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It is proved that the median eigenvalues of every connected bipartite graph G of maximum

degree at most three belong to the interval [−1, 1] with a single exception of the Heawood

graph, whose median eigenvalues are ±
√

2. Moreover, if G is not isomorphic to the

Heawood graph, then a positive fraction of its median eigenvalues lie in the interval

[−1, 1]. This surprising result has been motivated by the problem about HOMO-LUMO

separation that arises in mathematical chemistry.

2010 Mathematics subject classification: 05C50

1. Introduction

In recent work, Fowler and Pisanski [2, 3] introduced the notion of the HL-index of a

graph that is related to the HOMO-LUMO separation studied in theoretical chemistry (see

also Jaklič, Fowler and Pisanski [5]). This is the gap between the highest occupied molecular

orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). In the Hückel model

[1], the energies of these orbitals are in a linear relationship with eigenvalues of the

corresponding molecular graph and can be expressed as follows. Let G be a graph of

order n, and let λ1(G) � λ2(G) � · · · � λn(G) be the eigenvalues of its adjacency matrix.

The eigenvalues occurring in the HOMO-LUMO separation are the median eigenvalues

λh(G) and λ�(G), where

h =

⌊
n + 1

2

⌋
and � =

⌈
n + 1

2

⌉
.
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The HL-index R(G) of the graph G is then defined as

R(G) = max{|λh(G)|, |λ�(G)|}.

A simple unweighted graph G is said to be subcubic if its maximum degree is at most

3. In [2, 3] it is proved that every subcubic graph G satisfies 0 � R(G) � 3 and that if G

is bipartite, then R(G) �
√

3. The following is the main result from [7].

Theorem 1.1 (Mohar [7]). The median eigenvalues λh(G) and λ�(G) of every subcubic

graph G are contained in the interval [−
√

2,
√

2 ], that is, R(G) �
√

2.

This result is best possible since the Heawood graph (the bipartite incidence graph of

points and lines of the Fano plane) has λh = −λ� =
√

2.

The following conjecture was proposed in [7].

Conjecture 1.2. If G is a planar subcubic graph, then R(G) � 1.

The conjecture has been verified for planar bipartite graphs in [6]. In this paper we

prove a surprising extension of [6] and of Conjecture 1.2 that holds for all bipartite

subcubic graphs with a single exception of the Heawood graph (or a disjoint union of

copies of it). Our main results are as follows.

Theorem 1.3. Let G be a bipartite subcubic graph. If every connected component of G is

isomorphic to the Heawood graph, then R(G) = λh(G) = |λ�(G)| =
√

2. In any other case, the

median eigenvalues λh(G) and λ�(G) are contained in the interval [−1, 1], that is, R(G) � 1.

Theorem 1.3 shows that the median eigenvalues λh and λ� are small, but our proof

can be tweaked to give much more: a positive fraction of (median) eigenvalues lie in the

interval [−1, 1].

Theorem 1.4. There is a constant δ > 0 such that, for every bipartite subcubic graph G,

none of whose connected components is isomorphic to the Heawood graph, all its eigenvalues

λi(G), where (1/2 − δ)n � i � (1/2 + δ)n, belong to the interval [−1, 1].

2. Interlacing and imbalance of partitions

Let us first recall that eigenvalues of bipartite graphs are symmetric with respect to 0, that

is, if λ is an eigenvalue, then −λ is an eigenvalue as well and has the same multiplicity

as λ. This implies in particular that λh � 0 and that λ� = −λh. Therefore, it suffices to

consider λh.

Let us next recall the eigenvalue interlacing theorem (see e.g. [4]) that will be our main

tool below.

Theorem 2.1 (interlacing theorem). Let A ⊂ V (G) be a vertex set of cardinality k, and let

K = G − A. Then for every i = 1, . . . , n − k we have

λi(G) � λi(K) � λi+k(G).
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If V (G) = A ∪ B is a partition of the vertices of G, we let G(B) = G − A denote the

subgraph of G induced on B. We will consider vertex partitions V (G) = A ∪ B, but the

two parts A,B will play different roles. Thus, we shall consider such a partition as an

ordered pair (A,B). Given a partition (A,B) of V (G), let s � 1 be the smallest integer such

that λs(G(B)) � 1, and let

t =

⌊
1

2
(|B| − |A| + 1)

⌋
.

Then we say that the partition (A,B) is (s, t)-imbalanced , and we define the imbalance of

the partition (A,B) as

imb(A,B) = t − s + 1.

Lemma 2.2. Suppose that (A,B) is an (s, t)-imbalanced vertex partition of a subcubic graph

G. If r = imb(A,B) − 1, then λh−r(G) � 1. In particular, if imb(A,B) > 0, then λh � 1.

Proof. Conditions of the lemma give that λs(G(B)) � 1 and

r =

⌊
1

2
(|B| − |A| + 1)

⌋
− s.

If n = |A| + |B| is even, then

r =
1

2
|B| − 1

2
|A| − s =

n

2
− (|A| + s).

If n is odd, then

r =
n + 1

2
− (|A| + s).

In each case,

|A| + s =

⌊
n + 1

2

⌋
− r = h − r.

Since G(B) = G − A is obtained from G by deleting |A| vertices and |A| + s � h, the

eigenvalue interlacing theorem shows that λh−r(G) = λ|A|+s(G) � λs(G(B)) � 1.

Let (A,B) be a partition of V (G). Suppose that C ⊆ A is a set of vertices in A. We

say that C increases imbalance of (A,B) if imb(A \ C,B ∪ C) > imb(A,B). The following

result will be our main tool for finding imbalance-increasing vertex sets.

Lemma 2.3. Suppose that (A,B) is a partition of V (G) and C ⊆ A. Let Q be the union of

those connected components of G(B ∪ C) that contain vertices in C . If λ|C|(Q) � 1, then C

increases imbalance of (A,B).

Proof. Let (A,B) be (s, t)-imbalanced. Let k = |C| and (A′, B′) = (A \ C,B ∪ C). Then

t′ := t + k =

⌊
1

2
(|B′| − |A′| + 1)

⌋
.
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Note that G(B) and G(B′) have the same connected components except for those contained

in Q. Since λk(Q) � 1 and λs(G(B)) � 1, we have that λs+k−1(G(B′)) � 1. Thus (A′, B′) is

(s′, t′)-imbalanced, where s′ � s + k − 1. Hence,

imb(A′, B′) � (t + k) − (s + k − 1) + 1 = imb(A,B) + 1.

For C ⊆ V (G), let N(C) denote the set of all vertices in V (G) \ C that have a neighbour

in C . The statement of Lemma 2.3 has a converse under a mild restriction on N(C).

Lemma 2.4. Suppose that (A,B) is a partition of V (G) and C ⊆ A. If N(C) ⊆ B and

every vertex in N(C) has all its neighbours in A, then C increases imbalance of (A,B) if and

only if λ|C|(Q) � 1, where Q = G(C ∪ N(C)).

Proof. Let us first observe that the independence of N(C) in G(B) implies that the

subgraph Q that appears in Lemma 2.3 is equal to G(C ∪ N(C)). Therefore, it remains

to prove only the direction converse to that of the previous lemma, that is, the increased

imbalance implies that λ|C|(Q) � 1.

Let us adopt the notation used in the proof of Lemma 2.3 and let s′ be the smallest

integer such that λs′ (G(B′)) � 1. Let us assume that imb(A′, B′) = t′ − s′ + 1 > imb(A,B) =

t − s + 1. Since t′ = t + k, it suffices to see that s′ � s + k − 1. However, this is an easy

observation since G(B) and G(B′) have the same eigenvalues apart from the eigenvalues

of Q in G(B′) that are replaced by |N(C)| eigenvalues, all equal to 0, in G(B).

Suppose now that G is a bipartite graph and that (A,B) is a bipartition. A set U of

vertices of G is A-thick (B-thick ) in G if every vertex in U ∩ A (resp. U ∩ B) has at most

one neighbour in V (G) \ U, every vertex in B \ U (resp. A \ U) has at most one neighbour

in U, and |U ∩ A| > |U ∩ B| (resp. |U ∩ A| < |U ∩ B|). The set U is thick if it is either

A-thick or B-thick.

Lemma 2.5. If U is an A-thick set of vertices in G, then the set C = A ∩ U increases

imbalance of the bipartition (A,B).

Proof. Consider the subgraph Q of G(B ∪ C) consisting of those connected components

that contain vertices in C , and let t = |B ∩ U| < |C|. The thickness condition implies that

after removing vertices in B ∩ U from Q, we are left with a graph consisting of a matching

and isolated vertices, so its eigenvalues are all in the interval [−1, 1]. By the eigenvalue

interlacing theorem, we conclude that

λ|C|(Q) � λt+1(Q) � λ1(Q − (B ∩ U)) � 1,

so C increases imbalance of (A,B) by Lemma 2.4.

3. Improving imbalance

In this section we prove that for every vertex v0 of a connected bipartite subcubic graph

G with bipartition (A,B), if G is not isomorphic to the Heawood graph, then a small
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neighbourhood around v0 contains a set C that can be used to increase imbalance of the

partition (A,B) or (B,A). From now on we assume that G is bipartite and (A,B) is the

bipartition of G.

Given a graph G and its vertex v, we let Br(v) denote the set of all vertices of G whose

distance from v is at most r. We will sometimes consider the set Br(v) as the subgraph of

G induced on this vertex set.

Lemma 3.1. Suppose that (A,B) is the bipartition of a bipartite subcubic graph G, v0 ∈
V (G), and the connected component of G containing v0 is not isomorphic to the Heawood

graph. Then B17(v0) contains a set C of vertices such that either C ⊆ A and C increases

imbalance of (A,B), or C ⊆ B and C increases imbalance of (B,A).

Before giving the proof of Lemma 3.1, let us show how the lemma implies our main

results, Theorems 1.3 and 1.4.

Proof of Theorems 1.3 and 1.4. The proof of Theorem 1.3 follows from the proof of

Theorem 1.4 given below by taking V0 = {v0}, where v0 is an arbitrary vertex of G. Thus

we only need to take care of Theorem 1.4.

Let G be a bipartite subcubic graph with no component isomorphic to the Heawood

graph. For each vertex v of G, we have |Br(v)| < 3 · 2r . Therefore, G contains a set V0

of vertices that are mutually at distance at least 38 and |V0| > εn, where ε = 2−40. Let

us consider the bipartition (A,B) of G, and let, for each v ∈ V0, Cv be the vertex set C

obtained by applying Lemma 3.1. Let a denote the number of vertices v ∈ V0 such that

Cv ⊆ A, and let b = |V0| − a be the number of cases where Cv ⊆ B.

Note that λ1(G(A)) = λ1(G(B)) = 0. Thus,

imb(A,B) + imb(B,A) =

⌊
1

2
(|B| − |A| + 1)

⌋
+

⌊
1

2
(|A| − |B| + 1)

⌋
� 0. (3.1)

Let (A′, B′) be the partition obtained from (A,B) by removing from A and adding into B

all sets Cv (v ∈ V0) for which Cv ⊆ A. Since every Cv is contained in B17(v), all these sets

are pairwise at distance at least 4 from each other. Consequently, their graphs Q = QCv

are pairwise disjoint and non-adjacent. Hence, each of these sets increases imbalance of

(A,B) by at least 1 (Lemma 2.4). Therefore,

imb(A′, B′) � imb(A,B) + a. (3.2)

Similarly, adding to A all sets Cv (v ∈ V0) for which Cv ⊆ B, we obtain a partition (B′′, A′′)

such that

imb(B′′, A′′) � imb(B,A) + b. (3.3)

Finally, all three inequalities (3.1)–(3.3) imply that

imb(A′, B′) + imb(B′′, A′′) � imb(A,B) + imb(B,A) + a + b > εn. (3.4)
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By symmetry, we may assume that imb(A′, B′) � imb(B′′, A′′). Then (3.4) implies that

imb(A′, B′) � 1

2
εn,

and Lemma 2.2 gives the claim of the theorem with δ = 1
2
ε.

The family C0 of graphs listed in the Appendix (Figures 7–10) has the following

property. If H ∈ C0 and C is the bipartite set of its vertices that are shown as full circles

or full squares in Figures 7–10, then λ|C|(H) � 1. Lemma 2.4 shows that the following is

the common outcome for all of these graphs.

Corollary 3.2. Suppose that H ∈ C0 is one of the graphs depicted in Figures 7–10. Let

C be the bipartite class of its vertices that are drawn as full circles or full squares. If a

bipartite subcubic graph G with bipartition (A,B) contains H as an induced subgraph, where

C ⊆ A, and every vertex in C has all its neighbours in H , then C increases imbalance of the

bipartition (A,B) of G.

Proof. The proof is clear by using Lemma 2.3 and observing that the component Q in

G(B ∪ C) containing C is equal to H , and by the remarks given in the paragraph before

the corollary.

We shall need some new concepts. Let k � 1 be an integer. We say that vertices x and

y of G are k-adjacent in G if there is a path of length k joining them. If H is a subgraph

of G, a k-chord of H in G is a path P = v0v1 . . . vk of length k, such that P ∩ H = {v0, vk}.
Having such a k-chord P , we say that v0 and vk are k-adjacent outside H . The subgraph

H is k-induced in G if it has no l-chords for l = 1, . . . , k. Note that the special case when

k = 1 gives the usual notions of being adjacent, a chord, or an induced subgraph.

When dealing with vertices of degree 2 in the proof of Lemma 3.1, we will need the

following result.

Proposition 3.3. Let G be a bipartite graph of girth at least 6, let v0 ∈ V (G), and let r be

a positive integer. If x, y ∈ Br(v0), then there exists a 2-induced path from x to y that is

contained in Br+1(v0).

Proof. For u, v ∈ V (G), we let d(u, v) denote the distance in G from u to v. Let Px and

Py be shortest paths from x and from y to v0, respectively. Choose these paths so that

their intersection is a path Q, and Q is as long as possible. Since G has no cycles of

length 4, both paths Px and Py are 2-induced. Let z be the first vertex of intersection of

Px and Py when traversing the paths in the direction towards v0. Then Q is a path from

z to v0. The path Pxy consisting of the segments of Px from x to z and of Py from z to

y has length l = d(x, v0) + d(y, v0) − 2d(z, v0). First, we claim that Pxy is an induced path.

Namely, the segments of the two paths are induced, so if there were a chord uv of Pxy , then

u ∈ V (Px) \ V (Py) and v ∈ V (Py) \ V (Px). Since G is bipartite, we have d(u, z) 
= d(v, z),

and it is easy to see that this contradicts our choice of the paths with Q being longest

https://doi.org/10.1017/S0963548316000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548316000201


774 B. Mohar

possible since we could replace one of the paths with a path using the edge uv and thus

increasing the intersection of the two paths.

If Pxy is not 2-induced, let uwv be a 2-chord, where u ∈ V (Px) \ V (Py) and v ∈ V (Py) \
V (Px). Let us choose the 2-chord such that d(u, z) is maximum possible. As before, the

maximality of Q shows that d(u, z) = d(v, z). Let P ′
xy be the path from x to y obtained

from Pxy by using the 2-chord uwv instead of the path from u to v in Pxy . It is clear from

our choices that any chords or 2-chords of P ′
xy must use the vertex w. However, since G

has no 4-cycles, any such chord or 2-chord would give a contradiction to the maximality

property of Q. Therefore, P ′
xy is 2-induced.

The conclusion from the above paragraph is that either Pxy is 2-induced, or P ′
xy exists

and is 2-induced. In each case we obtain the statement of the proposition.

Proof of Lemma 3.1. In the proof, we do not intend to optimize the distance from v0
at which we are able to find a set that increases imbalance. Our main aim is to keep the

proof simple.

Suppose that G and its vertex v0 give a counterexample to the lemma. We may assume

that G is connected. As before, we assume that (A,B) is the bipartition of G. We shall

proceed through a sequence of claims, concerning vertices in the vicinity of v0. In each

claim we will assume that the claim is false and then define a certain vertex set C (where

C ⊆ A or C ⊆ B). We let QC = G(C ∪ N(C)). Observe that QC is the subgraph Q that

appears in Lemmas 2.3 and 2.4 about increasing imbalance.

Claim 1. Each vertex in B17(v0) has degree at least 2.

If v has degree at most 1, then C = {v} increases imbalance since in this case G({v} ∪
N(v)) is isomorphic to K2 and hence λ1(QC) � 1.

Claim 2. B16(v0) contains no 4-cycles.

Suppose that D = v1v2v3v4 is a 4-cycle in B16(v0). For i = 1, . . . , 4, let ui be the neighbour

of vi that is not in V (D) (if deg(vi) = 2, then we set ui = vi). If u1 
= u3, then let C = {v1, v3}.
We may assume that C ⊆ A. Clearly, QC = G(C ∪ N(C)) is isomorphic to the graph C+

4

depicted in Figure 7 (or to an induced subgraph of C+
4 if u1 = v1 or u3 = v3). Corollary 3.2

shows that C increases imbalance of (A,B). Similarly, if u2 
= u4, we may take C = {v2, v4}
and C increases imbalance of (B,A). Finally, assume that u1 = u3 and u2 = u4. Let us now

consider the 4-cycle v1v2v3u1. Again, if u1 and v2 have no common neighbour outside this

cycle, we are done by taking C = {u1, v2}. (Note that C ⊆ B17(v0) since V (D) ⊆ B16(v0).)

If they have such a common neighbour, this must be u2, and hence G = K3,3. In this case,

C = {v1, v3, u2} increases imbalance.

Claim 3. If B13(v0) contains a vertex of degree 2, then B16(v0) contains precisely two vertices

of degree 2 and they are adjacent to each other.
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Let us first prove that B16(v0) contains at most two vertices of degree 2, and if there

are two, one of them is in A and the other one is in B. To see this, suppose that

u, v ∈ A ∩ B16(v0) have degree 2 and u 
= v. By Proposition 3.3, there exists a 2-induced

path P from u to v in B17(v0). Let C = V (P ) ∩ A. Since P is 2-induced and u, v have degree

2, the graph QC is isomorphic to the graph P̂2t+1 shown in Figure 7, where the horizontal

path shown at the bottom of the drawing is P and 2t is its length. Since P ⊆ B17(v0),

Corollary 3.2 completes the proof.

Suppose now that deg(v) = 2, where v ∈ B13(v0). Suppose first that v does not belong

to a cycle of length 6. Let v1, v
′
1 be the neighbours of v, and let v2 (v′

2) be a neighbour of

v1 (v′
1) that is different from v. Finally, let C = {v, v2, v′

2} ⊂ B15(v0). Let Q = QC . We claim

that Q is isomorphic to the graph P̂−
7 depicted in Figure 7 (since deg(v2) = deg(v′

2) = 3).

To see this, we have to prove that vertices in C ∪ N(C) are distinct and non-adjacent,

apart from their adjacencies in P−
7 . Clearly, v is at distance at most 3 from all vertices

in Q. If two of them were adjacent or the same (apart from adjacencies in P−
7 ), then we

would obtain a cycle of length at most 7 containing v. Since G is bipartite and v does not

belong to a cycle of length 4 or 6, this is not possible. This proves the claim. Now, we are

done by Corollary 3.2.

Finally, let R = vv1v2v3v4v5 be a 6-cycle containing v. As shown above, we may assume

that deg(v2) = deg(v4) = 3. By symmetry, we may also assume that deg(v1) = 3. It suffices

to prove that deg(v5) = 2. Suppose for a contradiction that deg(v5) = 3. For i ∈ {1, 2, 4, 5},
let ui be the neighbour of vi that is not in V (R). In the preceding paragraph we proved

that taking the set C = {v, v2, v4} gives the outcome of the theorem unless v2 and v4

are 2-adjacent (which in turn gave rise to the 6-cycle R). The same argument can be

repeated on the sets {v, v2, u5}, {v, u1, v4}, and {v, u1, u5}. They show that u2 is the common

neighbour of v2 and u5, u4 is the common neighbour of u1 and v4, and that u1 and u5

have a common neighbour w /∈ V (R) ∪ {u2, u4}. (Here we used the fact that there are no

4-cycles in B16(v0) and that all vertices considered are in B16(v0).) If the subgraph S of

G induced on the vertex set V (R) ∪ {u1, u2, u4, u5, w} is 2-induced, then it is thick and we

are done by Lemma 2.5. Therefore, two of its vertices are 2-adjacent. The only pairs that

could be 2-adjacent outside S without creating a 4-cycle are u2, u4 and v3, w. Both of these

give isomorphic outcomes since v3 and w would have played the role of u2 and u4 if taking

the 6-cycle vv1v2u2u5v5v instead of R. Thus, we may assume that u2zu4 is a 2-chord. Let

C = {v, v2, v4, u1, u5, z}. Observe that C ⊂ B15(v0) since a neighbour of v belongs to B12(v0).

Then QC = G(C ∪ N(C)) is isomorphic to the graph Ĉ6 shown in Figure 7. Thus, we

obtain the outcome of the theorem by Corollary 3.2. This completes the proof of Claim 3.

Claim 3A 1. If z1 ∈ B13(v0) and z2 ∈ B14(v0) are adjacent degree-2 vertices of G, then they

are contained in a 6-cycle R = z1v1v2v3v4z2 ⊂ B15(v0) and there are vertices u1, u4 /∈ V (R)

such that R′ = u1v1v2v3v4u4 ⊂ B15(v0) is also a 6-cycle in G.

As shown in the proof of Claim 3, each vertex of degree 2 belongs to a 6-cycle, and

let R = z1v1v2v3v4z2 be such a cycle. We shall use the notation from the last part of the

proof of Claim 3, except that we now assume that z1 = v and z2 = v5 both have degree 2.

Considering the set C = {z1, u1, v4}, we conclude that u1 is adjacent to u4 (since otherwise
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H0
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9 10

Figure 1. The 2-induced closure of an 8-cycle.

we would obtain P̂−
7 ). This gives rise to R′. Since a neighbour of z1 belongs to B12(v0), we

conclude that R ∪ R′ ⊂ B15(v0).

An induced 2t-cycle D = v1v2 . . . v2t in G, in which either no two vertices in the set

C = {v1, v3, v5, . . . , v2t−1} are 2-adjacent outside D, or no two vertices in the set C ′ =

{v2, v4, v6, . . . , v2t} are 2-adjacent outside D, is called a good 2t-cycle.

Claim 4. B17(v0) contains neither good 8-cycles nor good 12-cycles.

Suppose not. Let C and C ′ be the vertex sets of a good 8- or 12-cycle from the definition

of good cycles. It follows that either QC or QC ′ is isomorphic to the graph C+
8 or C+

12

in Figure 7 (if some of the vertices on the cycle were of degree 2, QC or QC ′ could be

subgraph of one of these missing some of the degree-1 vertices). By Corollary 3.2, C or

C ′ increases imbalance of either (A,B) or (B,A). This proves the claim.

Since B16(v0) has no 4-cycles, every 8-cycle in B16(v0) is induced. By using Claim 4,

it is easy to see that every 8-cycle can be written as D = v1v2 . . . v8, where v1 and v5 are

2-adjacent, and v2 and v6 are 2-adjacent. We shall denote such a subgraph by H0 (see

Figure 1), and we shall later prove that every copy of H0 in a vicinity of v0 is 2-induced

in G (see Claim 8). Prior to that, we need some further properties.

Claim 5. Every vertex in B12(v0) is contained in a cycle of length 6.

Suppose v is not contained in a 6-cycle. Since v ∈ B12(v0), Claims 3 and 3A imply

Claim 5 for vertices of degree 2 and their neighbours. Therefore, we may assume that v

and its neighbours are of degree 3. Let C be the set consisting of v and the six vertices

that are at distance 2 from v. Then QC is isomorphic to the tree B3 shown in Figure 7

(or its induced subgraph with some of the leaves missing). By Corollary 3.2, C increases

imbalance of either (A,B) or (B,A).

We say that an edge of G is internal if it is contained in a 6-cycle in G, and is external

otherwise. Claim 5 implies that the set of external edges in the vicinity of v0 form a

matching in G. By the remarks stated after Claim 4, every 8-cycle in B17(v0) is contained

in a copy of the graph H0, which can be written as the union of three 6-cycles. This

implies that every edge in the 8-cycle is internal. Thus, external edges cannot belong to
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Figure 2. Two external edges at a hexagon.

cycles of length less than 10. This fact will be used repeatedly in the proof of the next

claim, which shows that every 6-cycle is incident with at most one external edge.

Claim 6. Every 6-cycle in B11(v0) is incident with at most one external edge.

Let D = v1v2 . . . v6 be a 6-cycle with two or more external edges. For i = 1, . . . , 6, let

ei = viui be the edge incident with vi that is not on the cycle D. (We set ei = vi if deg(vi) = 2,

and we say that ei is internal in such a case.) Since ui ∈ B12(v0), Claim 5 shows that there

is a 6-cycle Di through ui. If ei is external, the two 6-cycles D and Di induce a subgraph Hi

of G that has only the edge ei in addition to the two cycles. If there were other adjacencies

between D and Di, then ei would be contained in a cycle of length less than 10 (and would

also be contained in B15(v0)), which is excluded as argued above. The same argument

shows that Hi is 2-induced.

We may assume that e1 is external, and we shall distinguish three cases, depending on

whether ej , j = 2, 3, 4, is another external edge. Let H1j be the subgraph of G induced

on H1 ∪ Hj . Figure 2 shows graphs H1 ∪ Hj for j = 2, 3, 4. Let us first observe that all

vertices shown in Figure 2 are distinct in each of the three cases (with one possible special

exception). For H12, any identification would give a cycle of length at most 8 through e1;

and similarly in H13, where we have to observe that possible identification of x and s in

H13 would force another identification of a neighbour of x, thus yielding a cycle of length

at most 8 containing e1. The same can be said for H14 with a single exception that it

may happen that we have t = x and at the same time s = y. Let us first assume that this

exceptional possibility does not occur; we will treat the exception at the end of the proof

of the claim.

Let C be the set of vertices of H1j that are depicted as black vertices in Figure 2. Since

D ⊆ B11(v0), we have that C ⊆ B15(v0).
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u′′
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Figure 3. The subgraph H14 when t = x and s = y with the added vertices a, b, c, u2, u5, u
′
5, u

′′
5 , u6.

Let us first suppose that two of the vertices in C have a common neighbour outside

C . The only possibilities (up to symmetries) that do not yield a cycle of length at most 8

through e1 or ej are the following.

(a) s and y in H12. In this case, there is a good 12-cycle in B16(v0) using the 2-chord from

s to y, the path from y to e2 that passes through x, and the path from e2 to s.

(b) s and x in H13. This case gives a good 12-cycle in B16(v0).

(c) s and z in H13. This case also gives a good 12-cycle (by using the path v3v4v5v6v1

through D) since any 2-adjacency of white vertices on that 12-cycle would yield a

short cycle through e1 or through e3.

(d) s and y or u and y in H14. Both cases give a good 12-cycle.

Thus we may assume that there are no additional 2-adjacencies between vertices in C . If

H1j is as shown in Figure 2, that is, the subgraph shown is induced in G, the subgraph QC

is isomorphic to one of the graphs Ĥ12, Ĥ13, and Ĥ14, shown in Figure 8 in the Appendix

(with possibly some degree-1 vertices missing if H1j contains vertices whose degree in G is

2). By Corollary 3.2, C increases imbalance. Thus, we may assume that H1j is not induced.

The only possibilities for additional edges (up to symmetries) that do not yield a cycle of

length at most 8 through e1 or ej are the following.

(e) The edge sx in H12. In this case, QC is isomorphic to the graph Ĥ ′
12 from the Appendix

(Figure 8), and we are done by Corollary 3.2.

(f) The edge sy in H13 or the edge ty in H14. Each of these cases gives rise to a good

12-cycle (using the path through the vertex x).

(g) The edge sx in H14. This case also gives a good 12-cycle.

(h) The edge sz in H14. In this case, QC is isomorphic to the graph Ĥ ′
12 shown in Figure 8

(where D can be any of the bottom two hexagons), and we are done by Corollary 3.2.

It remains to consider the exception of H14 when t = x and s = y. Figure 3 shows the res-

ulting subgraph with a few additional neighbouring vertices, denoted by a, b, c, u2, u5, u
′
5, u

′′
5 ,

u6. Since e1 and e4 are not in any cycle of length at most 8, and since there are no 4-cycles,

it is easy to check that all vertices shown in the figure are distinct, with a single possible
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exception that u′
5 (or u′′

5) could be equal to u2. This implies that the subgraph of G

induced on these vertices is one of the two graphs Ĥ ′
14 and Ĥ ′′

14 shown in Figure 9. Let

C be the smaller bipartite class in this subgraph of G. Since |C| = 9 and λ9(Ĥ
′
14) = 1 and

λ9(Ĥ
′′
14) = 1 (by Lemma A.1), we are done by applying Corollary 3.2. This completes the

proof of Claim 6.

Claim 7. Let v ∈ B11(v0). If every vertex at distance at most 2 from v has degree 3, then

G contains an 8-cycle that has a vertex at distance at most 2 from v.

Let D = v1v2 . . . v6 be a 6-cycle that contains v (where v = v1). By the assumption,

v1, v2, v6 and their neighbours have degree 3. By Claim 3A, also v4 has degree 3. We may

also assume that the neighbours of v3, v4, v5 have degree 3. To see this, suppose for a

contradiction that a neighbour u of vi (i ∈ {3, 4, 5}) is of degree 2. By Claim 3A, u has a

neighbour u′ of degree 2, there are two 6-cycles containing the path viuu
′, and one of these

is using the edge vivi−1 and the other one is using the edge vivi+1. If the first one also uses

the edge vi−1vi−2, then the union of D and this 6-cycle contain an 8-cycle through v (here

we note that the 6-cycle cannot go through the edge vi−2vi−3, which would make u′ at

distance less than 3 from v1). The same holds if the second 6-cycle uses the edge vi+1vi+2.

This means that the 6-cycles are viuu
′zw1vi−1vi and viuu

′zw2vi+1vi. This gives a required

8-cycle through vertices in V (D) ∪ {w1, z, w2} \ {vi}. In summary, we may assume that all

vertices in D and all vertices adjacent to D have degree 3.

Let ei = viui be the edge incident with vi that is not contained in D. By Claim 6, at least

five of the edges e1, . . . , e6 are internal. Each 6-cycle D′ containing ei must use another

internal edge ej . If j = i + 2 or j = i − 2 (values modulo 6), then D ∪ D′ contains an

8-cycle, where v is either on the cycle or adjacent to it. Suppose now that j = i + 3. We

may assume that i = 1 and j = 4 and that D′ = v1 . . . v4v
′
5v

′
6. Since any two vertices in

D ∪ D′ lie on a common 6-cycle, at most one of these vertices is incident with an external

edge. We may assume that this vertex, if it exists, is v′
6. Note that all vertices in D ∪ D′

have degree 3. Define the edges e′
5, e

′
6 /∈ E(D′) that are incident with v′

5 and v′
6, respectively.

If a 6-cycle D′′ through e2 uses any of the edges e5, e6, e
′
5, e

′
6, then the union D ∪ D′ ∪ D′′

contains an 8-cycle that is at distance at most 2 from v. By symmetry, a similar conclusion

holds for all other internal edges leaving D ∪ D′. Thus, we may assume that the 6-cycle

through e2 returns through e3, the cycle through e5 returns through e6, and the 6-cycle

leaving v′
5 returns through v′

6. Denote these 6-cycles by F23, F56, F
′
56, respectively. Note

that any two of these 6-cycles together with a 6-cycle in D ∪ D′ form a subgraph of G

that is isomorphic to the graph L3 shown in Figure 4. It is easy to see that if L3 is not

2-induced or if its vertices are not distinct, then it contains an 8-cycle that passes through

one of the vertices marked x and y in Figure 4. Since x and y are at distance at most 2

from v, we get the claim. Thus, we may assume that each of these subgraphs is 2-induced,

which implies that also the graph L3,3 (see Figure 4) consisting of D ∪ D′ together with

F23, F56, F
′
56 is 2-induced in G. Let C = V (L3,3) ∩ A and note that C ⊆ B16(v0). Since L3,3

is 2-induced in G, the subgraph QC is isomorphic to the graph L̂3,3 shown in Figure 10,

and we are done by applying Corollary 3.2.
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L3 L3,3

x

y

Figure 4. A case of 6-cycles sharing three edges.

The last case to consider is when every 6-cycle using one of the edges ei returns to

D either through ei−1 or through ei+1. Suppose first that a 6-cycle D1 through e1 and a

6-cycle D3 through e3 both return through e2. If the union R = D ∪ D1 ∪ D3 is an A-thick

(resp. B-thick) subgraph of G, then either C = V (R) ∩ B (resp. C = V (R) ∩ A) gives an

imbalance-increasing vertex set in B16(v0) (see Lemma 2.5). Therefore, either two vertices

in A or two vertices in B are 2-adjacent. The corresponding 2-chord gives rise to two

6-cycles sharing a path of length 2 or 3, which is the case we have already treated above.

Even though one of the 6-cycles D1 or D3 may play the role of D in this case, it is still

true that a resulting 8-cycle is at distance at most 2 from v.

By symmetry, we may now assume that there are precisely three 6-cycles using internal

edges e1, . . . , e6. We may assume that the 6-cycles are F12, F34, F56, where Fij uses the edges

ei and ej . If a vertex x ∈ V (F12) \ V (D) and a vertex y ∈ V (F34) \ V (D) are either the same,

adjacent, or 2-adjacent in G, then we obtain either an 8-cycle or two 6-cycles sharing a

path of length 2 or 3, which is the case we have already treated above. In that case we

get an imbalance-increasing set in B17(v0) or an 8-cycle at distance at most 2 from v.

Since the same can be said for the other pairs of the 6-cycles Fij , we conclude that the

graph R = D ∪ F12 ∪ F34 ∪ F56 is 2-induced in G. We set C = V (R) ∩ A and observe that

QC is isomorphic to the graph Ĥ123 shown in Figure 8. Again, Corollary 3.2 applies. This

completes the proof of Claim 7.

Let H0 and H1 be the graphs depicted in Figure 1, and let H2, H3, and H4 be the graphs

in Figure 5. Observe that H2 and H3 are both isomorphic to the Heawood graph with

one edge removed and that their subgraphs induced on vertices 1, 2, . . . , 12 are isomorphic

to H1.

Claim 8. Let D be an 8-cycle in B10(v0). Then D is contained in a 2-induced subgraph

isomorphic to the graph H0.

We have already seen that D must be contained in a subgraph H of G that is isomorphic

to H0. This subgraph is induced in G since any chord in H0 gives rise to a cycle of length

4. It remains to see that H is 2-induced. We will use the notation provided in Figures 1

and 5, so the vertices of H and other graphs isomorphic to one of H0, . . . , H4 will be

denoted by the integers 1, 2, . . . , 16 as shown in the figures.
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Figure 5. The graphs H2, H3, and H4.

Suppose that H is not 2-induced. Note that any 2-chord starting at vertices 11 or 12

would give rise to a 4-cycle in G. Thus, we may assume, by symmetry, that we have a

2-chord 3-10-7. Since this 2-chord is part of another copy of H0, the subgraph obtained

from H by adding the 2-chord is induced in G. By Lemma 2.5, this subgraph cannot be

thick, so there is a 2-chord joining two of the vertices 4, 8, 10, 12. The only two pairs not

giving a 4-cycle are 4-8 and 10-12. They give rise to isomorphic graphs, so we may assume

the 2-chord is 4-9-8. Thus we have a subgraph H ′ isomorphic to the graph H1 (shown

in Figure 1). This subgraph is induced in G since any two vertices in different bipartite

classes belong to a common copy of H0 inside H ′.

Suppose first that H ′ is not 2-induced. By symmetry between the possible 2-adjacent

pairs 9-11 and 10-12, we may assume that 10-13-12 is a 2-chord. By Lemma 2.5, two

of the vertices 9, 11, 13 are 2-adjacent. If these are 9 and 11, we obtain a copy of H2.

Otherwise, by symmetry, we have a 2-chord 9-14-13 which yields a copy of H3. Let x

and y be the degree-2 vertices in the obtained subgraph. If they were adjacent, we would

get the Heawood graph, so both graphs are isomorphic to the Heawood graph minus an

edge, and thus we may assume henceforth that we have H2. By symmetry between x and

y and by symmetry of the bipartite classes A and B, we may assume that x = 13 ∈ A

and that y = 14 ∈ B. By Claim 3, x and y have degree 3 in G and there are two edges

e = xx′ and f = yy′ going out of H2 in G. Since the distance in H2 between x and y is

five, both e and f are external edges. Observe that either x′ or y′ belongs to B7(v0). This

is clear if v0 ∈ V (H2). Otherwise, one of these vertices is on a shortest path from v0 to D,

giving the same outcome. We may assume that x′ ∈ B7(v0). Let D′ ⊂ B10(v0) be a 6-cycle

through the vertex x′, and let C = A ∩ (V (H2) ∪ D′) \ {1, 7, 9}. Then the subgraph QC of

G is isomorphic to the graph Ĥ◦
2 shown in Figure 7. (To check this, note that the 8-cycle

in the figure is 2-3-10-13-12-5-6-11-2, where the vertex 11 is adjacent to the vertex y = 14

having degree 1. The only non-obvious possibility for QC being different is that a vertex

in D′ would be equal to y′ and hence adjacent to y. However, in that case, D′ would

be incident with two external edges e and f, contradicting Claim 6.) Now, Corollary 3.2

shows that C ⊂ B11(v0) increases imbalance.

From now on, we may assume that H ′ is 2-induced. For vertices i ∈ {9, . . . , 12}, let

ei be the edge in G incident with vertex i but not contained in H ′. Note that for any

i, j ∈ {9, . . . , 12} of different parities, vertices i and j lie on a common 6-cycle in H ′. Since
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D ⊂ B10(v0), we have H ′ ⊂ B11(v0). By Claim 6, at most one of the edges e9, e10 is external.

By symmetry, we may assume that e9 is internal. Since H ′ is 2-induced and the distance

between 9 and 11 in H ′ is four, e9 and e11 cannot lie on a common 6-cycle. Thus, we may

assume (by symmetry between e10 and e12) that a 6-cycle D′ through e9 uses the edge e10.

In that case, D′ is the cycle 9-8-7-10-15-16-9, where 15 and 16 are new vertices. If a 6-cycle

through e11 uses e10, then the cycle is 11-14-15-10-7-6-11 (14 being a new vertex). In this

case we obtain a good 8-cycle 11-14-15-16-9-8-1-2-11; and similarly if a 6-cycle through

e12 uses e9. Since e11 and e12 are incident with the same 6-cycle, they cannot be both

external by Claim 6. The only possibility for a 6-cycle (excluding previously treated cases)

is the 6-cycle 12-13-14-11-6-5-12 (or 12-13-14-11-2-1-12) where 13 and 14 are new vertices.

This gives us the graph H4 shown in Figure 5. The subgraph H4 is induced in G (or we

get a case treated above). If it is not 2-induced, we may assume that we have the 2-chord

13-17-15, and in this case we obtain a good 8-cycle: 12-13-17-15-16-9-8-1-12. Therefore

H4 is 2-induced. Now, we take C = A ∩ V (H4) \ {1}. The subgraph QC is isomorphic to

the graph Ĥ−
4 in Figure 7. Corollary 3.2 shows that C increases imbalance. This exhausts

all possibilities and completes the proof of Claim 8.

We now define a vertex v̂0 as follows. If every vertex in B2(v0) is of degree 3 in G, then

we take v̂0 = v0. Otherwise, Claim 3A shows that there exists a vertex v̂0 ∈ B3(v0) such that

all vertices at distance at most 2 from it have degree 3. Claim 7 shows that there exists

an 8-cycle D at distance at most 2 from v̂0. By Claim 8, D is contained in a 2-induced

subgraph H0 of G, where H0 is depicted in Figure 1. This gives the next conclusion.

Claim 9. There is a 2-induced subgraph of G isomorphic to H0 that contains a vertex in

B4(v0).

We shall now fix the subgraph of Claim 9, call it H0 and denote its vertices by integers

as in the figure.

Claim 10. All vertices in H0 have degree 3 in G, and for t � 5, there is no t-chord joining

a vertex in {3, 4} with a vertex in {7, 8}.

By Claim 3, vertices 11 and 12 cannot be of degree 2. If another vertex, which we may

assume is the vertex 3, is of degree 2, then let C = {1, 3, 5, 7}. Since H0 is 2-induced, the

corresponding subgraph QC is isomorphic to the graph Ĥ=
0 from Figure 7, and we are

done by Corollary 3.2. This proves the first part of the claim.

Suppose next that there is a t-chord joining vertex 3 with {7, 8}. By Claim 8, we have

t � 3. Now it is an easy task to verify that the t-chord together with a path in H0 gives

rise to a good 8-cycle in G. This completes the proof of Claim 10.

If i is a vertex of degree 2 in H0, then we let ei denote the edge in E(G) \ E(H0) that

is incident with the vertex i. If there is a 6-cycle that contains two of such edges, ei and

ej , then we say that ei and ej are coupled . If the corresponding vertices i and j are at

distance t in H0, then there is a (6 − t)-chord Pi,j of H0 containing ei and ej . Since H0 is

2-induced, we know that t � 3 in such a case.
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a

b

c

d

Figure 6. The graphs H0
6 , H1

6 , and H2
6 .

Claim 11. If e3 is coupled with e12, then the edge e4 is internal.

Suppose that the path P3,12 is 3-13-14-12 (where 13 and 14 are new vertices) and

suppose that e4 = 4a is an external edge. Since H0 has a vertex in B4(v0), the vertex a

lies in B9(v0). By Claim 5, there is a 6-cycle R = abcdega through a. Since the edge 4a is

external, it cannot be contained in a cycle of length less than 10 (see the comment stated

before Claim 6). This implies that the cycle R is disjoint from H0 ∪ P3,12 and its only

vertex that is incident to H0 ∪ P3,12 is a. Moreover, none of its vertices is 2-adjacent to a

vertex in H0 ∪ P3,12, except possibly the vertex d that could be 2-adjacent to the vertex 8.

Let C = {2, 4, 6, 12, 13, b, d, g}. Then QC is isomorphic to the graph N̂0 shown in Figure 7.

Now the proof is complete by Corollary 3.2.

Claim 12. If e3 is coupled with e4 and P3,4 = 3abcd4, then the subgraph H5 induced on

V (H0 ∪ P3,4) is either equal to H0 ∪ P3,4 or equal to H0 ∪ P3,4 together with precisely one of

the edges 11c or 12b.

By Claim 10 and since G has no 4-cycles, the only possible edges of H5 in addition to

the edges in H0 ∪ P3,4 are the two edges 11c and 12b. Thus it remains to see that both

of them cannot be present. Suppose, for a contradiction, that they are. By Claim 6 and

symmetry, we may assume that the edge ea leaving P3,4 at the vertex a is internal. It is easy

to see that its supporting 6-cycle must return to H0 ∪ P3,4 through the vertex d. Let aefd

be the corresponding 3-chord. Let C = {2, 4, 6, 8, 12, a, c, f}. By using Claim 10 it is easy

to see that the corresponding subgraph QC is isomorphic to the graph Ĥ5 in Figure 10,

and we are done by Corollary 3.2.

Claim 13. If e3 is coupled with e4, then e7 is not coupled with e8.

Suppose for a contradiction that e3 is coupled with e4 and that e7 is coupled with e8.

Let us consider the graph H6 = H0 ∪ P3,4 ∪ P7,8. By Claims 10 and 12, this subgraph is

isomorphic to the graph shown in Figure 6, where each of the two dotted edges may or

may not be present. If just one of these two edges is present, then we may assume that

this is the edge incident with the vertex d. By Claim 10, the vertices a, b, c, d cannot be 2-

adjacent outside this subgraph, except possibly for b and d. Let C = {2, 4, 6, 8, 12, a, b, c, d}.
Then QC is either isomorphic to one of the graphs Ĥ0

6 , Ĥ1
6 , Ĥ2

6 in Figure 10, or to a graph
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obtained from one of these graphs by identifying the neighbours of vertices b and d. The

latter possibility does not happen if the left dotted edge in Figure 6 is present. By the

assumption made above, we may thus assume that b and d are not 2-adjacent when at

least one of the dotted edges is present; thus the only additional case arising this way is

the graph Ĥ∗
6 in Figure 10. In either case, we are done by Corollary 3.2.

Claim 14. If e3 is coupled with e11, then e3 is coupled with e4.

Let P3,11 be the 4-chord 3abc11. Since H0 ∪ P3,11 is not thick (Lemma 2.5), there is

a 2-chord joining two vertices in the larger bipartite class of this graph. Since H0 is

2-induced, Claim 10 implies that the only possibility is a 2-chord joining the vertex c with

the vertex 4. This gives the claim.

We are now ready to complete the proof. We may assume that e3 is an internal edge,

and we may assume that e3 is not coupled with e4 (by using Claim 13 and symmetry).

By Claim 14, e3 is not coupled with e11 and by Claim 10, it is not coupled with e7 or

e8. The only possibility remaining is that it is coupled with e12. Claim 11 implies that

e4 is an internal edge. The same arguments as used for e3 show that e4 is coupled with

e11. Now, Claim 10 implies that e7 and e8 cannot be coupled with e11 or e12. Therefore,

e7 is coupled with e8. Take C to be the bipartite vertex class of H0 ∪ P3,12 ∪ P4,11 ∪ P7,8

containing the vertices 1, 3, 5, 7. Let a denote the vertex of C ∩ P3,12 that is adjacent to

12, let b ∈ C be the vertex on P4,11 that is adjacent to 4, let c ∈ C be the vertex on P7,8

adjacent to 8, and let d be the remaining vertex of C in P7,8. Since e3 is not coupled with

e4, vertex a is not 2-adjacent with b. Claim 10 excludes 2-adjacencies between a and c and

between b and c, d. Finally, a and d cannot be 2-adjacent since this would give a good

8-cycle through vertices a, d, 7, 5. This implies that QC is isomorphic to the graph Ĥ7 in

Figure 10. Corollary 3.2 applies again, and the proof is complete.
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Appendix: Some subcubic graphs and their eigenvalues

In the Appendix we list a collection of graphs and their critical eigenvalues that were

used to obtain balance-increasing vertex sets in the proof of our main theorem.

Lemma A.1.

(a) The graph C+
4 depicted in Figure 7 has λ2(C

+
4 ) = 1.

(b) Let G be one of the graphs C+
6 or P̂−

7 depicted in Figure 7. Then λ3(G) = 1.

(c) The graph C+
8 depicted in Figure 7 has λ4(C

+
8 ) = 1.
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C+
4

C+
6 Ĉ6

P̂−
7

P̂2t+1

C+
8

C+
12

B3

Ĥ◦
2

Ĥ=
0

Ĥ−
4

N̂0

Figure 7. Graphs in Lemma A.1.

(d) The graph C+
12 depicted in Figure 7 has λ6(C

+
12) = 1.

(e) The graph Ĉ6 depicted in Figure 7 has λ6(Ĉ6) < 0.91.

(f) The graph B3 depicted in Figure 7 has λ7(B3) = 1.

(g) The graphs Ĥ◦
2 and Ĥ−

4 depicted in Figure 7 have λ7(Ĥ
◦
2 ) = λ7(Ĥ

−
4 ) = 1.

(h) The graphs Ĥ=
0 , N̂0, and Ĥ5, depicted in Figures 7 and 10 have λ4(Ĥ

=
0 ) = 1, λ8(N̂0) = 1,

and λ8(Ĥ5) < 0.92.

(i) The graphs Ĥ ′
12 and Ĥ123 depicted in Figure 8 satisfy

λ8(Ĥ
′
12) = λ9(Ĥ

′
12) = λ8(Ĥ123) = λ9(Ĥ123) = 1.

(j) The graphs Ĥ12, Ĥ13, and Ĥ14 depicted in Figure 8 have λ9(Ĥ12) < 0.95, λ9(Ĥ13) = 1,

and λ9(Ĥ14) < 0.96 .

(k) The graphs Ĥ∗
6 , Ĥ0

6 , Ĥ1
6 , Ĥ2

6 , and Ĥ7 depicted in Figure 10 have

λ9(Ĥ
∗
6 ) = λ9(Ĥ

0
6 ) = λ9(Ĥ

1
6 ) = λ9(Ĥ

2
6 ) = λ8(Ĥ

2
6 ) = λ9(Ĥ7) = 1.

(l) The graphs Ĥ ′
14 and Ĥ ′′

14 shown in Figure 9 have λ9(Ĥ
′
14) = 1 and λ9(Ĥ

′′
14) = 1.
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Ĥ12

Ĥ13

Ĥ14

Ĥ ′
12

Ĥ123

Figure 8. The graphs Ĥ12, Ĥ
′
12, Ĥ13, Ĥ14, and Ĥ123.

Ĥ ′
14

Ĥ ′′
14

Figure 9. The graphs Ĥ ′
14 and Ĥ ′′

14.

(m) The graph L̂3,3 depicted in Figure 10 has λ10(L̂3,3) < 0.92 .

(n) The graph P̂2t+1 depicted in Figure 7 with its horizontal path being of length 2t (t � 0)

has λt+1(P̂2t+1) = 1.

Proof. Claims (a)–(m) were checked by computer. The only graph that needs the proof

is P̂2t+1. Let v1v2 . . . v2tv2t+1 be the horizontal path of length 2t in P̂2t+1, and let C =

{v2, v4, . . . , v2t}. The subgraph R = P̂2t+1 − C is a matching consisting of t + 1 disjoint

edges. The interlacing theorem shows that 1 = λt+1(R) � λt+1(P̂2t+1) � λ1(R) = 1. This

completes the proof.
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Ĥ0
6 Ĥ1

6 Ĥ2
6

Ĥ∗
6

Ĥ5 Ĥ7

L̂3,3

Figure 10. The graphs Ĥ5, Ĥ7, L̂3,3, Ĥ
∗
6 , Ĥ0

6 , Ĥ1
6 , and Ĥ2

6 .

Part of the proof of Lemma A.1 is based on computer computation. For a reader

that may be sceptical about a proof relying on computer evidence, we show below how

to obtain a self-contained proof. We will provide a sketch for a direct proof for all of

the cases (in addition to the proof for P̂2t+1 given above) that will suffice to support

Corollary 3.2 which is used throughout in Section 3.

Let G be a graph in one of Figures 7–10. Let C be the set of vertices of G that are

drawn as full circles or full squares. Our goal is to show that λ|C|(G) � 1. Observe that

in each case, G − C consists of isolated vertices, and thus the interlacing theorem implies

that λ|C|+1(G) � 0. Thus it suffices to provide evidence that there is an eigenvalue λ, where

0 < λ � 1.

For graphs C+
4 , C

+
8 , C

+
12, P̂

−
7 , and B3 we can confirm this by describing an eigenvector

for eigenvalue λ = 1. For C+
4 , C

+
8 , C

+
12, the eigenvector has value 0 on vertices of degree 2

and value ±1 on other vertices, where each vertex of degree 1 and its neighbour have the

same value, and the values +1 and −1 alternate around the cycle. For P̂−
7 , the vector has

values 1 on vertices of degree 1 and 3, value −1 on vertices of degree 2 that are adjacent

to the degree-3 vertices, and value −2 on the vertex in the middle. For B3, the eigenvector

has value 3 at the top vertex, values 1 on adjacent vertices, and value −1 at all other

vertices.

In the case of C+
6 we can confirm that λ3(C

+
6 ) � 1 by using the interlacing theorem

when we remove the vertex of degree 3 and the vertex that is opposite to it on the 6-cycle.

The vertices removed in this case and in the cases treated below are shown as squares. In

the case of the graph Ĉ6, we remove the two vertices on the left and two vertices on the

right of the drawing. The resulting subgraph has one component isomorphic to C6, which

has λ2(C6) = 1. Again, the interlacing theorem applies. The same happens for graphs
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1

-1

1
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Figure 11. Some graphs and their eigenvectors.

Ĥ=
0 (where we remove the two square vertices on the left of the drawing) and Ĥ◦

2 (where

we remove five vertices). For the graph Ĥ−
4 we provide an eigenvector for eigenvalue 1 in

Figure 11(a). For N̂0 we first remove the three square vertices and then find an eigenvector

for eigenvalue 1 for the remaining subgraph (cf. Figure 11(b)).

This exhausts all graphs in Figure 7 and we proceed with those in Figure 8.

For the graphs Ĥ12 and Ĥ ′
12, we remove six square vertices, and are left with a copy

of the graph P̂−
7 as the non-trivial component. Since λ3(P̂

−
7 ) = 1, the interlacing theorem

applies. For the graph Ĥ13, we can remove its six square vertices, being left with a

copy of the graph C+
6 as the only non-trivial component. Again, the interlacing theorem

applies.

For the graph Ĥ14, we remove five square vertices. The resulting non-trivial component Q

has λ4(Q) = 1 and λ5(Q) = λ6(Q) = 0. The evidence for this is shown by three eigenvectors

in Figure 11(d), where the unfilled values for the eigenvectors of 0 are assumed to be 0.
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(Note that λ7(Q) = 0 as well, but this evidence is not needed for our proof.) Finally, the

graph Ĥ123 has eigenvalue 1; its eigenvector is shown in Figure 11(c).

The graphs Ĥ ′
14 and Ĥ ′′

14 have a similar proof. We remove the four square vertices of

each of them and then show that λ5 of the resulting graph is equal to 1. In both cases,

the components are one copy of P5 or P3 (each of which has λ2 � 1), copies of K1 and

K2, and one non-trivial component Q which is a hexagon with two pending edges and a

pending claw. In the case of Ĥ ′
14, the big component Q is the one from Figure 11(d) with

λ4(Q) = 1 (as shown by the evidence in the figure). In the case of Ĥ ′′
14, the big component

Q is the one from Figure 11(g) with λ4(Q) = 1 (which is also shown by the evidence in

the figure, where two eigenvectors for eigenvalue 0 and one for 1 are exhibited).

It remains to treat the graphs in Figure 10. For the graph Ĥ5, we remove the four square

vertices. The remaining non-trivial component Q consists of two hexagons sharing an edge

plus two additional edges. Figure 11(e) shows two independent eigenvectors for eigenvalue

1 of Q which implies that λ4(Q) � 1, and the interlacing theorem can be applied.

For the graph Ĥ7, we remove its six square vertices. The remaining non-trivial

component Q consists of a path v1v2 . . . v6 with added pendant edges at vertices v2, . . . , v5.

This graph has characteristic polynomial

φ(λ) = λ10 − 9λ8 + 24λ6 − 20λ4 + 4λ2.

Note that φ(1) = φ(0) = 0 and that φ′(1) > 0. Basic calculus shows that λ5(Q) = 0 and

λi(Q) � 1 for i = 3, 4.

For the graph L̂3,3, the removal of two square vertices from two of the three central

hexagons and removal of three square vertices from the third hexagon give a non-trivial

component that is isomorphic to P̂−
7 , and we are done as in some of the previous cases.

The proof is also easy for Ĥ1
6 , and Ĥ2

6 . The removal of the indicated seven square

vertices leaves only one non-trivial component, which is isomorphic to C6, whose second

eigenvalue is 1.

From Ĥ∗
6 we remove five square vertices, being left with a non-trivial component Q

consisting of two adjacent hexagons plus two edges. Figure 11(f) contains evidence that

Q has eigenvalue 1 of multiplicity at least 2, which implies that λ4(Q) � 1, and interlacing

arguments apply.

Finally, in the case of Ĥ0
6 , removal of four square vertices leaves one non-trivial

component, Q, which is isomorphic to the graph obtained from the path of length 10 to

which we add two pendant edges at each end. The characteristic polynomial φ(λ) of Q is

easily computed:

φ(λ) = λ15 − 14λ13 + 76λ11 − 200λ9 + 259λ7 − 146λ5 + 24λ3.

Then φ(1) = 0 and φ′(1) = 24 > 0. Thus, one of λ1(Q), λ3(Q), λ5(Q), λ7(Q) is equal to 1.

However, λ7(Q) = 0, so we have that λ5(Q) � 1, and interlacing can be used again. This

exhausts all graphs in Figures 7–10.
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[5] Jaklič, G., Fowler, P. W. and Pisanski, T. (2012) HL-index of a graph. Ars Math. Contemp. 5

99–105.

[6] Mohar, B. (2013) Median eigenvalues of bipartite planar graphs. MATCH Commun. Math.

Comput. Chem. 70 79–84.

[7] Mohar, B. (2015) Median eigenvalues and the HOMO-LUMO index of graphs. J. Combin.

Theory Ser. B 112 78–92.

https://doi.org/10.1017/S0963548316000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548316000201

