and a parametrization of this surface ¥,(§). We
consider a vector field M(§), representing a field of directors over I}, with non-zero
normal component but not necessarily coinciding with the normal field of I3,. We
define a family of parametrizations of I, at time ¢ > f, in terms of the offset of a

point x = ¥o(§) along M(§),
V(. )=o) +h(E M), (2.31)

see figure 3(a). The field that characterizes the time evolution of the parametrization
is i, a simple scalar field on I". This approach is not completely general, since it only
allows us to parametrize the surfaces lying in the so-called tubular neighbourhood of
I, (do Carmo 2016). However, for some interval I = (t, t, + &t), the deformed surface
I, will lie in the tubular neighbourhood of I, if the time evolution is smooth. To deal
with the fact that after some time I; may leave the tubular neighbourhood of I, (see
figure 3b), a simple solution is to periodically update the reference configuration I7,.
This kind of parametrization, proposed by Rangarajan & Gao (2015), generalizes the
classical Monge parametrization, which is recovered by setting I3, to a plane, M to
its constant normal and 4 to the height of the surface I, with respect to the plane (do
Carmo 2016). We finally note that for this kind of surface parametrization, we have

W, £)=@hM)oy ' (x, ). (2.32)
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Since h is a scalar field on I” , 0;h in this equation has the usual meaning of time
differentiation at fixed &. In practice, M can be chosen to be Ny, the field of normals
of the reference surface as in (Rangarajan & Gao 2015). This leads to an Eulerian
parametrization at t =1y, and close to it at later times. Thus, W will have in general
non-zero tangential components, and therefore this parametrization is neither Eulerian
nor Lagrangian. Instead, it is an ALE parametrization depending on a generalized
height field 4, in which the arbitrariness is removed by following (2.31) and choosing
the field of directors M.

2.5.2. Velocity potentials: Hodge decomposition

Given a vector field V € R?, it is well known that V admits a decomposition in
terms of the gradient of a function @ and the curl of a vector potential A in what is
called the Helmholtz decomposition,

V=V®+VxA, (2.33)

where here V and V x stand for the gradient and curl in R*. For a vector field tangent
to a plane embedded in R®, this can be simplified to

V=V&+V x (¥N), (2.34)

where N is the normal to the plane and ¥ is a scalar function. Therefore, for a plane
embedded in R, a tangent vector field can be represented in terms of two scalar
fields, @ and ¥. This property can be generalized to arbitrary surfaces in terms of
their intrinsic differential geometry, i.e. not relying on their embedding in R, as a
special case of the Hodge decomposition for n-forms (do Carmo 1992). A vector field
v tangent to a surface I can be decomposed as

v=Va+V xp+h, (2.35)

where o and S are scalar fields on I and h is a harmonic vector field, satisfying
V.h=0 and V x h=0. We note that the curl operator Vx on a surface, an instance
of exterior derivative, is defined differently to its counterpart in Euclidean space. For
instance, applied on a scalar function V x g is a vector with components (V x 8)* =
€V, B, where € is the antisymmetric tensor

€t =g g, (2.36)

with &% the Levi-Civita symbols, defined by &!! =&* =0, ¢!>= —¢?' = 1. For simply
connected surfaces, i.e. closed surfaces with genus equal to O, there is only a trivial
harmonic vector field, A =0, and v can be described in terms of the two scalar fields «
and B (see figure 4 for an example on an ellipsoid). In the absence of shape changes,
from (2.30) it is clear that an inextensible flow satisfies V - v = 0. In this case, v
can be represented in terms of a streamfunction as v = V x 8. This approach was
introduced by Secomb & Skalak (1982) to describe flows in fluid surfaces with fixed
shape and used more recently by various authors (Nitschke et al. 2012; Morris &
Turner 2015; Reuther & Voigt 2015, 2016; Sigurdsson & Atzberger 2016; Gross &
Atzberger 2018; Mickelin et al. 2018). However, we note that for inextensible surfaces
that change shape, both & and 8 need be considered. In this case, using the fact that
V.v=V.Va4+V.Vx=V.Va=A«a, where Aa =V - Vg, it follows from
(2.30) that in an inextensible flow « and v, satisfy the constraint

Ao =v,H. (2.37)

This approach has been recently considered to examine flows on a time-evolving
inextensible membrane with prescribed shape changes (Reuther & Voigt 2018a).
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FIGURE 4. (Colour online) A vector field on a simply connected surface can be
decomposed as the sum of a solenoidal and an irrotational field.

3. Physical models of fluid surfaces

In this section we examine classical models for fluid deformable surfaces, two used
to model lipid bilayers and one applicable to the cell cortex. Thanks to the tools
introduced above and Onsager’s formalism, we derive the corresponding governing
equations in their full three-dimensional and nonlinear generality.

3.1. Lipid bilayers: an inextensible viscous layer with bending energy

Lipid membranes are interfacial viscous fluids with bending elasticity. The interplay
between viscosity and elasticity determines their relaxation dynamics after they
are brought out of equilibrium by external forces or biological activity. These two
essential mechanical features of lipid membranes, their out-of-plane elasticity and
interfacial viscosity, have often been examined separately. The mechanical equilibrium
of lipid bilayers can be understood to a large extent with the classical bending model
of Helfrich (Helfrich 1973; Lipowsky 1991; lJiilicher & Lipowsky 1993). For that
reason, studies of lipid bilayers at scales beyond tens of nanometres have mainly
focused on this model, e.g. in investigations of equilibrium configurations of closed
vesicles under geometric constraints, such as fixed surface area or fixed enclosed
volume (Steigmann 1999; Capovilla & Guven 2002; Tu & Ou-Yang 2004; Feng
& Klug 2006; Rangarajan & Gao 2015; Sauer ef al. 2017). Beyond the Helfrich
model, and subsequent refinements such as the area difference elasticity model
(Miao et al. 1994; Seifert 1997), more general models are required to describe the
dynamical transformations that bilayers undergo, which should capture the interfacial
dissipative mechanisms that dominate at sub-cellular scales. In a discrete stochastic
approach based on dynamically triangulated surfaces (Ho & Baumgirtner 1990), shape
transformations of fluid vesicles (Kroll & Gompper 1992; Gompper & Kroll 2004)
or their dynamics under flow (Noguchi & Gompper 2005; Peng et al. 2013) have
been examined. From a continuum viewpoint, the interfacial hydrodynamics of bilayer
membranes was first examined separately from membrane deformation, i.e. assuming
fixed membrane shape. These studies focused on the mobility of membrane inclusions,
such as proteins, starting with the seminal work of Saffman & Delbriick (1975) on
planar lipid bilayers. Subsequent studies have considered the effect of fluid boundaries
(Stone & Ajdari 1998) or the (fixed) shape of the fluid membrane (Levine, Liverpool
& MacKintosh 2004; Henle & Levine 2010; Sigurdsson & Atzberger 2016). Interfacial
flows of vesicles induced by shear bulk flows were also considered at fixed vesicle
shape (Secomb & Skalak 1982). Following the seminal works of Scriven (1960)
and Aris (1962) on the hydrodynamics of insoluble fluid films, Barthes-Biesel &
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FIGURE 5. (Colour online) A simple model of a lipid bilayer as an inextensible viscous
fluid with bending elasticity.

Sgaier (1985) examined the interfacial flow of vesicles in a shear flow allowing
for infinitesimal shape deformations. More recently, a geometrically nonlinear model
for an inextensible viscous interfacial fluid with bending rigidity was examined,
formulated geometrically, and exercised under the assumption of axisymmetry (Arroyo
& DeSimone 2009; Arroyo et al. 2010). Along these lines, there is an increasing
interest in the community of applied and computational mathematics to develop
numerical methods to solve the three-dimensional equations governing inextensible
viscous interfaces with curvature elasticity (Nitschke er al. 2012; Rodrigues et al.
2015; Barrett et al. 2016; Reuther & Voigt 2016). This model provides a first
approximation to the dynamical behaviour of lipid membranes, see figure 5.

Here, we formulate this model based on Onsager’s variational formalism (Arroyo &
DeSimone 2009), and derive the Euler-Lagrange equations. Considering a membrane
without spontaneous curvature and ignoring the Gaussian curvature term in the
Helfrich Hamiltonian, the bending energy of the membrane can be written as

.am:/;mw, 3.1)
L

where « is the bending modulus. The free energy depends on the set of state variables
of the system, usually denoted by X. In this case, the material parametrization is the
state variable of the system, X = {¢}. We note, however, that since the energy only
depends on the shape of I}, ¢ can be replaced by any other ALE parametrization
¥. In Onsager’s variational formalism, dissipative mechanisms are introduced through
dissipation potentials. The Newtonian shear rheology of lipid membranes (Dimova
et al. 2006) is encoded in the following dissipation potential

Dsl¢; V] =/ pld* ds, (3.2)

I

where p is the (in-plane) shear viscosity of the monolayer and |d|> = d,,g“g"d.,.
Since we assume that the deformation of the membrane is inextensible, only the
deviatoric part of d matters in the above definition. The dissipation potential depends
on the state variable of the system, ¢, through shape in dS and g, but primarily
on the variable representing the rate of change of the state, V. The variables that
represent the processes that change the state of the system and produce dissipation are
called process variables and denoted by V; here V ={V}. Here the process variable is
simply the time derivative of the state variable V = 9,¢, but this is not necessarily the
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case. For instance, if we had used 9 rather than ¢ as state variable, then W = 9,
would not be a meaningful variable to encode dissipation since it does not represent a
physical velocity. For thermodynamical consistency, the dissipation potential D(X; V)
must be a convex function of V with minimum at V =0 (Arroyo et al. 2018). We
further assume that D(X; 0) =0, so that D(X; V) > 0. If external forces F are applied,
these introduce a power input

Plé; V]:—/ F.Vds. (3.3)
r;

One can also include the dissipation potential associated with the bulk viscous fluid
where the membrane is embedded. Here, we ignore bulk hydrodynamical forces
to focus on the fluid membrane, an assumption which is physically justified for
phenomena below the Saffman—Delbriick length scale Isp = w/uy,, where w, is the
bulk viscosity (Saffman & Delbriick 1975; Arroyo & DeSimone 2009). For a lipid
membrane, [sp ~ 5 pm.

Onsager’s variational principle establishes a competition between energy release rate,
power and dissipation through the Rayleighian, which takes the form

Rl¢; V1=D.Ful¢; V1+ Dsl¢; VI+Pl¢; V1. (3.4)

Here, the rate of change of the energy D,Fy[¢; V] is

1 1
K {HAU,, — <H2 — |k|2> Hv,+V, <2KH2v“> } ds, 3.5

D, Ful¢: Vl= / >

I

where we have used that 9,H = Av, + |k|*v, (Capovilla & Guven 2002; Arroyo &
DeSimone 2009). Then, Onsager’s principle states that process variables minimize the
Rayleighian
V =argmin R[¢; U], (3.6)
U

subject to constraints Q[¢; V]. Here, we consider that the surface is inextensible
Qi[¢: Vl=trd=V -v—v,H=0. (3.7)

Furthermore, due to osmotic effects, it can often be assumed that cells and vesicles
maintain constant volume, and hence

Oal¢; V]:/ V.NdS=0. (3.8)
I
To enforce these constraints, we can introduce the Lagrangian
Li¢:V.y. PI=RI¢: Vl+ / v Qil¢; V1dS — PQs[¢; V1. (3.9)
I

P is the pressure in the vesicle and y is a component of the surface tension. Then,
Onsager’s principle subject to constraints can be written as a saddle-point problem

{V,y, P} =argmin argmaxL[¢; U, 4, S]. (3.10)
U 4.8
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From the stationarity conditions of (3.10), one finds the weak and the strong form of
the governing equations (see appendix D), the latter of which take the form

V.Z‘+B=0, (3.11)

trd =0, (3.12)

/V-NdS:O. (3.13)
I;

Here, X¢ is the so-called surface stress vector,
Y*=0",+0°N, (3.14)
where o is the in-plane stress
o =kH(AH" — k™) +2ud® + yg”, (3.15)
and o, is a vector of normal stresses
o' =—kg"V,H. (3.16)

When multiplied by a unit vector I in T,I;, X’I, is the three-dimensional force per
unit length across a curve passing through x and perpendicular to /. Note that o
represents bending moments caused by curvature imbalances. Finally, B is the field
of (external) body forces

B=F +PN. (3.17)

Equations (3.11)—(3.13) express the balance of linear momentum and conservation
of mass (inextensibility) and enclosed volume in a fully nonlinear regime. Alternati-
vely, one could have derived equation (3.11) from a local force balance on the
membrane as in Salbreux & Jiilicher (2017), and postulated the constitutive laws (3.15)
and (3.16). Thus, by starting from different ingredients (a Rayleighian expressing
energy release-rate, dissipation and power input) and invoking a variational principle
subject to constraints, Onsager’s formalism recovers these equations in a systematic
and transparent way. As a direct corollary of Onsager’s principle, it is easy to see
that, in the absence of external power inputs, the free energy is a Lyapunov functional
of the dynamics, i.e. F is a decreasing functional (Arroyo ef al. 2018)

D,F <0, (3.18)

which provides a nonlinear notion of stability for the dynamics. From a computational
point of view, only the weak form of the stationarity conditions issuing from
Onsager’s formalism is required for a space discretization based on finite elements.
Onsager’s formalism also provides a framework to formulate nonlinearly stable
variational time integrators, as described in §4.

We finally note that the choice of state and process variables is not unique. For
instance, as mentioned earlier, we can choose an ALE parametrization ¥ instead of
¢ as state variable, since the free energy depends only on shape. The velocity V, our
process variable, then needs to be split into a normal and a tangential components
V=v+ v,N, where v, = W . N. For the ALE parametrization in (2.31), we have
v, = 0,hM - N. We can then rewrite the Lagrangian in terms of 9,2 and v. We can
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further decompose v = Vo + V x B. Then, the governing equations for this set of
variables follow from

a}’}?(lxr’lﬁ r?%)x Lh; 0,h, a, B, v, P]. (3.19)
The Euler—Lagrange equations resulting from this statement will look very different
from those in (3.10) but describe the same dynamics. While the choice of variables
X ={¢} and V ={V} is natural from a modelling viewpoint, the choice X = {h} and
V ={v,, «, B} is better suited from a computational viewpoint, as will become clear
in §4. In appendix G we provide detailed expressions for the algebraic optimization
problem that we solve numerically and that results from discretizing equation (3.19)
in space and time.

3.2. Lipid bilayers: the Seifert—Langer model

The previous model provides a first approach to the mechanics of lipid bilayers.
It is often overlooked, however, that by ignoring the bilayer architecture it fails to
capture many important phenomena. Seifert and Langer developed a continuum model
explicitly accounting for the bilayer architecture and capturing the major energetic
driving forces and dissipative drag forces involved in the dynamics of lipid membranes
(Seifert & Langer 1993). The elastic forces in this theory appear in response to
bending of the membrane, as in the previous model, but also to monolayer stretching
(see figure 6). As viscous effects, the in-plane Newtonian rheology of the lipid
bilayer (Dimova et al. 2006) is included through shear and dilatation dissipations,
and the frictional coupling between the two monolayers opposing inter-monolayer
slippage is also included. This model provided predictions about the relaxation
dynamics of membrane fluctuations. Importantly, its material parameters can be
experimentally measured (Dimova et al. 2006). The work of Seifert & Langer (1993),
along with Evans & Yeung (1994), highlighted the role of inter-monolayer friction
as a ‘hidden’ but significant dissipative effect. This physical model was originally
introduced and has been predominantly exercised under the restricted assumptions
of linearized disturbances around a planar (Seifert & Langer 1993; Fournier 2015)
or cylindrical state (Nelson, Powers & Seifert 1995) or of simplified and fixed
membrane shape (Evans & Yeung 1994). These approximations, however, hide much
of the interaction between shape dynamics and interfacial hydrodynamics, which is
mediated by membrane curvature. This was demonstrated by the linearization of the
theory about spherical or cylindrical configurations (Rahimi 2013) and by simulations
based on a fully nonlinear version of this theory, albeit axisymmetric (Rahimi &
Arroyo 2012), which further demonstrated the geometry-dependent subtle interplay
between all the ingredients in figure 6 at multiple scales. Seifert and Langer’s (SL)
model is conceptually simple, captures sufficient physics to describe a plethora of
dynamical phenomena, and can be the basis for more sophisticated dynamical models
including for instance lipid tilt near molecular inclusions (Hamm & Kozlov 1998,
2000) or the physicochemical interaction of lipids with scaffolding or integral proteins
(Brochard-Wyart & de Gennes 2002; Arroyo et al. 2018). Here we formulate and
develop numerical calculations with this model in a three-dimensional and fully
nonlinear set-up which, to our best knowledge, has not been examined before.

In this model, I, characterizes the bilayer mid-surface (see figure 6). In addition to
the Helfrich energy of the form of (3.1), the Seifert—Langer model accounts for the
stretching elasticity of each of the monolayers through the functional

]:s[x,pi]=/ k;(ﬁi—l)zd5=/ %[pi(lﬂ: dH) — 1% dS, (3.20)
n r
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FIGURE 6. (Colour online) In a basic model incorporating elasticity and hydrodynamics
(Seifert & Langer 1993), a lipid bilayer stores energy due to bending and monolayer
stretching and dissipates energy through shear, dilatation and inter-monolayer friction. To
describe this model mathematically, the densities at the monolayer mid-surfaces p* are
projected onto the bilayer mid-surface leading to the scalar fields po* : I;— R. The velocity
fields v* identify the velocity of the material particles at I7.

where the fields 6% represent the lipid density at the neutral surface of the upper (+)
and lower (—) monolayers, measured in units of the equilibrium density, which differ
from the lipid density at the bilayer mid-surface according to

p=p* £ dH) + O(Kd?), (3.21)

with d ~ 1 nm the distance between the neutral surfaces and the bilayer mid-surface.
Unless otherwise noted, a functional containing + implies a summation on the + and
— monolayers. For convenience, in this section we use an Eulerian parametrization x
to derive the governing equations. The free energy depends on x and the two density
fields pt and p~, representing the density of lipids on the mid-surface, and thus
X ={x, p™, p7}. We take into account three main dissipation mechanisms in the
bilayer. First we consider the dissipation due to in-plane shear in each monolayer,
which takes the form

Ds[x;vn,vi]=/ pld=J* ds, (3.22)
I
where p is the shear viscosity and

d* = H{V*) + [VOHI") - vk, (3.23)

is the rate-of-deformation tensor, introduced earlier, for each monolayer. We consider
three process variables; v, = 9,x - N, which determines shape changes, and v*
and v~, which determine the tangential flow of lipids in each monolayer. Thus,
V ={v,, vt, v~}. Additionally, we consider a dilatational dissipation

Dplx; vy, v*]=1 / Altr d*)2 dS, (3.24)
I

where A is the dilatational viscosity. Finally, we consider the inter-monolayer friction
caused by the relative slippage of one monolayer with respect to the other

Dilx: v, v5] = / bilv* — v 2dS, (3.25)

I
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where b; is the inter-monolayer friction coefficient. Thus, the total dissipation is
DIx; v, v51="Ds[X; Vay 01+ DplX; vay v 1+ DylX; vy 071 (3.26)

The rate of change of the stretching energy is

D Fslx; p*: vn,azpilz/ ks {[p™(1 &+ dH) — 1]
I;
X [atpia + dH) £dp™ (Av, + |kI*v,) — [p*(1 + dH) — 1]v,H|
+ 1V - ([p*(1 £ dH) — 1]°v") } dS. (3.27)

Note carefully that D, Fs[x; p*; v,, 9,0%] depends on 9,0* rather than on the process
variables v*. We invoke the equations encoding conservation of mass

p™ =T1(X, p*3 v, ¥°) ==V« (p™vF) — pTv,H, (3.28)

where I1 is referred to as a process operator, to express D, Fs in terms of the process
variables, in equal footing with D, towards applying Onsager’s formalism (Rahimi &
Arroyo 2012). Process operators, usually linear operators, relate the rate of change of
state variables, in this case 9,0%, with process variables, v, and v*. In general, we

write .
X=IX)V. (3.29)

In the previous model, the process operator was trivial X =V (3,¢ = V). Using (3.28),
the rate of change of the energy can be written as

D, Fs[X; p75 vas 3071 =/ ks {[p*(1 £ dH) — 1]
I;

x [[=V(p*v™) + p*v,H](1 + dH)
+ dp*(Av, + [kl*v,) — 5[p*(1 £ dH) — 1]v,H]
+ 1V ([p*(1 £ dH) — 11%v")} dS, (3.30)

and the Lagrangian as

LIX, %5 vay v5, P1=RIX, p55 Vs, v7] = POIX; v.], (3.31)
where here
Olx; val =/r v, dS. (3.32)
Then, Onsager’s variational principle states that
{v,, vE, P} = afg nll}n arg max L[x, p*; u,, u™, S]. (3.33)

The stationarity conditions issued from Onsager’s principle provide equations for P
and the fields v, and v*. To find the time evolution of the density fields p*, the
process operator (3.28) needs to be integrated in time. We stress that Onsager’s
variational principle provides directly the weak form of the problem, which can be
directly discretized with finite elements. For completeness, we derive using Onsager’s
formalism the stress tensor and strong form of the governing equations of the SL
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model, which to the best of our knowledge have not been presented before in the
fully nonlinear case. The tangential and normal components of the stress of each
monolayer can be identified as (see appendix E)

0" = ks(p™(1+ dH) — 1) (—1[p™(1 £ dH) + 11g F dp™k)
+ 3kH (3Hg — k) +2pd™ + Atrd*g, (3.34)

and
ot = [% n ks(,oid)z} VH T dks2p*(1 £ dH) — 1)V p*. (3.35)

Note that, aside from the terms involving ks and A, the expressions are similar to
those of previous model. Density imbalances generate a source of in-plane stress,
but also lead to bending moments. Furthermore, the bending rigidity of the bilayer
is k + ksd*[(p*)* + (p7)?], which includes the effect of Helfrich and stretching
energies. Balance of linear momentum tangent to the surface on the upper and lower
monolayers reads

V.ot —kot=0bwt—v"),

V.o —ko =bv — v+),} (3.36)

where b;(vt — v™) identifies the force exerted by the lower monolayer on the upper
monolayer due to inter-monolayer friction. Finally, balance of linear momentum
perpendicular to the bilayer leads to

» {o*:k+ V-0, )=-P. (3.37)

+

Seifert and Langer first introduced a linearized version of these equations around a
planar state (Seifert & Langer 1993), which has been recently reviewed in the context
of Onsager’s principle (Fournier 2015). The stress tensors in (3.34) and (3.35) are
similar to those found in Rahimi & Arroyo (2012), using the Doyle-Ericksen formula
of continuum mechanics. Our general and systematic derivation shows the ability of
Onsager’s formalism to derive complex models mixing different physics in a fully
nonlinear setting, which would otherwise be difficult to rationalize. For instance,
although not unconceivable, it is difficult to postulate the constitutive relation for the
in-plane stress in (3.34).

3.3. The cell cortex: a viscous layer driven by active tension

The cell cortex is a layer of cross-linked actin filaments lying just beneath the plasma
membrane of animal cells (Bray & White 1988). The thickness of this layer is of
hundreds of nanometres, while the typical size of an animal cell is of tens of microns.
Thus, this layer can be considered as a quasi-two-dimensional material. In addition
to actin, this network is crowded with polymerization regulators, cross-linkers or
myosin motors, which bind to actin filaments. By consuming ATP, these molecular
motors pull on actin filaments and generate active tension. In turn, this active tension,
if non-uniform, generates actin flows and drives shape changes (Salbreux et al.
2012). Another important property of this actin network is that it undergoes dynamic
remodelling, with a continuous turnover by polymerization and depolymerization of
actin filaments and binding and unbinding of cross-linking proteins (Howard 2001).
This process is characterized by a time scale of the order of a few tens of seconds.
At time scales shorter than the turnover time, the cortex behaves as an elastic network.
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FIGURE 7. (Colour online) In a simple model, the cortex is described as a surface I;
with a space varying thickness p. Active tension and the turnover are taking cast into
Onsager’s formalism.

At longer time scales, the dynamic remodelling of the cortex leads to a fluid-like
viscous behaviour with active tension.

Following previous works (Turlier et al. 2014; Prost, Jilicher & Joanny 2015),
we consider an active gel model of the cortex as an isotropic viscous material
with active tension confined to a surface and undergoing turnover, in which viscosity,
active tension and depolymerization depend on the thickness of the cortex. This model
can describe phenomena at time scales of a minute and longer, where elastic energy
storage in the network becomes negligible, and does not account for the architecture of
the network, e.g. the orientation of the actin filaments, which may not be appropriate
in some important examples such as during cytokinesis (Reymann et al. 2016). Using
common estimates of cortex two-dimensional viscosity, e.g. =27 x 10™* Pa s m in
Bergert et al. (2015), an estimate for the Saffman—Delbriick length scale is [pg~3 m.
Thus, and given the size of cells, we can safely neglect the dissipative forces arising
from the bulk fluid. Turlier et al. (2014) and subsequent works (Bergert et al. 2015;
Saha et al. 2016; Mietke, Jiilicher & Sbalzarini 2019) were restricted to axisymmetric
or to two-dimensional configurations, and derived the active gel equations from the
stress tensor and force balance. Here, we develop a fully three-dimensional and
geometrically nonlinear version of this active gel model, and derive the governing
equations using Onsager’s formalism.

Mathematically, we characterize the cortex as a fluid surface I3, described here for
the purpose of deriving the governing equations with a Lagrangian parametrization
¢, with a space-varying thickness p, see figure 7. ¢ and p are our state variables.
The process variable in this problem is the velocity field V of actin, with a tangential
component v, characterizing the flow of actin on I}, and a normal component v,N
describing the change of shape of the actin cortex. The viscous rheology of the cortex
is characterized by a dissipation potential, similar to that of lipid bilayers

Di¢. p: V] =/M[|d|2+ (trd)*1p dS, (3.38)

where here p is the bulk shear viscosity of the cortex. This dissipation potential can
be obtained by integrating over the thickness a three-dimensional shear dissipation
potential f w|D|*dV, with D the three-dimensional rate-of-deformation tensor, for an
incompressible thin slab of gel whose thickness adapts to its in-plane stretching,
ie. D=d+ D,,n®n and D,, = —trd (Salbreux, Prost & Joanny 2009; Turlier et al.
2014). To introduce the active tension generated by the activity of myosin motors,
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we consider a power input of the form

Ple, p; V1= / E(p)ptrdds, (3.39)

where £ is a measure of myosin activity, which may depend on cortical density p,
see discussion in §5.3. This leads to an active surface tension y =&(p)p. Since trd
measures the rate at which local area expands (positive trd) or contracts (negative
trd), for a positive y the power input functional will drive the contraction of cortex
area. As we neglect the elastic behaviour of the cortex, there is no free energy
associated with the problem. Introducing a cell volume constraint, we obtain the
Lagrangian

Ll$, p; V,P1=Dl¢, p; VI+ Plg, p; VI — PQ:[¢; V], (3.40)
and the dynamics follows from

{V, P} = arg min arg max L[¢, p; U, S]. (3.41)
U s

From the Euler-Lagrange equations we identify the constitutive law

o =p{2ud + ptrdg +&(p)g}, (3.42)

and the statement of balance of linear momentum, this time in the absence of bending

moments,
Vieo=0, o0:k=-P, (3.43a,b)

with the last equation generalizing Laplace’s law. To relate the rate of change of p
and V, we consider balance of cortical material

Dip+p(V-v—v,H) =k, —ksp (3.44)
= (po—p)/T, (3.45)

where the first term on the right-hand side of (3.44) stands for actin polymerization.
Since polymerization nucleators are located at the plasma membrane, polymerization
is assumed to occur at a constant rate k, independent of the thickness. The second
term on the right-hand side of (3.44) stands for actin depolymerization, which is
proportional to the local thickness p. The ratio py=k,/k, determines the thickness at
steady state. By defining the characteristic turnover time as v = 1/k;, one can rewrite
the right-hand side as in (3.45).

4. Discretization of the mechanics of fluid surfaces

In this section, rather than providing a comprehensive description of the numerical
methods used here for the space and time discretization of the various models of fluid
surfaces, we outline a few key elements in our numerical treatment of fluid surfaces.
First, we introduce a variational time integrator based on Onsager’s principle, which is
unconditionally stable by construction. Then, we summarize the spatial discretization
of the different fields on the time-evolving surface. We end with the derivation of
the discrete equations for an inextensible fluid surface with bending elasticity as a
reference example.
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4.1. Time discretization: variational time integrator based on Onsager’s principle

To integrate in time the dynamics of continuum mechanical systems, a common
approach is to first discretize in space, obtain a system of ordinary differential
equations, which is then integrated in time with specialized algorithms. The fact
that the dynamics in the models examined here emerges from a variational principle
provides an alternative approach: to discretize in time the variational principle itself.
Such methods are usually referred to as variational time integrators, and have been
widely applied, for instance, to discretize in time Hamilton’s principle in conservative
systems including molecular dynamics (Frenkel & Smit 2001) and elastodynamics
(Lew et al. 2004), and in the context of dissipative systems (Ortiz & Stainier 1999;
Peco et al. 2013). Variational time integrators inherit qualitative properties of the
associated time-continuous problem. Here, we propose a first-order variational time
integrator for Onsager’s principle that inherits that F is a Lyapunov functional of the
dynamics, see (3.18). This feature provides nonlinear stability to the resulting discrete
dynamics by construction.

We consider here an abstract statement of Onsager’s variational principle, with a
set of state variables X, a set of process variables V, obeying Onsager’s principle
in (3.6) and a process operator as in (3.29). For simplicity, we neglect constraints
in our discussion but they can be added by substituting the Rayleighian by the
corresponding Lagrangian without changing the essence of the proposed variational
integrator. Let us consider a time discretization {r!, ..., ¥} and let us start with
a trivial process operator 9,X = V. We will consider here the simplest low-order
version of an implicit variational time integrator based on Onsager’s principle, and
leave higher-order schemes to future work. We approximate V" = V(¢') with a simple

backward difference
Xn-H — X
Vil sy ——— 4.1)
At
where X" = X(¢") and At" ="t! —". The dissipation potential and the power input
can now be approximated as

n+1 __

n XnJrl —_ X"
D(X; V)y~D <X"; > ., PX;V)y=P <X"; ) : (4.2a,b)

At AV
To discretize the Rayleighian, we also need to discretize the rate of change of the
free energy. Rather than resorting to an expression like F ~ DF - (X"t! — X")/Ar",

we consider Foeh - F
. Xy — F(xn
FX, 0.X) = ( ) ( ), (4.3)
At
or a similar higher-order finite difference. Using the previous expressions we define
the discrete Rayleighian as

F(Xll+1) Xn-H X" Xn-H X"
RIX: X" ="—"—" 4D (X ——— | +P (X —— ), (44
( ) A" + At + At (44)

where we have ignored the constant term JF(X")/A#". Then, the incremental Onsager’s
principle is given by
X"t = arg min R"(X"; X). 4.5)
X

Thus, the dynamical problem arising from our variational time discretization can be
interpreted as an energy minimization problem for F with the addition of a convex
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(and often quadratic) function of X"*!, D, subject to the external forces represented in
‘P. This approach retains the full nonlinearity of F in the formulation. The weight of
F relative to D is controlled by A#”, which can be decreased to ease the solvability
of the problem by increasing the influence of the convex functional D, or increased
to allow the system to reach equilibrium faster. In appendix F, we extend this notion
of Onsager variational time integrators to problems with non-trivial process operators,
and show that in either case and for homogeneous problems, the functional F is
a Lyapunov functional of the discrete dynamics irrespective of Atr. Hence, these
algorithms are nonlinearly and unconditionally stable. Consequently, the time step
is not limited by stability, but rather by accuracy and solvability of the nonlinear
optimization problem in (4.5), which becomes °‘easier’ or ‘more convex’ for small
Atr*. The ability to take stably large time steps is particularly useful in stiff problems,
such as those involving the Helfrich curvature energy.

4.2. Spatial discretization

We now summarize the space discretization of I; and the different fields defined on it.
We first note that, since models for fluid surfaces usually involve the shape operator k,
the surface parametrization must be a square-integrable function with square-integrable
first- and second-order derivatives; we call such a surface a H? surface. The
discretization of a H* surface may be addressed with various numerical methods,
including higher-order tensor-product splines as in isogeometric methods (Piegl &
Tiller 2012; Sauer et al. 2017) or max-ent meshfree approximants (Milldn, Rosolen &
Arroyo 2011). Subdivision surfaces are another versatile technique to discretize smooth
surfaces with meshes of arbitrary connectivity. Here, we use Loop subdivision surfaces
based on triangular meshes (Loop 1987; Stam 1999; Biermann, Levin & Zorin 2000;
Cirak & Ortiz 2000, 2001; Cirak & Long 2011; Torres-Sanchez 2017). Subdivision
surfaces technology provides smooth basis functions, which allow us to approximate
a H? geometry and other fields. Recalling the ALE parametrization introduced in
§2.5.1, we use subdivision basis functions to approximate the parametrization ¥ (&)
as well as the height field 4(£) and the field of normals M(€). Since vy, 7 and M
are in H?, then ¥ =y, + hM is also in H.

To discretize density fields, which only appear in the models examined here
through the field itself and its first-order derivative, we consider linear basis functions
on the same triangulation. The discretization of tangential velocity fields such as
v or v* is delicate since the natural bases of the tangent planes across element
boundaries are in general discontinuous (Torres-Sdnchez et al. 2019). One option
is to describe tangential velocity fields by approximating general velocity fields on
the surface and then imposing tangency through constraints (Fries 2018; Reuther &
Voigt 2018b). A more convenient option for simply connected surfaces is to recall
the Hodge decomposition of v in (2.35) and discretize the scalar fields o and B.
We note that o and B need to be in H* for d to be square integrable, and for this
reason we use subdivision basis functions to approximate these vector potentials. In
some models, we need to discretize Lagrange multiplier fields such as the surface
tension y. Since y acts as a Lagrange multiplier, the space of basis functions for y
needs to be chosen with care to ensure that the discretization satisfies the discrete
inf-sup condition (Brezzi & Fortin 2012). Similarly to previous works in isogeometric
analysis (Dortdivanlioglu ef al. 2018), we consider a macro-element approach where
Lagrange multipliers are approximated using a mesh with one level of coarsening. We
refer to Santos-Olivan et al. (2019) for further details of this macro-element approach
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and to appendix G for a detailed derivation of the discrete equations following the
application of Onsager’s time-discrete formalism combined with finite elements to
the model of an inextensible viscous fluid surface with bending elasticity described
in §3.1.

4.3. Restricting rigid body motion in simulations

The simulation of fluid surfaces lacking interaction with the surrounding viscous fluid
requires restricting rigid body motions of the interface since these do not dissipate
energy or affect the free energy of the system. To restrict these motions, we impose
three translational constraints and three rotational constraints

/ ,hM dS =0, / xxVdS=0, (4.6a,b)
L Iy
using six additional Lagrange multipliers.

4.4. Mass conservation: stabilized finite element formulation

We now discuss the discretization of mass conservation in its ALE form, equation
(2.29), which appears in the Seifert-Langer model of lipid bilayers and in our model
for the cell cortex. We consider an implicit backward Euler scheme in time for this
advection-reaction equation. For its space discretization, we consider a stream-upwind
Petrov Galerkin (SUPG) method (Donea & Huerta 2003), which treats the convective
term by adding controlled numerical diffusion in a consistent manner. The equations
of conservation of mass and balance of linear momentum are solved monolithically
using Newton’s method. See appendix H for details.

5. Representative simulations of fluid surfaces
5.1. Lipid bilayers: an inextensible viscous layer with bending energy

Example 1: relaxation dynamics from a non-equilibrium non-axisymmetric shape.
We first simulate the behaviour of an inextensible viscous layer with curvature
elasticity. To test the performance of the numerical methods described in the previous
section, we first examine the relaxation of an out-of-equilibrium and non-axisymmetric
configuration of a vesicle of radius R =100 nm, see figure 8. Using common estimates
for the model parameters (Dimova et al. 2006; Rahimi & Arroyo 2012), we choose
k=10""J, £ =10 J s m2. As expected for a dissipative system in the absence
of external inputs, the free energy JF decreases monotonically with time (figure 8a)
by dissipating energy (figure 8b). Because of the semi-logarithmic scale, it is difficult
to appreciate in figure 8(a,b) that the negative of the rate of change of free energy is
equal to the rate of dissipation. A selection of states during the relaxation dynamics
is shown in the figure, along with the normal and tangential velocity fields and the
Lagrange multiplier field y representing the contribution to surface tension of the
inextensibility constraint. The smoothness of this field indicates that the macro-element
approach described in § 4.2 satisfies the discrete inf-sup condition (Santos-Olivan et al.
2019). Figure 8(c), shows the L, norm of trd for three different levels of refinement
as a function of time, measuring the error in enforcing inextensibility. Initially, this
error linearly converges as mesh is refined. At later stages, and even though we use
an ALE method, the large shape changes during the relaxation dynamics require
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FIGURE 8. (Colour online) Relaxation dynamics of an inextensible viscous layer with
bending elasticity. (a) Helfrich energy as a function of time. (b) Shear dissipation as
a function of time. Snapshots (I-IV) represent different stages of the dynamics. In the
upper panels of snapshots (I-III) we plot the normal (colour map) and tangential (arrows)
components of the velocity. In the lower panels of snapshots (I-III) and in snapshot (IV)
we plot the Lagrange parameter y, representing the contribution to surface tension of
the inextensibility constraint. (¢) L, norm of trd for different refinement levels (blue:
4066 nodes, green: 16 258 nodes, red: 65 026). Yellow circles: remeshing; blue lines:
h/R=~1/17; green lines: h/R~1/34; red lines: h/R~1/68. (d) Error in the conservation
of volume and total mass.

four full remeshing operations, marked with yellow circles and illustrated in movie 1
available at https://doi.org/10.1017/jfm.2019.341 for the coarser refinement level. We
observe that remeshing increases the error of local inextensibility noticeably, but
this error remains small. This example illustrates the benefit of the ALE method to
reduce the frequency of remeshing events. We also note that the relative error in total
area and volume conservation is smaller than 0.1 % over the whole dynamics, see
figure 8(d). The error in volume conservation is very small (<107!! %) until the first
remeshing step, where the error presents a jump. This illustrates the success of our
nonlinear method to impose volume conservation. On the other hand, it shows the
lack of explicit control on volume (and area) conservation during remeshing, which
could be incorporated into the least-squares procedure underlying remeshing. Errors
in area conservation are smoother in time and larger in magnitude, since it is imposed
weakly through the Lagrange multiplier y.

Example 2: dynamics following hyper-osmotic shocks. Cells and vesicles are often
exposed to changes in the inner and outer chemical composition, which create flows
of water through the semipermeable lipid membrane, increasing or decreasing their
enclosed volume, and generating shape changes (Staykova et al. 2013; Kosmalska
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FIGURE 9. (Colour online) Bending energy as a function of volume decreases during the
deflation of a vesicle at different deflation rates; blue 10 nm>® ns~!, red 10000 nm> ns~'.
Snapshots show the vesicle shape and normal and tangential velocities (colour map and
arrows respectively) for the different deflation rates.

et al. 2015). Here, we simulate the effect of a hyper-osmotic shock by decreasing
the enclosed volume at different deflation rates. We start with the equilibrium shape
of the previous example using the finest mesh (figure 9-0), and apply a deflation rate
of 10 nm® ns™!. In a plot comparing the elastic energy stored during deflation (blue
curve in figure 9), we observe a linear dependence. In fact, at this small deflation
rate, the shape of the vesicle (figure 9c,d) closely follows a sequence of equilibrium
prolate shapes for the given area and volume (Feng & Klug 2006). We observe,
however, a small fluctuation of normal and tangential velocities at the equator of the
vesicle, a signature of a non-equilibrium symmetry-breaking process. These deviations
from axisymmetry become more noticeable at higher deflation rates. For a deflation
rate of 10000 nm?® ns~!, we observe that the shape dynamics strongly deviates from
the quasi-equilibrium path and velocity variations disturbing axisymmetry are very
pronounced (see figure 9a,b). In agreement with this, we observe that the energy
stored during this faster deflation is now higher. The viscous dissipation of the lipid
membrane becomes increasingly dominant as deflation rate increases, and imposes a
dynamical confinement to the elastic membrane, causing it to transiently buckle and
break symmetry.

5.2. Lipid bilayers: Seifert—Langer model

In this section we examine the response of the Seifert-Langer model to monolayer
density imbalances, which may arise from chemical perturbations. Membranes in cells
and organelles are often exposed to changes in their local lipid density. Proteins and
other membrane inclusions, such as polymers, can insert in the membrane and locally
change the lipid packing (Tsafrir et al. 2003; Shibata et al. 2009). Disturbances in the
local chemical environment, such as pH (Khalifat er al. 2008; Fournier et al. 2009),
can also alter lipid packing. Changes in the local density can occur asymmetrically,
affecting only one of the two monolayers. Local density perturbations lead to transient
dynamics, where lipid flows and shape changes are tightly coupled and dictated by
the interplay between stretching, bending, shear and inter-monolayer friction. Thus,
these processes constitute an excellent example of application of our theoretical
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and computational framework. Furthermore, these processes have been previously
examined under the assumption of axisymmetry (Rahimi & Arroyo 2012), which can
be used as a reference to verify our numerical procedure.

We examine deflated spheroidal prolate vesicles, with a reduced volume v =
(3+/4mV)/$*? < 1, initially at equilibrium, to which we apply a density disturbance.
To prepare the initial state, we first minimize the Helfrich energy for the given
reduced volume to obtain a prolate shape. Then, we initialize the lipid densities on
each monolayer close to their equilibrium state for the given shape, i.e. satisfying
0% =po(1 FdH). To perturb the initial density profiles, we add a localized perturbation
8p* =8p=(1 FdH), where §p= =38pf(0, ¢) is the perturbation of the densities at the
neutral surfaces of each monolayer, §5= is the maximum value of the perturbation
at the outer and inner monolayers respectively and f(6, ¢) is a function with values
from O to 1 of the angles (8, ¢) of a set of spherical coordinates adapted to the
prolate shape. Following Dimova et al. (2006), Rahimi & Arroyo (2012), we choose
k=10"1J ks=5x102Tm2 b, =10 sm™, u=5x10""Jsm? and
the dilatational viscosity A4 = 0 (this parameter seems to play a minor role in the
dynamics).

Example 1: relaxation dynamics of a density disturbance in an axisymmetric vesicle
of 200 nm. To compare with Rahimi & Arroyo (2012), we start by examining a
small vesicle (R = 200 nm) with a reduced volume v = 0.99, to which we apply
a disturbance of 5% in the outer monolayer, 80, /py = 5%, with a distribution
f(0) = tanh((w — 6)/7), where w = /10 controls the width of the disturbance. We
show some snapshots of the dynamics along with the time evolution of the dissipation
and the main energy contributions, see figure 10. Again, the total energy F decays
with time (figure 10a), as expected. Furthermore, from figure 10(b) we observe that
the largest energetic component is Fj, the Helfrich energy. However, it does not
play a significant role in this problem since its variation is very small. Instead, we
observe that the relaxation of the stretching energy in the upper monolayer, which
transiently increases that of the lower monolayer, is the main driver of the dynamics
(see figure 10b). The local density asymmetry results in a small but noticeable shape
change (snapshot III), whose signature can be seen in the curvature energy. Note
that, given the versatility of subdivision surfaces to deal with meshes of arbitrary
connectivity, we have used a surface mesh with a much higher resolution at the pole
where the density disturbance is imposed, see figure 10(c).

This dynamics can be rationalized introducing several time scales for this model
following Rahimi & Arroyo (2012). Gradients of the average density relax with a time
scale given by t; = u/ks, as they are driven by stretching energy and dragged by shear
dissipation. This time scale is size independent, and usually very fast, #, &~ 10 ns for
our choice of model parameters. Gradients of density differences between monolayers
are also penalized by the stretching energy but can relax by inter-monolayer slippage,
introducing an effective diffusivity D = ks/b; (Evans & Yeung 1994), which results
in a time scale t;, = §/D = Sb;/ks where S is the area of the density disturbance.
However, density differences can also relax by curving the membrane with a time

scale given by £, = «/E,u /(ksd). For the 200 nm vesicle, we find that #; ~0.151 ms and
L~ 1 ps. All these time scales are apparent in figure 10(a) and highlight the dramatic
gap between time scales in this model, which need to be resolved by the simulations.
To address this challenge, we adapt the time step as shown in figure 10(d), with time
steps spanning six orders of magnitude, from 0.1 ns to 0.1 ms.

To adapt the time step we follow the following prescription: if Newton’s method
is solved less than Ny steps, with Ny given initially (usually a number between 4
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FIGURE 10. (Colour online) Relaxation dynamics of a density perturbation on the outer
monolayer of a small vesicle of R =200 nm with 85} = 5%. (a) Energy (blue) and
dissipation (green) along the time evolution of the system. Note that the x—axis is in
log scale to enhance the different time scales in the problem. The different scales of the
system ?, t, and #, (see main text) are depicted for comparison. (b) Time evolution of the
different energies of the problem. (I-IV) show snapshots of the shape and the densities
of outer and inner monolayers at different stages of the dynamics. (c) Mesh used for the
simulations with a much higher resolution at the pole where the density disturbance is
imposed. (d) Time evolution of the time step. (¢) Energy discrepancy when comparing
our time-adaptive simulations with one with fixed and very small time step for the first
100 ns of dynamics. (f) Time evolution of the relative error in total mass conservation.
(g) Snapshots of the shape and the density of outer monolayer at different stages of the
relaxation dynamics of the same vesicle in a non-axisymmetric set-up and with an initial
density disturbance of 85} =25 %.
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and 6), we increase Ar"t! =fAr" with f a scaling factor greater than 1. If, however,
Newton’s method does not converge in Ny steps, we reduce A"*! as A" = Ar'/f.
This adaptive time-stepping algorithm allows us to perform the simulation in less than
300 time steps, whereas a fixed time-step algorithm with the required initial resolution
would need 10 million of time steps. To show that the dynamics is not affected by the
adaptive time stepping, we plot the difference in the total energy between a simulation
with a fixed and very small time step (Afz = 0.1 ns) and the simulation with the
adaptive time stepping for the first 100 ns of dynamics, which shows a difference
smaller than 0.1 % (figure 10e). Another important aspect of the numerical method is
the conservation of mass. Conservation of the total mass depends on the local mass
conservation imposed weakly. The time evolution of the relative error in total mass
for the outer and inner monolayers in figure 10(f) shows errors smaller than 1072 %.

To further show the versatility of the numerical method, we examine the relaxation
dynamics of this vesicle for a larger density disturbance, §p," =25 %, not aligned with
the axis of symmetry axis of the prolate vesicle (see figure 10g and movie 2). The
relaxation of the system is qualitatively similar, now with larger amplitude and non-
axisymmetric shape and density dynamics.

Example 2: relaxation dynamics of a density disturbance in an initially axisymmetric
2 micron vesicle. We consider a vesicle of R =2 pm with §p,"/py =5 %. For this
size, the stretching energy becomes even more dominant than for the 200 nm vesicle
since the relative influence between the different energetic components is highly size
dependent. As a result, the 2 pm vesicle develops a large bulge that affects the shape
of the whole vesicle and exhibits a stretching energy 20-fold larger than the Helfrich
energy (see figure 11). The time scales associated with this problem are # ~ 15 ms
and t, & 10 ps, with 7, =20 ns as before. In agreement with these time scales, we
observe the first energy decrease in a scale comparable with 74, and a total duration of
the relaxation dynamics of 10 ms, similar to #. In figure 11(b) we plot the different
dissipation contributions, shear viscosity and inter-monolayer friction. This plot shows
that, during the initial equilibration of the total density and during the bulge formation,
shear dissipation dominates. However, at later stages, density differences relax through
inter-monolayer slippage. In this time-adaptive simulation, the smallest and largest
time steps differ by 7 orders of magnitude.

Interestingly, in the initial stages of the bulge formation (figure 111II), we observe
a transient local buckling pattern at the edge of the bulge, presumably caused by a
transient and local compression in a large enough region compared to the Foppl-von
Karman length scale lp,x = +/k /o ~5 nm, where we estimate o = ks((p*/p9)> — 1) ~
1072 J m=2 for p* = 1.05p,. To examine this phenomenon further, we zoom in
the interval when the pattern forms, see figure 11VII-XI and (c). After the pattern
has formed, the amplitude of the bulge continues to increase, and the oscillatory
deformation pattern progressively disappears. The rest of the dynamics is similar
to that obtained by previous axisymmetric calculations (Rahimi & Arroyo 2012).
To further test the stability of our scheme, we used a finer mesh and found the
same dynamics; fluctuations develop with the same length scale, suggesting that this
transient buckling is a physical outcome of the model rather than an instability of
the method. Our model lacks the dissipative forces induced by the bulk medium,
which may modify this buckling-induced transient pattern formation. The size of the
disturbance, however, is a bit smaller than the Saffman—Delbriick length, Isp =35 pm,
and therefore bulk dissipation should not play a dominant role (Saffman & Delbriick
1975; Arroyo & DeSimone 2009). A similar transient instability has been observed
experimentally in vesicles subject to a local compression generated by a flow field
(Kantsler, Segre & Steinberg 2007).
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FIGURE 11. (Colour online) Relaxation dynamics of a density perturbation on the outer
monolayer of a vesicle of R=2 um with §p," =5%. (a) Time evolution of the different
energies of the problem. (b) Time evolution of the different sources of dissipation of
the problem. (I-IV) show snapshots of the shape and the density of outer monolayer at
different stages of the dynamics. (¢) Zoom of energy and dissipation as a function of
time during the period when the pattern forms. (VII) and (VIII) show the velocity field
with arrows at the onset of the pattern formation. After the pattern has formed, the bulge
continues growing (IX) and (X). Finally, the wrinkles associated with the pattern smoothly

disappear (XI).

5.3. The cell cortex: a viscous layer driven by active tension

The elementary model of the actomyosin cortex introduced in § 3.3 exhibits a non-
trivial phenomenology and reproduces to a large extent the mechanics of cells in
different processes, such as during cytokinesis (Turlier et al. 2014). Here, we focus on
the ability of this model to describe adhesion-independent cell migration. During this
kind of migration cells develop a persistent cortical flow from the front to the rear of
the cell that propel the cell forward by unspecific friction under confinement (Bergert
et al. 2015; Ruprecht et al. 2015), see figure 12(a). Adhesion-independent locomotion
plays a major role in three-dimensional cell migration through the extracellular matrix
or in confined environments (Poincloux et al. 2011; Liu et al. 2015).
Adhesion-independent migration raises several questions. First, what is the
mechanism by which cells acquire such a polarized state? Second, how can this
flow be made persistent to allow for a self-sustained motion? And, how does the
tight interplay between interfacial flows on the cortex and cell shape changes manifest
itself during this process? Several models based on the theory of active gels have
been developed over the past decade to try to answer these questions (Hawkins et al.
2011; Callan-Jones & Voituriez 2013). In these models, myosin-mediated contraction
of the cell cortex is identified as the main driver of the self-polarization. In particular,
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FIGURE 12. (Colour online) (a) In adhesion-independent migration, confined cells develop
a self-sustained cortical flow. By friction with the surroundings, here friction with the
confining plates, the cell migrates in a direction opposite to the gradient of tension. (b)
An initial fluctuation in myosin activity or a density disturbance can trigger a cortical
flow, which in turn reinforces the gradient in tension. This leads to a self-polarized state
in which a steady state flow is maintained.

a spatial fluctuation in myosin activity can lead to a tension gradient in the cortex.
This tension gradient triggers cortical flows, which further reinforce the gradient of
tension, see figure 12(b). This mechanism works against actin turnover, which tries
to homogenize the system. Thus, adhesion-independent migration depends on the
competition between myosin activity and actin turnover. Most of previous models
rely on simple one-dimensional or fixed-shape assumptions that cannot address the
effect of shape in locomotion. Recently, Callan-Jones er al. (2016) studied the shape
transformations that cells suffer during migration, but this work is restricted to
small deformations around a sphere. Here, we present, to our best knowledge, the
first numerical results of a fully three-dimensional and nonlinear model connecting
cortical flows and cell shape dynamics during locomotion. This work opens the door
to a more systematic study of adhesion-independent migration in the future.

A critical ingredient controlling the formation of a self-polarized cortical flow is
contractile activity, which is described by the function £(p) in our model. If this
function is constant, as assumed in previous works (Turlier et al. 2014), then the
active tension is proportional to cortical thickness, y =&yp. In this case, the positive
feedback illustrated in figure 12(b) leads to an instability with unbounded actin
accumulation at the rear of the cell. Recently, Chugh et al. (2017) found that active
tension does not depend monotonically on cortical density in general. Along these
lines, here we model the dependence of specific contractility on cortical thickness as

1 P :
§(p) =50 1—3(6(%) , (5.1)

where &, measures a basal myosin activity and w characterizes its dependence with
cortex thickness. This leads to an active tension

3
y(p) =£(p)p = [p—“’;’() <p> ] (5.2)
wpPo

which has a maximum at p = wpy; at steady state y, =y (0p) = Epo(1 — 1/3w?). We
note that the second term in the active tension looks very similar to the osmotic
contribution introduced by Callan-Jones & Voituriez (2013) to stabilize the dynamics
of polarization.
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Following the experimental work by Ruprecht er al. (2015), we examine the
migration of cells confined between two plates. To represent this confinement
mathematically, we introduce a free energy contribution of the form F.= [ rU@ds
where z is a coordinate perpendicular to the plates, and U(z) is a repulsive potential
modelling contact with the plates and given by

0 if |z| < h/2,

! K —n2\’
v@ 3<m5,/> if 12l > hy2,

(5.3)

with K. and §. characterizing the strength and the width of the repulsive interaction
respectively.

We consider a cell of radius R =5 pum and material parameters obtained from
the literature; py = 500 nm (Clark, Dierkes & Paluch 2013), u = 10 kPa s (Bergert
et al. 2015), v = 10 s (Fritzsche et al. 2013), & = 1-10 kPa (Chugh et al. 2017).
We also choose w =2+/3/3. We first compress the cell between the plates by setting
h =8 pm and let the system relax. To drive the cortex out of the unpolarized
steady state, we perturb the system with a gradient in density of 1% in the x
direction, see figure 13(a) left. If contractility is low, & =1 kPa, the induced tension
difference is not high enough to overcome cortical turnover and the system quickly
relaxes to the unpolarized state, see figure 13(a) top right. If contractility is higher,
& = 10 kPa, the cortical flow generated by the activity gradient overcomes turnover,
and the cell becomes self-polarized with a sustained cortical flow and a significant
shape change, see figure 13 bottom right. Our ALE method is able to describe such
shape changes without remeshing, see figure 13(b). More importantly, the mesh is
unaffected by the constant flow of actin from the front to the rear of the cell. In a
Lagrangian framework, such a polarized steady state would continuously distort the
mesh, requiring very frequent remeshing. Since tension is not a monotonic function
of cortical thickness, it exhibits a maximum between the front and the rear of the cell,
see figure 13(c). For self-polarization to lead to migration, we introduce a frictional
interaction with the confining plates. To represent unspecific friction, we introduce
the dissipation potential

b [ 12U

[V +V;1dS, (5.4)

I

where 7. measures friction with the plates and U’(z) identifies the pressure exerted
by the cell on the plates. This pressure is equal to the internal pressure of the cell,
P ~0.3 kPa in our simulations, which is essentially determined by the radius of the
cell and its surface tension. Resorting to experimental measurements of the product
of n.P=1-10* kPa s m~!' on somewhat larger cells (Bergert et al. 2015), we choose
n. = 600 s m~!. We note, however, that our results are largely independent of the
magnitude of the friction coefficient because we do not consider a hydrodynamical
resistive force in the relatively unconfined situation of cell motion between parallel
plates (Noselli et al. 2019). Including friction, the simulations in the high contractility
case, £ =10 kPa, capture the migration induced by self-polarization, see figure 14 and
movie 3. Our simulations show that friction introduced a very small perturbation in
the polarized state (data not shown). To computationally deal with cell migration, we
consider the following ALE parametrization

V(&1 &0 =061, &) +h(OM (&1, &) +R(1), (5.5)


https://doi.org/10.1017/jfm.2019.341

https://doi.org/10.1017/jfm.2019.341 Published online by Cambridge University Press

252 A. Torres-Sanchez, D. Millan and M. Arroyo
(@) : (D)

=75 % mm v -+75 %
Thickness disturbance

SO =1 kPa

”

Initjg) M~ &=10kPa +66 %
ICkneSS gradj Y .y
ddient 0
- i
— 0 <> 0.5 pm min~! 5—66 %
* & =10kPa

FIGURE 13. (Colour online) (a) An initial thickness gradient (left) can be homogenized
due to turnover for low tension (§) = 1 kPa, right top) or can lead to a sustained self-
polarized steady state for higher tension (£ =10 kPa, right bottom). Thickness is depicted
with a colour map, whereas velocity is shown with arrows. (b) The ALE mesh is able to
cope with this kind of directed flow without remeshing, which would continuously distort
any Lagrangian mesh and require frequent remeshing operations. (c¢) Active tension profile
for a self-polarized cell (§, =10 kPa). Since tension is a non-monotonic function of actin
density, it has a maximum between the front and the rear of the cell.

where we impose zero net displacement due to the offset, |, r, h(OMdS =0, and
incorporate a rigid body translation R(f) as an unknown.

In conclusion, our theoretical and computational framework allows us to formulate
and simulate thin and curved active gels with high generality. We have illustrated
that this approach can be used to examine systematically adhesion-independent cell
migration under confinement. Remarkably, our ALE formulation allows us to deal with
the sustained cortical flows of the polarized state and with the shape changes that the
cell experiences during self-polarization and confinement.

6. Summary, discussion and future work

We have introduced a novel theoretical and computational framework to model and
simulate fluid surfaces. Fluid surfaces are a common motif in cell and tissue biology.
Thanks to increasingly quantitative biophysical experiments, there is a growing need
for accurate theoretical predictions. Yet, modelling these systems requires overcoming
significant theoretical and computational challenges, which we have addressed in this
work. First, based on time-evolving parametrizations, we have rigorously extended the
notion of ALE methods to fluid surfaces. We have also used Onsager’s formalism,
a general variational framework for the dissipative dynamics of soft-matter systems,
to derive thermodynamically consistent models of fluid surfaces coupling multiple
physics in a fully geometrically nonlinear manner. From a numerical perspective,
we have proposed a new framework for the simulation of fluid surfaces based on
a variational and nonlinearly stable time integrator rooted in Onsager’s variational
formalism, allowing us to bridge time scales over seven decades, and on a combination
of subdivision and linear finite elements.
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FIGURE 14. (Colour online) With friction with the plates, the cell is able to crawl. On
the left, we show a three-dimensional viewpoint of cell locomotion, with thickness shown
in colour map, and velocity shown with arrows. On the right, we show a side view of
the motion, with cortical thickness depicted in light red in 1:1 scale.

We have applied the previous theoretical and numerical methods to derive the
governing equations and simulate the dynamics of canonical models of fluid surfaces
with unprecedented generality (in three dimensions, for general shapes and accounting
for full geometric nonlinearity). Here, we have studied simply connected surfaces, but
with the approach in Torres-Sanchez et al. (2019) to represent tangential vector fields,
the present framework can deal with surfaces of general topology. We have first
studied the dynamics of lipid bilayers in a number of interesting assays, including
membrane relaxation, deflation due to osmotic shocks or perturbations due to density
disturbances. Our framework opens new possibilities in the study of shape pattern
formation under dynamical changes in lateral strain or osmotic conditions in supported
membranes (Staykova et al. 2013) beyond axisymmetry, relevant to cell membrane
mechano-adaptation (Kosmalska er al. 2015). Our method could also be useful to
understand the effective rheology of a bilayer populated by transmembrane proteins,
limiting inter-monolayer slippage in a heterogeneous manner, which could explain the
unexpected and highly viscous behaviour of complex biomembranes (Campillo et al.
2013), or coupled to additional fields describing the concentration of membrane
proteins to understand the dynamics of curvature sensing and generation (see
(Baumgart et al. 2011; Arroyo et al. 2018) and references therein). While interfacial
hydrodynamics is dominant at length scales smaller than the Saffman—Delbriick length,
the bulk hydrodynamics may be a relevant ingredient in processes involving larger
scales. Including the bulk hydrodynamics is straightforward conceptually, but requires
specialized computational methods, such as immersed boundary methods (Liu et al.
2006) or dynamically body-fitted triangulations (Rangarajan, Kabaria & Lew 2019).

We have also applied our methodology to model and simulate the cell cortex. Our
model is based on a viscous isotropic fluid layer, which is able to reproduce a number
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of rheological experiments and could be employed to infer material parameters in
conjunction with experiments (Torres-Sdnchez 2017). Here, we have shown that our
model is capable of reproducing adhesion-independent cell migration. Our simulations
show how our ALE method can deal with the shape transformations that cells
experience during migration and at the same time it can withstand steady flows
from the front to the rear of the cell during migration. While our model for the
cortex can reproduce a number of cellular behaviours, it is insufficient to reproduce
phenomena where the transient elastic behaviour of the cortex becomes important,
e.g. during laser ablation (Saha er al. 2016), or situations in which the orientational
order of actin filaments becomes relevant (Reymann et al. 2016). This would require
introducing tensorial fields on the surface (Nestler et al. 2018). Furthermore, a more
detailed mechano-chemical model of activity, the explicit treatment of the cytosol,
and models capable of spontaneously producing polarization would provide a more
complete understanding of the mechanics of the cortex. These and other extensions of
the active gel model presented here are enabled by the theoretical and computational
tools introduced here.
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Appendix A. Relation between Lagrangian and ALE velocities

V=20¢odp ' =0(Yoy¥ 'od)od ' =8,(Yob)ogp!
= 81'/’00°¢_] +[(D¢)00°¢_]][8t00¢_l]
Iy oy + DY) oy 'I[cop']
W+[DY) oy [cobod  1=W+[(DY) oy oy ']
= W+ [(DY)eloy '=WH+y.e=W+ec. (A1)

Appendix B. Relation between Lagrangian and ALE time derivatives

Df = 8fodp ' =8,(fob)od™!
= 9fo0lod ' +[Dfcbod ][00 0]
= Lyf +[Df oy "cod 1=Luf +[Df oY '1[c0fo ']
= Lyf +[Df oy "[éoy | =Luf +[Dfél oy =Lyf + Vf-c. (BI)

Here we identify [Df¢] o ¢! as the pull-back of Vf -¢, where Vf is the surface
gradient of f.
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Appendix C. Rate-of-deformation tensor

Let us consider two curves in the parametric domain r, given by a(1):[—1, 1] — r
and [}(/l) :[=1, 1] = I, that cross at A = 0, and the image of these curves ¢ (a
Lagrangian parametrization), (4, 1) = ¢(a(d),t) and (4, 1) = ¢([§ (1), t). The length
of a (and equivalently of ) is given by the functional

1
[a] =/ 19,0] dA, (C1)
—1

where |v| = +/v - v is the norm of v. The angle 6 between curves o and B at their
point of intersection is given by

Byet -
cos 0 = {M} . (C2)
|020][0,8] ] 1o

The time evolution of the lengths of material curves and the angles between them
measure how the material deforms. It is interesting to note that the pull-back of g, g=
¢*g, induces a time-dependent scalar product on I that allows us to compute products
of deformed vectors from their time-independent description on I". For instance, one
can easily see that

(010t - 9, 8)1=0 = [(g 0 @) (D10t, 31B)]1=0 = [(g 0 @)(&', B")]1=0, (C3)

where the notation g(-, ) denotes the application of the two-covariant tensor g as a
bilinear form. Equivalently,

|0,0t] = /(g oa)(e, a). (C4)

Thus, scalar products, lengths and angles of material curves on [}, such as & and S,
can be measured on I, from the time-independent & and B, with the time-dependent
scalar product induced by g. It is clear from (C3) and (C4) that the time dependence
of these measures of local deformation is completely encoded in g. We conclude that
the tensor g characterizes the deformation of 7. In continuum mechanics, this tensor
is referred to as the (right Cauchy—Green) deformation tensor and is generally denoted
by C. The time derivative of this tensor defines a new tensor over I’

d=19g. (C5)

where the 1/2 is introduced here to follow the usual convention. The push-forward of
this tensor to I; by ¢ defines the so-called rate-of-deformation tensor,

d=3¢.9,9=30.0(4"9) = 5Lvg, (C6)

where we recognize again the structure of a Lie derivative, this time applied to the
metric tensor. The rate of change of the scalar product can then be written as

d
$(34a <0,8)| =2[(doa)(0e, 9:8)]1=0, €7
=0
and the rate of change of the norm as
Yol = (@omy@e. d,0) (C8)
—|00|| = ——(doa)(d,&, D,00).
dr' 190 G
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Thus, the rate of change of local deformation of I} is encoded in d. To obtain the
form d in terms of V, let us consider the components of g, which coincide with those
of g in the convected basis by ¢ given by the tangent vectors e, =d,¢p, a=1,2

[91t(8) = Gup, © G:(§) = 0ur + Dby (C9)

Then, we have

[Lvgle = 0:G,0¢"
= [0,0,¢ o ¢[_l ce,+e, 00,00 ¢r_l]
[0[(v+ vuN) o P Jo @, e, + €, d[(V+v,N) o] o ']
= V.,u, + Vv, — 20k, (C10)

where we have used the commutativity of partial derivatives, the definition of covariant
derivative
Vo, =03,(vod)od ' -e,, (C1D)

the orthogonality of N to the tangent space of I} e,- N =0, and the definition of the
second fundamental form (2.15). Using these results, we recover the expression for
the rate-of-deformation tensor in (2.14).

Appendix D. Weak form of an inextensible monolayer with bending rigidity

To derive the weak form of the problem, we rewrite the material time derivative of
the free energy (3.5) as

D Fule: V] = | « {—HAv,+ (3H* — kypk™) Hv, + V, (3xH*v*) } dS
I

= [ «{—AH+ (3H* — kypk™) H} v,dS

I

[ (Ve[ (0 = L)) V) v as

/ { (lgahH _ kah)] _ VaHkub] e

[AH—-H ( Hg” — k™) ka| N} - V S, (D1)
where we have used that V,Hg" =V k, that
V.GH*?") = 1HV v+ v'HV H = 1H*V 0" + v, HV k*
= TH*V 0" + V (Hkvy,) — HKV v, — 0,V HK®
= H(Ag"H — k)V v, — v,V HK” + V ,(Hk"v;)
= —V[HGG"H — k)v, — v,V HK + V ,(Hk" vy)
+ Vo (HGg"H — k™)v,) (D2)

and taken into account that the last two terms are null Lagrangians. Thus, variations
of the velocity field around the solution V of the form V 4 U lead to
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SulDFule; V1) = /F k {[~V.[H (39"H—k™)] — V.Hk"] e,
+ I[AH —H (3Hg” — k™) k) N} - U dS. (D3)
Equivalently, taking variations of the dissipation potential (3.2), we get

5uDsldh; V] = / 2TV oty — k) dS
r,

= — / 2uV ,d%u, dS — / 2udu,ky, dS
Iy

I

= - / 214V ,d”e; + ndky,NY - U dS, D4
I;

where, again, we have set to zero null Lagrangians. Variations of the inextensibility
constraint result in

I

Su / ytrddS = / Y (Vi —u,HydS = — [ (Voye' +yg®kaN)-UdS.  (D5)
I; I;

Finally, the last two terms have trivial variations

6U/PN-VdS:/PU-NdS, (D6)
r r
and
SuPle; V]=—/ F.UdS. D7)
I

Collecting all these variations, we have the following statement of stationarity

0=6yL = / [F+ [V, [H (1g"H + k) +210” + yg®] — V.HK] e
r,
+ [V VoHg" — [H (3Hg" — k™) +2ud™ + y g™ | ko — P] N} - U dS

= — [ {V,X‘+B}-UdS, (D8)

L

which should hold for all admissible variations U, where
V. 2= (V.0 —ktloYe, + (0ky + V0N, (D9)

from where one can identify

Y*=0",+ "N, (D 10)
with
o =kH(GHg" — k) +2ud™ + yg*, (D 11)
and
o' =—kg™”V,H. (D 12)
Finally,
B=F +PN. (D 13)
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Appendix E. Weak form of the three-dimensional nonlinear Seifert-Langer model

In this case, we focus on the stretching energy, dilatation dissipation and
inter-monolayer friction, since the rest of terms were already derived for an
inextensible monolayer (see appendix D). The rate of change of the stretching
energy is

D, Fslx; p*; va, v¥]

1 2

——f
:/ks [p*A+ dH)—1]1x |1+ dH) [ =V - (p*vF) + p*v,H
I;

3

1
:I:dpi(Avn + kabkabvn) _E(K)i(l + dH) - l)vnH

4

+ %V <([pT(1 &+ dH) — 11%v*) } dS. (E1)

5

Accounting for multiplicative factors, term 1 leads to

—V - (pFvH[p*(1 £ dH) — 11(1 £ dH)
=—(1+ dH)[p*(1 £ dH) — 11Vp* - v* — (1 £ dH)[p~=(1 £+ dH) — 1]p*V - v¥,

(E2)
and term 5 to
IVe([p* (1 £ dH) — 1PPv") = (1+ dED)[p™(1 £ dH) —1]Vp* - v*
+ p*d[pT(1 + dH) — 1]VH - v*
+1p*(1 £ dH) — 1PV - v™. (E3)

Summing them, we note that their first terms cancel out with each other. Rearranging
the last terms, we get

1 =[p* (1 £ dEOPIV - v* £ p*d[p™(1 + dH) — 1]VH - v*
=11 —[p*(1 £ dH)PIV - v* FhV{p™d[p* (1 + dH) — 1]}»*
F ptd[pt(1 £ dH) — 1]k : Vi, (E4)

plus null Lagrangians, which we neglect for the sake of simplicity since we are
dealing with a closed surface. Let us define the stress tensors

(05)" = (a5)™ + (05", (ES)
(05 = 3ks[1 — [p*(1 £ dH)1g”, (E6)
(05,)" = Fksp™dlp™ (1 £ dH) — 11k, ET)
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and the normal stress vector

(05" = FhsV,{g”p dlp™(1 £ dH) — 1]}
= —ks{£g"V,0 dlp* (1 £ dH) — 11 £ g"p™dV,p*(1 £ dH) + g” (0™ d)*V,H)
= —ks{g”d[20™(1 £ dH) — 11V,p* + 9" (p*d)’V ,H]}. (EB)

Then, multiplying equation (E4) by kg, we get
05 : Vo +kog, v*. (E9)
Terms 2 plus 4 lead to
ks{[p™(1+ dH) — 11p™(1 £ dH) — 1[p™(1 £ dH) — 1]}v,H = —a; :kv,. (E10)
Term 3, neglecting null Lagrangians,

tksdp* (Av, + kapk®v,)[p* (1 £ dH) — 1]
= ks{£A[p*d[p™ (1 £ dH) — 1]] £dp™[p* (1 £ dH) — 11kk}v,
=—{V -0, + 05, : k}v,. (E11)

Altogether, we can write the rate of change of the free energy as

D, Fslx; o= vay vF] = / {=[V - 05 —kag]-v*
I;

+[-V -0f — 05 :k]v,} dS. (E12)
Thus,
8ut ADFslx; p%5 vy, vE ]} = — / [V -0 —kai]-u*ds, (E13)
I
and
8u, ADFsx: ™5 vgy 05} = — / [V .04 + 05 tklu,dS. (E14)
I

From variations of the dilatation dissipation potential, we get

(SuiDD[X;pi;v,,,vi]:—/ AV - (trd*g)u* dSs, (E15)
I
and
80, Dolx; p%; v, vi]:—/ AV (tr d*g) : ku, dS. (E 16)
I

Finally, variations of the inter-monolayer friction dissipation potential lead to

8u=Dyilx; pEi v = :I:/ by(vt —v7)-u*ds. (E17)

I
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Appendix F. Nonlinear stability of variational time integrators based on
Onsager’s principle

We consider the variational time integrator introduced in §4.1. Let us now prove
that, for a homogeneous problem (P(X; V) = 0), the free energy is a Lyapunov
functional of the dynamics. We evaluate the Rayleighians

Xn+1 Xn+1 _Xn
R xeeh =780y p <X"2 A ) ’
ING ING ED)
F(X") F(X")
R'X"; X" = DX, 0) = ,
( ) N X" 0) Ap

where we have used that D(X"; 0) =0, as discussed in §3.1. Since X"*' minimizes
R", it is clear that R"(X"; X" — R*(X"; X") < 0. Then,
0 2 Rn(Xn; XnJrl) _ Rn(Xn; Xn)
.F Xn-H _ f X"
- = it" S (Xn;

n+l _ yn n+1y __ n
X X>>]-"(X ) .7-"(X)7 (F2)

A - At
where we have used that D(X"; (X"*! — X")/At") is positive. Therefore, we obtain
FX™H < FX™, (F3)

which shows that F is a Lyapunov functional of the discrete dynamics.

When the process operator is not trivial, i.e. 9, X # V, the approach above needs
to be modified. For those cases, we can keep V"'! as the variable of the discrete
Onsager’s principle and discretize the process operator in different ways. As a first
approach, we can consider a simple forward Euler approximation for the process
operator

Xn+l — X
X~ ———— =XV = X" = X"+ AT (XY™ (F4)

We can then rewrite (4.3) as

FXThY —FX")  FX"+ ACIIXHVT) — F(X")

F (F5)
At At
This approximation still retains the nonlinearity of J and is thus implicit in this sense.

We can now define the Rayleighian as

_ FX" 4 ACTTX")V'

A + DX VY 4P VT, (F6)

Rn(Xn’ Vn-H)

and solve
V! = arg minR"(X"; V). (F7)
\4

Finally, we can recover X"™! from (F4). With this simple forward approximation for
the process operator, however, the accuracy and stability of the integration can be very
limited. As a better alternative, we consider a backward Euler approximation of the
process operator, which involves solving

Xn+1 —_X"— Atnn(Xn+l)Vn+l — O, (F 8)
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together with the minimization of the Rayleighian
_ FX - ACTIXHY

At
+PX"; v, (F9)

R”(Xn, Xn+1; Vn-H) +D(X}'l’ VI’H-l)

That is, one needs to solve the system

0 =Xll+1 — X" — Atnn(xn-kl)vn-kl’
(F10)

Vit = arg minR(X", X"*1; V),
14

for X"*! and V"' simultaneously. It is easily shown that with any of these
discretizations, JF is also a Lyapunov function of the dynamics in the absence of
power input, thus retaining the nonlinear stability of the time-discretization scheme.

Appendix G. Spatial discretization and discrete equations for an inextensible
viscous monolayer with bending energy

G.1. Spatial discretization

To define the discretization of I" with subdivision surfaces, we consider a control
mesh made of triangles or elements, labelled by E=1, ..., N, whose vertices, with
positions {x;}}",, are called control points. For each triangle in the mesh, we define
the parametrization Y% (£) : I' — R?, with I" the reference triangle, as

vEE) =Y xB&), G1)

I€(E)!

where Bf are the subdivision basis function of node I at element E and (E)' is
the first ring of nodes surrounding the element. The atlas of charts formed by such
parametrizations in each triangle can be shown to define a C*-continuous surface
everywhere except at a finite number of points, the vertices with valence different
from 6, where it is C'.

Recall the ALE parametrization introduced in § 2.5.1. For the parametrization of the
surface I}, we can define the local charts W)E(‘;') following (G 1) with control points
{xo/}¥,. Analogously, we also define the fields

W& =" nOB &, M'E=> MB®. (G2a,b)

Ie(E)! Ie(E)!

The parametrization of the deformed surface I; then reads

VEE D= xuBiE + | > OB | | Y MkB®) | . (G3)
Ke(E)!

Ie(E)! Je(E)!

We note that, if we had used the normal to the reference surface N, instead of M,
because the calculation of N, already involves first-order derivatives of ¥y, we would
need I, be C? everywhere, which cannot be achieved with subdivision surfaces. This
is why we choose the field of directors as in (G2), where M; can be chosen to
approximate the true field of normals in a least-squares sense.
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To discretize density fields, we consider linear basis functions on the triangulation
Nf and write

pE) =Y pN; (&), (G4)
Ie(E)0
where (E)° is the zeroth ring of nodes of the element. We recall the Hodge

decomposition of v in (2.35) and discretize the scalar fields « and B with subdivision
basis functions so that d is square integrable

a®) = wBi), BE = BBIE). (G5a,b)

I€(E)! I€(E)!

To discretize y, a Lagrange multiplier field, the space of basis functions needs to be
chosen with care to ensure that the discretization spaces are compatible and satisfy
the discrete inf-sup condition (Brezzi & Fortin 2012). We consider a macro-element
approach where Lagrange multipliers are approximated using a mesh with one level
of coarsening (Santos-Olivédn et al. 2019). We denote this approximation on a coarser

mesh as .
y& = > vN®), (G6)

IG(E")O

where E° identifies a macro-element.

G.2. Discrete equations for an inextensible viscous monolayer with bending energy

Here, we show the application of our methodology, based on the variational time
integrator described in §4.1 and on the space discretization described above to the
model of an inextensible viscous fluid surface with bending elasticity (§3.1). We
define the following vectors of nodal coefficients

hy o ,3 1 Y1
h= : , a= : , b= : , §= : , (G7a—d)
%y, % g
containing the degrees of freedom describing the offset, the irrotational and solenoidal
vector potentials and the surface tension. Here N and N¢ denote the number of nodes

in the finer and coarser meshes respectively. The discrete Lagrangian, now a function,
can then be written as

L"(h,a, b, s)
Dy, Dw, D h—
1 1 . T hh ha hb "
=—Fu(h)+ h—H a' b’ D;, D.. D Aat
At” 2 Al‘” DT DT D
hb ab bb b
h—h 1
a

where the explicit form for the different terms is given next. The Helfrich energy is

N
Futh)=Y" / SH(BJ(h) ds, (G9)
E=1 7T
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where we have split integration on I as a sum of integrals over the curved triangles
EE, which are evaluated at the parametric domains I". Functions H(h) and J(h)
describe the mean curvature and the surface Jacobian in terms of the discretized
parametrization; these can be computed by plugging the form of ¥ (G3) in the
expressions for the curvature and metric in the natural or convected basis of the
parametrization. We have also defined the matrices representing dissipation and the
inextensibility constraint

v
Dl =1 / (M(h) - N(h))*|k(h)|*B B}J" &, (G10)
E=17T
N
[Dhaly = _”Z / M (h) - N(h)BEk(h) : VVB:J" dé, (G11)
E=1YT
N
(Dol =—p Y / M (h) - N(h)Bik(h) : V(V x B})J" d&, (G12)
E=1YT
N
[Daaly = “Z / VVBE: VVBE" dé, (G13)
E=1YT
N,
[Dapliy = 14 Z/ VVBF:V(V x B)J" dé, (G14)
E=1 YT
N
Dol =" [ (V¥ x BE®: (V¥ x B d, G 15)
E=1YT
N
[Quly=—>Y_ [ N{“(M-N)H(h)B}J" d&, (G 16)
E=1YT
N
[Q.ly = / N;°ABLJ" dE, (G17)
E=1 r

where, in the last two equations, the functions N;*, interpolating the surface tension
y are evaluated at the corresponding parametric point in the macro-element. We note
that V is the covariant derivative, calculated from partial derivatives in parametric
space and using Christoffel symbols (do Carmo 1992). We also note that we have also
discretized the rate of change of volume §2 as (§£2 — §£2")/At" instead of discretizing
equation (3.8) directly, similarly to our discretization of the energy release rate. This
leads to a discrete dynamics that keeps a constant volume by construction, up to
numerical error, regardless of the value of Af". To exercise this formulation, we
compute £2(h) using Gauss’ theorem on the surface

Q(h)=é/~1ﬁ(h)-N(h)J’1d’§. (G18)
F

We finally note that we use Gauss quadrature in the reference element I”, although
other integration schemes especially suited for subdivision surfaces have been recently
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proposed (Jiittler et al. 2016). The discrete version of Onsager’s variational principle
then leads to the saddle-point problem

(!, &t bt T Pty = arg min argmax £(1, e, f, t, S), (G19)
1S

lef

the stationarity conditions of which form a nonlinear algebraic system of equations,
which we solve using Newton’s method.

Appendix H. Discretization of mass conservation

We consider an implicit Euler scheme to discretize in time the process operator in
the transport problem as in (F8), which leads to

n+l __ n

o o
At
In this case, d and ¢ depend on (h, a, b), but we do not write it for simplicity. This
is a reaction-advection problem in p""! and its discretization with finite elements has
to be carefully considered, since Galerkin methods cannot deal with large convective
terms. Discretizing we obtain

+ " Mtrd4+c¢- Vo't =0. (H1)

Zp;H—l[NIE(l L AP trd) + Af'c - VNIE] =p"_ (HZ)
1

To deal with the convective term appropriately, we use the test functions
wy; =Ny + y,At'c - VN¥, (H3)

following a stream-upwind Petrov Galerkin method (Donea & Huerta 2003). This
method adds some numerical diffusion controlled by the parameter y,. The correspon-
ding weak form is

Mr! =s, (H4)
with
N
M = Z /(Nf + ¥ Af'c - VNY)[N,(1 + Af*trd) + At'c - VNI 1J dE, (H5)
E=1 YT
and
N
sy = Z ﬁ(Nf + ¥ Af'c - VN7) p"J dE. (H6)
E=1 YT

We note that M is not symmetric and M and s depend nonlinearly on (h, a, b) through
d, ¢ and J. The coupled system of finite element equations involving balance of linear
momentum and mass transport, corresponding to the spatial discretization of (F 10),
are solved simultaneously using a Newton—Raphson method.
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