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The study of the phase transition of random graph processes, and recently in particular Achlioptas
processes, has attracted much attention. Achlioptas, D’Souza and Spencer (Science, 2009) gave
strong numerical evidence that a variety of edge-selection rules in Achlioptas processes exhibit
a discontinuous phase transition. However, Riordan and Warnke (Science, 2011) recently showed
that all these processes have a continuous phase transition.

In this work we prove discontinuous phase transitions for three random graph processes: all
three start with the empty graph on n vertices and, depending on the process, we connect in every
step (i) one vertex chosen randomly from all vertices and one chosen randomly from a restricted
set of vertices, (ii) two components chosen randomly from the set of all components, or (iii) a
randomly chosen vertex and a randomly chosen component.

AMS 2010 Mathematics subject classification: Primary 03C90; 03-02

1. Introduction

In their seminal 1960 paper [10], Erdős and Rényi analysed the size of the largest component in
the random graph model Gn,m, a graph drawn uniformly at random from all graphs on n vertices
with m edges. For any graph G, let L1(G) denote the size of its largest component. We say that
an event occurs asymptotically almost surely (a.a.s.) if it occurs with probability 1 − o(1) as n

tends to infinity. Moreover, we omit floors and ceilings whenever they are not essential.
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Figure 1. Evolution of the largest component over the first n edges of the Erdős–Rényi process, the min-product
and min-sum rule and the half-restricted process with parameters 0.25, 0.5 and 0.9 on 20 million vertices.

Theorem 1.1 ([10]). For any constant c > 0 the following holds.

• If c < 0.5, then a.a.s. L1(Gn,cn) = O(log n).
• If c > 0.5, then a.a.s. L1(Gn,cn) = Ω(n), and all other components have O(log n) vertices.

This result can be viewed from a random graph process perspective. Starting with the empty
graph on the vertex set [n] := {1, 2, . . . , n}, we add a single edge chosen uniformly at random
from all non-edges in every step. It is not hard to see that the graph after inserting m edges
is distributed as Gn,m. In this context Theorem 1.1 states that, asymptotically, a linear-sized
component (a so-called ‘giant component’) appears around the time when we have inserted n/2

edges. We say that the Erdős–Rényi process has a phase transition at n/2.
This phase transition has been studied in great detail (for a survey see Chapter 3 in [12]). It

is known that L1(Gn,cn) a.a.s. satisfies L1(Gn,cn) = (f(c) + o(1))n for some continuous function
f(c) with f(c) = 0 for every c < 0.5 and limc→0.5+ f(c) = 0. Thus, the phase transition in the
Erdős–Rényi process is continuous1 (see Figure 1).

A class of variants of the Erdős–Rényi process which has gained much attention over the
last decade consists of the so-called Achlioptas processes. These processes start with the empty
graph on the vertex set [n]. In every step a pair of edges is chosen uniformly at random from
all pairs of non-edges in the current graph, and a fixed edge-selection rule selects exactly one of
them to be inserted into the graph while the other is put back into the pool of non-edges. Most
papers concerned the question of whether one can delay or accelerate the appearance of the giant
component in these processes: see, e.g., [3] and [17].

In a paper in Science from 2009 [1], Achlioptas, D’Souza and Spencer provided strong nu-
merical evidence that the min-product rule (select the edge that minimizes the product of the
component sizes of the endpoints) and min-sum rule (select the edge that minimizes the re-
spective sum) exhibit discontinuous phase transitions (see Figure 1), in contrast to a variety of
closely related edge-selection rules, in particular the ones analysed in [17]. A discontinuous
phase transition essentially means that for some constant d > 0 the size of the largest component

1 In the literature such a phase transition is also called second-order while discontinuous phase transitions are called
first-order.
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a.a.s. ‘jumps’ from o(n) to dn within o(n) edge insertions, that is, at the phase transition a constant
fraction of the vertices is accumulated into a single giant component within a sublinear number
of steps. This phenomenon is also called explosive percolation. Since it is of great interest, in
particular in physics, a series of papers has been devoted to understanding the phase transition
of the min-product and min-sum rule (see, e.g., [4], [5], [8] and [14]), most of the arguments not
being rigorous but supported by computer simulations.

Countering the numerical evidence, it was claimed in [6] that the transition is actually con-
tinuous. In a recent Science paper [16] (see also [15]) Riordan and Warnke indeed confirmed
this claim with a rigorous proof. In fact, their argument shows continuous phase transitions for
an even larger class of processes. Loosely speaking, a random graph process (G(t))t�0 is called
an �-vertex rule if G(0) is empty, and G(t) is obtained from G(t − 1) by drawing a set Vt of �
vertices uniformly at random and adding one or more edges within Vt. Informally, this states that
graph processes that operate locally in every step (i.e., on a vertex set of constant size) cannot
exhibit explosive percolation. Note that Achlioptas processes are essentially 4-vertex rules.

In this paper we study the characteristics of random graph processes that can cause a dis-
continuous phase transition. Before stating our results in the forthcoming sections, let us give
an informal picture of processes that exhibit explosive percolation. Note that a process which
inserts one edge per step, can only have a discontinuous transition if at some point in time
the components with size ω(1) and o(n) occupy a constant fraction of the vertices (see, e.g.,
[15]). Employing the terminology of [11], these components form a type of ‘powder keg’ that
‘explodes’ at the phase transition. Intuitively speaking, such a powder keg is formed if the process
keeps the sizes of the largest components close together and prevents a single component from
growing too large before the phase transition occurs. To some extent, the min-product and min-
sum rule try to approximate this effect by favouring the construction of smaller components.
However, as discussed above, this does not lead to a discontinuous phase transition. In this paper
we consider different approaches to forming a powder-keg.

2. Our results

We introduce three variants of the Erdős–Rényi process and prove discontinuous phase trans-
itions for all of them.

2.1. The half-restricted process
First, we introduce a graph process which we call the half-restricted process. The idea is to
connect two vertices in every step, but to restrict one of them to be within smaller components.

The half-restricted process has a parameter 0 < β � 1 and starts with the empty graph
Hβ(0) = Hn,β(0) on the vertex set [n]. In every step t � 1 we draw an unrestricted vertex u ∈
[n] uniformly at random and, independently, a restricted vertex v which is drawn uniformly
at random from a restricted vertex set Rβ(Hβ(t − 1)) defined as follows. For every graph G

we denote by Rβ(G) the �βn� vertices in smallest components. Precisely, let v1, v2, . . . , vn be
the vertices of G sorted in increasing order according to the sizes of the components they are
contained in (where vertices with the same component size are sorted according to their labels).
Then Rβ(G) := {v1, v2, . . . , v�βn�}. We obtain Hβ(t) from Hβ(t − 1) by inserting an edge between
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u and v if u �= v and the edge is not already present (otherwise we do nothing). Note that for
β < 1 the half-restricted process is not an �-vertex rule.

For a half-restricted process let αt be the random variable that denotes the maximum size of all
components that the restricted vertex can be drawn from in step t. Hence, αt denotes the size of
the component of v�βn� for an ordering v1, v2, . . . , vn of the vertices according to their component
sizes in Hβ(t − 1). Clearly, αt is increasing in t. For every positive integer k let Tk denote the last
step in which αt is still below k, that is,

Tk := max{t : αt < k}.

We show that for any parameter β < 1 the half-restricted process exhibits explosive percola-
tion. Thus, even though Figure 1 suggests that the phase transitions of the min-product (or min-
sum) rule and that of the half-restricted process behave similarly, their mathematical structure
is fundamentally different. More precisely, we show that around the step in the half-restricted
process when the number of vertices in components of constant size drops below βn, a giant
component of size almost (1 − β)n is created within a sublinear number of steps.

Theorem 2.1. Let 0 < β < 1. For every K = K(n) with K � (ln n)1.02, every C = C(n) with
C = ω(1) and C = o(lnK), and every ε > 0 there exists a constant c = c(β, ε) such that a.a.s.

(i) L1(Hβ(TC )) � K, and
(ii) L1(Hβ(TC + n/c

√
C)) � (1 − ε)(1 − β)n.

Note that for K = (ln n)1.02 and C = (ln ln n)0.99 the theorem states that, a.a.s., the number of
steps from the first appearance of a component of size (ln n)1.02 to the appearance of a component
of size (1 − ε)(1 − β)n is O(n/(ln ln n)0.49) = o(n).

2.2. The component process
In this subsection we introduce a graph process which we call the component process. We start
with the empty graph C(0). In the tth step (for every integer t � 1) we obtain the graph C(t) from
C(t − 1) by drawing a pair of components uniformly at random from the set of all components in
C(t − 1), and inserting an arbitrary edge between them. In this way, after n − 1 steps we obtain
a tree C(n − 1) which connects all n vertices, and the process then stops. This process is closely
related to what is called, in the physics literature, Smoluchowski’s coagulation equation with
constant kernel: see, e.g., [2], [7] and [13].

Theorem 2.2. For every ε > 0 there exists a constant K = K(ε) > 0 such that a.a.s. L1(C((1 −
ε)n)) � K ln n.

Observe that the graph of the component process is connected after n − 1 steps. Hence, The-
orem 2.2 implies that the component process exhibits a discontinuous phase transition.

2.3. The mixed process
We also consider a mixture of the Erdős–Rényi and the component processes, which we call
the mixed process. In this process, we start with the empty graph M(0) and in the tth step (for
every integer t � 1) we obtain the graph M(t) from M(t − 1) as follows. We draw a vertex v
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uniformly at random from the set of all vertices and a component uniformly at random from
the set of all components in M(t − 1) except the one that v is contained in. We then insert an
arbitrary edge between them.

Theorem 2.3. For every ε > 0 there exists a constant K = K(ε) > 0 such that a.a.s.
L1(M((1 − ε)n)) � K ln n.

Observe that the graph of the mixed process is connected after n − 1 steps. Hence, Theorem 2.3
implies that the mixed process exhibits a discontinuous phase transition.

3. Proof for the half-restricted process

In this section we prove Theorem 2.1. In our proof we need a technical lemma introduced in the
following.

Let N be a positive integer, and for every 0 � i < N let Xi ∼ Geom(N−i
N

) be a geometrically

distributed random variable with parameter N−i
N

and set X(a, b) :=
∑b

i=a Xi for every 0 � a <

b < N. All subsequent statements and arguments are about sums of geometrically distributed
random variables, but we will use that they have the following combinatorial interpretation in a
coupon collector scenario with N coupons. (In a coupon collector scenario, we have a number
of different coupons and repeatedly draw one uniformly at random with replacement. We are
interested in how often we have to draw until we have seen every coupon.) Observe that Xi

is distributed like the number of coupons we draw while holding exactly i different coupons,
waiting for the (i + 1)st, and thus X(a, b) can be viewed as the number of coupons we draw
while holding at least a and at most b different coupons.

Note that

E[X(a, b)] =

b∑
i=a

N

N − i
= N

N−a∑
i=N−b

1

i
= N(HN−a − HN−b−1), (3.1)

where Hn =
∑n

i=1 1/i denotes the nth harmonic number for every n � 1. It is well known that

Hn = (1 + o(1)) ln n. (3.2)

Lemma 3.1. Let k = k(N) = ω(1) and s = s(N) with s = o(N ln k). Then, for N large enough,

P[X(N − k,N − 2) � s] � e−k0.99

.

Proof. First note that by using (3.1), (3.2) and k = ω(1) we have

E[X(N − k,N − 2)] = N(Hk − H1) = (1 + o(1))N ln k.

Thus, s = o(E[X(N − k,N − 2)]). Consider a coupon collector scenario with N different
coupons of which we have already seen N − k. For each of the remaining k coupons let Yj (where
1 � j � k) denote the indicator random variable for the event that it is not drawn within the next s
trials. By the comments preceding this lemma, the probability of the event X(N − k,N − 2) � s
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equals the probability that at most one of these coupons is not drawn within the s trials. Hence,
for Y :=

∑k
j=1 Yj we observe that

P[X(N − k,N − 2) � s] = P[Y � 1]. (3.3)

Using the identity 1 − x � e−2x, which holds for all 0 � x � 1/2, we have for every 1 � j � k

that

E[Yj] = P[Yj = 1] =

(
1 − 1

N

)s

� e− 2s
N ,

and thus, for N large enough,

E[Y ] � ke− 2s
N = k1− 2s

N ln k � 8k0.99,

where we used s = o(N ln k) in the last step. One can check that the random variables Y1, . . . , Yk

are negatively associated (see, e.g., Chapter 3 in [9]). Hence, we can apply Chernoff bounds to
Y and obtain for N large enough that

P[Y � 1] � P

[
Y �

(
1 − 1

2

)
E[Y ]

]
� e−E[Y ]/8 � e−k0.99

,

which together with (3.3) finishes the proof.

We now turn to the proof of Theorem 2.1.

Proof for Theorem 2.1. We fix β < 1, K = K(n) with K � (ln n)1.02, C = C(n) with C =

ω(1) and C = o(lnK), and ε > 0. To simplify notation we write H(t) instead of Hβ(t).

(i) We first address (i). We need to show that at the step when the restricted vertex can be in a
component of size C for the first time, there is a.a.s. no component of size larger than K. The
main idea is that a large component can only form if the unrestricted vertex is drawn from this
component so often that this is unlikely to happen within TC steps.

We first note that it is not hard to show that TC � 4n asymptotically almost surely (see, e.g.,
Lemma 3 and the remark following its proof in [15]). Let E∗ denote this event.

Note that up to step TC two components of size at least C can never be merged by an edge
since the restricted vertex in every step is drawn from vertices in components of size less than
C. Hence, we can easily keep track of the components of size at least C and call them chunks.
Let A1, A2, . . . denote all chunks in order of appearance during the process, where a chunk keeps
its label if merged with another component, and the new component is not inserted into the list.
Clearly, there can be at most n/C chunks. For every 1 � i � n/C we denote by Ei the event
that chunk Ai has size larger than K in H(TC). We will show that P[Ei ∩ E∗] � 1/n for every
1 � i � n. By applying a union bound this implies

P[H(TC) contains a component of size > K] = P

[n/C⋃
i=1

Ei ∩ E∗
]

+ P[Ē∗]

� n

C
· 1

n
+ o(1) = o(1). (3.4)
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It remains to bound P[Ei ∩ E∗] for every 1 � i � n/C. Let 1 � i � n/C be fixed for the re-
mainder of the proof. Clearly, a chunk has size at most 2C when it appears. Moreover, since for
every t � TC the restricted vertex is drawn from vertices in components of size smaller than C,
the chunk Ai can grow by at most C in every step. Hence, the chunk has size at most (j + 1) · C
before a vertex from the chunk is drawn for the jth time. Hence, a vertex from chunk Ai needs
to be drawn in at least K/C − 1 steps after its appearance for Ei to occur. Let X2, X3, . . . , XK/C

denote the number of steps between steps in which we draw a vertex from Ai. That is, X2 is the
number of steps from the appearance of chunk Ai until a vertex from Ai is drawn for the first
time, X3 is the time from that step until a vertex from Ai is drawn for the second time, and so on.
Furthermore, let X :=

∑K/C
j=2 Xj . Then,

P[Ei ∩ E∗] � P[{X � TC} ∩ E∗]. (3.5)

Recall that for time steps t � TC only the unrestricted vertex in every step can be in Ai. In the
period t � TC we thus have that Xj conditioned on X1, X2, . . . , Xj−1 is geometrically distributed
with parameter at most jC/n. Therefore we can bound P[{X � TC} ∩ E∗] as follows. Let Yj be

an independent random variable with Yj ∼ Geom(jC/n), and set Y :=
∑K/C

j=2 Yj . Then

P[{X � TC} ∩ E∗] � P[{Y � TC} ∩ E∗] � P[Y � 4n]. (3.6)

Here, we use Lemma 3.1 with N = n/C, k = K/C and s = 4n. Concerning the prerequisites
of the lemma, we have k = ω(1) since C = o(K). Furthermore, we have s = o(N ln k) since
C = o(lnK), and thus

N ln k =
n

C
· ln

(
K

C

)
= (1 − o(1))

n lnK

C
= ω(n).

Hence, Lemma 3.1 gives us for large enough n that

P[Y � 4n] � e−(K/C)0.99

.

Since K � (ln n)1.02 and C = o(lnK), we have

P[Y � TC ] � e− ln n =
1

n
.

Using (3.4), (3.5) and (3.6) this settles the proof of (i), and it remains to prove (ii), i.e., we have
to show that for an appropriate constant c = c(β, ε), which we will specify later, we have that
H(TC + n/c

√
C) contains a component of size (1 − ε)(1 − β)n with high probability.

(ii) We set a := n/(2c
√
C) and split the proof into two parts. In the first part (the first a additional

steps after TC) we collect a suitable amount of vertices in components of size at least C, and in
the second part (the remaining a steps) we actually build a giant component on these vertices.

Consider steps TC + 1 to TC + a in the graph process. For every t � 1 let U(t) denote the
set of vertices in components of size at least C in H(t). Note that by definition of TC we have
|U(TC + 1)| � (1 − β)n. We now show that with high probability we have

|U(TC + a)| � (1 − β)n +
1 − β

8c
√
C
n. (3.7)

Clearly, this holds if |U(TC + a)| � (1 − β/2)n and we thus assume |U(TC + i)| � (1 − β/2)n

for every 1 � i � a in the remainder.
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140 K. Panagiotou, R. Spöhel, A. Steger and H. Thomas

For every 1 � i � a let Xi := |U(TC + i)| − |U(TC + i − 1)| denote the number of vertices
added to the components of size at least C in the ith additional step. Furthermore, let X :=∑a

i=1 Xi. We prove a lower bound on the probability that Xi contributes at least 1 vertex. Clearly,
Xi � 1 if the unrestricted vertex is drawn from components of size at least C, which by defin-
ition of TC happens with probability at least 1 − β, and if the restricted vertex is drawn from
components of size smaller than C, which happens with probability at least

(β/2)n

βn
= 1/2

since we assume |U(TC + i)| � (1 − β/2)n. Hence, for every 1 � i � a we have

P[Xi � 1] � (1 − β)/2

and thus also

E[X] � a(1 − β)/2 = (1 − β)n/(4c
√
C).

Using Chernoff bounds we obtain

P

[
X <

1

2
· (1 − β)n

4c
√
C

]
� e−Θ( n√

C
)
= o(1),

which establishes (3.7).
We now look at the second half of the additional steps, i.e., steps TC + a + 1 to TC + 2a, and

show that a.a.s. in these steps a sufficiently large component is created within U := U(TC + a).
Note that U is a fixed set of vertices which does not change from step to step.

Let E denote the event that H(TC + 2a) has no component of size (1 − ε)(1 − β)n conditioned
on (3.7). We now show that P[E] = o(1), which clearly finishes the proof. Observe that E can
only occur if, for every a + 1 � i � 2a, we have that the largest component in H(TC + i) has
size less than (1 − ε)(1 − β)n. In the following we bound the probability of this occurring.

We call a step successful if it connects two components in U. Since every component in U has
size at least C, we have that n/C successful steps will connect all components in U such that U
forms one giant component of size at least (1 − β)n. We now compute the probability of having a
successful step conditioned on not having a component of size (1 − ε)(1 − β)n. For a successful
step, the restricted vertex needs to be in U and the unrestricted vertex needs to be drawn from a
different component in U. This happens with probability at least

|U| − (1 − β)n

βn
· |U| − (1 − ε)(1 − β)n

n
� 1 − β

8βc
√
C

· ε(1 − β) =: p, (3.8)

where we used (3.7) to bound the first factor. Thus, setting c := (1 − β)
√
ε/(32β), the number

S of successful steps satisfies

E[S] � ap =
n

2c
√
C

· ε(1 − β)2

8βc
√
C

� 2n

C
,

and by Chernoff bounds

P

[
S � n

C

]
� P

[
S � 1

2
E[S]

]
� e−E[S ]/8 = e−Ω( n

C ) = o(1),
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Hence, we a.a.s. have at least n/C successful steps conditioned on that we do not have a com-
ponent of size (1 − ε)(1 − β)n. Together with the considerations before (3.8) this implies that
P[E] = o(1).

4. Proof for the component process

In this section we prove Theorem 2.2. Our proof relies on the following lemma, which bounds
the probability that the component process contains a component of size exactly k after exactly t

steps.

Lemma 4.1. For every ε > 0 , k � 1 and 1 � t � (1 − ε)n, the probability that C(t) contains a
component of size exactly k is for n large enough at most

ne−(k−1)ε+13k2/(εn).

Proof. Let ε > 0, let k � 1 be fixed and let 1 � t � (1 − ε)n. We use a union bound argument.
We first count the number of possible ways to create a component of size k within t steps. First,
there are

(
n
k

)
� nk

k!
ways to choose the vertices of the component. Let us fix such a set S of k

vertices. We now estimate the number of ways that a component on S can be created. Recall that
at any time of the process the graph generated by the component process is a forest. In particular,
if S is a component after t steps then S forms a tree, and there are exactly k − 1 edges within
S . In the beginning, S consists of k separate singleton components and there are

(
k
2

)
ways to

connect two of them. In general, after inserting i edges within S , there are k − i components in
S and thus

(
k−i
2

)
ways to connect two of them in the component process. Hence, the number of

ways to create a component on S is(
k

2

)(
k − 1

2

)
. . .

(
2

2

)
=

k!(k − 1)!

2k−1
.

It now remains to choose the steps 1 � t1 < t2 < · · · < tk−1 � t in which we insert an edge in S .
Observe that this can be done in

(
t

k−1

)
� tk−1

(k−1)!
ways. Altogether, the number of ways to create a

component of size k is at most

nk

k!
· k!(k − 1)!

2k−1
· tk−1

(k − 1)!
= nk2−(k−1)tk−1. (4.1)

Having fixed S and the order and steps in which we connect components in S , let us estimate
the probability of the event that S forms a component in this way. Set t0 = 0 and tk = t + 1. For
every 1 � i � k − 1 the probability of choosing the fixed component pair in step ti is 1/

(
n−ti+1

2

)
,

since there are n − ti + 1 components to choose from in step ti. Moreover, in every step j /∈
{t1, . . . , tk−1} two components outside S need to be chosen, which for every ti < j < ti+1 happens
with probability(

n − j + 1 − (k − i)

2

)
/

(
n − j + 1

2

)
� (1 − (k − i)/(n − j + 1))2

� exp(−2(k − i)/(n − j + 1)).
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Hence, the probability that between steps ti and ti+1 only components outside S are chosen is
bounded by

exp
(
−2(k − i) · (Hn−ti − Hn−ti+1+1)

)
.

Altogether, we obtain that the probability of creating a component on S in a fixed way is at most

(k−1∏
i=1

1(
n−ti

2

)
)

·
(k−1∏

i=0

e−2(k−i)·(Hn−ti
−Hn−ti+1+1)

)

� 2k−1 exp

(
−2

k−1∑
i=1

ln(n − ti − 1)

− 2

k−1∑
i=0

(k − i)(Hn−ti−1 − Hn−ti+1−2) +
6k2

n − tk − 1

)
, (4.2)

where the term 6k2/(n − tk − 1) accounts for replacing Hn−ti+1+1 by Hn−ti+1−2. It is easy to see
that

Ha − Hb � ln

(
a

b + 1

)
for all a, b ∈ N, a > b.

Thus, using t0 = 0 we deduce for the second sum in (4.2) that

−2

k−1∑
i=0

(k − i)(Hn−ti−1 − Hn−ti+1−2)

� −2

k−1∑
i=0

(k − i) · (ln(n − ti − 1) − ln(n − ti+1 − 1))

= −2k ln(n − 1) + 2

k−1∑
i=1

ln(n − ti − 1) + 2 ln(n − tk − 1). (4.3)

Using n − tk − 1 = n − t − 2 � εn/2 for n large enough, we thus obtain an upper bound for
(4.2) of

2k−1 exp

(
−2k ln(n − 1) +

12k2

εn
+ 2 ln(εn/2)

)
� 2k−1n−2(k−1)e13k2/(εn). (4.4)

Putting together (4.1) and (4.4) and using t � (1 − ε)n, we obtain that the probability that C(t)

contains a component of size exactly k is at most

nk2−(k−1)tk−1 · 2k−1n−2(k−1)e13k2/(εn) � ne−(k−1)ε+13k2/(εn).

Proof of Theorem 2.2. We use a union bound argument. Let ε > 0 and K = 3/ε. Clearly, the
component process cannot contain a component of size larger than K ln n after exactly (1 − ε)n

steps if it does not contain a component of size between K ln n + 1 and 2K ln n at any time
t ∈ {1, 2, . . . , (1 − ε)n}. For every k � 1 and 1 � t � (1 − ε)n, let E(k, t) denote the event that
the component process contains a component of size exactly k after exactly t steps. Then we
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have by Lemma 4.1 that

P

⎡
⎢⎢⎣

⋃
K ln n+1�k�2K ln n

1�t�(1−ε)n

E(k, t)

⎤
⎥⎥⎦ �

2K ln n∑
k=K ln n+1

(1−ε)n∑
t=1

ne−(k−1)ε+6k2/(εn)

� (1 − ε)K ln n · n2−Kε+o(1) = o(1) .

5. Proof for the mixed process

In this section we prove Theorem 2.3. The proof proceeds similarly to the proof of the component
process (see Section 4). It relies on a lemma which bounds the probability that the mixed process
contains a component of size exactly k after exactly t steps.

Lemma 5.1. For every ε > 0 , k � 1 and 1 � t � (1 − ε)n the probability that M(t) contains
a component of size exactly k is for n large enough at most

ne1−(k−1)ε2/2+13k2/(εn).

Proof. Let ε > 0, let k � 1 be fixed and let 1 � t � (1 − ε)n. Similar to the component process
(see Lemma 4.1) we apply a union bound argument. We first count the number of possible ways
to create a component of size k within t steps. As for the component process there are

(
n
k

)
� nk

k!

ways to choose the vertex set S of such a component, and
(

t
k−1

)
� tk−1

(k−1)!
ways to choose the steps

1 � t1 < t2 < · · · < tk−1 � t in which we connect two components in S . (Note that the mixed
process also satisfies that for every i � 0 the graph M(i) is a forest.)

Observe that just before step ti the set S consists of k − (i − 1) components, two of which are
connected in step ti. Now, for the choice of the vertex in step ti we have k possibilities and for
the choice of the component we have k − (i − 1) − 1 = k − i possibilities (all components in S

are fine except the one that the chosen vertex is contained in). Hence, after fixing the set S and
the steps t1, . . . , tk−1, there are

k(k − 1) · k(k − 2) · . . . · k · 1 = kk−1(k − 1)!

ways to create a component on S . Using k! � (k/e)k, this yields altogether at most

nk

k!
kk−1(k − 1)!

tk−1

(k − 1)!
� (ne)ke(k−1) ln t (5.1)

ways to create a component of size exactly k in exactly t steps.
Having fixed S and the steps and way in which we connect components in S , let us estimate

the probability of this event. Set t0 = 0 and tk = t + 1. First observe that before step j the graph
has exactly n − j + 1 components, and the component drawn in that step is drawn from a set of
n − j components, namely all n − j + 1 components of the graph except the one that contains
the vertex drawn in that step. Thus, for every 1 � i � k − 1 the probability of choosing the fixed
vertex and component in step ti is 1/n · 1/(n − ti). Moreover, in every step ti < j < ti+1 we need
to choose a vertex outside S together with a component outside S . This happens with probability
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(1 − k
n
) · (1 − k−i

n−j
). Altogether, we obtain (similarly to (4.2)) that the probability of creating a

component on S in a fixed way is at most

k−1∏
i=1

(
1

n
· 1

n − ti

)
·
k−1∏
i=0

ti+1−1∏
j=ti+1

(
1 − k

n

)(
1 − k − i

n − j

)

� n−(k−1) exp

(
−

k−1∑
i=1

ln(n − ti) − k

n
(t − (k − 1))

−
k−1∑
i=0

(k − i)(Hn−ti−1 − Hn−ti+1−2) +
2k2

n − tk − 1

)
. (5.2)

Estimating the last sum in the exponent similar to (4.2) in the previous section (see (4.3) – the
only difference is a missing factor of 2), we obtain that (5.2) is at most

n−(k−1) exp

(
−k

n
(t − (k − 1)) − k ln(n − 1) + ln(εn/2) +

4k2

εn

)

� n−(k−1)e−kt/n−(k−1) ln n+6k2/(εn). (5.3)

Combining (5.1) and (5.3), and using t � (1 − ε)n and 1 − x � e−x−x2/2, we obtain that the
probability that M(t) contains a component of size exactly k is at most

(ne)ke(k−1) ln t · n−(k−1)e−kt/n−(k−1) ln(n)+6k2/(εn)

= nek+(k−1) ln(1−(n−t)/n)−kt/n+6k2/(εn)

� nek−(k−1)(1+ (n−t)2

2n2
)+6k2/(εn)

� ne1−(k−1)ε2/2+6k2/(εn).

Proof of Theorem 2.3. The proof is similar to that of Theorem 2.2 if we set K = 5/ε2 instead
of 3/ε.
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