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Wave propagation in channels with area changes is a topic of significant practical
interest that involves a rich set of coupled physics. While the acoustic wave problem has
been studied extensively, the shock propagation problem has received less attention. In
addition to its practical significance, this problem also introduces deep fundamental issues
associated with how energy in propagating large-amplitude disturbances is redistributed
upon interaction with inhomogeneities. This paper presents a study of shock scattering and
entropy and vorticity coupling for shock wave propagation through discrete area changes.
It compares results from computational fluid dynamics to those of one-dimensional quasi-
steady calculations. The solution space is naturally divided into five ‘regimes’ based
upon the incident shock strength and area ratio. This paper also presents perturbation
methods to quantify the dimensionless scaling of physical effects associated with wave
reflection/transmission and energy transfer to other disturbances. Finally, it presents an
analysis of the ‘energetics’ of the interaction, quantifying how energy that initially resides
in dilatational disturbances and propagates at the shock speed is redistributed into finite-
amplitude reflected and transmitted waves as well as convecting vortical and entropy
disturbances.

Key words: shock waves, aeroacoustics, supersonic flow

1. Introduction
This paper considers shock propagation through a channel with an area discontinuity. This
problem is one subset of the more general problem of wave reflection, transmission, and
dissipation in channels. A large knowledge base on this problem exists in the acoustics
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literature (Lighthill 1978; Fahy 2000; Lieuwen 2012), which is a useful starting point
for the subsequent discussion. Assuming linear, one-dimensional(1-D) waves with no
bulk flow, incident upon an area discontinuity with constant properties, approximate
expressions can be developed for the wave reflection and transmission coefficients. These
expressions are developed by assuming that the frequency is below the duct cutoff
frequency (otherwise, multi-dimensional waves can be excited at the junction) and that the
adjustment zone required for the multi-dimensional, evanescent disturbances to dissipate
is small relative to an acoustic wavelength (Lighthill 1978). By integrating the momentum
and energy equations over this adjustment zone, it can be shown that the unsteady
pressure and volume flow rate are approximately constant, leading to the resulting pressure
reflection and transmission coefficients in terms of the area ratio α (Kinsler et al. 2000):

T ≡ transmitted wave amplitude
incident wave amplitude

= 2α
α+ 1

, (1.1)

R ≡ reflected wave amplitude
incident wave amplitude

= α− 1
α+ 1

. (1.2)

Mean flow and nonlinearity add additional effects. The integral approach described
above can be readily generalized to include mean flow but also requires determining
the pressure distribution across the control surfaces. This pressure distribution is itself
controlled by whether the unsteady flow attaches to the bounding walls or separates (such
as when flow transitions rapidly from smaller to larger cross-sectional area ducts). In
either case, quasi-steady relations are typically invoked to develop analytical reflection
and transmission coefficients. If there is no mean flow, unsteady flow separation causes
the wave interaction problem to be intrinsically nonlinear (the acoustic wave dynamics
themselves are linear, but the matching conditions are nonlinear) and dissipative, due to
the conversion of some of the dilatational energy in the incident wave into rotational,
vortical energy. In the presence of mean flow, the leading-order dissipation term is linear
in disturbance amplitude. This wave dissipation phenomenon, including its nonlinear
amplitude dependence, has been extensively characterized in the literature (Zinn 1970;
Ingard & Sinhal 1975).

The propagation of shocks through varying channels has receivsed significantly less
treatment. This problem arises in several applications in which shocks move through
channels, including rotating detonation engines (Kailasanath 2020), blast shelters (Cacoilo
et al. 2018) and supersonic wind tunnels (Gounko & Kavun 2018). The shock problem
introduces two important processes that are not present in the above described acoustic
analyses – first, the wave dynamics themselves are intrinsically nonlinear and non-
isentropic, and second, the disturbance length scale is very short. Prior work suggests
that even for more complicated channels such as bends and bifurcations, the area ratio
between the primary and secondary duct dominates the strength of the transmitted shock
wave (Marty et al. 2018).

Studies by Rudinger (1960) and Oppenheim, Urtiew & Stern (1959) theoretically
analysed wave transmission and reflection resulting from the shock–area change
interaction; these works were later expanded upon by Salas (1991); we will utilize
Rudinger’s method (Heilg & Igra 2001) in this paper in calculating quasi-1-D
approximations. These works can essentially be thought of as finite-amplitude
generalizations of the work described above; i.e. they are quasi-1-D analyses that apply
conservation principles to the flows upstream and downstream of the multi-dimensional
adjustment zone in the immediate vicinity of the area change. As such, they neglect
the multi-dimensional ‘near-field’ phenomena occurring near the area change. These
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can include vortices, oblique shock diamonds, and transverse wave reflections (Mendoza
& Bowersox 2013). The nature of such phenomena, and the impact that they have on
estimates of reflected and transmitted wave strength, are not understood.

There is some evidence that the impact of such phenomena on the farfield is fairly minor;
Shoev et al. (2012), for instance, noted a roughly 5 % discrepancy between the quasi-1-D
calculations employed by Rudinger and Salas and the two-dimensional (2-D) averaged
Euler equations when calculating the Mach numbers of transmitted shock waves through
a microchannel. Similarly, Menina et al. (2011) observed that while these two methods
showed understandable discrepancies in the immediate vicinity of the area change after
the passage of the shock, these disagreements diminished sharply far beyond the area
jump. However, these works do not answer the question of how general these results are
and, even if they are generally true, why the discrepancies are small.

Furthermore, little is known about the energetics of this phenomenon. Travelling
acoustic waves have the well-known ‘equi-partition’ property, where average energy
density is evenly distributed between kinetic and internal energy associated with
the ‘acoustic/compressional/dilatational’ disturbance. Even in the linear acoustic case,
dilatational energy in the acoustic wave is not fully converted into the dilatational reflected
and transmitted acoustic waves; this is manifested in the fact that the acoustic energy
flux of the reflected and transmitted acoustic waves is less than that of the incident wave.
Rather, as noted above, some irrotational, dilatational disturbance energy is converted into
vortical disturbances where the energy is exclusively kinetic and manifested in rotational,
incompressible disturbances (Chu & Kovasznay 1957; Lieuwen 2012). Some energy is also
transferred into entropy disturbances if the wave interacts with a temperature variation.
For the shock problem, although the types of disturbances resulting from this interaction
are documented in the literature (Mendoza & Bowersox 2013), it is unknown how much
energy is deposited in such disturbances and how much remains with the transmitted and
reflected waves. These types of interactions between dilatational, vortical, and entropic
disturbances are potentially much more significant in the shock–area change problem
due to the much higher flow velocities behind the shock –which, via the Kutta condition
(Crighton 1985), lead to vortical disturbances–as well as the intrinsically non-isentropic
nature of shock waves. Menina et al. (2011) worked to address this gap by accounting
for the transport of turbulent energy during the interaction between a weak shock and an
abrupt area expansion, but this type of analysis has yet to be generalized to a broad range
of incident shock strengths and area changes or to entropy disturbances.

Analytical tools have been developed to quantify energy flux and source terms in flow
disturbances that can be brought to bear for this problem. Specifically, Myers (1991) has
developed formal expressions that explicitly show the form of disturbance energy for
arbitrary amplitude disturbances. This work has been generalized by Brear et al. (2012) to
include the effects of species transport and chemical reactions. These formulations are now
routinely applied in thermo-acoustic problems (Meadows 1997; Weiczorek et al. 2011), but
this formalism has not yet been applied to the shock–area change problem, to the authors’
knowledge.

The primary goal of this work is to study the propagation of shocks through channels
with discontinuous area changes. Within this larger goal, we have the following specific
aims.

First, we wish to further understand the types of multi-dimensional, unsteady phenom-
ena resulting from the shock–area change interaction and their impacts on the behaviour
of the reflected and transmitted waves. Towards this end, we studied the reflection and
transmission of shocks of various strengths through channels with various area changes
using both computational fluid dynamics (CFD), which can account for 2-D transient

1007 A21-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

38
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.38


T. Kickliter, V. Acharya and T. Lieuwen

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0
0 0.4 0.8

α

Mi

1.2 1.6

a

a

c

a

b

b

b
t

x
3

7 6

5

4

1

Transmitted

2
Incident

Reflected

I IV

IIIII

(a) (b)

Figure 1. (a) Diagram of wave patterns in parameter space. (b) Wave diagram for the case of a reflected shock
wave and a transmitted shock and expansion wave (zone IIIa). A thick line indicates a shock; a thin lineindicates
an expansion wave; a dashed line indicates a contact surface. Adapted from Salas (1991).

effects, and quasi-1-D methods, which do not. These phenomena are characterized across
five different ‘regimes’ governing the shock–area change interaction depending on the
area ratio and incident Mach number. We also compare CFD and quasi-1-D theory, and
show that they are in surprisingly good agreement, showcasing the viability of quasi-1-D
methods to predict the asymptotic strength of reflected and transmitted shocks despite
neglecting near-field phenomena. We utilize both inviscid and viscous calculations towards
this end, and compare how the regimes are affected by viscosity.

Second, we perform an asymptotic analysis of the quasi-1-D expressions (which are
generally implicit expressions) to derive explicit expressions for reflected and transmitted
wave energy, as well as accumulation and dissipation of energy in the nearfield. The latter
results are not only insightful in being presented in explicit form, but can also serve as
boundary conditions for larger-scale calculations. Finally, we analyse the energetics of the
interaction. To accomplish this, we use Myers’ expressions for disturbance energy (Myers
1991), analyse the relative changes in dilatational energy associated with the area change,
and examine the excited vortical and entropic disturbances.

2. Methods
This section is organized as follows. We begin by describing the aforementioned modelling
approaches used in this work: the quasi-1-D theory and 2-D CFD. We then describe the
methods used to analyse the energetics of the flow field in this problem. This includes a
description of disturbance energy as it pertains to this problem, and the methods that we
employ to decompose disturbance energy into three modes.

2.1. Modelling approaches
This subsection describes the quasi-1-D and 2-D methods used to analyse the flow field in
this problem.

2.1.1. Quasi-1-D theory
For this work, we used Rudinger’s method to perform quasi-1-D calculations of the flow
field resulting from the shock–area change interaction. Rudinger’s method relies on formal
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application of the Rankine–Hugoniot relations, coupled with physical arguments on the
nature of the contact surface, reflected shock wave and transmitted shock wave(s). In other
words, before a solution can be obtained, one must first determine the structure of reflected
and transmitted waves resulting from the interaction, through either experiment or appeals
to physical principles to screen out physically unrealistic patterns. Also, as with most
approaches relying on integral jump conditions, quasi-steady relations are used to match
the wave characteristics of the incident, reflected and transmitted shocks far upstream and
downstream of the area change where these disturbances are 1-D, implicitly neglecting the
accumulation terms.

Results are a function of two parameters: the incident shock wave Mach number Mi , and
the ratio of upstream to downstream channel areas α, as shown in figure 1. This parameter
space is naturally divided into four quadrants separated by two lines: the space to the left of
the vertical line (located at α = 1) represents area decreases, while the space to the right of
this line represents area increases. Meanwhile, the space below the horizontal line (located

at Mi =
[(
(7 − γ )+ √

(7 − γ )2 − 16(2 − γ )
)
/(4(2 − γ ))

]1/2 ≈ 2.07 for air) contains
cases for which the flow behind the incident shock is subsonic, while the space above the
horizontal line contains cases for which the flow behind the incident shock is supersonic.
Within each quadrant are various zones corresponding to specific wave structures. One
such pattern is shown in figure 1(b); this corresponds to the case of a single reflected and
transmitted shock as well as an expansion wave transmitted from the area change. These
structures are described next.

Zone Ia corresponds to the case of a weak shock (by which we mean that the shocked
flow is subsonic in the lab frame) and an area increase. In this case, the resulting interaction
produces a reflected expansion wave and a transmitted shock. As the strength of the
shock increases at a given area ratio, one moves into wave zone Ib. In this zone, the
expansion wave is strong enough to produce sonic flow upstream of the area decrease.
The resulting flow through the area decrease is choked, producing a standing shock wave
within the area expansion, in addition to the waves described in the previous case. Further
increasing the shock strength moves one into zone Ic. For this case, the pressure ratio
across the area change is sufficiently strong to unchoke it, causing the standing shock
to exit the area change as a second transmitted normal shock. If the incident shock is
strengthened further still, then quadrant II is reached. For sufficiently large area ratios,
the pattern corresponds to zone IIa, in which case the expansion wave in the previous
case is no longer possible, due to the supersonic flow behind the incident shock, leaving
only the two transmitted shocks. If the area ratio is too small, however, then the wave
pattern becomes that of zone IIb, in which case the pressure ratio across the area change
is too small to unchoke the area increase, resulting in a standing shock and a transmitted
shock.

Quadrant IV corresponds to the case of a weak shock (again, one that induces subsonic
flow in the lab frame) and a contracting duct. In this case, the resulting interaction produces
a reflected and transmitted shock only. If the incident shock wave is strengthened, then the
flow behind the area change is accelerated to sonic conditions. In this case, a transmitted
expansion wave is generated in addition to the waves present in the previous case, resulting
in a type IIIa pattern. For large enough area ratios, this pattern is also present in quadrant
III. If, however, the area ratio is small enough, i.e. zone IIIb, then there is only a transmitted
expansion wave and a transmitted shock.

To lay the foundation for the later section on approximate solutions derived via
perturbation analysis around the small (Mi − 1) limit for a calorically perfect gas, we
summarize the key equations next. For a quasi-steady 1-D flow across an area discontinuity
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given by the upstream and downstream areas A1 and A2, one has the following governing
equations:

ρ1u1 A1 = ρ2u2 A2, (2.1)

(p1 + ρ1u2
1)A1 = (p2 + ρ2u2

2)A2, (2.2)

h1 + u2
1

2
= c2

1
γ − 1

+ u2
1

2
= c2

2
γ − 1

+ u2
2

2
. (2.3)

Equations (2.1)–(2.3) describe the conservation of mass, momentum and energy. The
quantities p, ρ, u, c and γ denote the pressure, density, velocity (in the frame of the shock),
sound speed and specific heat ratio (assumed to be constant in this work), respectively. The
final expression makes use of the ideal gas law to relate enthalpy h to sound speed. For
conciseness, we define

δ ≡ γ − 1
2

, κ ≡ γ + 1
2

. (2.4)

Rudinger’s method involves decomposing the fluid domain into zones separated by finite
compression (shock) and expansion waves, contact surfaces, and the area change. To relate
conditions across shock waves, the above conservation equations can be transformed into
the Rankine–Hugoniot relations (Anderson 1990):

p2

p1
= γM2

1 − δ

κ
, (2.5)

ρ2

ρ1
= u1

u2
= κM2

1

δM2
1 + 1

, (2.6)

M2
2 = δM2

1 + 1

γM2
1 − δ

. (2.7)

It should be noted that the Mach number M is, like u, in the frame of the shock. For
expansion waves, the following Riemann invariants were utilized:

J+ = c + δu = const, (2.8)

J− = c − δu = const. (2.9)

The above two relations hold for left- and right-moving isentropic waves, respectively.
For isentropic state changes (i.e. changes throughout the expansion wave and area change,
provided that there is no standing shock), the following equation was used:

p

ργ
= const. (2.10)

This expression can be combined with the ideal gas law and appropriate conservation
relations (i.e. the Riemann invariants for finite waves and conservation of mass/energy for
the area change) to relate flow variables between two points. Finally, to relate conditions
across a contact surface, we equated the pressure and velocity on either side. Thus although
there is no explicit relation between other flow variables across the contact surface,

1007 A21-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

38
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.38


Journal of Fluid Mechanics

they can still be related implicitly by fixing either pressure or velocity, solving for the
corresponding velocity or pressure, and iterating this process until both pressure and
velocity are continuous.

While the solution must generally be implemented computationally, Rudinger’s method
can be solved explicitly in the weak shock limit using perturbation approaches. We detail
the approach in Appendix A, and refer to these solutions later in interpreting computational
results.

2.2. The 2-D computations
This subsection presents details of the simulations used to compute the 2-D domain,
implemented with ANSYS Fluent 2022 R2. Fluent has robust tools for simulating shocks
and has been employed toward this end in numerous works (Wen et al. 2020; Janardhanraj,
Abhishek & Jagadeesh 2021). We employed the density-based solver with the Roe flux-
difference splitting scheme. The temporal discretization used a second-order transient
scheme with a time step such that the Courant number in the flow behind the incident shock
is 0.5. The spatial discretization uses a second-order upwind scheme for flow variables, and
a least squares cell-based scheme for gradient computation. Further information on these
settings can be found in the Fluent User’s Guide (ANSYS Inc. 2022b) and Theory Guide
(ANSYS Inc. 2022a). Structured geometry conforming mesh elements (quad cells) were
used with uniform size 0.5 mm (1/20th the tube width); this size was determined from a
mesh sensitivity study.

The width of the small duct was selected to be 10 mm, the width of the larger duct was
determined from the area ratio, and both ducts were given lengths of at least 300 mm (i.e.
30 times the tube width) to capture the transmitted and reflected shocks far enough from
the area change for them to be far removed from the near-field disturbances.

Shocks were generated by fixing the static pressure pi , total pressure pt,i , and total
temperature Tt,i at the inlet to the appropriate values, which were calculated using the
following equations:

pi = p0
γM2

i − δ

κ
, (2.11)

pt,i = pi

(
1 + δM2

d

)γ /2δ
, Md = M2

i − 1√
(δM2

i + 1)(γM2
i − δ)

, (2.12)

Tt,i = Ti

(
1 + δM2

d

)
, Ti = T0

(δM2
i + 1)(γM2

i − δ)

κ2 M2
i

. (2.13)

The above equations are merely re-expressions of the Rankine–Hugoniot relations
(2.5)–(2.7) evaluated for the conditions upstream and downstream of the incident shock.
Here, p0 and T0 represent the initial pressure and temperature in the domain, set
at 1 atm and 300 K, respectively. All other surfaces were treated as walls with zero
normal velocity and heat flux. This boundary condition is routinely used in problems
of this type (Kailasanath 2020) and is appropriate because of the relatively short time
of contact between the shock and post-shock gases and the wall. The exit boundary
condition is unimportant provided that the duct is long enough (i.e. the shock can travel a
sufficient distance to develop fully before interacting with the exit) and the pressure and
velocity at the wall match that of the exit duct. The duct was initialized with quiescent,
atmospheric air.
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Figure 2. Fluid zones in a channel for a type Ia pattern. Zones are numbered as follows: (1) the right-hand side
of the area discontinuity not reached by the transmitted shock; (2) the left-hand side of the area discontinuity
not reached by the incident shock; (3) the region upstream of the incident shock not reached by a reflected wave;
(4) the region upstream of the transmitted shock not reached by the contact surface; (5) the region between the
contact surface and the area discontinuity; (6) the region immediately downstream of the area discontinuity;
and (7) the region between the reflected wave and the area discontinuity.

Shock pressure reflection and transmission coefficients were extracted from these
calculations, defined as (Rudinger 1960)

T = p4 − p1

p3 − p2
, (2.14)

R = p7 − p3

p3 − p2
, (2.15)

where the subscripts denote zones in the channel, as summarized in figure 2.
State variables of interest were taken to be the average in each of the zones in figure 2.

Zone 4 was taken sufficiently far from the near-field zone that disturbances had returned
to being 1-D. The CFD simulations were performed over a range of values for Mi and α
in all of the zones shown in figure 1.

Both viscous and inviscid computations were performed and compared. While inviscid
calculations are quite standard in supersonic and shocked flow analyses, these comparisons
are not only useful for assessing accuracy of inviscid calculations, but also lead to
significant physical insight into controlling physics. The reason for this is that flow
separation, and the accompanying separation of the approach flow viscous boundary
layer into the core flow, is an inherent feature of this geometry. However, purely inviscid
mechanisms – namely vortex sheet roll-up and baroclinic vorticity generation – generate
significant vorticity in curved shock problems (Sun & Takayama 2003). Comparison of
the vorticity budget in these two calculations provides some assessment of the relative role
of viscous mechanisms of vorticity dynamics – i.e. reorganization of separating vorticity
from boundary layers – versus inviscid ones. In the former case, because of the high
Reynolds numbers of the shocked flows herein, we employed Fluent’s realizable k-ε model
with standard wall functions, in which the unsteady Reynolds-averaged Navier–Stokes
(URANS) equations are solved with said eddy viscosity model (see the Theory Guide for
further details; ANSYS Inc. 2022a). A first-order discretization scheme was adopted for k
and ε for these simulations. Inviscid calculations utilized Fluent’s inviscid model, which
solves the unsteady Euler equations instead. In the viscous simulations, no-slip walls were
imposed instead of slip walls. We report on the qualitative and quantitative aspects of both
sets of calculations.

2.3. Disturbance energy quantification
This subsection describes the approach used to quantify energy and energy flux during the
shock–area change interaction. This energetics-based approach has been useful in several
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fields of study, particularly combustor noise (Brear et al. 2012) and combustion instabilities
(Urbano et al. 2016; Noiray & Denisov 2017). Consider an energy equation of the form

∂E

∂t
+ ∇ · I = φ, (2.16)

where I represents the energy flux, and φ represents energy sources/sinks. Furthermore,
consider again the flow in the channel after the incident shock passes through the area
change, as outlined in figure 2. Integrating over a control volume V across the incident
shock and making use of the divergence theorem, we have the relation

1
AL

∂

∂t

∫
V

E dV = 1
AL

∫
V

∂E

∂t
dV

= 1
AL

[∫
V
φ dV −

∫
S
(I · n) dA

]

= 1
AL

∫
V
φ dV + I3,x − I1,x

≡ Ii .

(2.17)

In the above, AL represents the area on the left-hand (incident) side of the duct, while I3,x
and I1,x represent x-components of the energy fluxes in zones 1 and 3 as defined in figure 2
(i.e. the unperturbed zone upstream of the area discontinuity and the zone upstream of
the incident shock, respectively). We define Ii to be the intensity of the incident shock,
and define the intensities of the transmitted and reflected waves in the same manner. To
evaluate E , I and φ, we use the following expressions from (Myers 1991):

E ≡ ρ[hT − hT 0 − T0(s − s0)] − ρ0u0 · (u − u0)− (p − p0), (2.18)

I ≡ (ρu − ρ0u0)[hT − hT 0 − T0(s − s0)] + ρ0u0(T − T0)(s − s0), (2.19)

φ ≡ (ρu − ρ0u0) · [Ω × u − Ω0 × u0 + (s − s0)∇T0] − (s − s0)ρ0u0 · ∇(T − T0).
(2.20)

Here, hT , s and Ω represent the total enthalpy, entropy and vorticity, respectively, while
u ≡ (u, v) defines the fluid velocity vector. ()0 represents the unperturbed state of the fluid,
taken in this case to be the state before the arrival of the incident shock. Note that these
expressions do not include thermal and viscous diffusion. This is appropriate for the high
Reynolds number, convectively dominated flows under consideration. Because the fluid
is initially homogeneous and stationary, the source terms are identically zero. Hence the
intensity of the incident shock equals the jump in energy flux before and after it.

Equation (2.16) – with the given definitions of E , I and φ – is an extension of the
familiar acoustic energy relation to arbitrary wave disturbance amplitudes. This enables us
to define the power reflection and transmission coefficients

RΠ = RI ≡ Ir

Ii
, (2.21)

TΠ = 1
α

TI ≡ It

α Ii
. (2.22)
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Here, Ii ≡ |I i |, It ≡ |I t | and Ir ≡ |Ir | are the incident, transmitted and reflected wave
intensities, respectively. Partitioning the domain into the zones shown in figure 2, we define
these as follows:

I i ≡ I3, I t ≡ I4, Ir ≡ I7 − I3. (2.23)

Appendix B expands on the characteristics of Myers’ disturbance energy, and analyses
them with respect to the finite-amplitude energy quantification approaches from Jenvey
(1989) and Doak (1989).

Returning to the problem at hand, consider how to use these results for comparisons of
quasi-1-D and 2-D results. There exists some zone before and after the area change where
transient and 2-D effects persist; we refer to this as the near-field zone Vn . Considering
this zone, we have

1
AL Ii

∫
Vn

∂E

∂t
dV = − 1

AL Ii

∫
∂Vn

(I · n) dA

= − 1
α Ii

(I4 − I6).

(2.24)

Define the accumulation coefficient Ce to be the normalized disturbance energy flux
transferred from the incident shock to disturbances other than the transmitted and reflected
finite waves during the interaction:

Ce ≡ AL Ii − AR It − AL Ir

AL Ii

= 1 − TΠ − RΠ.
(2.25)

Substituting (2.23) and (2.24) into the above relation produces

Ce = 1
AL Ii

[
(AL I7 − AR I6)+

∫
Vn

∂E

∂t
dV

]

= flux through area change + accumulation in near-field zone
incident disturbance energy

.

(2.26)

We will quantify this accumulation coefficient in the subsequent calculations. The above
relations reveal insights into the relationship between quasi-1-D and general results. For
instance, the only sources of energy flux between states 4 and 6 in the quasi-1-D theory
are a contact surface and possible secondary transmitted waves. This contrasts with the
general result, in which the transient, higher-dimensional behaviour in the near field may
result in disturbance energy flux. This expression provides a convenient means to assess
the magnitude of these discrepancies and their impact on the wave behaviour.

2.3.1. Decomposition into acoustic, vortical and entropic components
For this work, we wished to understand not only the amount of disturbance energy
deposited into 2-D phenomena, but the distribution of this disturbance energy. A useful
taxonomy for disturbances is to categorize them as acoustic/dilatational, vortical and
entropy disturbances (Chu & Kovaznay 1957). These disturbances manifest themselves
in the dilatation Λ≡ ∇ · u, vorticity Ω ≡ ∇ × u and entropy s. We also calculated the
instantaneous spatial distribution of the total disturbance energy flux F ≡ ∇ · I . While
these definitions are unique, note that these fields are not independent as they are in the
linear case, but are strongly coupled through nonlinearities (Chu & Kovaznay 1957). In
addition, evaluating their contribution to energy transfer becomes more nuanced in the
finite-amplitude case because energy flux is a quadratic quantity and such disturbances
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are nonlinearly coupled (Lieuwen 2012). In order to provide insights into how the energy
flux is distributed across disturbance modes, we also compared the disturbance energy
flux to the corresponding space/time distribution of the dilatation, vorticity and entropy
fields. This comparison can be done qualitatively (by visualizing the regions where large
energy flux is coincident with regions of large disturbance amplitude of a given mode) or
quantitatively by calculating the normalized correlation coefficient between fields as

correlation coefficient ≡
∑N

i=0(Fi − F̄)(ψi − ψ̄)√∑N
i=0(Fi − F̄)2

∑N
i=0(ψi − ψ̄)2

. (2.27)

The above sums are evaluated over each point i = 1, . . . , N in the flow field. Here, ψ
represents one of the three variables noted above (Λ, Ω and s), and the correlation
coefficient was calculated at each instant in time, then time-averaged over a representative
time window in which near-field effects are approximately quasi-steady. Therefore,
although the flow is not statistically stationary for all time, these time averages are a useful
and valid heuristic.

We also analysed the disturbance energy density distribution using methods suggested
by Jenvey (1989) and Doak (1989), which have been employed in past aero-acoustics
studies (Unnikrishnan & Gaitonde 2021) to analyse energy transfer between highly
nonlinear vortical disturbances and far-field acoustic wave propagation. We perform this
decomposition for disturbance energy density as follows. First, split the disturbance energy
density into ‘internal’ and ‘kinetic’ energy contributions for reasons discussed later:

E = ρ[h − h0 − T0(s − s0)] − (p − p0)+ 1
2ρu · u

= eD + 1
2ρu · u.

(2.28)

Define the internal energy contribution eD and density ρ to be functions of p and s. Using
the relations (Myers 1991)

dh = T dS + 1
ρ

dp, dp = c2ρβT

cp
ds + c2 dρ, (2.29)

we differentiate with respect to time and apply the chain rule accordingly to obtain the
following decomposition for eD:

∂eD

∂t
= ∂eD

∂p
|s=s0

∂p

∂t
+ ∂eD

∂p
|p=p0

∂s

∂t
, (2.30)

∂eD

∂p
|s=s0 = 1

c2 [h − h0] , (2.31)

∂eD

∂s
|p=p0 = −ρβT

cp

[(
h − cp

β

)
− (h0 − T0s0)− T0

(
s − cp

βT

)]
. (2.32)

In the above relation, β is the coefficient of thermal expansion −(1/ρ)(∂ρ/∂T )p, which
evaluates to β = 1/T for an ideal gas.

To handle the kinetic energy term, perform the following decomposition. First, following
Jenvey and Doak, define the quantities

∇ · uΛ ≡ − 1
γ p

Dp

Dt
, ∇ · us ≡ 1

cp

Ds

Dt
. (2.33)
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Further defining these vector fields to be curl-free, define the curl-free velocity uD as
uD ≡ uΛ + us . The following relationships then hold:

∇ · uD = ∇ · uΛ + ∇ · us

= − 1
γ p

Dp

Dt
+ 1

cp

Ds

Dt

= − 1
ρ

Dρ
Dt

= ∇ · u.

(2.34)

Finally, define the divergence-free velocity uΩ as uΩ ≡ u − uD , so that u = uΛ + us +
uΩ . Given the above properties of uD , one has that ∇ · uΩ = ∇ · u − ∇ · uD = 0 and
∇ × uΩ = ∇ × u = Ω . Thus this procedure decomposes the velocity into components
associated with pressure, vorticity and entropy as desired; we refer to uΛ, uΩ and us
as ‘acoustic/dilatational’, ‘vortical’ and ‘entropic’ velocity components, respectively. The
procedure for solving for these fields is as follows.

(i) Solve the Poisson problem ∇2φ = − 1/ρ (Dρ/Dt) with the Neumann condition
∇φ · n = u · n on the boundary for the velocity potential φ. Inherent in this boundary
condition is the assumption that u is irrotational at the boundaries. This assumption
is consistent with our inviscid calculations, which prevents the generation of vorticity
at the walls. Determining boundary conditions for individual potentials for viscous
no-slip walls poses numerous difficulties, such as the coupling between acoustic and
vortical disturbances (Lieuwen 2012). As such, only the inviscid results are used in
analysing these decompositions. Because of convecting vortical disturbances, it is
also important to place the downstream boundary sufficiently far downstream.

(ii) Solve the Poisson problem ∇2φΛ = −(1/γ p) (Dp/Dt) with the Neumann condition
∇φΛ · n = u · n on the boundary. This boundary condition implicitly defines us · n
to be zero.

(iii) Calculate uΛ and uD as ∇φΛ and ∇φ, respectively.
(iv) Calculate us as uD − uΛ.
(v) Calculate uΩ as u − uD .

Making use of the regular, rectangular grid for the domain, we discretized the above
Poisson problems using second-order finite differencing, and solved the resulting system
of equations using SciKit’s UMFPACK direct solver.

With this decomposition, we partition the kinetic energy accumulation in a similar
manner:

∂

∂t

(
1
2
ρu · u

)
= u · u

2
∂ρ

∂t
+ ρu · ∂u

∂t

= (uΛ + uΩ + us) · (uΛ + uΩ + us)

2

(
1
c2
∂p

∂t
− ρβT

cp

∂s

∂t

)

+ ρ(uΛ + uΩ + us) · ∂
∂t
(uΛ + uΩ + us).

(2.35)

We now define the acoustic, vortical and entropic contributions to the disturbance energy
density to be those terms that are strictly associated with the three fields, i.e. those
associated with pure multiples of ∂p/∂t and/or uΛ, uΩ and ∂s/∂t and/or us, respectively.
In doing so, we expand on the methods of Jenvey and Doak by excluding combinations
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of such terms (us · uΛ, for instance) from these categories, and group them into four
additional coupled terms. Thus we have the following definitions for each of the seven
contributions to the disturbance energy accumulation Ė ≡ ∂E/∂t :

ĖΛ ≡ 1
c2

(
h − h0 + uΛ · uΛ

2

) ∂p

∂t
+ ρuΛ · ∂uΛ

∂t
, (2.36)

ĖΩ ≡ ρuΩ · ∂uΩ
∂t

, (2.37)

Ės ≡ −ρβT

cp

([
h − cp

β

]
− (h0 − T0s0)− T0

[
s − cp

βT

]
+ us · us

2

)
∂s

∂t
+ ρus · ∂us

∂t
,

(2.38)

ĖΛ,Ω ≡ 2uΛ · uΩ + uΩ · uΩ
2c2

∂p

∂t
+ ρ

(
uΛ · ∂uΩ

∂t
+ uΩ · ∂uΛ

∂t

)
, (2.39)

ĖΛ,s ≡ 2uΛ · us + us · us

2c2
∂p

∂t
− ρβT

2uΛ · us + uΛ · uΛ
2cp

∂s

∂t

+ ρ

(
uΛ · ∂us

∂t
+ us · ∂uΛ

∂t

)
, (2.40)

ĖΩ,s ≡ −ρβT
2uΩ · us + uΩ · uΩ

2cp

∂s

∂t
+ ρ

(
uΩ · ∂us

∂t
+ uΩ · ∂us

∂t

)
, (2.41)

ĖΛ,Ω,s ≡ uΩ · us

c2
∂p

∂t
− ρβT

uΛ · uΩ
cp

∂s

∂t
. (2.42)

To analyse this exchange during the shock–area change interaction, we calculated each of
the seven terms, and examined their spatial structures and relative importance over the
range of cases studied.

In closing, it should be emphasized that ultimately, it is the actual flow and
thermodynamic variables that are fundamentally defined, and the acoustic, entropic and
vortical decomposition is imposed upon the data; e.g. the quantities us and uΛ are defined
quantities. Even while acknowledging that there are other possible definitions resulting
in exact decompositions, this line of analysis is pursued because it usefully provides
insight into how energy moves between kinetic and internal energy modes, propagating
and convecting disturbances, and dilatational, rotational and entropic disturbances.

3. Results and discussion

3.1. Qualitative characteristics

3.1.1. Flow features
Figures 3–6 display the transient, 2-D pressure and velocity magnitude for four
representative inviscid cases with the same expanding area ratio but increasing shock
strength. Figure 7 shows a single case for a diverging duct. The reasons for selecting
these conditions will be discussed later. In the first four cases where the duct expands, the
shock cylindrically diffracts into the larger duct before reaching its walls. This results in a
series of wave reflections off the duct walls, the transverse components of which weaken
with time due to diffraction, and the axial components of which eventually coalesce
with the original shock into a planar front. Comparing figures 3–6, note that owing to
the increased strength of the initial transmitted shock, this transverse wave system takes
more time/distance to weaken as the incident shock strength increases; thus the transmitted
shock must travel over a greater distance before coalescing into a planar front. The reflected
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(a)

(b)

(c)

(d)

(e)

( f )

(g)

(h)

1.00 1.06 1.12 1.18 1.24 20 40 60 80 100

||u || (m s–1)p (atm)

Figure 3. Instantaneous inviscid pressure (a–d) and velocity (e–h) fields at four time instants for Mi = 1.1,
α = 0.25. Time elapsed is 0.49 ms.

(a)

(b)

(c)

(d )

(e)

( f )

(g)

(h)

1.00 1.35 1.75 2.05 2.45 2.75 0 150 300 450 600

||u || (m s–1)p (atm)

Figure 4. Instantaneous inviscid pressure (a–d) and velocity (e–h) fields at four time instants for Mi = 1.5,
α = 0.25. Time elapsed is 0.40 ms.

wave, meanwhile, remains nearly planar. In the contracting duct case, the transmitted
shock remains planar. In this case, shocks reflected from the corners of the junction
undergo a similar process of transverse wave reflection before coalescing into a planar
reflected shock. Portions of this transverse wave system also trail behind the transmitted
shock before weakening.

Besides nonlinear waves, there are several noteworthy flow features whose
characteristics depend on the incident shock strength and area ratio. In the case of
area divergence, a pair of eddies is clearly visible at the jet edges, such as shown in
figure 3. Some time after the passage of the incident shock, these eddies form permanent
recirculation zones whose streamwise/spanwise length ratio appears to be proportional
to that of the area change. This is the familiar phenomenon of vortex roll-up from an
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(a)

(b)

(c)

(d)

(e)

( f )

(g)

(h)
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||u || (m s–1)p (atm)

Figure 5. Instantaneous inviscid pressure (a–d) and velocity (e–h) fields at four time instants for Mi = 2.1,
α = 0.25. Time elapsed is 0.31 ms.

(a)

(b)

(c)

(d)

(e)

( f )

(g)

(h)

1 5 9 13 17 21 0 400 800 1200 1600

||u || (m s–1)p (atm)

Figure 6. Instantaneous inviscid pressure (a–d) and velocity (e–h) fields at four time instants for Mi = 3.5,
α = 0.25. Time elapsed is 0.19 ms.

impulsive starting jet (Sun & Takayama 2003). Also, for a sufficiently strong incident
shock, the flow entering the area change becomes sonic, producing the supersonic jet
shown in figure 4, whose characteristics depend on the static pressure of the exiting fluid
jet. This is the well-known case of the supersonic diverging nozzle whose behaviour is
controlled by a back pressure; in this case, the back pressure is governed by the area ratio
and incident shock strength. This jet is surrounded by recirculation zones and contains the
familiar ‘shock diamond’ pattern of alternating oblique shocks and expansion fans.

The five different conditions shown in figures 3–7 were chosen as they are each
representative of at least five categories of 2-D behaviour; these categories are summarized
in figure 8. This classification is distinct from that shown in figure 1, obtained from
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(a)
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Figure 7. Instantaneous inviscid pressure (a–d) and velocity (e–h) fields at four time instants for Mi = 2.1,
α = 1.45. Time elapsed is 0.077 ms.

(1)

u

(2) (3) (4) (5)

I

Figure 8. Near field flow regimes. Snapshots are taken from (1) Mi = 1.1, α = 0.25 (see figure 3), (2) Mi =
1.5, α = 0.25 (see figure 4), (3) Mi = 2.1, α = 0.25 (see figure 5), (4) Mi = 3.5, α = 0.25 (see figure 6), and
(5) Mi = 2.1, α = 1.45 (see figure 7).

Salas (1991), as it captures distinct 2-D flow topologies, further detailed in the next
subsubsection. In brief, regime 1 transitions to regime 2 when the flow entering the area
change becomes choked, to regime 3 when the resulting supersonic jet becomes under-
expanded, and to regime 4 when the jet expands to the confines of the secondary duct.
Regime 5 encompasses all contracting duct cases.

Figure 9 shows representative comparisons of the viscous (right) and inviscid cases
(left) for these five different categories (quantitative comparisons will be presented later).
In brief, the same five flow regimes occur, and key flow features and topologies remain the
same between the two calculations, but viscous effects introduce progressive downstream
dissipation, and smear out vortical and shock structures in the viscous case. These axial
variations are anticipated to scale with the Reynolds number.

An exceptional case worth noting is that of the converging ducts, as shown in
figures 9(e) and 9(j). This consists of the typical ‘vena contracta’ phenomenon on the
transmitted end, which appears to be nearidentical between the viscous and inviscid cases,
and marked two-dimensionality in the velocity field behind the reflected shock in the
viscous cases. However, in the viscous case, the reflected shock undergoes a period of
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(a)

(b)

(c)

(d)

(e)

( f )

(g)

(h)

(i)

( j)

Figure 9. Comparison of inviscid (a–e) and viscous (f–j) vorticity fields for α = 0.25 and Mi = 1.1 (a and f ,
corresponding to regime 1), Mi = 1.5 (b and g, corresponding to regime 2), Mi = 2.1 (c and h, corresponding
to regime 3), and Mi = 3.5 (d and i, corresponding to regime 4), as well as α = 1.45, Mi = 3.5 (e and j,
corresponding to regime 5).

adjustment whereby the velocity field (and the corresponding vorticity field) behind it has
pronounced tangential gradients near the walls, and the shock becomes curved.

These axially growing dissipative effects, which differentiate between the inviscid and
viscous calculations, are quite intuitive. However, a very interesting fundamental question
remains of why the calculations share the same qualitative features, particularly in the
near field, in a geometry dominated by flow separation. Prior work suggests that inviscid
mechanisms such as slipstream roll-up generate the bulk of the vorticity in flows governed
by shock diffraction over sharp corners (Sun & Takayama 2003). In such flows, the
impulsively started corner flow separates due to the velocity singularity at the corner.
Even a very small amount of numerical viscosity, inherently present due to discretization
in an inviscid calculation, will produce this separation. Such separated flows are valid
solutions to the equations for inviscid flow (Landau & Lifschitz 1987), and the roll-up
of the ensuing slipstream–vortex sheet is governed by purely inertial mechanisms (Rott
1956; Sun &Takayama 2003). In essence, the sharp corner imposes a ‘Kutta condition’
on the flow that enables the resulting vortical structures to be determined using inviscid
calculations (Crighton 1985).

3.1.2. Disturbance energy characteristics
This subsubsection further considers the flux of energy disturbances in these different
regimes. As might be expected, disturbance energy characteristics are correlated with
prominent flow features, such as propagating shocks or convecting eddies. First, consider
regime 1, detailed in figure 3. In this case, the disturbance energy flux in the near-field
zone is associated with the pair of eddies at the far end of the resulting fluid jet, as shown
by figure 8. If the fluid entering the jet is sonic or supersonic, then the dominant sources
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Figure 10. (a) Time-averaged normalized correlation coefficients between disturbance energy flux field and
dilatation, vorticity and entropy fields for the inviscid (circles) and viscous (squares) calculations. Inviscid
calculations: spatial overlap (white) between flux (cyan) and dilatation, vorticity and entropy (red) for cases
(b) Mi = 1.1, α = 0.25, (c) Mi = 2.1, α = 0.25, and (d) Mi = 3.5, α = 0.25.

of disturbance energy flux are either the recirculation zones outside the fluid jet or the
oblique shocks/expansion fans within the jet itself. The former appear to dominate in
regions where the exiting fluid is either over-expanded (i.e. the pressure of the exiting jet
is less than ambient, producing regime 2 in figure 8) or only slightly under-expanded, in
which case the jet expands slightly before contracting repeatedly, forming a shock-diamond
pattern (regime 3 in figure 8). In cases where the jet is sufficiently under-expanded that the
resulting jet fills the channel and does not contract, the oblique shocks/expansion fans are
coincident with locations of strongest flux (regime 4 in figure 8). Moreover, there appear to
be few or no near-field phenomena of particular note for the converging duct cases (regime
5 in figure 8).

Figure 10 shows the spatial overlap between the disturbance energy flux field and
dilatation, vorticity and entropy fields for the inviscid cases. In most cases, the disturbance
energy flux field correlates most strongly with the dilatation field, and correlates weakly
with the vorticity and entropy fields. As an example, consider the case shown in
figure 10(b), where elevated energy flux is correlated most strongly with regions of
vortex roll-up. One can clearly observe, however, that of the three fields, the dilatational
field corresponds most strongly with the disturbance energy flux. These results indicate
that most disturbance energy lies in the dilatational mode. The reasons for this can
be understood from the leading-order energy flux term F1 ≡ ∇ · (p1u1). The first-order
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pressure fluctuation p1 only has a dilatational component (Lieuwen 2012); thus at first
order, the disturbance energy flux results from the dilatational mode only. Therefore, any
disturbance energy flux from the vortical or entropic disturbances would have to result
from higher-order effects whose magnitude is dominated by this first-order effect.

For α < 1, this trend weakens as the jet becomes less expanded – i.e. as both α and
Mi increase such that the jet pattern shifts from regime 2 to regime 4. The reason for
this can be seen in figure 10(c): for flow regimes 2–4, dilatation values peak in the
oblique wave train, whereas the disturbance energy flux reaches local extrema in both
the oblique waves and in the surrounding flow separation zone. As the jet pattern shifts
to regime 4, the greatest disturbance energy flux values are found in the oblique shocks;
however, the disturbance energy reaches local maxima joined to local minima, whereas the
dilatation field reaches local minima only. This is why, as shown in figure 10(a), the flux
field becomes more negatively correlated with the dilatation field for increasing α for the
Mi = 2.5 and 3.5 cases. Visually inspecting figure 10(b), the disturbance energy extrema
corresponding to the recirculation zones coincide most strongly with those of the vorticity
field and, to a lesser extent, the entropy field. Combining these observations, for cases
where the area change leads to choked flow, the dilatation field (strongest in the oblique
wave train), vorticity field (strongest at the edges of the jet, where shear layers exist) and
entropy field (strongest in the area surrounding the jet) are dominant in different spatial
structures that rank differently in disturbance energy strength depending on Mi and α.

The time-averaged, normalized correlation coefficient (defined by (2.27)) is compared
between the viscous and inviscid calculations in figure 10(a), showing very clear
similarities. The exception appears to be that in the viscous case, the disturbance energy
flux becomes increasingly correlated with the entropy mode for converging ducts. This
implies that entropy disturbances are more pronounced in the viscous case, and contribute
to a greater portion of the disturbance energy.

Further insight into the disturbance energy flux distribution can be gained by quantifying
the terms in the disturbance energy decomposition laid out in (2.37)–(2.42). As discussed
in § 2.3.1, this was performed only for the inviscid calculations. For the diverging ducts,
this information is summarized in figure 11. The bar graphs detail the relative magnitudes
of the time- and space-averaged disturbance energy accumulation terms. The contours
showcase the spatial distribution of the three accumulation terms of greatest interest.
Taken together, these elucidate the relative importance of various disturbance energy
accumulation terms (acoustic/dilatational, vortical, acoustic-vortical, etc.) and the flow
structures with which they are correlated. For the case of a weak shock (i.e. regime 1
discussed in the previous paragraphs), acoustic disturbances are responsible for the bulk of
the disturbance energy accumulation, with the other fields contributing little to none. This
agrees with the information in figure 10(a), in which the disturbance energy flux was most
correlated with the dilatation field. Similarly, comparing the RGB contour of figure 11(a)
with contours of figure 10(b), the various accumulation terms coincide spatially with their
respective fields (i.e. the acoustic accumulation, the red channel of figure 11(a), aligns
with the dilatation field; the same holds for the vorticity and entropy fields).

As the incident shock increases in strength, we reach the ‘regime 2’ under-expanded
jet of figure 11(b), at which point ĖΛ (acoustic disturbance energy accumulation),
ĖΩ (vortical accumulation) and ĖΛ,Ω (acoustic-vortical accumulation) have similar
magnitudes (although the acoustic is approximately double the other two) and are the
dominant contributors to the accumulation. As the incident shock strengthens and the
resulting jet becomes more expanded (i.e. the ‘regime 3’ jet of figure 11c), the latter
two terms overwhelm the acoustic accumulation and become the dominant contributors.
This shows that the disturbance energy accumulation is dominated by acoustic-vortical
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Figure 11. Relative magnitudes and spatial structures of the dominant disturbance energy accumulation terms
for (a) regime 1, (b) regime 2, (c) regime 3, and (d) regime 4. The terms shown in the red, green and blue
channels are indicated by the colour triangles in the rightmost column.

products. Additionally, the other four terms (Ės , ĖΛ,s , ĖΩ,s and ĖΛ,Ω,s) become
increasingly important until, in the fully-expanded case of figure 11(d), disturbance
energy accumulation is deposited approximately equally between the seven terms. This
would appear to result from the emerging entropic mode seen in figure 11(c), reflecting
the growing strength of entropy disturbances and, consequently, the growing magnitude
of modal cross-products with entropy (i.e. ĖΛ,s , ĖΩ,s and ĖΛ,Ω,s) in the overall
accumulation. This result explains the decreased correlation of the disturbance energy
flux with Λ, Ω and s shown in figure 10 with increased incident shock strength increases;
i.e. the energy flux is increasingly dominated by products of these canonical disturbances.

Examining the RGB contours of figures 11(b) and 11(d), acoustic energy accumulation
is strongest at the oblique shocks within the supersonic jet, while vortical accumulation is
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Figure 12. Relative magnitudes and spatial structures of the dominant disturbance energy accumulation terms
for contracting ducts for three different incident shock strengths. The terms shown in the red, green and blue
channels are indicated by the colour triangles in the rightmost column.

strongest at the edges of the jet, where recirculation zones exist. Examining the entropic
accumulation (blue channel) of figure 11(d), the entropic accumulation is also maximized
on the jet edges, and has large values between shock diamonds. This last case agrees
with figure 10(c); i.e. the acoustic, vortical and entropic accumulations once again appear
to coincide with their respective fields, as expected. The acoustic-vortical accumulation
(ĖΛ,Ω ), the other dominant contributor for the supersonic jets, is maximized in the Mach
disks that separate successive shock diamonds, where the flow is simultaneously expanded
and turned. These results suggest that these processes within the jet increase the amount
of acoustic-vortical disturbance energy accumulation as the jet expands.

For contracting ducts, the distribution of disturbance energy accumulation is
summarized in figure 12. Even for weak incident shocks, the acoustic energy accumulation
is always smaller than the acoustic-vortical accumulation. The former appears to be
strongest at the transverse shocks that persist shortly after transmission into the smaller
duct, while the latter appears to dominate in the interior of these shocks. Thus for
contracting ducts, the acoustic-vortical accumulation is a significant contributor to
the overall disturbance energy. Also present is the acoustic-entropic accumulation,
which appears to be strongest near the duct boundaries. As the incident shock is
strengthened, the entropic and acoustic-entropic accumulations outweigh the acoustic-
vortical accumulation, while the acoustic accumulation maintains its relative importance.
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Figure 13. Dependence of reflection and transmission coefficients upon area ratio. Viscous and inviscid
results are denoted by circles and squares, respectively.

This may explain why the correlation between the disturbance energy flux and dilatation
fields remains constant with increasing shock strength, as shown in figure 10(a). Combined
with the diminishing importance of the vortical accumulation, these observations suggest
that vortical disturbances become overwhelmed by entropic ones as incident shock
strength increases; these entropic disturbances, in conjunction with strong pressure
gradients (acoustic disturbances), produce strong acoustic-entropic disturbance energy.

Combining the above observations, the differing jet patterns in the near-field zones
have varying strengths in each of the seven disturbance energy accumulation terms.
Acoustic disturbances are strong for all jet patterns observed; as the incident shock
increases in strength and produces stronger jets, these disturbances work in tandem with
emerging vortical and entropic disturbances to produce cross-product disturbance energy
accumulation. Energy accumulation is dominated by acoustic and vortical disturbance
products for contracting ducts; the bar graph of figure 12(b) suggests that even relatively
weak vortical disturbances are responsible for a significant portion of the energy
accumulation when acoustic disturbances are present. Furthermore, these decompositions
provide further insight into the alternative visualization approach of determining the
correlation of instantaneous disturbance energy flux with the dilatation, vorticity and
entropy fields.

3.2. Shock reflections and transmission results
Figure 13 plots the dependence of the shock pressure reflection and transmission
coefficients, R and T , on area ratio at different incident Mach numbers, showing both the
quasi-1-D and inviscid/viscous CFD calculations. The right-hand plot shows the difference
between the two calculation approaches. Interestingly, the transmission coefficient is much
less sensitive to the incident shock strength than the reflection coefficient. As expected, T
is less than 1 for area divergences (α < 1) and greater than 1 for area convergences. The
reflection coefficient varies strongly with both α and Mi . For a large enough area ratio (i.e.
a sudden enough contraction), the reflection coefficient increases in a nearly linear manner
with Mi ; this represents a limiting behaviour for the reflection coefficient.

As might be expected, discrepancies between the quasi-1-D and computed results grow
as the area ratio deviates from unity in either direction (noting that the exact solution is
1-D when the area ratio is unity). Overall, however, the quasi-1-D calculations predict
reasonably accurate values of R and T . This overall good agreement suggests that while
2-D disturbances have pronounced effects on the flow field close to the area jump, their
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Figure 14. Power reflection, transmission and accumulation coefficients over the cases studied. Viscous and
inviscid results are denoted by circles and squares, respectively.

lasting effects on the transmitted and reflected waves are fairly minor. This result is not
only fundamentally interesting but also consequential for reduced-order models of the
phenomenon, as it shows that quasi-1-D considerations can be used to quite accurately
understand and quantify the effect of the area change on the reflected and transmitted
shock waves.

Comparing the viscous and inviscid calculations, there is quite close quantitative
agreement, with both R and T being generally lower in the viscous case. These differences
remain small but grow with increasing Mi , but not necessarily with increasing α. As noted
in the previous subsection, the nature of the near-field behaviour is altered by the presence
of viscosity. Furthermore, the presence of viscous boundary layers and possibly other 2-D
phenomena behind the transmitted and reflected waves (particularly behind the reflected
shocks in the converging duct cases, as discussed in the previous subsection) does not lead
to significant deviation. The calculation of these coefficients involves identifying flow
variables in uniform regions around these waves (see figure 2 and (2.14)–(2.15)). When
these regions are no longer uniform, it becomes increasingly difficult to assign a single
variable to these regions, so it should be emphasized that there is no longer a one-to-one
correspondence between the three cases (quasi-1-D, 2-D inviscid and 2-D viscous).

We next consider power reflection, transmission and accumulation. We start this
discussion by noting that these results are strongly influenced by the transient and frontal
nature of the shocks; i.e. the post-shock state persists indefinitely, and does not return to
its condition before the shock arrived. As such, the results are less physically intuitive than
the case of, say, a shock ‘pulse’, in which the fluid behind the shock eventually returns to
rest (when, for example, a piston compresses the gas for a certain time before returning to
rest). Moreover, the transient nature of the problem implies that the energy fluxes into and
out of the domain need not balance, as energy can accumulate.

The dependence of RΠ , TΠ and Ce upon area ratio, computed for both flow models, is
shown in figure 14. The deviation between the quasi-1-D and CFD results is again plotted
on the right. Once again, the values are quite similar between the two models. Moreover,
as with T , TΠ and Ce, the largest deviations appear for larger area changes. Unlike T ,
however, TΠ varies with both Mi and α. Furthermore, RI shows little variation between the
two results except in the case of very strong and very weak shocks interacting with a large
area divergence; this contrasts with the behaviour of R noted in the previous subsection.

Unlike T , TΠ exceeds unity for sufficiently strong shocks for diverging ducts with
certain area ratios. This does not indicate that energy conservation is violated; it merely
indicates the presence of stronger energy accumulation terms in the region between the
shocks owing to the transient nature of the problem (see (2.25) and (2.26)). For instance,
consider the balance of total energy between the waves in the weak shock case. By
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employing the perturbation methods discussed in the next subsection, the following can
be demonstrated for the quasi-1-D method:

transmitted total power
incident total power

= ρ4u4hT 4 At

ρ3u3hT 3 Ai
= 2
α+ 1

+O(Mi − 1), (3.1)

reflected total power
incident total power

= ρ3u3hT 3 − ρ7u7hT 7

ρ3u3hT 3
= α− 1
α+ 1

+O(Mi − 1), (3.2)

incident − transmitted − reflected total power
incident total power

∝ (α − 1)(Mi − 1)5 +O(Mi − 1)6.

(3.3)

One notes the following from the above expressions. First, even in the acoustic (Mi = 1)
limit, the total power transmission ratio exceeds unity, but this is balanced by a negative
total power reflection coefficient, such that the two sum to unity up to O(Mi − 1). This
unfamiliar result pertains to the total energy, not the disturbance energy; the latter produces
the more familiar result for linear acoustics, as discussed in Appendix B. This is made
possible by the transient nature of the physics. That is, the time derivative in the energy
equation permits an imbalance in the fluxes that can be positive or negative. Second, the
third expression indicates that at O(Mi − 1), the power of the transmitted and reflected
waves exceeds that of the incident wave for diverging ducts (since α − 1< 0). This result
is due to the contact surface present in the quasi-1-D model. Such flow disturbances (the
reflected wave and contact surface in this example) supply the necessary power to allow
the transmitted power to exceed that of the incident shock.

In nearly every case except those for weak shocks, Ce is over-predicted by the quasi-
1-D theory. Thus despite not explicitly accounting for 2-D near-field disturbances, the
quasi-1-D theory partially captures the disturbance energy accumulation (the secondary
transmitted shock of zone Ic in figure 1, for instance, is one phenomenon responsible for
this) not seen in the 2-D results.

These quasi-1-D calculations can be generalized by adding additional physics to
partially capture 2-D effects. For example, consider the recirculation patterns exhibited
for weak shock interactions with a diverging duct (behaviour (1) in figure 8). This flow
separation associated with a sudden flow expansion causes the flow to increase in entropy.
Flow separation can be incorporated into the quasi-1-D approach by accounting for this
entropy jump. Using the entropy jump value developed previously by Isaacson (2011),
valid for α ∈ (0.2, 1), leads to

�s = Cv[(1 − α)2 + (1 − α)6]γ δM2
7 . (3.4)

Here, Cv is the constant volume specific heat. This can be combined with the steady energy
conservation equation and the Gibbs relations to obtain a more accurate set of relations
between the pre- and post-area change conditions. The effects of such a correction can
be most clearly seen in RΠ , as shown in figure 15; for the most severe area increase
studied, errors between quasi-1-D and CFD were reduced from 56 % to 3 % for the inviscid
calculations.

3.3. Analytical results for weak shocks
The results of the previous subsection can be further interpreted by writing explicit
solutions from the quasi-1-D theory, obtained by a perturbation expansion in powers of
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Figure 15. Power reflection coefficient for various diverging ducts calculated using the quasi-1-D method, the
corrected quasi-1-D method accounting for flow separation, and 2-D inviscid CFD.

(Mi − 1). We now present results with the leading-order nonlinear corrections for T , R,
TΠ , RΠ and Ce from their linear acoustic relations (see Appendix A for details):

T = 2α
α + 1

+ 2α(α − 1)(δ − 1)
κ(α + 1)2

(Mi − 1)+O(Mi − 1)2, (3.5)

R = α − 1
α + 1

+ 2(α − 1)(ακ + 2)
κ(α + 1)2

(Mi − 1)+O(Mi − 1)2, (3.6)

TΠ = 4α
(α + 1)2

+ 4α(α − 1)(δ − 1)
κ(α + 1)3

(Mi − 1)+O(Mi − 1)2, (3.7)

RΠ =
(
α− 1
α+ 1

)2

− 4α(α − 1)(δ − 1)
κ(α + 1)3

(Mi − 1)+O(Mi − 1)2, (3.8)

Ce =

⎧⎪⎪⎨
⎪⎪⎩

64δ(α − 1)α2(1 + α[4 + 7α])
3κ3(α + 1)6

(Mi − 1)4 +O(Mi − 1)5, α < 1,

128δ(α − 1)α3

κ3(α + 1)5
(Mi − 1)4 +O(Mi − 1)5, α > 1.

(3.9)

Several important observations can be made from these equations. First, all of the
expressions limit to their classical acoustic expressions (see Kinsler et al. 2000). While
the above terms depend only on α in the acoustic limit, nonlinear corrections depend
on the incident shock strength and the specific heat ratio of the gas, γ . Second, while
nonlinear corrections to T , R, TΠ , RΠ , occur at leading order in (Mi − 1), the correction
to Ce occurs at O(Mi − 1)4, implying that it is very weak at low Mach numbers. Since
the quasi-1-D theory accounts for only dilatational and entropy disturbances (i.e. not
vortical), energy exchange occurs only between these two disturbances in the quasi-1-
D problem. Moreover, since at O(Mi − 1)2 and lower there is no entropy produced by
shocks, energy in the dilatational disturbances is conserved to that order. The area change
rearranges the energy in the incident shock between the reflected and transmitted shock,
but the power carried away by these reflected/transmitted waves exactly equals that of
the incident wave up to O(Mi − 1)3. To further understand this point for this specific
problem, consider (2.26). In this case, the area change is isentropic and steady, so it has no
net disturbance energy flux, leaving only the unsteady accumulation in the near-field zone,
given by (2.24). The leading-order contribution to the power accumulation is the jump in
stagnation enthalpy flux across the contact surface. Because the pressure and velocity are
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continuous across the contact surface, this reduces to

ρ4u4hT 4 − ρ5u5hT 5 = u3
4

2
(ρ4 − ρ5). (3.10)

This expression explicitly shows that u3
4 is O(Mi − 1)3 in magnitude. Since the contact

surface exists only at O(Mi − 1)3 and higher, the jump in density across the contact
surface is O(Mi − 1)3 in magnitude; thus the unsteady accumulation of disturbance
energy in the near-field zone is only O(Mi − 1)6 in magnitude. Because Ii is O(Mi − 1)2
in magnitude, Ce is O(Mi − 1)4 in magnitude. Summarizing the above points, the quasi-
1-D theory accounts for only entropy and acoustic disturbances; thus there is disturbance
energy accumulation up to the order at which entropy disturbances appear. Consequently,
transfer of energy out of the shock into other disturbances occurs only at very high order
(i.e. its magnitude is quite small). This result was noted more generally by Jenvey (1989),
who stated that acoustic energy transport due to mass flux fluctuations is conserved to
arbitrary order for irrotational, homentropic flow, and by Doak (1989), who noted that
such flows exist in a ‘local fluctuating dynamical equilibrium’ in which the net power flux
is zero.

These quasi-1-D near-field power accumulation results can be similarly modified to
account for flow separation using the correction developed in (3.4). If this equation is
added to the system to be solved, then one obtains the following new expressions for the
above variables:

T = 2α
α+ 1

+
[

2α(α − 1)(δ − 1)
κ(α + 1)2

− 4α F(α)

κ(1 + α)3

]
(Mi − 1)+O(Mi − 1)2, (3.11)

R = α− 1
α+ 1

+
[

2(α − 1)(ακ + 2)
κ(α + 1)2

+ 4 F(α)

κ(1 + α)3

]
(Mi − 1)+O(Mi − 1)2, (3.12)

TΠ = 4α
(α + 1)2

+ 4α
[
(α − 1)(δ − 1)
κ(α + 1)3

− 4 F(α)

κ(1 + α)3

]
(Mi − 1)+O(Mi − 1)2, (3.13)

RΠ =
(
α − 1
α + 1

)2

− 4α(α − 1)
[

δ − 1
κ(α + 1)3

− 2 F(α)

κ(α + 1)4

]
(Mi − 1)+O(Mi − 1)2,

(3.14)

Ce = 8 F(α)

κ(1 + α)3
(Mi − 1)+O(Mi − 1)2, (3.15)

where F(α)≡ (1 − α)2 + (1 − α)6. This equation has noteworthy consequences. First, the
accumulation coefficient is now O(Mi − 1) in magnitude. Thus although this coefficient
is small in both cases, Rudinger’s method under-predicts the accumulation by orders of
magnitude in the weak shock case (in the framework of (3.4)). Second, the aforementioned
discrepancies in T , R, TΠ and RΠ are first-order effects. It is also worth noting that using
(3.4) correctly predicts the sign of this discrepancy; neglecting these effects causes one
to over-predict T , TΠ and RΠ , and under-predict R. Furthermore, because of the form of
F(α), these effects are most significant at lower α (i.e. more severe area increases), but
their prominence diminishes sharply with increasing α (i.e. for less severe area increases).

4. Conclusions
The interactions between shock waves and discrete area changes have been studied
using both computational and analytical approaches. This was done to both generalize
existing results and further understand how energy moves between dilatational, vortical
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and entropic disturbances in shock wave interactions with complex geometries. The
computational approach reveals five categories of 2-D transient ‘near-field’ phenomena
that persist near the area change after the passage of the incident shock; these categories,
which depend on 2-D flow features, are distinct from those used in the quasi-1-D theory,
which depend on the structure of the 1-D wave patterns (contact surfaces, reflected
shocks or expansion waves, transmitted shocks). The observed flow regime depends on
the incident shock strength and the area ratio. The transfer of disturbance energy from
the shock waves to such near-field disturbances was also analysed. This revealed that
disturbance energy is spatially correlated with flow regimes in the near field (vortex roll-
up, shock diamonds, etc.). The flow regime responsible for the greatest disturbance energy
flux depends on the incident Mach number and area ratio.

This work represents the first study, to our knowledge, investigating how disturbance
energy is produced by and associated with acoustic, vortical and entropic disturbances of
arbitrary magnitude during the shock–area change interaction. Correlating the disturbance
energy flux with dilatation, vorticity and entropy reveals that the dominant disturbance
depends on the category of near-field behaviour. For example, for a weak shock,
dilatational disturbances are strongest. Formally decomposing the disturbance energy
further reveals the relative importance of these disturbances, and that they interact
to produce disturbance energy in nonlinear cross-products. For diverging ducts, such
interactions eventually cause disturbance energy to change at nearly equal rates across
all disturbances and their cross-products. For both ducts, vortical disturbances contribute
less disturbance energy than entropy disturbances with increasing shock strength; these
disturbances interact with ever-present acoustic disturbances to produce energy in cross-
product terms. This agrees with the asymptotic analysis in the weak shock limit: for
stronger incident shocks, entropy disturbances become more prominent and accumulate
more energy.

Comparison between CFD and the quasi-1-D method reveals good agreement between
the two. This suggests that quasi-1-D methods accurately capture the asymptotic behaviour
of wave reflections and transmissions, an important observation considering the vast
differences in computational complexity between these methods. However, the near-field
power accumulation resulting from the travelling shock waves can be off by orders
of magnitude for weak shocks. Furthermore, we show how to resolve some of the
aforementioned quantitative differences by accounting for entropy production associated
with flow separation in the near field.

These results show that shock transmission is effected primarily by area ratio, while
shock reflection is greatly influenced by both area ratio and incident Mach number.
For large enough area contractions, the reflection coefficient is influenced by incident
Mach number only. Using perturbation methods, we quantified the order of magnitude of
important physical effects such as power accumulation, and provide analytic, asymptotic
expressions for variables of interest. We demonstrated that accumulation has a notably low
order of magnitude in the weak shock case. However, this order of magnitude, while low
in both cases, is severely under-predicted when near-field phenomena are neglected. This
is because the quasi-1-D method accounts for only dilatational and entropic disturbances;
because the latter appear only at high orders, this method conserves dilatational energy
in the shocks to third order. This showcases the readiness of physical insight and ease of
calculation provided by such methods, improving both the simplicity and transparency of
quasi-1-D methods.

Funding. This research has been partially funded by the US Air Force Office of Scientific Research (contract
no. FA9550-23-1-0222, contract monitor Dr C. Li).
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Appendix A. Perturbation expansion for weak shocks
In this appendix, we present asymptotic, quasi-1-D results referred to in § 2.1. In general,
one cannot obtain an analytical expression for R and T using Rudinger’s method. However,
such expressions can be obtained by expanding the governing equations in powers of
(Mi − 1). During this interaction, we have the following system of equations:

α = M5

M7

(
1 + δM2

7

1 + δM2
5

)κ/2δ
, (A1)

p5 = p7

(
1 + δM2

7

1 + δM2
5

)γ /2δ
, (A2)

u5 = M5c5 = M5c7

(
1 + δM2

7

1 + δM2
5

)1/2

, (A3)

u5 = u4 = c1

κ

(√
κp5 + δp1

γ p1
−

√
γ p1

κp5 + pδp1

)
. (A4)

The first equation is obtained by combining the conservation equations for mass and
energy with the Poisson adiabat (i.e. (2.1), (2.3) and (2.10)), the second equation simply
states that the total pressure is conserved throughout the area discontinuity (consistent
with isentropic flow), and the third equation is an alternate expression of the energy
conservation equation. The final equation is obtained from the normal shock relations
across the transmitted shock after some algebra. The numerical subscripts are summarized
in figure 2. The type of reflected wave depends on whether the area increases (resulting in
a reflected expansion wave) or decreases (resulting in a reflected shock). For now, we limit
consideration to the former case, wherein we have the following equations for p7 and c7:

p7 = p3

(
1 + δM3

1 + δM7

)γ /δ
, (A5)

c7 = c3

(
1 + δM3

1 + δM7

)
. (A6)

This results in a system of four nonlinear equations for the variables M5, M7, p5 and u5.
Although this cannot be solved explicitly in general, explicit solutions can be determined
to the desired order of accuracy by expanding each variable in the following manner:

M7 ≡ ν0 + ν1 + · · · + νn, M5 ≡μ0 +μ1 + · · · +μn,

Π5 ≡ p5

p1
− 1 ≡ π0 + π1 + · · · + πn, u5 ≡ v0 + v1 + · · · + vn.

(A7)
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At order n, we have the following system of linear equations for (ν, μ, π, v)n:⎡
⎢⎣

AC BC ACCC 1 0
AV BV AV CV 0 1

BA CA 0 0
0 0 −DW (2γ + κPn) 1

⎤
⎥⎦

⎡
⎢⎣
νn
μn
πn
vn

⎤
⎥⎦ =

⎡
⎢⎣

AC − Pn − 1
Mn AV − Vn

AAα− 1
2Pn DW (γ + κPn)− Vn

⎤
⎥⎦ , (A8)

Nn ≡
n−1∑
k=0

νk, Mn ≡
n−1∑
k=0

μk, Pn ≡
n−1∑
k=0

πk, Vn ≡
n−1∑
k=0

vk,

AC ≡ p3

p1

(
1 + δM3

1 + δNn

)γ /δ ( 1 + δN 2
n

1 + δM2
n

)γ /2δ
,

AV ≡ a3

(
1 + δM3

1 + δNn

)(
1 + δN 2

n

1 + δM2
n

)1/2

,

AA ≡ Nn

Mn

(
1 + δM2

n

1 + δN 2
n

)κ/2δ
,

BC ≡ γ (1 − Nn)

(1 + δNn)(1 + δN 2
n )
, BV ≡ δMn(1 − Nn)

(1 + δNn)(1 + δN 2
n )
, BA ≡ N 2

n − 1
Nn(1 + δN 2

n )
,

CC ≡ γMn

1 + δM2
n
, CV ≡ − 1

1 + δN 2
n
, CA ≡ 1 − M2

n

Mn(1 + δM2
n )
,

DW ≡ c1

2γ 2

(
γ

γ + κPn

)3/2

.

Solving for M5, M7, p5, and u5 closes the system.
One can obtain simplified expressions for certain terms of interest by expanding them in

a Taylor series in Mi centred about 1. The first two terms in the expansions for each variable
are O(Mi − 1) and O(Mi − 1)2, respectively, while the third term in each expansion
is O(Mi − 1)3. For comparison, consider the entropy jump across the incident shock,
given by

�s = Cv

[
log

(
p3

p1

)
− γ log

(
ρ3

ρ1

)]

= Cv

[
log

(
γM2

i − δ

κ

)
− γ log

(
κM2

i

δM2
i + 1

)]
.

(A9)

Here, Cv is the constant volume specific heat. Making use of the aforementioned
series expansion, note that this expression is O(Mi − 1)3 in magnitude. Similarly, if
one calculates s5 and s4 (the entropy after the area change and before the transmitted
shock, respectively), then note that the difference between the two is also O(Mi − 1)3 in
magnitude. The pressure jump across the shock, meanwhile, is O(Mi − 1) in magnitude.
This type of analysis yields (3.6)–(3.9) in the main text. We note the difficulty in grouping
terms of the same order in (Mi − 1) in the above procedure. For this reason, we utilized
Wolfam Mathematica 12, which has powerful tools for this purpose. We strongly advise
others to use a similar tool in reproducing the results of this paper. For the sake of guidance,
we have included a portion of our Mathematica code in Listing 1 below.
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Listing 1. Example Mathematica snippet for converging duct.

To demonstrate the convergence of this method towards the numerical results, figure 16
plots the absolute difference between the two against (Mi − 1) and iteration number in the
aforementioned iterative method. The left-hand plot demonstrates the legitimacy of the
approximation, as the errors have the correct slope on the log-log plot.

To understand how near-field effects alter the solution, consider (3.4), which accounts
for the entropy jump resulting from the flow separation phenomena, neglected by
Rudinger’s method. In this case, making use of (A9), we replace AC , AA, BC and BA
in (A8) with A′

C , A′
A, B ′

C and B ′
A given by the following equations:

A′
C ≡ p3

p1

(
1 + δM3

1 + δNn

)γ /δ ( 1 + δN 2
n

1 + δM2
n

)γ /2δ
exp

(
−1

2
γ N 2

n F(α)

)
, (A10)

A′
A ≡ Nn

Mn

(
1 + δM2

n

1 + δN 2
n

)κ/2δ
exp

(
−γ N 2

n F(α)
)
, (A11)

B ′
C ≡ γ (1 + Nn[F(α) (1 + δNn)(1 + δN 2

n )− 1])
(1 + δNn)(1 + δN 2

n )
, (A12)
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Figure 16. Absolute difference between the series approximation and numerical solution for transmitted
Mach number Mt versus (Mi − 1) (left) and iteration number (right).

B ′
A ≡ [1 − 2γ F(α)]N 2

n − 2δγ F(α) N 4
n − 1

Nn(1 + δN 2
n )

, (A13)

F(α)≡ (1 − α)2 + (1 − α)6.

If this new system is solved, then one obtains (3.12)–(3.15).
If the area decreases, then the system must be modified as follows. The reflected wave

is now a shock, in which case we have the following equations for p7 and c7:

p7 = p3
γ [M3 + (W/a3)]2 − δ

κ
, (A14)

c7 = c3

√(
γ [M3 + (W/a3)]2 − δ

) (
δ[M3 + (W/a3)]2 + 1

)
κ[M3 + (W/a3)] . (A15)

Here, W is the speed of the reflected wave, which represents a new unknown variable.
Rather than solving for this new variable in terms of variables of the original system, it
is more convenient to include the following equation in the system and solve for it along
with the others:

M7 = 1 + [M3 + (W/a3)][δM3 − (W/a3)]√(
γ [M3 + (W/a3)]2 − δ

) (
δ[M3 + (W/a3)]2 + 1

) . (A16)

Because this system contains nonlinear multiples of W when expanded in a power series,
it is necessary to replace it with the variable Ω ≡ 1 − W/a3, after which the expansion
Ω ≡ω1 +ω2 + · · · +ωn can be utilized. The system is than successively solved at higher
orders, starting from zeroth order. This results in the following system of linear equations
for (ω, ν, μ, π, v)n:⎡

⎢⎢⎢⎣
FN 1 0 0 0

AC FC AC BC ACCC 1 0
AV FV AV BV AV CV 0 1

0 BA CA 0 0
0 0 0 −DW (2γ + κPn) 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
ωn
νn
μn
πn
vn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

AN − Nn
AC − Pn − 1
Mn AV − Vn

AAα− 1
2Pn DW (γ + κPn)− Vn

⎤
⎥⎥⎥⎦ ,
(A17)
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Nn ≡
n−1∑
k=0

νk, Mn ≡
n−1∑
k=0

μk, Pn ≡
n−1∑
k=0

πk, Vn ≡
n−1∑
k=0

vk, Wn ≡
n−1∑
k=0

ωk,

AN ≡ δM2
3 + (2 − Wn)Wn + (δ − 1)M3(1 − Wn)√

(γ [M3 + 1 − Wn]2 − δ)(δ[M3 + 1 − Wn]2 + 1)
,

AC ≡ γ (M3 + 1 − Wn)
2 − δ

κ

(
1 + δN 2

n

1 + δM2
n

)γ /2δ
,

AV ≡ a3

√
(γ [M3 + 1 − Wn]2 − δ)(δ[M3 + 1 − Wn]2 + 1)

κ(1 + M3 − Wn)

(
1 + δN 2

n

1 + δM2
n

)1/2

,

AA ≡ Nn

Mn

(
1 + δM2

n

1 + δN 2
n

)κ/2δ
,

BC ≡ − γ Nn

1 + δN 2
n
, BV ≡ − δMn Nn

1 + δN 2
n
, BA ≡ N 2

n − 1
Nn(1 + δN 2

n )
,

CC ≡ γMn

1 + δM2
n
, CV ≡ − 1

1 + δM2
n
, CA ≡ 1 − M2

n

Mn(1 + δM2
n )
,

DW ≡ c1

2γ 2

(
γ

γ + κPn

)3/2

,

FN ≡ − ∂

∂ωn
M7|wn=0,

FV ≡ δMn(1 + γ [1 + M3 − Wn]4)

(1 + δ[M3 + 1 − Wn]2)(γ [M3 + 1 − Wn]2 − δ)(1 + M3 − Wn)
.

This system, when solved, yields the same expressions for T , R, TΠ and RΠ up to
O(Mi − 1)2 as those for the increasing area case. Observing the definitions of these terms,
one notes that the order at which certain physics affect these terms is one less than the order
at which it affects the waves. For instance, consider the expression for the transmitted
Mach number Mt :

Mt = 1 + 2α
α + 1

(Mi − 1)+ 2α(α − 1)(δ − 1)
κ(α + 1)2

(Mi − 1)2 +O(Mi − 1)3. (A18)

Comparing this with (3.6)–(3.9), one observes that the area ratio affects Mt at first order,
and the specific heat affects Mt at second order; this is one order higher than the order
at which these factors affect the above coefficients. Similarly, because the entropy jump
across the wave is a third-order quantity, the fact that the reflected wave is no longer
isentropic when α > 1 affects the coefficients at second order. As a consequence, the
leading-order expression for Ce is also changed as follows:

Ce = 128δ(α − 1)α3

κ3(α + 1)5
(Mi − 1)4 +O(Mi − 1)5. (A19)

Thus although Ce varies with area ratio differently depending on whether the reflected
wave is a shock or an isentropic expansion wave, its order of magnitude (in terms of shock
strength) is the same in both cases.
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Appendix B. Characteristics of Myers’ disturbance energy
Myers’ disturbance energy (Myers 1991), repeated below for convenience,

I ≡ (ρu − ρ0u0)[hT − hT 0 − T0(s − s0)] + ρ0u0(T − T0)(s − s0), (B1)

is an extension of the familiar concept of acoustic disturbance energy to arbitrary
disturbances. To illustrate this, consider the case of a flow for which no mean flow or
entropy disturbances exist. Substituting equations (2.18)–(2.20) into equation (2.16) and
expanding to second order in perturbation amplitude yields the following familiar acoustic
disturbance energy equation (Myers 1991):

∂

∂t

(
1
2
ρ0[u1 · u1] + p2

1

2ρ0c2
0

)
+ ∇ · (p1u1)= 0. (B2)

As in the acoustic energy equation, E represents the total (internal + kinetic) energy
strictly associated with flow disturbances, termed disturbance energy. We chose this
representation for the energy of the system for a couple of key reasons. First, disturbance
energy is a ubiquitous concept in linear acoustics, with familiar interpretations. For
instance, an equivalent description of the reflection and transmission of acoustic waves is
the power reflection and transmission coefficients, defined in (2.21) and (2.22). Thus using
this form of energy flux provides a convenient lens through which to view wave reflection
and transmission. Because TΠ and RΠ are also related to T and R (at least in the acoustic
limit), viewing this phenomenon from this standpoint can also clarify trends observed
from a pressure standpoint. Second, note that although disturbances cause fluctuations in
total energy, these are not equivalent to disturbance energy. This can be demonstrated by
considering the aforementioned flow field and expanding the total energy to second order
in perturbation amplitude:

ρeT = (ρeT )0 + δ(ρeT )1 + δ2(ρeT )2 +O(δ3)

= ρ0eT 0 + δ(ρ1h0)+ δ2

(
ρ2h0 + 1

2
ρ0[u1 · u1] + p2

1

2ρ0c2
0

)
+O(δ3)

= ρ0eT 0 + δ(ρ1h0)+ δ2(ρ2h0 + E)+O(δ3).

(B3)

In the above expression, δ represents the perturbation amplitude. It can be seen here that
fluctuations in density induce fluctuations in the total energy irrespective of the disturbance
energy. Conversely, a system with no mean energy or enthalpy has disturbance energy only;
thus this energy is considered to be strictly associated with the finite waves.

Other authors have put forward similar energy metrics with similar characteristics; in
particular, they reduce to acoustic energy for small-amplitude disturbances in inviscid,
homentropic media. Some prominent metrics with comparable characteristics are those
put forward by Jenvey (1989) and Doak (1989). Both authors study the behaviour of
an energy flux of the form I D ≡ hT

′(ρu)′, i.e. the mean energy flux due to stagnation
enthalpy and momentum fluctuations. The overbar in this flux expression denotes a time
average, while the prime represents deviations from the time average (i.e. ()≡ ()+ ()′).
The chief differences between this flux and Myers’ disturbance energy flux are as follows.

(i) The time-averaged quantities in I D are not the same as the base quantities (those
with subscript 0 in (B1)) in I ; this holds only for the time-stationary flows studied by
Jenvey and Doak. In general, we have that ()= ()0 + ()1 + ()2 + · · ·, i.e. higher-order
fluctuations induce shifts in the time average. For this work, we have deliberately
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avoided using time averages because the travelling shocks induce significant changes
in the time average, thereby obscuring physical interpretation. Selecting the quiescent
pre-shock flowfield to be the base flow for this problem facilitates physical insight;
the resulting energy flux is strictly associated with disturbances to this base flow, i.e.
finite waves and the flow phenomena that they induce.

(ii) The authors note that as with I , I D reduces to the acoustic disturbance energy at
second order for a homentropic, irrotational flowfield. However, slight differences
emerge when entropy disturbances are accounted for; these are present even for time-
stationary flows (i.e. those for which ()= ()0) at second order, and are magnified at
higher orders. At second order, for instance, we have

I2 = (ρu)1(hT 1 − T0s1)+ ρ0u0T1s1

= (ρ1u0 + ρ0u1)

(
p1

ρ0
+ u0 · u1

)
+ ρ0u0T1s1,

(B4)

I D2 = (ρu)1hT 1

= (ρ1u0 + ρ0u1)

(
p1

ρ0
+ u0 · u1

)
+ (ρu)1T0s1.

(B5)

Thus, even ignoring the fact that the former describes an instantaneous energy
flux while the latter describes a mean energy flux, entropy fluctuations affect
these quantities differently; Myers’ formulation accounts for flux due to entropy
and temperature disturbances transported by the mean flow (ρ0u0T1s1), while
Jenvey’s and Doak’s formulations account for flux due to entropy and momentum
fluctuations. At arbitrary order (and once again assuming time stationarity for ease
of comparison), we have

I D = (H − H0)(ρu + ρ0u0)= I − (ρu T0 − ρ0u0T )(s − s0). (B6)

Thus Myers’ disturbance energy differs from these by excluding the second set
of terms in the above equation, which can be interpreted physically as energy
transported by a particular coupling of momentum, temperature and energy
fluctuations.
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