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Millimeter-Wave Fresnel Zone Plate Lens
with new technological process

ANTOINE JOUADE, JONATHAN BOR, MOHAMED HIMDI AND OLIVIER LAFOND

Fresnel Zone Plate lens (FZPL) antennas working in the V and W band are reported in this paper with half and quarter phase
correction respectively. A low cost and straightforward technological process is used to manufacture the dielectric lenses using
only one foam material where the dielectric constant is controlled. Simulation and measurement results are in good agree-
ment that confirms the viability of such a process to fabricate inhomogeneous structures. Good loss efficiency of 73 and 55%
are obtained at 60 and 85 GHz respectively with the two different FZPL designs.
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. INTRODUCTION

Many millimeter-wave communications and radar systems
need antennas with a high gain to contend with the high
path loss in such very high frequencies. Examples are
point-to-point and point-to-multipoint links for backhaul in
60 GHz band [1] to communicate over 1 km, or long range
automotive radars [2] at 77 GHz.

To achieve high gain (30-40 dBi) different low cost solu-
tions exist such as large printed antenna arrays [3] but they
can suffer from high loss due to the length of feeding line
network, or reflector antennas [4]. One interesting solution
is to design Fresnel Zone Plate lens (FZPL). The simplest
and low cost FZPL consisting of alternate transparent
and reflecting rings has rather poor efficiency (<15%). To
improve efficiency, Black and Wiltse [5] proposed to replace
the opaque zones by phase reversing dielectric ones and intro-
duced a Half-Wave FZPL. In the same way, Hristov extended
the design with four quarter-wave subzones [6]. The phase
correcting zones can be achieved by designing single layer
printed circular or annular patches [7] or by implementing
a grooved dielectric Fresnel Zone plate lens [8, 9] but
problem of diffractions can appear because of the difference
of dielectric steps. One alternative is to design the phase cor-
recting zones by changing their dielectric constant [6] instead
of one dielectric material and different heights or steps. But in
this paper, to avoid the use of different materials, the authors
propose to manufacture FZPL by using a unique composite
material. The dielectric constant of the different correcting
phase zones in the FZPL are controlled thanks to a new
technological process [10] by pressing the composite material
(foam). In Section II, the authors give details about Fresnel
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lens design at 60 and 85 GHz respectively with half and
quarter phase correction before reminding briefly the techno-
logical process used. In Section III, the simulated and mea-
sured results are presented for the design at 60 GHz
(correction index g = 2) while the results for the second
FZPL (85 GHz and correction index g = 4) are shown in
Section IV. The results demonstrate that this technological
process is well suitable for the FZPL antenna. Good accuracy
is obtained between simulated and measured radiation pat-
terns. Moreover the antenna efficiency of these two FZPL is
quite interesting in millimeter waves.

. V-BAND FZPL DESIGN AND
TECHNOLOGICAL PROCESS

The FZPL does not correct linearly the incident spherical wave
fed by the primary source positioned at the focal distance F
(Fig. 1) but this lens is a stepped phase transformer where g
is the Fresnel correction index.

If g = 4 as represented in Fig. 1, it needs to have four dis-
tinct dielectric zones within the lens and they are periodically
reproduced along the lens radius R. From [6] using optical
theory, the radii of the different zones are given by the follow-

ing formula (1):
2.m.F.\ A\’
ry, = +\n—-], (1)
q q

with A the working wavelength and r,, the radius of the nth
zone of the lens. In this context, the dielectric constant of
the nth zone is given by the formula (2):

&, = («/snﬂ +q%) , (2)
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Fig. 1. FZPL principle with dielectric zones to correct phase.

with d the thickness of the lens. As we mentioned before, we
fabricate this inhomogeneous lens with an innovative techno-
logical process detailed in [10]. It uses only a foam composite
material [11] with an initial low dielectric constant very close
to 1. This kind of foam is in fact composed of one base material
with a relative permittivity in which one air or gas is injected to
decrease the dielectric constant close to one. This composite ma-
terial is full of air bubbles. So the innovated technological process
allows to extract air bubbles from the composite by pressing it at
90°C. Depending on the thickness ratio before and after pressing,
this process gives the opportunity to control the dielectric con-
stant in order to finally design inhomogeneous structures like
FZPL or Luneburg lens for example [12].

In this paper, the FZPL is manufactured from an Airex PXc
320 foam with a 1.4 basic dielectric constant.

The link between the dielectric constant and the density ratio
(initial thickness over final thickness) for this material has been
further investigated in [10] theoretically and experimentally.

Firstly, we decided to design a simple half wave FZPL2 with
q = 2 at 60 GHz. So the first dielectric constant (zone 1) is 1.4
and as the thickness of the lens is chosen to be 6.25 mm, the
second dielectric constant value is 2.48 from the formula
(2). To obtain this value after pressing, the ratio between
initial and final thickness must be equal to 2.8 [10] so the
initial thickness of the areas with &, = 2.48 is 17.5 mm. The
lens diameter is close to 150 mm and the focal distance is
chosen to be 132 mm (F/D = 0.88).

In the Table 1, we give also the radius of each area in the
FZPL2 lens.

A picture of the FZPL2 manufactured thanks to the new
technological process is given in Fig. 2 before and after
being pressed.

As it is well known, by increasing the Fresnel correction
index g, it gives the opportunity to improve the aperture effi-
ciency of such a FZPL. So a second design is considered in this
paper with ¢ = 4. To limit the thickness of the lens and to
manufacture easier the FZPL with the innovative technologic-
al process, this second antenna is designed at 85 GHz with a
thickness of 6.5 mm. The lens diameter is 115.9 mm and the
focal distance is 101.5 mm (F/D = 0.88). In the Table 2, we
give the radius of each area in the FZPL4 and the correspond-
ing dielectric constant. As for the first lens, each dielectric
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Table 1. V-band radii and relative permittivity obtained after

computation for FZPL2.

Area number Radius (r;) (mm) Dielectric constant (&,)

1 25.8 1.4
2 36.6 2.48
3 44.6 1.4
4 51.5 2.48
5 57-5 1.4
6 63 2.48
7 68 1.4
8 72.7 2.48

(b)

Fig. 2. FZPL (q = 2) manufactured with the new technological process, (a)
before being pressed, (b) after being pressed.

Table 2. W-band radii and relative permittivities obtained after
computation for FZPL4.

Area number Radius (r;) (mm) Dielectric constant (&,)

1 14 1.4
2 19.8 2.65
3 24.4 2.19
4 28.2 1.77
5 31.6 1.4

6 34.7 2.65
7 37.6 2.19
8 40.3 1.77
9 42.8 1.4

10 45.2 2.65
11 47.5 2.19
12 49.8 1.77
13 51.9 1.4

14 54 2.65
15 56 2.19
16 58 1.77

constant is obtained by choosing the ratio between initial
and final thickness of the foam area. A picture of this
second FZPL manufactured thanks to the new technological
process is given in Fig. 3 before and after being pressed. In
the following section are given the measured results compared
with the simulated ones in terms of radiation pattern and gain.

1. SIMULATED AND MIEASUTRED
RESULTS FOR THE V-BAND DESIGN
(g=2)

A) Design of primary source

A rectangular horn antenna has been simulated and manu-
factured to effectively illuminate the FZPL2. It has been
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(a) (b)

Fig. 3. FZPL4 (g9 = 4) manufactured with the new technological process, (a)
before being pressed, (b) after being pressed.

Fig. 4. Manufactured FZPL2 fed by the optimized horn antenna with foam
support.

Reflector

4 Transmitter

Fig. 5. Manufactured FZPL2 fed by the optimized horn antenna and
positioned in the IETR CATR.

optimized to have a radiation pattern with —12 dB power
level on the edges of the Fresnel zone to limit spill-over. As
the focal distance is 132 mm, the illumination of the edges
of the lens corresponds to an angle of 30° for the radiation
pattern of the primary source. A standard rectangular wave-
guide WR-15 (3.8 x 1.9 mm?) is used with a length of
10 mm. This waveguide feeds a rectangular horn of length
18 mm with an aperture size 10 x 7.25 mm?®.
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B) Simulated and measured results of the
FZPL2 (q = 2)

The lens is fed by the optimized horn antenna (Figs 4 and 5)
and simulations are performed using CST-MS and are com-
pared with measurement results in Fig. 6 at 61 GHz concern-
ing radiation pattern in H- and E-planes.

It is primordial to note that measurements have been per-
formed via a new technique for Institute of Electronics and
Telecommunications of Rennes (IETR) laboratory. Indeed,
classical measurement needs to be performed in the far-field
zone. For this large FZPL2 antenna (30 A,), it was impossible
to measure radiation patterns with classical far-field technique
because our anechoic chamber was not long enough. For that
reason a Compact Antenna Test Range (CATR) has been
implemented based on a reflector illuminated with a feed
horn source. It allows to have a 60 cm quiet zone at relative
short distance and to perform high gain antenna measurement.

In Fig. 6, radiation patterns (co and cross polarization) in
both the H- and the E-planes are presented and demonstrate
a good agreement between simulation and measurement
results. Half power beam widths of 2° and 2.2° are measured
and side lobe levels are under —22 dB compared with the
main beam. The cross-polarization is also really low (—32 dB).

A relatively good stability over frequency has been
observed. Only the side lobes levels are a little bit higher for
lower frequencies but still good (—18 dB at 57 GHz) and
cross-polarization remains low (<—20 dB). Simulated direc-
tivity, measured gain and loss efficiency are computed and
given in Fig. 7. A measured gain of 33.3 dBi has been achieved
at 61 GHz, which leads to a loss efficiency of 73%. The aper-
ture efficiency of the lens is not so good (31%) if we
compare its directivity (34.5 dBi) to the one obtained with
the same diameter radiating aperture and given by the
formula (3):

478
/\2

Diax = 10.10g< ) = 39.5dBi, (3)

with S the aperture surface.

This surface efficiency can be improved by simply using
more phase correction zones (4 or 8) which is proved by
designing and measuring a second FZPL4 at 85 GHz with
q = 4 and the results are presented in the following section.

IvV. SIMULATED AND MEASUTRED
RESULTS FOR THE W-BAND
DESIGN (g=4)

This second FZPL4 is optimized to work in the W band
(85 GHz) in order to avoid a too thick lens or too high dielec-
tric constant. As mentioned before, the lens diameter is
115.9 mm and the focal distance is 101.5 mm (F/D = 0.88).
The diameter is close to 30 A, at the corresponding frequency,
the same ratio than for the precedent design. The same
technological process is used to manufacture the lens (Fig. 3).

A) Design of primary source

A very similar horn antenna than for the first design at
60 GHz is optimized to illuminate this second FZPL4 at
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Fig. 6. Simulated and measured co and cross-radiation patterns at 61 GHz in (a) E-Plane, (b) H-Plane for FZPL2.
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Fig. 7. Simulated directivity (CST MS), measured gain and loss efficiency for
FZPLa.

85 GHz. A standard rectangular waveguide WR-10 (2.5 x
1.27 mm?®) is used with a length of 7.7 mm. This waveguide
feeds a rectangular horn of length 14 mm with an aperture
size 7.69 X 5.27 mm® with a directivity of 15.3 dBi and a mea-
sured gain of 15 dBi. The beam width for a —12 dB level has
been optimized in order to properly illuminate the lens. The
side lobes level is less than —15 dB.

B) Simulated and measured results of the
FZPL (q = 4)

After the manufacturing process, the FZPL4 illuminated by
the feeder horn antenna is measured thanks to the CATR
measurement setup. The simulated and measured radiation
patterns are presented in Fig. 8 for both the H- and
E-planes at 85 GHz. The beam widths are very close to 2.1°
and a good accuracy is shown between simulated and mea-
sured results even if the side lobes level are quite a bit
higher for the measurement. That can be explained by the di-
electric constant law, which is not perfectly reconstructed with
the technological process. Moreover, a small misalignment of
the feeder with the plate lens can also explain this problem.
As mentioned before, by increasing the number of phase
correction (4 instead of 2), the theoretical directivity is
37.3dBi (compared with 34.5dBi for the first design).
Simulated directivity, measured gain, and loss efficiency are
computed in Fig. 9. This directivity corresponds to a 52%
aperture efficiency. The measured gain is maximum at
86 GHz and equals to 34.6 dBi so a 54% loss efficiency is
obtained. The loss could be reduced by using lower loss
foam material. Our results are consistent with current state
of the art [6, 7, 13] and our technological process to manufac-
ture FZPL4 in millimeter waves is very low cost and simple.
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Fig. 8. Simulated and measured co and cross-radiation patterns at 85 GHz in (a) E-Plane, (b) H-Plane for FZPL4.
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Fig. 9. Simulated directivity (CST MS), measured gain and loss efficiency for
FZPL4.

V. CONCLUSION

In this paper, FZPL antennas are designed and manufactured
in millimeter-wave band using a new and simple technological
process. The phase correction is improved by changing peri-
odically the dielectric constant along the diameter of the
lens. Only one composite material is used (Foam) and by con-
trolling the index of it, it becomes possible to design such an
inhomogeneous structure. The first manufactured lens with
only two phase corrections gives very good results in terms
of radiation patterns (beam width and side lobe level) and
loss efficiency (73%) in the V band. As it is well known,
the aperture efficiency can be improved by increasing the
number of phase correcting zones (4 or more). So the
authors presented a second design with g =4 at 85 GHz.
The results are quite good and the measured gain increases
up to 34.5 dBi.
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