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SUMMARY
The constrained coverage path planning addressed in this paper refers to finding an optimal path
traversed by a unmanned aerial vehicle (UAV) to maximize its coverage on a designated area,
considering the time limit and the feasibility of the path. The UAV starts from its current position
to assess the condition of a new entry to the area. Nevertheless, the UAV needs to comply with
the coverage task, simultaneously and therefore, it is likely that the optimal policy would not be
the shortest path in such a condition, since a wider area can be covered through a longer path. From
the other side, along with a longer path, the UAV may not reach to the target in due time. In addition,
the speed of UAV is assumed to be constant and as a result, a feasible path needs to be smooth enough
to support this assumption. The problem is modeled as an Epsilon-constraint optimization in which a
coverage function has to be maximized, considering the constraints on the length and the smoothness
of the path. For this purpose, a new genetic path planning algorithm with adaptive operator selection
is proposed to solve such a complicated constrained optimization problem. The proposed approach
has been compared to some classical approaches like, a modified version of the Artificial Potential
Field and a modified version of Dijkstra’s algorithm (a graph-based approach). All the methods are
implemented and tested in different scenarios and their performances are evaluated via the simulation
results.

KEYWORDS: Coverage, Path planning, Unmanned aerial vehicle, Genetic algorithm, Artificial
potential field, Dijkstra’s algorithm

1. Introduction
Monitoring a designated area while path planning between two points in that area can be considered
as a typical problem of monitoring and surveillance.1,2 For instance, consider a lifeguard unmanned
aerial vehicle (UAV), which is called UAV1 from now on, monitoring a designated area over a seashore
to warn human lifeguards about swimmers who are in danger. When a swimmer is going to enter the
designated area from a neighboring area, the UAV that is responsible for monitoring the neighboring
area informs the UAV1 about the expected crossing point. In this situation, UAV1 has to move toward
the expected crossing point at the border of two adjacent areas in order to take over and assess the
condition of the newly entered swimmer. If the hand over time available to UAV1 to reach the crossing
point is greater than the shortest path time, then UAV1 has extra time to cover and monitor a wider
portion of its designated area while moving toward the incoming swimmer. Thus, UAV1 may try to
maximize the covered area while moving toward the incoming swimmer. This can be realized as an
example for coverage-based path planning (CBPP) problem.

The classical motion planning techniques typically seek for a collision free path between a starting
point and an endpoint that satisfies certain optimization criteria.3,4 The performance of the classical
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methods such as cell decomposition, potential field, visibility-based, and PRM highly depends on the
specifications of the environment. For example, the Artificial Potential Field (APF)5 is a real-time path
planning method. This approach has also some limitations such as: falling into local minima, non-
smooth movement, oscillations in narrow passages, and oscillations due to obstacles.6 Researchers
have proposed new versions of potential field method to avoid local minima.7−11 APF has also got
many successful results in solving the path planning problem.12−15 Another category of classical path
planning approaches is the graph-based path planning. In this category, an environment is represented
by a graph in which, the shortest path algorithms can be used to find the optimal path. For instance,
Dijkstra’s algorithm16 finds a shortest path in a graph with non-negative weights. The graph-based
approaches have got acceptable results in on-line path planning problems.17,18

The path planning problem can be molded also as a constrained optimization problem. However,
for large-scale environments and complex objective functions, the classical approaches like linear
or non-linear programming methods are not well-suited to solve such a problem. In such cases,
evolutionary and AI-based methods have been applied to the path planning problem like artificial
neural network, fuzzy logic, particle swarm optimization, genetic algorithm (GA), and hybrid
methods.19−24 GA has been applied to solve path planning problems adaptively in dynamic and
uncertain environments.20,25,26

Different variants of GAs have been developed to solve single and multi-objective optimization
(MOO) problems. Single objective methods can find the minimum distance collision free path, while
multi-objective methods are utilized to find an optimal path considering multiple performance criteria.
In ref. [25], a single objective optimization is proposed that combines the length of the path and a
penalty factor to find the minimum distance collision free path. In ref. [27], this method is improved
to cancel the penalty factor. A multi-objective method is proposed in ref. [20] with three objective
functions, i.e., length, smoothness, and safety, to evaluate the optimality of a path. These objective
functions are introduced in refs. [28-30].

Coverage planning for bounded regions has received much attention in the past two decades because
of its application in mine hunting, vacuum cleaning, harvesting, lawn-mowing, and automated painting
problem.31 In ref. [31], various coverage patterns such as Back and Forth, Spike, Squarel, and Spiral
have been described for two-dimensional (2D) spaces. These patterns have got some successful results
in various environments.32,33 However, the path planning for simultaneous rescue and coverage tasks
is not studied in the aforementioned research works.

In this paper, we consider the scenario of monitoring a rectangular environment by a UAV. The aim
is to determine a path between the current position of the UAV and an arbitrary goal point that satisfies
the hand over time and smoothness constraints, as well as monitoring the maximum area with greater
priorities while traversing the path. Such a problem is called CBPP. CBPP is a topic related to large
area search and target tracking. In a large area search, instead of covering the whole environment via
a fixed coverage pattern, UAVs tries to maximize the coverage area.34 Target detection and tracking
encompasses a variety of decisional problems such as surveillance, monitoring, coverage planning,
search, patrolling, and pursuit-evasion along with others.35 In such a view, CBPP trades-off between
coverage and take over/tracking tasks.

We propose different approaches to solve this problem and compare their results: Two methods are
based on the GA from the evolutionary approaches, one based on APF from the classical approaches
and another approach based on Dijkstra’s algorithm from graph-based approaches. To evaluate and
compare the results, we define three criteria, i.e., “Length,” “Smoothness,” and “Coverage,” to measure
the optimality of the path. The length and the smoothness of the path are considered as the constraints,
while the coverage is considered as the objective function that needs to be maximized.

The evolutionary methods work off-line, and the two other proposed methods work on-line. Most
of the off-line algorithms correspond to global path/trajectory planning, where the coordinates are
predefined before flying. On the other hand, on-line path/trajectory planning corresponds to the local
planning approach class, in which decisions are to be made based on new information during operation.
The proposed off-line method based on GA gives an initial plan when a UAV faces two simultaneous
tasks. By neglecting the speed of a targeted swimmer with respect to the UAV (the speed of swimmer is
considered to be much slower than the UAV) and assuming that during the operation, i.e., monitoring
and moving toward the goal, no other event happens, the optimal policy given by the off-line method
works well. On the other hand, since the off-line method has processing time limitation, the on-line
method has to be chosen when the path needs to be updated during the tasks due to new observations.
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Fig. 1. (a) UAV has a field of view. (b) Priority weights, orange cells have not been visited recently.

The organization of the paper is as follows: In Section 2, we describe the problem statement
and introduce the optimization problem. To solve the optimization problem based on the genetic
programming approach, we introduce a new chromosome encoding method for path planning namely
action-based encoding (ABE) and compare its results with a common chromosome encoding named
node-based encoding (NBE),20 which are described in Sections 3 and 4, respectively. Also, we propose
a modified APF to solve the problem with a critical parameter to deal with the coverage task (Section
5). In Section 6, the environment is represented by a graph and appropriate edge – weights are
determined to solve CBPP problem by Dijkstra’s algorithm. In experiments (Section 7), the results
of four different methods, i.e., ABE, NBE, APF, and Dijkstra’s algorithm are compared. Section 9
concludes the paper with discussions on the results and giving further research insights.

2. Statement
Consider a lifeguard UAV monitors a designated area according to a coverage pattern shown in Fig.
1(b). In an arbitrary time, when a new swimmer is going to pass in the designated area, the UAV
faces two tasks; the incompletely covered area needs to be covered and a new swimmer needs to be
monitored. To assure the security of the swimmer, the UAV should reach the swimmer in a limited
time, which is called the hand over time. Let vUAV be the speed of the UAV which is assumed to be
fixed. The speed of the swimmer is in fact much slower than the speed of the UAV. Therefore, the
UAV reaches the swimmer before he/she makes a notable movement. Based on this fact, we assumed
the swimmer as a fixed point.

Based on the above scenario, we can consider that the UAV traverses a path between two fixed
points. The aim is to find a path with maximum coverage, as well as acceptable length and smoothness.
Furthermore, since the vertical movement of the UAV is ignored, the environment is considered to be
a 2D grid space with fixed width and height. The UAV starts from a fixed point (S) to the goal point
(G) as shown in Fig. 3. To find the optimal path between these two points, three criteria are defined
for the optimization problem.

2.1. Coverage
The common task of a UAV is to visit the environment uniformly as much as possible according to
a pattern like the Back and Forth pattern (Fig. 1(b)). At each cell, the UAV is able to cover a square
region, with sizes lw by lw, as shown in Fig. 1(a).
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Fig. 2. HP for a sample path.

Let us assume that the UAV reaches the coordinate (x, y) at time tv . If the current time is given by
tc, the priority weight of the cell corresponding to the coordinate (x, y) is denoted by

W
(x,y)

(tc, tv ) = tc − tv (x, y)

tc
(1)

where tv (x, y) is the last visited time of cell (x, y).
As a special case, if a cell has not been visited yet, its priority weight is equal to one.

⎧⎪⎨
⎪⎩

HP
(xi,y j ) = 0 Cell has not been visited through path P

0 < HP
(xi,y j ) < 1 Cell has been visited partially through path P

HP
(xi,y j ) = 1 Cell has been visited once or more through path P

(2)

As shown in Fig. 2, when the UAV traverses a path P, each cell could be at three situations: visited,
partially visited, and unvisited. HP is a measure to indicate the portion of a cell which is visited. The
coverage value corresponding to path P is defined by the summation of priority weights of the cells
as follows:

fc(P) =
∑

∀(xi,y j )

W(xi,y j )H
P
(xi,y j ) (3)

The function fc is considered as the main objective function, in which the optimal path maximizes
the function while satisfying the length and smoothness constraints, simultaneously.
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2.2. Length
Path P is assumed as a concatenated line with n junctions and n–1 segments (Fig. 3). The length of P
can be calculated as follows:

fl (P) =
n−1∑
i=1

di (4)

di =
√

(xi+1 − xi)2 + (yi+1 − yi)2 (5)

where (xi, yi) is the coordinate of a junction and di is the length of the segment between two consecutive
junctions, i and i+1.

Let define the maximum hand over length between the UAV and the swimmer as follows:

lhover = vUAV × thover (6)

where thover is the hand over time. Therefore, for any feasible path P, we need to satisfy the constraint
fl (P) ≤ lhover.

2.3. Smoothness
Although the absolute value of the velocity of the UAV is considered to be fixed, nevertheless, in the
sharp turns, the direction of velocity changes significantly. Therefore, the UAV needs to change the
acceleration vector accordingly which may result in applying a big force to the UAV which is not
desired. To avoid this situation, the smoothness of the path is an essential factor that needs to be taken
into account in the path planning. The smoothness function is defined as follows:

fs(P) = π − n−1
min
i=2

(θi) (7)

where θi ∈ [0, π] is the angle between two line segments which is shown in Fig. 3. In fact, by
minimizing fs(P), we have a smoother path. Therefore, we put the constraint fs(P) ≤ δ to reach to a
desired smoothness of the path.

To show that minimizing the smoothness function fs(P) results in minimizing the acceleration at
turning points, consider the velocity vectors shown in Fig. 3. Hence, we can write the following:

|ai| = |�vi|
�t

= |vi − vi−1|
�t

=
√

|VUAV|2 + |VUAV|2 + 2|VUAV|2 cos(θi)

�t

=
|VUAV|

√
2 + 2(2cos2

(
θi

/
2
) − 1)

�t
= 2 |VUAV| cos θi

/
2

�t
∀ 0 ≤ θi ≤ π (8)

From the other side, minimizing the smoothness function fs(P) is equivalent to maximizing min
i

θi

such that fs(P) = π − min
i

θi ≤ δ or π − δ ≤ min
i

θi ≤ π . Therefore, we have

0 ≤ cos(min
i

θi

2
) ≤ sin(δ/2) (9)

Therefore, the acceleration |ai| is minimized by minimizing fs(P) .
In what follows, the evolutionary, classical, and the graph-based methods are implemented to solve

the CBPP problem.

3. Genetic Algorithm
GAs have been fairly successful in solving discrete, non-linear, and ill-behaved optimization problems.
In our case, the optimization criteria: Coverage, Length, and Smoothness are some non-linear and
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Fig. 3. Simple path with elements θi, xi, yi, and di.

non-differentiable functions of the path defined in a discretized environment. Therefore, the use of
GA seems to be reasonable for solving such a complex optimization problem.

GA is initialized by a set of random population. The population is evaluated by the fitness function.
In each generation, the higher reproduction probabilities are assigned to the individuals with higher
fitness. This procedure is repeated until a given termination condition (number of iterations or
improvement of solutions) is met.

Traditionally, GAs use binary strings as a chromosome and two basic genetic operators Crossover
and Mutation to produce offsprings.36 The grid-based representation is a trick to simplify genetic
encoding, calculation of distance, and addressing the path planning process. In this paper, relying on
the grid-based representation, a new encoding method is introduced namely ABE, which is discussed
in this section.

Another encoding method in grid-based representation is the NBE. NBE is also utilized to solve
CBPP in Section 4 and is compared to ABE in Section 7. Each encoding mechanism needs some
specific operators. We proposed seven new ABE operators in Section 3.2 and reviewed seven NBE
operators (Section 4). The objective functions are adopted to build up an appropriate fitness function
in Section 3.3.

In a few first generations, GA is in the phase of random walk, and then step by step it continues
until the population converges to a near optimal set. Therefore, operators at the first and at the final
generations have different performance. Adaptive operator selection (AOS)37 is a performance-based
operator selection method, which helps GA to select operators optimally at each generation (Section
3.4).

3.1. Chromosome encoding and initialization
Representation of chromosomes is a critical aspect in GAs. A chromosome is usually represented by
a string of the same elements. In our model, we construct a chromosome as a sequence of actions and
call it ABE.

Each cell is connected to its four neighboring cells: “Up,” “Down,” “Left,” and “Right” cells as
shown in Fig. 4(a). In each cell, one of those actions is chosen by the UAV to go along a path.

Consider a path started from S (xs, ys) and ended at G (xg, yg) as shown in Fig. 4(b). For
this sample path, the chromosome is represented by a string that contains first letter of actions:
“UUUUUURRUUUULLLL.”

The shortest distance, between start and goal point is defined as

dmin = |dx| + ∣∣dy

∣∣ (10)

where dx = xg − xs, dy = yg − ys.
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Fig. 4. Sample path in ABE. (xs, ys) = (6,3) and (xg, yg) = (4,13). White arrows are opposite actions.

Shortest path: The path has exactly |dx| and |dy| horizontal and vertical moves, respectively.
Therefore, in this case, the length of the path is equal to the distance, i.e., l = dmin.

Opposite actions: The path may contain opposite actions of types: U/D(1) or R/L.(2) If a path has
opposite actions, its length is greater than the length of the shortest path, i.e., l > dmin. For example,
in Fig. 3(b), dx = −2, dy = 10, this path contains two R/L opposite actions.

Random organize path: A random organize path is constructed by |dx| number(s) of R or L actions,
|dy| number(s) of U or D actions and random number(s) of opposite actions R/L or U/D.

The initial population is a set of random organize paths with npop numbers.

3.2. Genetic operators
Input and output of the ABE operators are organized paths. Such operators may change the number
and type of opposite actions and may change the sequence of actions.

Based on this idea, we introduce seven operators as shown in Fig. 5.

(a) Reversion: Randomly selects two actions and reverses sequence of actions that are between
them.

(b) Inversion: Randomly selects two actions and exchanges them.
(c) Crossover: If two paths have an intersection, exchanges the parts after intersecting point.
(d) Add U/D: Adds a U/D pair randomly placed in the path sequence.
(e) Add R/L: Adds an R/L pair randomly placed in the path sequence.
(f) Improvement: Adds a pair of opposite action (U/D or R/L) randomly placed in the path sequence

in which, the offspring have a better fitness value.
(g) Deletion: Deletes a pair of U/D or R/L to increase the fitness.

3.3. Evaluation
MOO is an approach to the multi-criteria decision making.38,39 One of the most popular MOO methods
is ε−constraint. This method reformulates the problem by keeping only one objective function and
constraining the rest of the measures. To exploit this method in our problem, we keep Coverage
as the main objective function and consider Length and Smoothness measures as the optimization

(1)Up/Down.
(2)Right/Left.
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Fig. 5. ABE operators.

constraints. Therefore, the optimization problem is defined as follows:

⎧⎨
⎩

max : fcoverage(P)
subject to : fl (P) < εl

subject to : fs(P) < εs

(11)

where εl and εs are upper bounds of Length and Smoothness constraints, respectively.
Based on this, there are two path types, i.e., feasible and infeasible. A Feasible path (P f ) satisfies

all the constraints and an infeasible path (Pi) violates at least one of them.
We impose two kinds of penalty factors in the fitness function to distinguish between feasible (P f )

and infeasible (Pi) paths as follows:

{
F (P f ) = fcoverage(P f )
F (Pi) = fcoverage(Pi) − Cl ( fl (Pi) − εl ) − Cs( fs(Pi) − εs)

(12)

where Cl and Cs are the penalty factors. Therefore, considering F (g) as the value of the fitness function
at gth generation, the generation g is evaluated as follows:

fR = 1

gmax

∑gmax

g=1

F (g)

F (gmax)
(13)

3.4. Adaptive operator selection
Multi-operator genetic algorithm (MO-GA), which is used in this research, takes the advantage of
different crossover and mutation operators. In the case of MO-GA, it is well-posed to use an adaptive
operation selection approach to select the operators optimally in each generation.

AOS has been used in MO-GAs. In AOS, the optimal probability of applying an operator is learned
by some adaptive rules. This method examines the impact of using different operators by a credit
assignment mechanism to prepare a reward for each operator. Operator selection parameters are
updated at each generation by using this reward. In this method, the difference between fitness of
offspring and parent is defined as a credit.
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Fig. 6. Sample ABE path in Back and Forth (εl = 28εs = π/2) and Squarel (εl = 28εs = π/2) .

Based on the credit assigned to an operator, the probability of selection for each operator is adjusted
based on the Adaptive Pursuit40 as follows:

q̂i,t+1 = (1 − α)q̂i,t + αrt (14)⎧⎨
⎩

i∗ = argmax
(
q̂i,t , i = 1, ..., K

)
si∗, t+1 = si∗,t + β

(
1 − (K − 1)pmin − si∗,t

)
si, t+1 = si,t + β

(
pmin − si,t

) (15)

where q̂i,t is the estimate of ith operator reward at step t, α is the adaptation rate, i.e., 0 < α ≤ 1,
and rt is the instant reward. K is the count of operators and i∗ is argument of an operator
that has maximal reward estimate at step t that we call it winner operator. Si, t is the operator
probability of ith operator at step t , also Si∗, t is operator probability of winner operator at
step t, β is the learning rate, i.e., 0 < β ≤ 1, and pmin is the minimum probability to select an
operator, i.e., 0 < pmin < 1/K . For example, Fig. 6 shows the snapshot of ABE in two coverage
patterns.

4. Node-Based Genetic Algorithm
NBE is a well-known approach in grid-based representation.20 This method attaches a number
to each grid and constructs a chromosome using a string of these numbers. As shown in Fig.
7, a path is a concatenated line started from S toward G. A sequence of the nodes from (v1)
to (vn) constructs a chromosome. In this chromosome, v1 and vn are fixed and the other nodes
are variable. For example, the sample path in Fig. 7 is represented by a chromosome shown
as “186-176-118-43-35.”

ABE enforces the UAV to move through four sides of each cell, but NBE does not have this
limitation, therefore, grid representation helps it to find the nodes and picks them to create a path.

The population is initialized with chromosomes which have a random number of intermediate
nodes. We use seven types of genetic operators, i.e., Crossover, Mutation, Deletion, Repair_line,
Improvement, Smooth, and Swap,20,25,41 which are shown in Fig. 8. The operators change the
intermediate nodes of a chromosome both to explore the environment and to reproduce more effective
chromosomes. For example, Fig. 9 shows snapshots of NBE in the two coverage patterns shown
in Fig. 6.
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Fig. 7. A sample path in the orderly numbered NBE.

5. Artificial Potential Field Method
In the APF approach, it is assumed that the UAV moves under an artificial force field. The artificial
field includes two kinds of the forces. The first one that we call it priority weight force is designed
to maximize the desired objective function. The second force, which is called toward the goal force,
guarantees that the UAV finally end up to the goal point.

5.1. Priority weight force
Naturally, a higher priority needs to be assigned to the areas those have been visited lately. So, we
define the priority weight force as follows:

fpw(xu, yu) =
∑

(xp,yp)∈N

kp f (xp, yp) (16)

where

f(xp, yp) = W(xp,yp)∣∣dpu

∣∣ �dpu∣∣dpu

∣∣ (17)

and

�dpu = (xp − xu)�i + (yp − yu)�j (18)

(xp, yp) represents the coordinates of a grid cell, W(xp,yp) is its priority weight, (xu, yu) shows the
coordinates of the location of the UAV, and N is a set of neighboring grids of (xu, yu). �i, �j are the
unit vectors pointing to +x and +y directions, respectively, and kp is an indicator value to select
the greater force as below:

For two grid cells, p and q with coordinates (xp, yp) and (xq, yq) and indicators kp and kq: if ∠ �dpq =
±π and | f (xp, yp)| ≥ | f (xq, yq)| → kp = 1, kq = 0. �dpq = (xp − xq)�i + (yp − yq)�j. This would

https://doi.org/10.1017/S0263574718000139 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574718000139


914 Constrained coverage path planning

Fig. 8. NBE operators.

Fig. 9. Sample NBE path in Back and Forth (εl = 28. εs = π/2) and Squarel (εl = 28. εs = π/2) .

help the approach to avoid local minima, because the sum of two forces with opposite directions is less
than one of them. For example, in Fig. 10 ∠ �dpq = π and | f (xp, yp)| > | f (xq, yq)|, so kp = 1, kq = 0.

Since the range of priority weight force fpw(xp, yp) changes by the size of the grid neighbors N ,
we normalize this force to become comparable with the toward the goal force

Fpw(xu, yu) = fpw(xu, yu)

f max
pw

(19)

where f max
pw is the maximum value for fpw(xu, yu) at the grid neighbors N . Thus, we have 0 ≤

|Fpw(xu, yu)| < 1.
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Fig. 10. Priority weight direction example: | f (xp, yp)| = 1/2
√

2, | f (xq, yq )| = 0.1/3
√

2.

5.2. Toward the goal
The UAV may not reach the goal by impact of Priority weight force. Therefore, we need an attraction
force toward the goal to guarantee the path ends up at G. We set a uniform force toward the goal at
all of the environment as follows:

Ftg(xu, yu) =
�dgu∣∣dgu

∣∣ (20)

�dgu = (xg − xu)�i + (yg − yu)�j (21)

where (xg, yg) are the coordinates of the goal point and (xu, yu) are coordinates of the location of the
UAV.�i and �j are the unit vectors at +x and +y, respectively, and |dgu| is the magnitude of vector �dgu.

The total force is determined by the weighted combination of the two forces as below:

F (xu, yu) = (2 − C)Ftg(xu, yu) + CFpw(xu, yu) (22)

where C is the coverage parameter, i.e., (0 ≤ C < 1).
The total force has two parts. The first part is the effect of the toward the goal force, and the second

is effect of the priority weight force. If at each point (xu, yu), the magnitude of (2 − C)Ftg(xu, yu)
is greater than the magnitude of CFpw(xu, yu), the distance between the UAV and G point will be
decreased step by step, and finally the path ends at the G point. This is proved as follows:

Proof:

|Fpw(xu, yu)| < |Ftg(xu, yu)| = 1
C|Fpw(xu, yu)| < (2 − C)|Ftg(xu, yu)|
|CFpw(xu, yu)| < |(2 − C)Ftg(xu, yu)|

By increasing the coverage parameter C, the path covers areas with higher priority weights. For
example, Fig. 11 shows the snapshot of APF in the two coverage patterns used in the previous two
methods.
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Fig. 11. Sample APF path in Back and Forth and Squarel.

Fig. 12. Sample graph.

6. Dijkstra
Shortest path problem is a well-known topic in the graph theory. E. W. Dijkstra in 1959 proposed an
algorithm to solve the shortest path called Dijkstra’s Algorithm.16 This method is modified to find a
suboptimal path in a graph with non-negative weights. This method can be used in the path planning
problems as well. There are three critical elements in a graph, i.e., “Vertex,” “Edge,” and “Weight.”

In our grid environment, each cell is connected to its four neighbor cells, i.e., “Up,” “Down,” “Left,”
and “Right” cells. Each cell is a vertex and connection between cells is assumed as the edge (Fig. 12).

The weight values are defined to take into account the coverage value in the path planning problem.
Figure 13 shows covered cells by move at four sides. The value of coverage toward each of four
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Fig. 13. Covered cells by Right, Left, Up, and Down movement.

directions is considered to be the sum of the weights corresponding to the covered cells as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

W R
(x,y) = ∑y+m

i=y−m W(x+m+1,i)

W L
(x,y) = ∑y+m

i=y−m W(x−m−1,i)

W U
(x,y) = ∑x+m

i=x−m W(i,y+m+1)

W D
(x,y) = ∑x+m

i=x−m W(i,y−m−1)

(23)

where W(x,y) is the priority weight of cell (x, y). m is defined as m = (lw − 1)/2, where lw is the side
length of the field of view (Fig. 1(a)). W R

(x,y) is sum of the priority weights of the covered cells by
Right move, i.e., 0 ≤ W R

(x,y)
≤ lw.

The weights of the four edges (Fig. 12) are defined as below:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ER
(x,y)

= K − W R
(x,y)

EL
(x,y)

= K − W L
(x,y)

EU
(x,y)

= K − W U
(x,y)

ED
(x,y)

= K − W D
(x,y)

(24)

where the constant K is an upper bound for coverage value, i.e., K > lw. By this definition, the shortest
path in the graph G(V, E) is equivalent to the higher coverage value in the path planning problem. So,
Dijkstra’s algorithm finds such a path with higher coverage value. For example, Fig. 14 shows the
snapshot of Dijkstra’s algorithm in the two coverage patterns used in the previous three methods.

7. Experiment
In this experiment, the proposed methods: MO-GA (ABE and NBE), APF, and Dijkstra’s algorithm
are tested in different coverage patterns – Back and Forth and Squarel – and their performances are
compared via simulation results. The aim is to find the optimal path from a start point S to a different
arbitrary goal points G. To ensure the robustness of the results to variations of the tuning parameters,
we have implemented the methods along with different values for parameters and used t-test method
to show the statistical significance of the results.

Let consider fl and fs as the cost functions and fc as the profit function of the methods as introduced
before. Also, fR is added to compare generation results in GA.
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Table I. Parameters and evaluation functions.

Method Variable parameters Fixed parameters Cost functions Profit functions

ABE εs, Nl

pmin = 0.05, pop = 50
gmax = 100, α = 0.9
β = 0.9,Cs = Cl = 1000

fl , fs fc, fR

NBE Nl fl , fs fc, fR

APF C – fl , fs fc

Dijkstra – – fl , fs fc

Fig. 14. Sample Dijkstra’s algorithm path in Back and Forth and Squarel.

Since only in GA, there is a mechanism to set upper bounds on the cost functions, first we solve the
problem by APF and Dijkstra’s algorithm, and then we obtained the corresponding cost of the resulted
paths. Finally, we set those costs as the upper bounds on the cost functions in the GA methods.

We divide the parameters into two types: fixed and variable parameters. Fixed parameters may be
changed based on the specification of environment, so those are set to appropriate values by trial and
error and have same values in all experiments. However, the variable parameters are set to appropriate
values at each experiment.

εl is defined as follows:

εl = (1 + Nl )dmin (25)

dmin =
{ |xg − xs| + |yg − ys| for ABE√

(xg − xs)2 + (yg − ys)2 for NBE
(26)

where (xs, ys) and (xg, yg) are the coordinates of start and goal point, respectively. Nl ≥ 0 determines
the upper bound of Length with respect to the shortest path. Fixed and variable parameters are presented
in Table I.

7.1. Results
First, we slip the variable parameters to get different cost and profit results. Increasing the parameter
Nl produces longer paths with a wider covered area. Also, finding an optimal solution among the
longer paths needs more computation. As we expected, Fig. 15 shows higher Nl , produces higher fl

and fc and lower fR. The results for NBE and ABE methods are shown in Figs. 16 and 17. Increasing
Nl causes same effects in both NBE and ABE. Increasing εs provides more relaxation on the angels.
This means that the path solutions with sharper turns are likely to be selected. It should be mentioned
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Fig. 15. ABE results in two cost and two profit functions.

Fig. 16. NBE results in two cost and two profit functions.

that increasing εs > π/2 had no effect on the results, so it is deduced that the optimal solution does
not have any angle with θi < π/2 . Coverage factor C is a single design parameter in APF. Increasing
this parameter builds stronger effect for priority weight forces. Therefore, the paths will be longer
with sharper turns and with wider covered area. It should be mentioned, this method does not have
any generation in its construction, so we assumed the same results for all hypothetical generation by
setting fR = 1 .

7.2. Comparison
Figure 18 shows average ranges of the cost and the profit functions. F min

L and F min
C are average of

Length and Coverage of shortest paths, respectively. ABE and NBE from the GA methods have the
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Fig. 17. APF results in two cost and two profit functions.

Fig. 18. Bounds of cost and profit functions in four methods. Light green: Range of functions. Strong green:
Range of generated data by slipping the parameters. Squares show separate points.
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Table II. p-values from the t-test and comparison between ABE
and NBE at five points.

P-value Point 1 Point 2 Point 3 Point 4 Point 5

pFC 1E−2 1E−2 1E−2 2E−2 3E−2
pFR 2E−4 6E−3 9E−6 2E−7 1E−7

pFC and pFR are p-values for FC and FR results at five points as shown
in Fig. 18, respectively.

Table III. Comparison between Dijkstra’s algorithm
with ABE and NBE.

Method fC fR p fC p fR

Dijkstra 39.73 1.0 – –
ABE 38.67 0.99 0.75 3E-17
NBE 47.84 0.99 0.03 8E-26

p fC and p fR are p-values for fC and fR results at five
points, respectively.

Fig. 19. Comparison between ABE and NBE.

same structure. To achieve results with equal costs, first we get ABE results and then set εl and εs in
NBE.

As shown in Fig. 19, Length costs are equal in both methods, but Smoothness is better in NBE.
At these costs, the Coverage profit in NBE gets better values for all the cases, and the Rise profit has
better values in ABE.

All p-values from the t-test, as shown in Table II, satisfy standard constraint (p < 0.05) .
Dijkstra’s algorithm has no parameter in its construction, so similar to the previous comparison,

first, we get Dijkstra’s algorithm results and then set its costs as upper bound for ABE and NBE.
In this case, the Coverage profit of ABE is very close to Dijkstra’s and therefore, the p-values in the

t-test could not satisfy standard constraint, nevertheless, Dijkstra’s algorithm has greater mean value.
NBE resulted greater values in the Coverage. The Rise function fR = 1 in the Dijkstra’s algorithm is
better than others. The summary of comparative results is given in Table III.
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8. Conclusion
The CBPP problem presented in this paper is suitable for applications such as monitoring swimmers.
In such a scenario, a UAV starts from its location to an arbitrary goal location to visit areas that have
not been visited recently while satisfying the smoothness and length constraints. The shortest path is
not a good policy, because it cannot visit areas other than the one under the shortest path. Based on this
idea, we defined two cost factors, i.e., Smoothness and Length, and one profit factor, i.e., Coverage,
for each path. Thus, an optimal path has lower cost with higher profit.

Two evolutionary, i.e., ABE and NBE, and two classical, i.e., APF and Dijkstra’s algorithm, methods
were proposed, implemented, and compared. Evolutionary methods are off-line, and the result got
after several generations, so we added Rise function to compare results with each other and with
other classical methods. We introduced a new chromosome encoding, i.e., ABE, with seven genetic
operators and proposed another chromosome encoding, i.e., NBE, with ε-constraint method and
two penalty factors to combine cost and profit functions. In NBE, we can set exact upper bound
for each cost, however, in ABE upper bound of Smoothness may be picked from three values,
i.e., {0, π/4, π/2}.

We proposed two forces in APF and determined a parameter to balance between them. Dijkstra’s
algorithm has no parameter, but their edge weights are assigned, so that shortest path in graph is
equivalent to better value in the Coverage function.

If we want to generate a path, close to the shortest path, on-line methods are helpful, since they
generate paths with close to minimum travel time. On the other hand, to get better time-coverage
performance, off-line methods should be used. Generally, the off-line methods better maximize
Coverage profit and have wider range in both cost and profit functions. ABE has higher Rise profit
than NBE since it has limited search space. However, its Rise profit is lower than other on-line
methods.

In the future work, the on-line methods may be improved to have more parameters to result better
cost and profit functions ranges, compared to the proposed approached. Furthermore, the off-line
methods will be evaluated based on the processing time limit. ABE can be implemented for a lot of
path planning problems and more genetic operators may be introduced. In addition, if we consider
the effect of new discoveries of the UAV during the tasks, we need to update the path accordingly,
and therefore we need to take the advantage of on-line method in such a case.
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