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Abstract

We determine the reflexivity index of some closed set lattices by constructing maps relative to
irrational rotations. For example, various nests of closed balls and some topological spaces, such as
even-dimensional spheres and a wedge of two circles, have reflexivity index 2. We also show that a
connected double of spheres has reflexivity index at most 2.
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1. Introduction

For any topological space X, let S(X) denote the set of all closed subsets of X and
let C(X) denote the set of all continuous endomorphisms on X, that is, the set of all
continuous functions that map X into itself. A subset A of X is invariant under an
endomorphism f on X if f (A) ⊆ A, that is, f (x) ∈ A for all x ∈ A. For any L ⊆ S(X)
and any F ⊆ C(X), define

Alg L = { f ∈ C(X) : f (A) ⊆ A for all A ∈ L},
Lat F = {A ∈ S(X) : f (A) ⊆ A for all f ∈ F },

that is, Alg L is the set of all continuous endomorphisms on X that leave each subset
in L invariant and LatF is the set of all closed subspaces of X that are invariant under
each endomorphism in F .

The set C(X) is a semigroup under the operation of function composition, with an
identity id, where id(x) = x for all x ∈ X. The topology on X induces a topology on
C(X), whose sub-basic open neighbourhoods of ϕ ∈ C(X) are subsets of C(X) of the
form

N(x,ϕ, U) = {ψ ∈ C(X) : ψ(x) ∈ U},

where U is any open neighbourhood of ϕ(x) in X. It is easy to verify that for any
L ⊆ S(X), Alg L is a closed subsemigroup of C(X), with identity id.
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494 B. Ma and K. J. Harrison [2]

A subset L of S(X) is reflexive if Lat Alg L = L. Since Lat F = Lat Alg Lat F for
any F ⊆ C(X),L is reflexive if and only if L = LatF for some F ⊆ C(X).

The meet and join of any collection {Aω : ω ∈ Ω} of closed subsets are defined by∧
ω∈Ω Aω =

⋂
ω∈Ω Aω and

∨
ω∈Ω Aω =

⋃
ω∈Ω Aω,

where A denotes the closure of the set A. With these operations S(X) is a complete
lattice. We call any complete sublattice of S(X) that contains the trivial subsets ∅ and
X a closed set lattice. In particular, LatF is a closed set lattice for any F ⊆ C(X) and
so any reflexive family of closed subsets is necessarily a closed set lattice.

For any reflexive closed set lattice L, Alg L is the largest of all subsets F of C(X)
with the property that LatF = L. It is of interest to determine the minimal size of such
subsets F .

DEFINITION 1.1. The reflexivity index, κ(L), of a reflexive closed set lattice L is

κ(L) = min{|F | : LatF = L}.

If L = {∅, X}, we denote the reflexivity index of L by κ(X) for convenience and call
it the reflexivity index of the topological space X. If κ(X) = 1, we say that the space X
is transitive and a map f in F is a transitive map.

The notion of the reflexivity index was introduced by Zhao in [10] in the context
of arbitrary subset lattices. These can be regarded as closed set lattices for the
discrete topology on X. The results in [10] were generalised in [3]. The notion of
reflexivity for lattices of closed subspaces of a Hilbert space was introduced by
Halmos in [2] and has received a lot of attention (see [1] for a general reference).
The reflexivity index of various types of closed subspace lattices has been calculated
(see, for example, [4, 5, 8]). Very little seems to be known about the reflexivity index
of an arbitrary reflexive lattice of closed subsets. In this paper we determine the
reflexivity index of some closed set lattices by constructing maps relative to irrational
rotations.

By an irrational rotation we mean a rotation operator acting on R2 whose rotation
angle is an irrational multiple of 2π. Since the set {1, z, z2, z3, . . .} is dense in the unit
circle in C if and only if z = e2πiθ, where θ is an irrational number, the set of powers
{I, R, R2, . . .} is dense in the set of all rotation operators acting on R2 if and only if R is
an irrational rotation.

In Section 2, we determine the reflexivity index of various nests of closed balls in
a separable Hilbert space. In Section 3, we determine the reflexivity index of some
topological spaces, such as even-dimensional spheres and a wedge of two circles.
We also give an upper bound for the reflexivity index of some spaces, such as
odd-dimensional spheres and a connected double of spheres.

The following lemma will be useful.

LEMMA 1.2. For each F ⊆ C(X), Lat F = Lat F̂ , where F̂ is the closure in the
induced topology of the semigroup of all finite products of elements of F ∪ {id}.
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PROOF. Since F ⊆ F̂ , it follows that Lat F̂ ⊆ LatF and so it is sufficient to show
that LatF ⊆ Lat F̂ . Suppose that M ∈ LatF , x ∈ M and ϕ ∈ F̂ . Suppose also that U
is an open neighbourhood of ϕ(x) in X. Since ϕ ∈ F̂ , there exist ψ1,ψ2, . . . ,ψn ∈ F
such that ψnψn−1 · · ·ψ2ψ1(x) ∈ U. Since M ∈ LatF , ψn · · ·ψ2ψ1(x) ∈ M. So, U ∩M �
∅ and, since M is closed, it follows that ϕ(x) ∈ M. So, M ∈ Lat F̂ . �

REMARK 1.3. It is easy to see that the closed set F̂ is itself a subsemigroup of C(X)
with identity id.

2. Reflexivity index of nests of balls

Let H denote a separable real Hilbert space. We consider a simple example first.
For each r ≥ 0, let N =

⋃
r≥0 Br ∪ H, where Br = {x ∈ H : ‖x‖ ≤ r}. Then N is a totally

ordered, closed subset lattice. Note that we choose not to include ∅ in N. The subset
B0 = {0} is the minimal element of N. We say that N is a nest. We shall show that N is
reflexive and determine its reflexivity index.

PROPOSITION 2.1. N is reflexive.

PROOF. Let C1 = { f : ‖ f (x)‖ ≤ ‖x‖ for all x ∈ H} denote the set of all contractive
endomorphisms. It is easy to see that AlgN = C1, so N ⊆ Lat AlgN = LatC1.

Suppose that M ∈ LatC1 and x ∈ M\{0}. Suppose also that ‖y‖ ≤ ‖x‖, and f (z) =
(‖z‖/‖x‖)y for each z ∈ H. Then f ∈ C1 and f (x) = y, so y ∈ M. It follows that
B‖x‖ ⊆ M. So, M =

⋃
x∈M B‖x‖ ∈ N and hence LatC1 ⊆ N. Thus, N = LatC1 and N is

reflexive. �

PROPOSITION 2.2. κ(N) > 1.

PROOF. Suppose that N = Lat{ f }, that is, κ(N) = 1. Then, for each x ∈ H, the orbit
O( f , x) = {x, f (x), f 2(x), . . .} of x is dense in B‖x‖. Here f n denotes the nth iterate
of f , that is, f 1 = f and f n+1(x) = f ( f n(x)). Suppose that x � 0. Then ‖ f n(x)‖ <
‖x‖ for some n ∈ N. Since f ∈ C1, ‖ f m(x)‖ ≤ ‖ f n(x)‖ for m ≥ n. But then O( f , x)
is not dense in B‖x‖. This is a contradiction and so no such function f exists.
So, κ(N) > 1. �

PROPOSITION 2.3. If dimH = 1, then κ(N) = ℵ0.

PROOF. Let dimH = 1, so H = R. Let fr(x) = rx for x ∈ R. Then fr ∈ AlgN if and
only if |r| ≤ 1. It is easy to see that N = LatF if F = { fr : |r| ≤ 1 and r is rational}.
So, κ(N) ≤ ℵ0. Suppose that Lat F = N, where F is finite. Consider the finite set of
functions S = { f (x) : x ∈ {−1, 1} and f ∈ F }. Since F ⊆ AlgN = C1, we have S ⊆ B1.
If S ⊆ {−1, 1}, then {−1, 1} ∈ LatF . But {−1, 1} � N, which is a contradiction. Let r =
max{|y| : y ∈ S and |y| < 1}. Then Br ∪ {−1, 1} ∈ Lat F . But Br∪ {−1, 1} � N. It follows
that no such finite set F exists. So, κ(N) = ℵ0. �

We shall show that dimH = 1 is the exceptional case.
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Assume that H is a separable infinite-dimensional Hilbert space with orthonormal
basis {ξn : i ∈ N}. For each n ∈ N and each θ ∈ R, let Rn(θ) denote the isometric rotation
operator on H which satisfies

Rn(θ)ξi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
cos 2πθξn + sin 2πθξn+1 if i = n,
− sin 2πθξn + cos 2πθξn+1 if i = n + 1,
ξi if i � {n, n + 1}.

Let R = {Rn(θ) : n ∈ N, θ ∈ R}. The following properties of R̂ will be useful for our
determination of κ(N).

LEMMA 2.4. Suppose that x ∈ H. Then T(‖x‖ξ1) = x for some T ∈ R̂.

PROOF. The result is trivially true if x = 0. So, suppose that x =
∑∞

j=1 xjξj � 0. We
define sequences of real numbers (λn)∞n=0 and (θn)∞n=1 recursively as follows. Let λ0 =

‖x‖, θ1 = arccos(x1/λ0) and λ1 = λ0 sin θ1. For n ≥ 2, if λn−1 = 0, let θn = 0 and λn = 0,
and, if λn−1 � 0, let θn = arccos(xn/λn−1) and λn+1 = λn sin θn. We shall also require
that xn+1 sin θn ≥ 0. (This requirement is not necessary here but will be needed later.)

Let T0 = I and Tn = Rn(θn)Tn−1 for n ≥ 1. Let Pn denote the orthogonal projection
with range span{ξj : 1 ≤ j ≤ n}. It is easy to show that Tn(λ0ξ1) = Pnx + λnξn+1 and
|λn| = ‖(1 − Pn)x‖. Since Pnx→ x in norm as n→ ∞, Tn(λ0ξ1) = Tn(‖x‖ξ1)→ x as
n→ ∞. Clearly, Tn ∈ R for each n ∈ N. Choose y ∈ H and consider the sequence
(Tny)∞n=1. Choose ε > 0 and N ∈ N such that ‖(I − PN)y‖ < ε. Since TnPN = TNPN
for all n > N, ‖Tny − Tmy‖ ≤ ‖TnPNy − TmPNy‖+ ‖(Tn − Tm)(I − PN)y‖ < 2ε if n > N
and m > N. So, (Tny)∞n=1 is a Cauchy sequence in H and hence has a limit. Define
Ty = limn→∞ Tny. It is easy to verify that Tn → T as n→ ∞, in both the strong operator
topology and the induced topology on C(H). Since R̂ is closed, it follows that T ∈ R̂
and T(‖x‖ξ1) = limn→∞ Tn(‖x‖ξ1) = x. �

LEMMA 2.5. Suppose that x, y ∈ H and ‖x‖ = ‖y‖. Then Tx = y for some T ∈ R̂.

PROOF. We may suppose that x and y are nonzero. By Lemma 2.4, T1(‖x‖ξ1) = x
for some T1 ∈ R̂ and T2(‖y‖ξ1) = y for some T2 ∈ R̂. Since Rn(θ)−1 = Rn(−θ) and the
rotations Rn(θ) are isometric, R̂ is indeed a group. So, T−1

1 ∈ R̂. Let T = T2T−1
1 . Then

T ∈ R̂ and Tx = y. �

Let us introduce a theorem of Kronecker [7]. Let U denote the set of
‘multi-rotations’ acting on H, which are direct sums of rotation operators acting
on the two-dimensional subspaces span{ξ2n−1, ξ2n}. That is, R ∈ U if and only if there
are real numbers θn, n ∈ N, such that, for each n ∈ N,

Rξ2n−1 = cos 2πθnξ2n−1 + sin 2πθnξ2n,
Rξ2n = − sin 2πθnξ2n−1 + cos 2πθnξ2n.

Note thatU contains each of the rotation operators R2n−1(θ) for n ∈ N.
From [7], U is singly generated. That is, there exists R ∈ U such that the set

of powers {I, R, R2, . . .} is strongly dense in U. To see this, let G denote the group
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(R/Z)∞ ≈ [0, 1)∞, where the group action is pointwise addition modulo 1. For each
θ = (θn)n∈N ∈ G, let R(θ) denote the multi-rotation R which is defined above. Then
U = {R(θ) : θ ∈ G}. Note that U is a commutative group of unitary operators whose
identity is the identity operator I. Furthermore, we have R(θ + ϕ) = R(θ)R(ϕ) and
‖R(θ) − R(ϕ)‖ = supn∈N|2 sin(π(θn − ϕn)| ≤ 2πsupn∈N|θn − ϕn|.

Suppose that θ = (θn)n∈N ∈ G. The orbit O(θ) is the set {mθ : m ∈ N}, that is, the
set of all positive integral multiples of θ. The set of numbers θn, n ∈ N, is rationally
independent if a finite sum of the form q1θ1 + q2θ2 + · · · + qNθN , where qn ∈ Q for
each n, is 0 if and only if qn = 0 for each n. According to Kronecker’s theorem, O(θ)
is dense in G, with the product topology, if and only if the numbers θn, n ∈ N, are
rationally independent.

Suppose now that θ# = (θ#
n)n∈N, where the numbers θ#

n, n ∈ N, are rationally indepen-
dent, and suppose that R(ϕ) ∈ U, {x1, x2, . . . , xK} ⊂ H and ε > 0. Choose N ∈ N such
that ‖(I − P2N)xk‖ < ε for 1 ≤ k ≤ K. SinceO(θ#) is dense in G, there exists m ∈ N such
that |(mθ#)n − ϕn| < ε (mod 1) for 1 ≤ n ≤ 2N. Let D = R(mθ#) − R(ϕ). Then ‖D‖ ≤ 2
and ‖DP2N‖ ≤ 2πε. So, for 1 ≤ k ≤ K,

‖Dxk‖ ≤ ‖DP2Nxk‖ + ‖D(I − P2N)xk‖ ≤ 2πε‖xk‖ + 2ε ≤ Cε,

where C = 2πsup1≤k≤K‖xk‖ + 2. So, the set {R(nθ#) : n ∈ N} is strongly dense inU. We
say that R(θ#) is a generator ofU.

We turn now to the problem of determining κ(N). Let V = SUS∗, where S is the
unilateral shift operator on H which satisfies Sξn = ξn+1 for each n ∈ N. Note that if
θ = (θn)n∈N ∈ G, then SR(θ)S∗ξ1 = 0 and, for each n ≥ 1,

SR(θ)S∗ξ2n = cos 2πθnξ2n + sin 2πθnξ2n+1,
SR(θ)S∗ξ2n+1 = −sin 2πθnξ2n + cos 2πθnξ2n+1.

Thus,

SRn(ϕ)S∗ = Rn+1(ϕ)(I − P1) for n ∈ N and ϕ ∈ R.

Now let F = {R(θ#), SR(θ#)S∗}, where R(θ#) is a generator ofU. Note that SR(θ#)S∗

is a generator of V. We shall show that Lat F̂ = N, which will imply that κ(N) = 2.
The proof relies on several lemmas. For each k ∈ N, let Hk denote PkH.

LEMMA 2.6. Suppose that x, y ∈ H⊥1 and ‖x‖ = ‖y‖. Then Tx = y for some T ∈ F̂ .

PROOF. As remarked previously, F̂ contains all operators of the form R2n−1(θ).
Similarly, F̂ contains all operators of the form R2n(θ)(I − P1). The restrictions of
these operators to H⊥1 are all isometric. Furthermore, H⊥1 is invariant for each of these
operators, except those of the form R1(θ). So, simple modifications of the proofs of
Lemmas 2.4 and 2.5 prove this lemma. �

LEMMA 2.7. Suppose that x, y ∈ H and ‖x‖ ≥ ‖y‖. Then Tx = y for some T ∈ F̂ .
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PROOF. We may assume that x � 0. First suppose that ‖y‖ = ‖x‖ and choose θ and
θ′ such that R1(θ)x ∈ H⊥1 and R1(θ′)y ∈ H⊥1 . By Lemma 2.6, T(R1(θ)x) = R1(θ′)y. So,
R1(−θ′)TR1(θ) ∈ F̂ and R1(−θ′)TR1(θ)x = y.

Suppose that ‖x‖ ≥ ‖y‖. Let ϕ = arcsin(‖y‖/‖x‖) and z = ‖x‖(cosϕξ1 + sinϕξ2).
Then ‖x‖ = ‖z‖ and ‖ ‖x‖ sinϕξ2‖ = ‖y‖. So, T1x = z and T2(‖x‖ sinϕξ2) = y for some
T1, T2 ∈ F̂ . Now SS∗ = I − P1 ∈ F̂ and SS∗z = ‖x‖ sinϕξ2. So, T2SS∗T1 ∈ F̂ and
T2SS∗T1x = y. �

THEOREM 2.8. κ(N) = 2.

PROOF. First we show that Lat F̂ = N. Since F̂ ⊆ C1, N = LatC1 ⊆ Lat F̂ . Clearly,
{0} = B0 ∈ Lat F̂ ∩ N. Suppose that x is a nonzero vector in M ∈ Lat F̂ . By
Lemma 2.7, ‖x‖ ≥ ‖y‖ =⇒ y ∈ M and so B‖x‖ ⊆ M. Clearly, M ⊆ ⋃x∈M B‖x‖ and so
M =

⋃
x∈M B‖x‖ ∈ N. Thus, Lat F̂ = N.

Since Lat F̂ = Lat F by Lemma 1.2, κ(N) ≤ |F | = 2 and we know from
Proposition 2.2 that κ(N) > 1. �

Now we show that the reflexivity index of a nest of closed balls in a
finite-dimensional Hilbert space is also 2, which can be seen as a corollary to the
previous theorem. For k ∈ N and r ≥ 0, let Bk,r = {x ∈ Hk : ‖x‖ ≤ r} and let

Nk =
⋃
r≥0

Bk,r ∪ Hk.

Then Nk is a nest of closed subsets of the k-dimensional Hilbert space Hk. We shall
identify operators of the form Rn(θ), as defined above, with their restrictions to Hk. Let
Rk = R

0
k ∪ R

1
k , where

R0
k = {R2n−1(θ) : 1 ≤ 2n ≤ k, θ ∈ R},
R1

k = {R2n(θ)(I − P1) : 1 ≤ 2n ≤ k − 1, θ ∈ R}.

COROLLARY 2.9. κ(Nk) = 2 if 2 ≤ k < ∞.

PROOF. The proof of Lemma 2.7 can easily be amended to show that if x, y ∈ Hk and
‖x‖ ≥ ‖y‖, then Tx = y for some T ∈ R̂k. As in the proof of Theorem 2.8, this implies
that Lat R̂k = Nk.

We have to make some small changes to the definitions ofU andV so that the new
definitions are suitable for the finite-dimensional case. LetUk denote the set of direct
sums of rotation operators acting on the two-dimensional subspaces span{ξ2n−1, ξ2n} for
2 ≤ 2n ≤ k. We also let Rξk = ξk if k is odd. Similarly, let Vk denote the set of direct
sums of rotation operators acting on the subspaces span{ξ2n, ξ2n+1} for 2 ≤ 2n ≤ 2k + 1.
We also let Rξ1 = 0 and Rξk = ξk if k is even.

Then R0
k ⊆ Uk and R1

k ⊆ Vk and it is easy to see that both ofUk andVk are singly
generated. Let F = {R, R′}, where R and R′ are generators of R0

k and R1
k . It follows

from Lemma 1.2 that N = LatF and so κ(Nk) ≤ 2. But κ(Nk) > 1 by Proposition 2.2
and so κ(Nk) = 2. �
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We extend these results by determining the reflexivity index of a larger class of nests
of balls. Suppose that Λ is a closed subset of R+ and set

NΛ = {Br : r ∈ Λ} ∪ H.

Then NΛ is a nest of closed balls in H. In the special case Λ = R+, we have NΛ = N,
where N is as defined before. We shall assume that 0 ∈ Λ and that Λ is unbounded.

Suppose that ϕ is a strictly increasing function in C(R+) such that

ϕ(t) = t if t ∈ Λ and ϕ(t) > t if t � Λ.

For example, we could define ϕ(t) = a +
√

(b − a)(t − a) for all t ∈ (a, b) for each
component (a, b) of R+\Λ. Now define Φ ∈ C(H) by Φ(0) = 0 and

Φ(x) = ϕ(‖x‖) x
‖x‖ if x � 0.

Let A = R(θ#) and B = SR(θ#)S∗Φ, where R(θ#) is a generator of U. Observe that
Bx = (ϕ(x)/‖x‖)SR(θ#)S#x for each x � 0, and that Bx = SR(θ#)S#x if ‖x‖ ∈ Λ. Let
F = {A, B}. It is easy to see that F ⊂ AlgNΛ. We shall show that Lat F = NΛ. The
proof proceeds with several lemmas.

LEMMA 2.10. BnS = SAnΦn = SR(nθ#)Φn for n ∈ N.

PROOF. The proof follows from the repeated application of the identities ΦS = SΦ,
ΦA = AΦ, S∗S = I and An = R(nθ#). �

For t ≥ 0, let

ϕ∞(t) = inf{u ∈ Λ : u ≥ t}.

Since Λ is bounded, ϕ∞ is well defined. Now define Φ∞ by Φ∞(0) = 0 and

Φ∞(x) = ϕ∞(‖x‖) x
‖x‖ if x � 0.

Note that ϕn(t) ↑ ϕ∞(t) as n→ ∞ for each t ∈ R+ and Φn(x)→ Φ∞(x) as n→ ∞ for
each x ∈ H.

LEMMA 2.11. Suppose that M ∈ LatF and that x ∈ M ∩ H⊥1 . Then Φ∞(x) ∈M ∩ H⊥1 .

PROOF. Note that x = SS∗x since x ∈ H⊥1 and Bnx = BnSS∗x = SR(nθ#)Φn(S∗x) ∈ M for
all n ∈ N since M ∈ LatF . Now

Φn(S∗x)→ Φ∞(S∗x) = ϕ∞(‖S∗x‖) S∗x
‖S∗x‖ = ϕ

∞(‖x‖)S∗x
‖x‖ as n→ ∞.

Since R(θ#) generates U, it follows that I is the strong limit of a subsequence of the
operators R(nθ#), n ∈ N. Since M is closed,

SIΦ∞(S∗x) = ϕ∞(‖x‖)SS∗x
‖x‖ = ϕ

∞(‖x‖) x
‖x‖ = Φ

∞(x) ∈ M. �
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LEMMA 2.12. Suppose that M ∈ LatF , x ∈ M ∩ H⊥1 and ‖x‖ ∈ Λ. Suppose also that
y ∈ H and ‖y‖ ≤ ‖x‖. Then y ∈ M.

PROOF. Let Sr = {u ∈ H : ‖u‖ = r} and observe that Sr ∩ H⊥1 is an invariant set for both
A and B. Let z = z2ξ2 + (I − P2)y, where |z2|2 = ‖x‖2 − ‖(I − P2)y‖2. Then z ∈ S‖x‖ ∩ H⊥1
and the proofs of Lemmas 2.4 and 2.5 can be easily modified to show that Tx = z for
some T ∈ F̂ . So, z ∈ M.

Now choose θ1 ∈ R such that |z2| cos θ1 = ‖P2y‖. Since {R1(θ1), SS∗} ⊂ F̂ ,

SS∗R1(θ1)z = (I − P1)R1(θ1)z = ‖P2y‖ξ2 + (I − P2)y ∈ M.

Finally, choose θ2 such that R1(θ2)‖P2y‖ξ2 = P2y. Then

R1(θ2(‖P2y‖ξ2 + (I − P2)y) = P2y + (I − P2)y = y ∈ M. �

THEOREM 2.13. Suppose that Λ is a closed, unbounded subset of R+ and 0 ∈ Λ. Then
κ(NΛ) = 2.

PROOF. Suppose that M ∈ LatF and that x ∈ M\{0}. By Lemma 2.11, Φ∞(x) ∈ M and
‖Φ∞(x)‖ = ϕ∞(‖x‖) ∈ Λ. So, by Lemma 2.12, y ∈ M for all y satisfying ||y|| ≤ ‖Φ∞(x)‖.
Then M =

⋃{B‖Φ∞(x)‖ : x ∈ M}. Since Λ is closed, it follows that M = Br for some
r ∈ Λ, or M = H.

Therefore, Lat F = NΛ and hence κ(NΛ) ≤ 2. A modification of Proposition 2.2
shows that κ(NΛ) > 1. So, κ(NΛ) = 2. �

REMARK 2.14. It would be interesting to determine κ(NΛ) when 0 � Λ.

3. Reflexivity index of some topological spaces

In this section we determine the reflexivity index of some topological spaces.

PROPOSITION 3.1. The reflexivity index is a topological invariant.

PROOF. Suppose that F ⊂ C(X) and that φ is a homeomorphism acting on X. Suppose
also that L = LatF . Then φL = φLatF = Lat(φF φ−1) and so φL is reflexive. Sup-
pose also that |F | = κ(L). Since |F | = |φF φ−1|, we have κ(φL) ≤ κ(L). To complete
the proof, observe that φ−1 is also a homeomorphism and that φ−1(φL) = L. �

Let Sn denote the n-sphere {x ∈ Rn+1 : ||x|| = 1}. It is not difficult to see that Sn is
reflexive. From the property of irrational rotations, we clearly have κ(S1) = 1. We show
that κ(Sn) = 2 when n ≥ 2 is even.

LEMMA 3.2. κ(Sn) ≤ 2 for all n ≥ 2.

PROOF. Let us make some small changes to the definitions of U and V once again.
Let U′ be the set of direct sums of rotation operators acting on span{ξ2n−1, ξ2n}, with
the additional requirement that Rξn+1 = ξn+1 if n is even. LetV′ denote the set of direct
sums of rotation operators acting on span{ξ2n, ξ2n+1}, with the additional requirement
that Rξ1 = ξ1 and Rξn+1 = ξn+1 if n is odd. It is clear that U′ and V′ are both singly

https://doi.org/10.1017/S0004972721000162 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972721000162


[9] Reflexivity index 501

generated. Let F = {U,V}, where U is a generator ofU′ and V is a generator ofV′. It
suffices to show that Lat F̂ = Sn. From Lemma 2.5, we see that for any x, y ∈ Sn, there
exists T ∈ F̂ such that Tx = y. So, a proof similar to that in Proposition 2.1 yields Sn =

Lat F = Lat F̂ and κ(Sn) ≤ 2. �

We introduce some new notation before coming to the next theorem. We rec-
ommend [6] as a general reference. Given any continuous map between topological
spaces f : X → Y , we have an induced map fn∗ : Hn(X)→ Hn(Y) in the nth homology
group. For simplicity we just write f∗ instead of fn∗. Since Hn(Sn) is isomorphic to
Z and any homomorphism from Z to itself is of the form r �→ mr, where m is an
integer, we may call m the degree of the map f : Sn → Sn, denoted by d( f ) = m.
If x = (x1, x2, . . . , xn+1) ∈ Sn, its antipode is −x = (−x1,−x2, . . . ,−xn+1). The antipodal
map is defined as a : x �→ −x.

Proofs of the following propositions can be found in [9].

PROPOSITION 3.3. If f , g : Sn → Sn are continuous maps, then:

(i) d( f ◦ g) = d( f )d(g);
(ii) d(1Sn ) = 1, where 1Sn is the identity map;
(iii) f is homotopic to g if and only if d( f ) = d(g).

PROPOSITION 3.4. If n ≥ 1, then the antipodal map an : Sn → Sn has degree (−1)n+1.

PROPOSITION 3.5. If f : Sn → Sn has no fixed points, then f is homotopic to the
antipodal map an.

THEOREM 3.6. κ(Sn) = 2 when n > 0 is even.

PROOF. We show that κ(Sn) � 1. If instead κ(Sn) = 1, then we can take a transitive
continuous map f ∈ C(Sn). Denote by f 2 the composition f ◦ f . Since f is transitive,
f and f 2 both have no fixed points. Then we see from Proposition 3.5 that f and f 2

are both homotopic to the antipodal map an. Thus, f is homotopic to f 2 and, from
Proposition 3.3, d( f ) = d( f 2). However, from Proposition 3.4, d( f ) = (−1)n+1 = −1
while d( f 2) = d( f )d( f ) = (−1)2 = 1 � −1, which is a contradiction.

From Lemma 3.2, κ(Sn) ≤ 2 and it follows that κ(Sn) = 2. �

REMARK 3.7. It would be interesting to determine κ(Sn) when n ≥ 3 is odd.

We next introduce wedges of two circles.

DEFINITION 3.8. We say that a topological space X is a connected double of a space
Y if X can be written as a union of two connected subspaces X = A ∪ B, where:

(i) A and B are both homeomorphic to Y;
(ii) A ∩ B is a proper subspace of A and B;
(iii) there exists a homeomorphism f : A→ B such that f |A∩B = 1, where 1 denotes

the identity map.
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FIGURE 1. Wedge of two circles.

EXAMPLE 3.9. It is not difficult to see that the wedge of two circles (see [6]), also
called ‘figure 8’, is a connected double of a circle. See Figure 1.

It is clear that if we let A, B denote the two circles in the example above, then A ∩ B
is a unique point Z. If P ∈ A and Q ∈ B, then any connected topological subspace of
A ∪ B containing P and Q contains Z.

THEOREM 3.10. Let X be a connected double of an n-sphere (n ≥ 1). Then κ(X) ≤ 2.

PROOF. Let X = A ∪ B, where A and B are both homeomorphic to Sn. We study the
case when n ≥ 2 first. We retain the notationU′,V′, U and V defined in Lemma 3.2.
Recall that Lat ̂{U,V} = Sn.

Let f : Sn → A be a homeomorphism and g be the composition of f and the
homeomorphism from A to B. Then g : Sn → B is also a homeomorphism. Since
f −1(P) = g−1(P) for all P ∈ A ∩ B, we have a well-defined map h : X → Sn by setting

h(x) =

{
f −1(x) if x ∈ A,
g−1(x) if x ∈ B.

.
Now define maps F : X → X, G : X → X as follows:

F(P) =

{
fU f −1(P) if P ∈ A,
fUg−1(P) if P ∈ B, and G(P) =

{
gV f −1(P) if P ∈ A,
gVg−1(P) if P ∈ B.

We see that F and G are both continuous.
Next we will show that Lat ̂{F, G} = X. It suffices to show that for any x, y ∈ X, there

exists a map H ∈ ̂{F, G} such that Hx = y.
Assume without loss of generality that y ∈ B. Denote by M the group of elements

of finite order generated by U and V, and by N the group of elements of finite order
generated by F and G. By mapping U to F and V to G, we have a group isomorphism
j : M → N.

Given any ε > 0, there exists an open ball Br of radius r at h(y) such that
||g(t) − y|| < ε whenever t ∈ Br ∩ Sn. Moreover, there exists an element H1 ∈ M such
that ||H1(h(x)) − h(y)|| < r/2. From the definition of V, we see that there exists a pos-
itive number Q such that ||I −VQ|| < r/2. Now ||VQH1(h(x)) − h(y)|| < r/2 + r/2= r
and Im(j(VQH1)) = Im(j(V)j(VQ−1H1)) ⊂ Im(jV) ⊂ Im(g) ⊂ B. With H = j(VQH1),
we have ||Hx − y|| < ε.

Since X ⊂ Lat̂{F, G} and Lat̂{F, G} ⊂ X, it follows that κ(X) ≤ 2.
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FIGURE 2. Examples of connected doubles of S1.

When n = 1, let U be an irrational rotation on the circle S1 and let F, G be

F(P) =

{
fU f −1(P) if P ∈ A,
fUg−1(P) if P ∈ B, and G(P) =

{
gU f −1(P) if P ∈ A,
gUg−1(P) if P ∈ B.

Again F and G are continuous. A similar proof gives Lat ̂{F, G} = X and the reflexivity
index is again at most 2. �

COROLLARY 3.11. The spaces shown in Figure 2, as connected doubles of S1, all have
reflexivity index ≤ 2.

Finally, we show that the reflexivity index of the wedge of two circles is 2.
From [9], we see that if f : (X, x0)→ (S1, 1) is a continuous pointed map between
topological spaces and t0 ∈ Z, then we have a unique lifting map f ′ : (X, x0)→ (R, t0)
with exp( f ′) = f . Here exp(t) denotes e2πit.

THEOREM 3.12. The reflexivity index of the wedge of two circles is 2.

PROOF. Let X denote the ‘figure 8’ space and let A, B denote the two circles of X. Let
A ∩ B = Z, the unique intersection point.

We argue by contradiction. If the reflexivity index is 1, let f be the transitive
map. Assume without loss of generality that f (Z) = S ∈ A. Let H : R→ R/Z be the
map defined by H(j) = j + Z and let H′ be the map from R/Z to [0, 1) defined by
j + Z �→ j − [j], where [j] denotes the largest integer not greater than j. Since there is a
homeomorphism θ + Z �→ e2πiθ from R/Z to the complex unit circle, we may construct
a homeomorphism h from R/Z to A satisfying h(0 + Z) = Z.

Case 1. f (B) ⊂ A. If f (A) ⊂ A, then A is an invariant subspace of X, which is a
contradiction. So, f (A) ∩ (X\A) � ∅ and there is a point R ∈ A with f (R) ∈ B. Choose
r ∈ (0, 1) such that h−1(R) = H(r). Since f is continuous and Z is the unique point that
belongs to both A and B, there exist p0 ∈ (0, r) and q0 ∈ (r, 1) such that f hH(p0) =
f hH(q0) = Z.

Let p1 be the minimum value of all such p0 ∈ (0, r) and let q1 be the maximum value
of all such q0 ∈ (q, 1), respectively. Clearly, s is not equal to p1 or q1, for otherwise
f 2(Z) = Z, which is a contradiction. It suffices to consider the case when q1 > s, for
otherwise we may apply the homeomorphism j + Z �→ (1 − j) + Z to R/Z.

We claim that s < p1. Suppose on the contrary that s > p1. Since f is continuous,
for any ε > 0, we may find δ > 0 such that H′h−1 f hH(j) belongs to (1 − ε, 1) or (0, ε)
whenever j ∈ (p1 − δ, p1). If H′h−1 f hH(j) ∈ (0, ε), by the intermediate value theorem,
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H′h−1 f hH(j) has a fixed point in (0, p1). Thus, H′h−1 f hH(j) ∈ (1 − ε, 1) whenever
j ∈ (p1 − δ, p1). Similarly, there exists δ′ such that H′h−1 f hH(j) ∈ (0, ε) whenever
j ∈ (q1, q1 + δ

′). Now we can find u1 ∈ (0, p1) such that H′h−1 f hH(u1) = q1. Let u
be the maximum of all such u1. Then H′h−1 f hH(j) ∈ (q1, 1) whenever j ∈ (u, p1) and
H′h−1 f 2hH(j) ∈ (0, p1). Again by the intermediate value theorem, H′h−1 f 2hH(j) has
a fixed point u0 in (0, p1). But then hH(u0) is a fixed point of f 2, contradicting the
assumption that f is transitive. Thus, s > p1.

Now let p be the maximum value of all such p0 ∈ (0, r) and let q be the minimum
value of all such q0 ∈ (q, 1). For any j ∈ [p, q], we have f hH(j) ∈ B. Thus, by
assumption, f 2hH(j) ∈ A.

Let J : R/Z→ R/Z be a homeomorphism defined by J(j + Z) = j − s + Z. From [9],
we see that the map Jh−1 f 2hH : [p, q]→ R/Z can be lifted to a map F : [p, q]→ R
such that F(p) = 0 and HF(j) = Jh−1 f 2hH(j) for all j ∈ [p, q].

Clearly, F(q) ∈ {0, 1,−1}. If F(q) = 1, let F1(j) = F(j) + s, so that F1(p) = s < p
and F1(q) = 1 + s > q. By the intermediate value theorem, there exists j0 ∈ (p, q)
such that F1(j0) = j0. That is, f 2hH(j0) = hH(j0) and hH(j0) is a fixed point of f 2.
If F(q) = −1, let F2(j) = F(j) + s + 1. Since F2(p) = 1 + s > p, F2(q) = s < q, again
by the intermediate value theorem, we can find j0 in (p, q) such that F2(j0) = j0.
Now HF(j0) = j0 − s − 1 + Z = j0 − s + Z = Jh−1 f 2hH(j0). It follows that f 2hH(j0) =
hH(j0) and that hH(j0) is a fixed point.

If F(q) = 0, we can find a point j′ ∈ [p, q] such that |F(j)| attains its maximum
value at j′. Since f 2 is continuous, for any j0 ∈ (p, j′), we can find j2 ∈ (j′, q) such
that H′h−1 f 2hH(j0) = H′h−1 f 2hH(j2). Moreover, there exists a positive number K such
that H′h−1 f KhH(p) ∈ (p, j′) since f is transitive. Since f K has no fixed point, we can
find j1 ∈ (p, q) such that H′h−1 f KhH(j1) = q. Thus, by the intermediate value theorem,
we can find a point w ∈ (p, j1) such that H′h−1 f K+2hH(w) = H′h−1 f 2hH(w). That is,
f 2hH(w) is a fixed point of f K , which is a contradiction.

Case 2. f (B) ∩ (X − A) � ∅. The proof is similar to that in Case 1. Here we let
i be the homeomorphism from R/Z to B satisfying i(0 + Z) = Z. By assumption,
there exists k ∈ (0, 1) such that f iH(k) ∈ B. There exist k′1 ∈ (0, k) and k′2 ∈ (k, 1)
such that f iH(k′1) = f iH(k′2) = Z. Let k1 be the largest of all such k′1 and k2 the
minimum of all such k′2. Then f iH(k0) ∈ B for all k0 ∈ [k1, k2]. Since H′i−1 f iH(k1) = 0,
the map i−1 f iH : [k1, k2]→ R/Z may be lifted to a map F′ : [k1, k2]→ R satisfying
F′(k1)= 0 and HF(k0) = i−1 f iH(k0) for all k0 ∈ [k1, k2]. Now H′i−1 f iH(k2) ∈ {0, 1,−1}.
If H′i−1 f iH(k2) ∈ {1,−1}, using a similar proof to Case 1, f has a fixed point. If
H′i−1 f iH(k2) = 0, again we can find k3 ∈ (k1, k2) such that |F′(k3)| attains its maximum
value. There exists a positive number K′ such that f K′(k1) ∈ (k1, k3) and we can find
k4 ∈ (k1, k2) such that f K′+1iH(k4) = f iH(k4). Then f iH(k4) is a fixed point of f K′ ,
which is a contradiction.

It is clear that the above two cases cover all possibilities. Thus, the reflexivity index
of the wedge of two circles is not 1. Combining this result with Theorem 3.10, we see
that the reflexivity index is 2. �
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