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Abstract

In this paper, we propose a population-based evolutionary multiobjective optimization approach to design combina-
tional circuits. Our results indicate that the proposed approach can significantly reduce the computational effort
required by a genetic algorithm~GA! to design circuits at a gate level while generating equivalent or even better
solutions~i.e., circuits with a lower number of gates! than a human designer or even other GAs. Several examples taken
from the literature are used to evaluate the performance of the proposed approach.
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1. INTRODUCTION

The genetic algorithm~GA! has been widely used for opti-
mization tasks~Goldberg, 1989! and is known to be a very
powerful tool in certain domains. In our current work we
wish to find a way to use the GA as a design tool, with
particular emphasis in the design of digital combinational
circuits.

As is known, there are several standard graphical design
aids such as the Karnaugh Maps~Veitch, 1952; Karnaugh,
1953!, which are widely used by human designers. There
are also other tools more suitable for computer implemen-
tation such as the Quine–McCluskey Method~Quine, 1955;
McCluskey, 1956!, Espresso~Brayton et al., 1984! and MisII
~Brayton et al., 1987!.

Despite the drawbacks of classical circuit design tech-
niques, some of them can handle truth tables with hundreds
of inputs, whereas evolutionary algorithms are restricted to
relatively small truth tables~Miller et al., 2000!. However,
the most interesting aspect of evolutionary design is the
possibility of studying its emergent patterns~Coello Coello
et al., 2000; Miller, 2000!. The goals are, therefore, differ-
ent when we design circuits using evolutionary algorithms.

First, we aim to optimize circuits~using a certain metric! in
a different way, and intuitively, we can think of producing
novel designs~since there is no human intervention!. Such
novel designs have been shown in the past~Miller et al.,
1999, 2000; Coello Coello et al., 2000!. Second, it would
be extremely useful to extract design patterns from such
evolutionary-generated solutions. This could lead to a prac-
tical design process in which a small~optimal! circuit is
used as a building block to produce complex circuits. Such
a divide-and-conquer approach has also been suggested in
the past~Torresen, 1998; Miller et al., 2000!.

However, in the previous work on evolutionary design
of combinational circuits, efficiency has been an impor-
tant issue. The main approaches reported so far in the
literature require a significant amount of fitness function
evaluations. The motivation of this work was precisely to
conceive an approach that could reduce the amount of
fitness function evaluations, while keeping the capabilities
of a GA to generate novel~and compact! designs. This
does not mean that we claim that our approach will solve
the scalability problem that has characterized evolvable
hardware~Thompson et al., 1999; Miller et al., 2000!.
Nevertheless, we believe that approaches such as the one
presented in this paper may contribute to the development
of alternative techniques that could improve the perfor-
mance of a GA, at least when solving relatively small
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circuits ~under the assumption that they could be used as
building blocks to produce larger circuits!.

In the past, we have approached this problem using a GA
with a matrix encoding scheme, and ann-cardinality alpha-
bet~after a series of experiments, we found thisn-cardinality
representation scheme to be more robust than the tradi-
tional binary representation~Coello Coello, 1996; Coello
et al., 1997, 2000!!.

Our original GA-based approach presents great resem-
blance with the one proposed by Kalganova et al.~1998!
and further developed by Miller and his colleagues~1997,
1999, 2000!. The two main differences between the two
approaches are the encoding scheme and the fitness func-
tion, as we will explain later in this paper. However, Mill-
er’s initial work emphasized generation of functional circuits,
rather than optimization. It was until recently, that Kalga-
nova and Miller~1999! experimented with a two-stage~or
multiobjective, as they call it! fitness function. We adopted
that sort of fitness function from the beginning of our re-
search in this area~Coello Coello, 1996; Coello Coello et al.,
1997!. However, the use of truly multiobjective optimiza-
tion techniques~e.g., based on the concept of Pareto opti-
mality ~Coello Coello, 1999!! remained as an open area of
research in combinational circuit design, as indicated by
Kalganova and Miller~1999!.

In this paper, we propose the use of an evolutionary multi-
objective optimization technique~rather than just a multi-
objective fitness function! to design combinational circuits.
There is some~relatively scarce! previous work on using
multiobjective techniques to handle constraints. This work,
however, has concentrated on numerical optimization only.

Our approach is probably the first attempt to use this
kind of technique in the design of circuits, and it seems to
considerably reduce the amount of fitness function evalua-
tions required by a GA@at least compared to our previous
GA ~Coello Coello et al., 2000! and to Miller et al.’s~1997!
approach#.

Our proposal is to handle each of the matches between a
solution generated by a GA and the values specified by the
truth table as equality constraints. This, however, intro-
duces some dimensionality problems for conventional multi-
objective optimization techniques~this is because checking
for dominance is anO~n2! process!, and therefore the idea
of using a~more efficient! population-based approach sim-
ilar to the Vector Evaluated Genetic Algorithm~VEGA!
~Schaffer, 1985!.

The remainder of this paper is organized as follows: first,
we give some basic definitions related to multiobjective
optimization. Then, we describe some of the previous re-
lated work on using multiobjective optimization techniques
to handle constraints. After that, we state the problem of
interest to us, and introduce our approach, giving some ex-
amples of its performance. Results are compared against
those produced by our previous approach~a GA with an
n-cardinality alphabet and a two-stage fitness function that
we will simply denote as NGA! and against designs pro-

duced by humans@using Karnaugh Maps~Karnaugh, 1953!,
the Quine–McCluskey Procedure~Quine, 1955; McClus-
key, 1956!# and another GA~Miller et al., 1998!. Then, we
present a short discussion of our results, our conclusions
and some of the possible paths of future research.

2. MULTIOBJECTIVE OPTIMIZATION

Multiobjective optimization~also called multicriteria opti-
mization, multiperformance or vector optimization! can be
defined as the problem of finding~Osyczka, 1985!

a vector of decision variables which satisfies constraints
and optimizes a vector function whose elements repre-
sent the objective functions. These functions form a math-
ematical description of performance criteria which are
usually in conflict with each other. Hence, the term “op-
timize” means finding such a solution which would give
the values of all the objective functions acceptable to the
designer.

Formally, we can state the general multiobjective optimi-
zation problem~MOP! as follows.

Definition 1 (General MOP). Find the vector ?x* 5
@x1
* , x2

* , . . . ,xn
* # T which will satisfy the m inequality

constraints:

gi ~ ?x! $ 0 i 5 1,2, . . . ,m ~1!

thep equality constraints

hi ~ ?x! 5 0 i 5 1,2, . . . ,p ~2!

and optimizes the vector function

<f ~ ?x! 5 @ f1~ ?x!, f2~ ?x!, . . . , fk~ ?x!# T ~3!

where ?x 5 @x1, x2, . . . ,xn# T is the vector of decision
variables. n

In other words, we wish to determine from among the set
F of all numbers which satisfy~1! and~2! the particular set
x1
* , x2

* , . . . ,xn
* which yields the optimum values of all thek

objective functions of the problem.
Another important concept is that of Pareto optimality,

which was stated by Vilfredo Pareto in the 19th century
~Pareto, 1896!, and constitutes by itself the origin of re-
search in multiobjective optimization:

Definition 2 (Pareto Optimality). We say that
?x* [ F, is Pareto optimal if for every ?x [ V and I 5

$1,2, . . . ,k% either,

∧
i[I

~ fi ~ ?x! 5 fi ~ ?x* !! ~4!
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or there is at least onei [ I such that ~assuming
maximization!

fi ~ ?x! # fi ~ ?x* !. ~5!

n

In words, this definition says that?x* is Pareto optimal if
there exists no feasible vector?x which would increase some
criterion without causing a simultaneous decrement in at
least one other criterion.

Pareto optimal solutions are also termed noninferior, ad-
missible, or efficient solutions~Horn, 1997a!; their corre-
sponding vectors are termed nondominated. These solutions
may have no clearly apparent relationship besides their mem-
bership in the Pareto optimal set. This is the set of all solu-
tions whose corresponding vectors are nondominated with
respect to all other comparison vectors. When plotted in
objective space, the nondominated vectors are collectively
known as the Pareto front.

In this paper, we will be referring to these concepts, al-
though our approach does not necessarily produce Pareto
optimal solutions. The Vector Evaluated Genetic Algorithm
~VEGA! in which our approach is inspired is known to be
biased towards the generation of individuals that excel in
one dimension of performance@i.e., in one objective func-
tion rather than generating good “trade-offs,” which is what
other approaches such as Pareto ranking~Fonseca & Flem-
ing, 1993! tend to do# . However, we argue that in the con-
text of circuit design~as well as other design areas!, the
cooperative mechanism implicit in a population-based ap-
proach such as VEGA can be exploited to perform a more
efficient search. Therefore, we do not really aim to generate
Pareto optimal designs, but instead, we aim to approach
efficiently ~i.e., at a low computational cost! the feasible
region of circuit design problems~a task that normally con-
sumes a lot of CPU time!. Thus, the reason why the previ-
ous concepts were included is for completeness, so that
some of the related work and related concepts mentioned in
this paper can be fully understood and, therefore, the paper
can be self-contained.

3. HANDLING CONSTRAINTS

The idea of using multiobjective optimization techniques to
handle constraints is not new. Some researchers have pro-
posed to redefine the single-objective optimization off ~ ?x!
as a multiobjective optimization problem in which we will
have m 1 1 objectives, wherem is the number of con-
straints. Then, we can apply any multiobjective optimiza-
tion technique~Fonseca & Fleming, 1995; Coello Coello,
1999! to the new vector?v5 ~ f ~ ?x!, f1~ ?x!, . . . , fm~ ?x!!, where
f1~ ?x!, . . . , fm~ ?x! are the original constraints of the problem.
An ideal solution ?x would thus havefi ~ ?x! 5 0 for 1# i # m
andf ~ ?x! $ f ~ ?y! for all feasible ?y ~assuming maximization!.

Surry et al.~1995!, and Surry and Radcliffe~1997! pro-
posed the use of Pareto ranking~Fonseca & Fleming, 1993!
and VEGA~Schaffer, 1985! to handle constraints using this
technique. In their approach, called COMOGA, the popu-
lation was ranked based on constraint violations~counting
the number of individuals dominated by each solution!. Then,
one portion of the population was selected based on con-
straint ranking, and the rest based on real cost~fitness! of
the individuals.

Parmee and Purchase~1994! implemented a version of
VEGA ~Schaffer, 1985! that handled the constraints of a
gas turbine problem as objectives to allow a genetic algo-
rithm to locate a feasible region within the highly con-
strained search space of this application. However, VEGA
was not used to further explore the feasible region, and
instead Parmee and Purchase~1994! opted to use special-
ized operators that would create a variable-size hypercube
around each feasible point to help the genetic algorithm to
remain within the feasible region at all times.

Camponogara and Talukdar~1997! proposed the use of
a procedure based on an evolutionary multiobjective opti-
mization technique. Their proposal was to restate a single
objective optimization problem in such a way that two
objectives would be considered: The first would be to op-
timize the original objective function and the second would
be to minimize the total amount of constraint violation of
an individual.

Once the problem is redefined, nondominated solutions
with respect to the two new objectives were generated. The
solutions found defined a search directiond 5 ~xi 2 xj !0
6xi 2 xj 6, wherexi [ Si , xj [ Sj , andSi andSj are Pareto
sets. The direction searchd is intended to simultaneously
minimize all the objectives~Camponogara & Talukdar,
1997!. Line search is performed in this direction so that a
solutionx can be found such thatx dominatesxi andxj ~i.e.,
x is a better compromise than the two previous solutions
found!. Line search takes the place of crossover in this
approach, and mutation is essentially the same, where the
directiond is projected onto the axis of one variablej in the
solution space~Camponogara & Talukdar, 1997!. Addition-
ally, a process of eliminating half of the population is ap-
plied at regular intervals~only the less fitted solutions are
replaced by randomly generated points!.

Jiménez and Verdegay~1999! proposed the use of a min-
max approach~Chankong & Haimes, 1983! to handle con-
straints. The main idea of this approach is to apply a set of
simple rules based on constraint violation to decide the se-
lection process~individuals with the lowest amount of con-
straint violation would be preferred in a binary tournament!.

In the context of combinational logic circuits design, we
are not aware of any work in which the direct use of a
multiobjective optimization technique had been proposed,
except for the single circuit solved in Coello Coello~2000!.
The idea was, however, suggested by Kalganova and Miller
~1999!. Nevertheless, evolutionary multiobjective optimi-
zation approaches have been used by several researchers to
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solve some other related problems. For example, Wilson
and Macleod~1993! used Pareto ranking~Goldberg, 1989!
to design multiplierless IIR filters; Zebulum et al.~1998!
used a GA with a target vector approach~with adaptive
weights! for the synthesis of low-power operational ampli-
fiers; Harris and Ifeachor~1996! used Pareto ranking to
design nonlinear Finite Impulse Response~FIR! filters; and
so forth.

4. STATEMENT OF THE PROBLEM

The problem of interest to us consists of designing a circuit
that performs a desired function~specified by a truth table!,
given a certain specified set of available logic gates.

In circuit design, one can use various criteria to define
minimal-cost expressions. For example, from a mathemat-
ical perspective, one could minimize the total number of
literals or the total number of binary operations or the total
number of symbols in an expression. The minimization prob-
lem is difficult for all such cost criteria. In gate networks,
one could minimize the total number of gates subject to
such restrictions as fan-in, fan-out, number of levels, or the
total number of SSI packages. In general, it is very difficult
to find such minimal networks or to prove the minimality of
a given network~Brzozowski & Yoeli, 1976!. In spite of
this, it is possible to solve a number of minimization prob-
lems using systematic techniques, provided that we are sat-
isfied with less general solutions.

The complexity of a logic circuit is a function of the
number of gates in the circuit. The complexity of a gate
generally is a function of the number of inputs to it. Be-
cause a logic circuit is a realization~implementation! of a
Boolean function in hardware, reducing the number of lit-
erals in the function should reduce the number of inputs to
each gate and the number of gates in the circuit—thus re-
ducing the complexity of the circuit.

In this work, we propose a GA that uses a population-
based approach to design circuits. The results produced
are compared against those produced by another GA@called
n-cardinality GA or NGA~Coello Coello et al, 2000!# . We
also compare our results against with those generated by a
human designer using Karnaugh maps and another one
using the Quine–McCluskey Procedure~unless indicated
otherwise in the examples!. The comparison against hu-
man designers is in many ways unfair because of differing
capabilities of man and machine. For example, a human
designer tends to use only the gates NOT, AND, OR and
has more difficulties using XOR because the Karnaugh
Map and the Quine–McCluskey Procedure do not support
the identification of XOR terms as well as they support
“seeing” simple product terms. The computer, using a GA-
based approach, and not being restricted by human pattern
recognition abilities, uses many XOR gates, often disre-
garding the NOT gate.

Our overall measure of circuit optimality is the total num-
ber of gates used, regardless of their kind. This is approxi-
mately proportional to the total part cost of the circuit.

Obviously, we perform this analysis for only fully func-
tional circuits.

An interesting aspect of this work relates to the analysis
of the type of solutions that the GA generates. We have
found in the past~Coello Coello et al., 2000! ~and again in
the work currently reported! that the GA tends to find cer-
tain design patterns that, through replication, can produce
very compact designs. In fact, through a careful analysis of
the solutions generated by a GA, we have been able to
extract some of its design patterns and to use them both to
improve convergence of the GA itself and to enrich the set
of simplification rules normally used by human designers
@see Islas Pérez et al., 2001, for details# . Some of these
design aspects will be briefly discussed in Section 8.

5. THE GENETIC ALGORITHM USED

We used a matrix to represent a circuit also adopted in
previous work~Coello Coello et al., 1997, 2000!, as shown
in Figure 1. This matrix is encoded as a fixed-length string
of integers from 0 toN21, whereN refers to the number of
rows allowed in the matrix~we call itn-cardinality alphabet!.

More formally, we can say that any circuit can be repre-
sented as a bidimensional array of gatesSi, j , wherej indi-
cates thelevel of a gate, so that those gates closer to the
inputs have lower values ofj. ~Level values are incre-
mented from left to right in Figure 1.! For a fixed j, the
index i varies with respect to the gates that are “next” to
each other in the circuit, but without being necessarily con-
nected. Each matrix element is a gate~there are five types
of gates: AND, NOT, OR, XOR, and WIRE1! that receives
its two inputs from any gate at the previous column as
shown in Figure 1. Although our GA implementation al-
lows gates with more inputs and these inputs might come
from any previous level of the circuit, we limited ourselves
to two-input gates and restricted the inputs to come only
from the previous level. This restriction could, of course, be
relaxed, but we adopted it to allow a fair comparison with
our previous GA-based approach~it should be kept in mind
that the main motivation of this work was to improve the
efficiency of our previous GA!.

A chromosomic string encodes the matrix shown in Fig-
ure 1 by using triplets in which the two first elements refer
to each of the inputs used, and the third is the correspond-
ing gate from the available set.

The matrix representation adopted in this work was orig-
inally proposed by Louis~1993; Louis & Rawlins, 1991,
1993!. He applied his approach to a two-bit adder and to the
n-parity check problem~for n5 4,5,6!. This representation
has also been adopted by Miller et al.~1997, 2000! with
some differences. For example, the restrictions regarding
the source of a certain input to be fed in a matrix element
varies in each of the three approaches: Louis~1993! has

1WIRE basically indicates a null operation, or in other words, the ab-
sence of gate, and it is used just to keep regularity in the representation
used by the GA that otherwise would have to use variable-length strings.
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strong restrictions, Miller et al.~1997! have no restrictions,
and we have relatively light restrictions. The encoding is
also different in all cases. Louis~1993! only encoded infor-
mation regarding one input and the type of gate to be used
at each matrix position. He also used binary representation.
In our case, we used ann-cardinality alphabet and decided
to encode the gate to be placed at each matrix location plus
its two inputs. Miller et al.~1997! encode a full Boolean
operation using a single integer. This representation is more
compact, but it has the problem of requiring that mutation
takes the place of crossover to introduce enough diversity
in the population, so that the evolutionary algorithm can
approach the feasible region. That is the reason why Miller
et al.~2000! have adopted an evolutionary strategy in their
recent work.

Finally, the last difference among the three approaches
previously mentioned is regarding the fitness function. Louis
~1993! simply maximizes the number of matches between
the outputs produced by the circuit and those indicated in
the truth table. We have used a fitness function that works
in two stages: First, it maximizes the number of matches~as
in Louis’ case!. However, once feasible solutions are found,
we maximize the number of WIREs in the circuit. By doing
this, we actually optimize the circuit in terms of the number
of gates that it uses. Miller et al.~1997! did something
similar to Louis until recently@they have recently intro-
duced a two-stage fitness function like the one adopted by
us ~Kalganova & Miller, 1999!# .

Thus, we can say that our goal was to produce a fully
functional design~i.e., one that produces all the expected
outputs for any combination of inputs according to the truth
table given for the problem! which maximizes the number

of WIREs. We also aimed to reduce the computational cost
of our previous GA-based approach.

6. DESCRIPTION OF THE APPROACH

The main idea behind our proposed approach is to use a
population-based multiobjective optimization technique such
as VEGA~Schaffer, 1985! to handle each of the outputs of
a circuit as an objective. In other words, we would have an
optimization problem withm equality constraints, wherem
is the number of values~i.e., outputs! of the truth table that
we aim to match. So, for example, a circuit with three in-
puts and a single output, would havem5 23 5 8 values to
match.

The technique may be better illustrated by Figure 2. At
each generation, the population is split intom1 1 subpop-
ulations, wherem is defined as indicated before~we have to
add one to consider also the objective function!. Each sub-
population is on charge of optimizing a constraint of the
problem~in this case, an output of the circuit! and an addi-
tional subpopulation will optimize the original objective
function ~unconstrained!. Therefore, the main goal of each
subpopulation is to match its corresponding output with the
value indicated by the user in the truth table. Although the
size of each subpopulation may be variable, it was decided
to allocate the same size to each of them in the experiments
reported in this paper, but the use of different subpopula-
tion sizes is also possible.

The objective function in our case is defined as in previ-
ous work~Coello Coello et al., 1997, 2000!: it is the total
number of matches~between the outputs produced by an
encoded circuit and the intended values defined in the truth

Fig. 1. Matrix used to represent a circuit. Each gate gets its inputs from either of the gates in the previous column. Note the encoding
adopted for each element of the matrix as well as the set of available gates used.
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table defined by the user!. For each match, we increase the
value of the objective function by one. If the encoded cir-
cuit is feasible~i.e., it matches the truth table completely!,
then we add one~the so-called “bonus”! for each WIRE
present in the solution.

Using the proposed scheme, a fraction of the population
will be selected using the objective function as its fitness
~i.e., it will try to maximize the total number of matches!;
another fraction will use the match of the first output as its
fitness and so on~since they are all binary values, we only
check if it matches or not, without computing any extra
values as required in numerical optimization!. The main
issue here is how to handle the different situations that could
arise. Fitness within each subpopulation is computed using
the following scheme:

if oj ~ ?x! Þ tj then fitness~ ?x! 5 0
else ifvÞ 0 then fitness~ ?x! 5 2v
else fitness~ ?x! 5 f ~ ?x!

whereoj ~ ?x! refers to the value of outputj for the encoded
circuit ?x; tj is the value specified for outputj in the truth
table; andv is the number of outputs that are not matched
by the circuit ?x ~# m!. Finally, f ~ ?x! is the fitness function
described before:

f ~ ?x! 5 h~ ?x! 1 H 0 if f ~ ?x! is infeasible
w~ ?x! otherwise.

In this equation,h~ ?x! refers to the number of matches
between the circuit ?x and the values defined in the truth

table, andw~ ?x! is the number of WIREs in the circuit?x.
Therefore, selection is performed using different rules within
each subpopulation. However, crossover and mutation are
applied to the entire population~i.e., no “speciation” mech-
anism is used!. This intends to recombine the chromosomic
material corresponding to different partially functional cir-
cuits, as to allow convergence towards fully feasible circuits.

The algorithm of our approach is the following:

1. Generate randomly a population of sizeP.
2. Split the population intom1 1 subpopulations~m5

number of outputs to match!.
3. Compute fitness values according to the goals of each

individual within each subpopulation:

• If the target output is not matched, fitness is zero.

• Else, if the target output is matched, but the circuit
is not functional, then fitness is the number of out-
puts not matched multiplied by~21!.

• Else, if the target output is matched AND the cir-
cuit is functional, then fitness is given by the addi-
tion of the number of outputs matched plus the
number of wires of the circuit.

4. Shuffle the entire population and select parents from
each subpopulation based on the~previously com-
puted! fitness value of each individual.

5. Apply crossover and mutation to the entire population.
Individuals of any given subpopulation are allowed to
breed with individuals of any other subpopulation.This
will generate the new populationP'.

Fig. 2. Graphical representation of the approach proposed in this paper. Note that although individuals are selected using different
criteria depending on the subpopulation in which they are placed, crossover is allowed between individuals of different subpopula-
tions. The new population is generated after shuffling the old population and applying to it crossover and mutation.
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6. If convergence criterion reached, then stop.

7. Otherwise, return to step 2.

There are a few interesting things that can be observed
from this procedure. First, each subpopulation associated
with an output of the circuit will try to match it with the
value defined in the truth table. Once this is achieved, then
the fitness function will try to maximize the number of
matches of the rest of the outputs. In other words, this sub-
population will cooperate with the others that are having
difficulties to match their outputs. If the circuit is feasible,
then all the subpopulations will join efforts to maximize the
number of WIREs in the circuit.

It is important to clarify that the current approach does
not use dominance to impose an order on the constraints
based on their violation@as in the case of COMOGA~Sur-
ry et al., 1995!# which is a more expensive process~in
terms of CPU time! that also requires additional param-
eters. In fact, the current approach does not rank individ-
uals, but it uses instead different fitness functions for each
of the subpopulation allocated~whose number depends on
the number of outputs in a circuit! depending on the fea-
sibility of the individuals contained within each of them.
This is easier to implement, does not require special oper-
ators to preserve feasibility@as in the case of Parmee and
Purchase’s approach~1994!# , makes unnecessary the use
of a sharing function to preserve diversity~Deb & Gold-
berg, 1989! @such as the traditional multiobjective optimi-
zation techniques~Fonseca & Fleming, 1995!# , and does
not require extra parameters to control the mixture of fea-
sible and infeasible individuals@as in the case of CO-
MOGA ~Surry et al., 1995!# .

VEGA is known to have difficulties in multiobjective
optimization problems due to the fact that it tries to find
individuals that excel only in one dimension regardless of
the others@the so-called “middling” problem~Schaffer, 1985;
Fonseca & Fleming, 1995; Coello Coello, 1999!# . How-
ever, that drawback turns out to be an advantage in this
context, because what we want to find are precisely circuits
that are fully functional, instead of good compromises that
may not satisfy one of the outputs~which are the kinds of
solutions that a Pareto ranking strategy would normally pro-
duce; Coello Coello, 1999!. Also, the use of subpopulations
is much more efficient than using Pareto dominance, be-
cause of the potentially high number of objectives involved
~this will be illustrated in the examples shown in this paper!.

7. COMPARISON OF RESULTS

We have used several circuits of different degrees of com-
plexity to test our approach. For the purposes of this paper,
five examples were chosen to illustrate our approach~called
multiobjective genetic algorithm, or MGA for short!, and
the results produced were compared with those generated
by human designers and by our previousn-cardinality GA
~called NGA; Coello Coello et al., 1997, 2000!.

In each case, the size of the matrix used to fit the circuit
was determined using the following procedure:

1. Start with a square matrix of size 5.

2. If no feasible solution is found using this matrix, then
increase the number of columns by one.

3. If no feasible solution is found using this matrix, then
increase the number of rows by one.

4. Repeat steps 2 and 3 until a suitable matrix is produced.

As we will see in the following examples, it was nor-
mally the case that for small circuits a matrix of 53 5 was
sufficient. However, in one of the examples, it was neces-
sary to reach a matrix size of 63 7. This made necessary to
run the GA for more generations, performing, in conse-
quence, more fitness function evaluations. This situation
normally arises with circuits having several outputs, al-
though in some cases, such as in the two-bit multiplier of
our fourth example, even a 53 5 matrix may be enough to
find the best known circuit.

To choose the size of each subpopulation in the MGA,
we started with 10, and performed 20 runs. If we did not
find feasible solutions in at least one-fourth of our runs, we
would increase the subpopulation size by 10 and would
perform 20 more runs. This process was repeated until a
suitable subpopulation size was found.

The other issue is regarding the crossover and mutation
rates. After a series of experiments, we decided to use a
crossover rate of 50% and a mutation rate such that each
string had a 50% probability of being mutated at a certain
position. Since mutation was applied on a single-gene ba-
sis, we used as our probability of mutation the result of
dividing this 50% by the length of the string. For example,
when a 53 5 matrix was used, the length of the chromo-
somic string was 75. Therefore, the probability of mutation
would be 0.006667.

7.1. Example 1

Our first example is a three-even parity problem, whose
truth table with three inputs and one output is shown in
Table 1. In this case, the matrix used was of size 53 5, and
the length of each string representing a circuit was then 33
5 3 5 5 75. The cardinalityc used for this problem was
max~r, g!, wherer refers to the number of rows in the ma-
trix and g to the number of allowable gates in the circuit
~since only the inputs from the previous level are consid-
ered, the number of columns does not affect the cardinality
used!. Sinceg5 5, andc5 5 for this example, then the size
of the intrinsic search space for this problem iscl 5 575 '
2.6 3 1052. Fitness is computed in the following way: 8
~number of outputs that we must match to have a feasible
circuit! 1 53 5 ~size of the matrix! 2 number of gates used
~i.e., different of WIRE!. Therefore, a fitness of 29~the best
value produced for this circuit! means that the circuit
is feasible~otherwise, its fitness could not possibly be
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above 8!, and it has four gates~i.e., 21 WIREs!, because
8 1 ~252 4! 5 8 1 215 29.

Results are compared in Table 2. Human Designer 1 used
Karnaugh Maps plus Boolean algebra identities to simplify
the circuit, whereas Human Designer 2 used the Quine–
McCluskey Procedure. In both cases, they produced solu-
tions with more gates than the MGA or the NGA.

A subpopulation size of 10 was enough for the MGA.
Since the circuit has eight outputs, there were nine objec-
tives. Therefore, the total population size was set to 90. We
set the maximum number of generations to 300.

To make a fair comparison, the same representation
scheme and the same genetic operators~two-point cross-
over with a probability of 0.5, and uniform mutation with a
probability of 0.006667! were used for both the MGA and
the NGA ~for more details on the NGA, refer to Coello
Coello et al., 2000!.

The MGA consistently found a solution with a fitness
value of 29~75% of the time!, and it produced feasible
circuits 100% of the time. The average fitness of the 20
runs performed was 28.75, with a standard deviation of
0.433012. The graphical representation of this solution is
depicted in Figure 3.

On the other hand, the best solution that the NGA could
find using the same population size had also a fitness of 29
~i.e., a circuit with four gates!, but it appeared only 10% of
the time. Also, 20% of the time, the best solution found was
infeasible. The average fitness of these 20 runs was 21.4,
with a standard deviation of 8.438009244.

7.2. Example 2

Our second example has four inputs and one output, as
shown in Table 3. A matrix of the same size as before was
used~i.e., 53 5!.

The comparison of the results produced by the MGA, the
NGA, a human designer using Karnaugh Maps, and Sasao’s
approach~1993! are shown in Table 4. Sasao~1993! has
used this circuit to illustrate his circuit simplification tech-
nique based on the use of ANDs and XORs. His solution
uses, however, more gates than the circuit produced by the
NGA or the MGA.

Since this example has 16 outputs, there are 17 objec-
tives for the MGA. A population size of 170 was enough
to solve this circuit. The maximum number of generations
in this case~for both the MGA and the NGA! was set to
400.

The MGA found a solution with a fitness value of 34
~i.e., a circuit with seven gates! 15% of the time, and solu-
tions with eight gates were found 25% of the time. The
MGA produced feasible circuits 100% of the time. The av-
erage fitness of the 20 runs performed was 32.1, with a

Table 1. Truth table for the
circuit of the first example

X Y Z F

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Table 2. Comparison of the best solutions found by the n-cardinality GA (NGA), our multiobjective genetic
algorithm (MGA), and two human designers (HD 1 and HD 2) for the circuit of the first example

MGA NGA HD 1 HD 2

F 5 ~X 1 Y!Z ⊕ ~XY! F 5 Z~X 1 Y! ⊕ ~XY! F 5 Z~X ⊕ Y! 1 Y~X ⊕ Z! F 5 X 'YZ1 X~Y ⊕ Z!
4 gates 4 gates 5 gates 6 gates
2 ANDs, 1 OR, 1 XOR, 1 NOT 2 ANDs, 1 OR, 1 XOR 2 ANDs, 1 OR, 2 XORs 3 ANDs, 1 OR, 1 XOR, 1 NOT

A population size of 90 was used with both GAs.

Table 3. Truth table for the
circuit of the second example

Z W X Y F

0 0 0 0 1
0 0 0 1 1
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 0
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standard deviation of 1.252366. The graphical representa-
tion of the best solution found is depicted in Figure 4.

The best solution that the NGA could find using the same
population size had a fitness of 31~i.e., a circuit with 10
gates!, and it appeared only once in the 20 runs performed.
Also, 95% of the time, the best solution found was infeasi-
ble. The average fitness of these 20 runs was 15.55, with a
standard deviation of 3.677456.

7.3. Example 3

Our third example has four inputs and four outputs, as shown
in Table 5. A matrix of the same size as before was used
~i.e., 53 5!.

Since this example has 64 outputs, there are 65 objec-
tives for the MGA. A subpopulation size of 10~i.e., total
population size of 650!, was sufficient for the MGA. The
maximum number of generations in this case~for both the
MGA and the NGA! was set to 500.

The MGA found a solution with a fitness value of 82
~i.e., a circuit with seven gates! 15% of the time, and it
produced feasible circuits 100% of the time. The average
fitness of the 20 runs performed was 80.4, with a standard
deviation of 1.142481141. The graphical representation of
the best solution found by the MGA is depicted in Figure 5.

On the other hand, the best solution that the NGA could
find using the same population size of 650 had a fitness of
80 ~i.e., a circuit with nine gates!. This solution appeared

only twice in the 20 runs performed. In most cases~70% of
the runs performed!, the best solution found was infeasible.
The average fitness of these 20 runs was 66.65, with a
standard deviation of 7.638372657.

The comparison of the results produced by the MGA, the
NGA, two human designers, and Miller et al.~1997! are
shown in Table 6. It should be mentioned that Miller et al.
~1997! considered their solution to contain only seven gates
because of the way in which they encoded their Boolean
functions~the reason is that they encoded NAND gates in
their representation!. However, since we considered each
gate as a separate chromosomic element, we count each of
them, including NOTs that are associated with AND and
OR gates. Regardless of that fact, it is more important to
point out that Miller et al.~1997! found their solution with
runs of 3,000,000 fitness function evaluations each, whereas
in our case, we performed runs of only 325,000 evaluations
each.

7.4. Example 4

Our fourth example has four inputs and three outputs, as
shown in Table 7. In this case, the matrix used was of size
6 3 7, and the chromosomic length was 126~r 5 6,q 5
7, t 5 6 3 7 5 42,l 5 3 3 t 5 126!. The cardinalityc 5
max~r, g! 5 6 The size of the intrinsic search space for this
problem iscl 5 6126 ' 1.13 1098.

The comparison of the results produced by the MGA, the
NGA, and two human designers are shown in Table 8.

Fig. 3. Graphical representation of the best circuit found by the MGA and the NGA for the first example.

Fig. 4. Circuit produced by our MGA for the second example.
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Since this example has 48 outputs, there are 49 objec-
tives for the MGA. A subpopulation size of 10~i.e., total
population size of 490!, was sufficient for the MGA. The
maximum number of generations in this case~for both the
MGA and the NGA! was set to 2000.

The MGA found a solution with a fitness value of 81
~i.e., a circuit with nine gates! 15% of the time, and it pro-
duced feasible circuits 100% of the time~55% of the time,
the MGA found better solution than the best found by the
NGA!. The average fitness of the 20 runs performed was
78.9, with a standard deviation of 1.020835571. The graph-
ical representation of the best solution found by the MGA is
depicted in Figure 6.

On the other hand, the best solution that the NGA could
find using the same population size of 490 individuals had
a fitness of 78~i.e., a circuit with 12 gates!. This solution
appeared only once in the 20 runs performed. In most cases
~80% of the runs performed!, the best solution found was
infeasible. The average fitness of these 20 runs was 52.15,
with a standard deviation of 11.92641915.

8. DISCUSSION OF RESULTS

We will start by summarizing the results obtained from our
experiments. Table 9 contains of summary of the best re-
sults produced by the MGA, the NGA, and the best human
designer in each of the circuits analyzed. We can see that
the MGA consistently outperformed its competitors, pro-
ducing the lowest number of gates in each case.

Since one of the main aspects of the approach proposed
in this paper is its capability to improve the efficiency of
the GA to design combinational circuits, we decided to per-
form another comparison in which we analyzed the compu-
tational cost required by our original NGA and our proposedTa
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Table 5. Truth table for the two-bit multiplier of the third
example

A1 A0 B1 B0 C3 C2 C1 C0

0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 1
0 1 1 0 0 0 1 0
0 1 1 1 0 0 1 1
1 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0
1 0 1 0 0 1 0 0
1 0 1 1 0 1 1 0
1 1 0 0 0 0 0 0
1 1 0 1 0 0 1 1
1 1 1 0 0 1 1 0
1 1 1 1 1 0 0 1
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MGA to obtain equivalent results~in terms of optimality!.
The analysis was conducted on the five examples presented
in this paper, and considering only the minimum number of
fitness function evaluations required~“minimum” in this
case refers to the combination of population size and max-
imum number of generations that produced the lowest re-
sult when multiplied!. Since the best results in all cases
correspond to the MGA, we established a methodology to
try different parameters for the NGA, so that we could reach
similar results@our methodology was similar to the one
described in previous work~Coello Coello, 2000!# .

The comparison of computational costs for the MGA and
the NGA~reaching the best results reported in this paper for
each of the five examples chose! is presented in Table 10.
In all cases, the number of fitness function evaluations in-
dicated correspond to the complete run of the GA~even if,
as in most cases, convergence to the best result obtained
was achieved before reaching the last generation!. It can be
clearly appreciated that the MGA outperforms the NGA in
most cases. The difference in terms of performance, be-

comes more significant as we attempt to solve more com-
plex circuits.

We believe that the good performance obtained with this
algorithm is mainly due to an emergent behavior obtained
from the cooperation of the different subpopulations aim-
ing to satisfy a simple goal. This line of thought is consis-
tent with the recent work by Potter and DeJong~2000!,
according to which the resolution of complex problems with
evolutionary algorithms requires a cooperative effort.

Additionally, the current technique can also be consid-
ered a variation of the divide-and-conquer approach to
evolvable hardware suggested by Torresen~1998!. In this
approach, a system is evolved through its smaller compo-
nents, only that in our case, these smaller components
happen to be individual outputs of a circuit. Torresen~1998!
also showed that a scheme of this sort could substantially
reduce the computational power required to evolve a sys-
tem. The savings that this sort of population-based ap-
proach can produce could be very useful in other design
domains such as structural optimization. We are in fact

Fig. 5. Circuit produced by our MGA for the third example.

Fig. 6. Circuit produced by our MGA for the fourth example.
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currently exploring the use of this type of approach in that
domain.

Another interesting aspect of this work is the analysis of
the design patterns used by the GA. It is important to men-
tion that the GA does not really possess any specific do-
main information that could help it to bias the search. In
fact, it does not even “know” anything about the simplest
simplification rules existing~e.g., NOT ~NOT A! 5 A!.
Nevertheless, it is able to emulate both simple and complex
simplification rules used in Boolean algebra, and even pro-
duce others that tend to escape human creativity. Some of
the uncommon design patterns used by the GA can be hinted
by comparing its solutions against those generated by a
human designer. For instance, in Example 4 from the pre-
vious section, the Boolean expression of one of the outputs
is identical to the expression generated by the MGA. The
two others, in contrast, aremore complexin the case of the
MGA. Then, why is the total number of gates of this circuit
smaller? The answer is simple: If the solution of the MGA
is carefully analyzed, it can be seen that its apparent com-
plexity is due to the fact that it is reusing the same block to
produce the three outputs. This is counterintuitive for a hu-
man using a visual aid technique such as the Karnaugh
maps, but it is an emerging property of the application of
natural selection to the circuit design process.

In some of our recent work, we have focused our atten-
tion to the discovery of these design patterns@other research-
ers such as Miller et al.~1999! and Thomson~2000! have
done similar work# . To our surprise, besides rediscovering
some of the most common simplification rules of Boolean
algebra, and others not so simple such as a DeMorgan theo-
rem applied to XOR gates:~X ⊕ Y ' !' 5 X ⊕ Y5 X ' ⊕ Y ',
we also discovered some more complex simplifications, such
as~A 1 ~A ⊕ B!! ⊕ ~A ⊕ B! 5 AB, which are not intuitiveTa
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Table 7. Truth table for the circuit of
the fourth example.

A B C D F1 F2 F3

0 0 0 0 1 0 0
0 0 0 1 0 1 0
0 0 1 0 0 1 0
0 0 1 1 0 1 0
0 1 0 0 0 0 1
0 1 0 1 1 0 0
0 1 1 0 0 1 0
0 1 1 1 0 1 0
1 0 0 0 0 0 1
1 0 0 1 0 0 1
1 0 1 0 1 0 0
1 0 1 1 0 1 0
1 1 0 0 0 0 1
1 1 0 1 0 0 1
1 1 1 0 0 0 1
1 1 1 1 1 0 0
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to any human designer. Through the use of case-based rea-
soning, we have been able to store this “knowledge” gen-
erated by the GA for further reuse. The interested reader is
referred to Islas Pérez et al.~2001! for further details.

We believe that our approach can be of great help in
problems that are decomposable. There are examples in the
literature of cooperative search approaches designed for such
problems~e.g., Murthy et al., 1999; Parmee & Watson, 1999!.
Since our approach is based on such a cooperative~emer-
gent! behavior, it is highly likely that it will perform very
well ~and at a low computational cost! in problems that can
be solved using such cooperative techniques.

It is worth mentioning one last issue that may be related
to the work presented in this paper. Recently, Knowles et al.
~2001! suggested that transforming certain single-objective
optimization problems into multiobjective~a process that
they call “multi-objectivizing”! can remove local optima
and therefore, become easier to solve by a heuristic. Their
hypothesis was validated with a certain instance of the trav-
eling salesperson problem. In this problem, the application
of the multi-objectivizing process previously mentioned al-
lowed for use of a simple hillclimber to solve it.

It is therefore possible that the process described in this
paper is another form of multi-objectivizing single-objective
circuit design problems. This transformation of the fitness
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Table 9. Comparison of the number of gates
contained in the best solutions produced by: our
multiobjective genetic algorithm (MGA), the
N-cardinality genetic algorithm (NGA), and the
best human designer (BHD) for each of the
examples analyzed in this paper

Example
No. MGA NGA BHD

1 4 4 5
2 7 10 11
3 7 9 8
4 9 12 13

Table 10. Comparison of the number of fitness
function evaluations required to reach the
optimum by each of the two GA-based
approaches compared in this paper

Example
No. MGA NGA

1 27,000 27,000
2 68,000 500,000
3 325,000 600,000
4 980,000 5,600,000
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landscape~produced by the process of multi-objectivizing
the problem! may transform a difficult search space into
another more amenable for the application of a genetic al-
gorithm. This allows us to find not only very good results
but also to find them in a relatively reduced amount of time.

9. CONCLUSIONS AND FUTURE WORK

We have proposed a multiobjective optimization technique
to design combinational logic circuits. The proposed ap-
proach uses a population-based technique to split the search
task among several~small! subpopulations. The approach
compared well with respect to two human designers, and a
previous GA developed by us which uses andn-cardinality
alphabet and a two-stage fitness function. Our approach,
called MGA, consistently found better solutions than the
human designers, and was able to find the same or even
better solutions than our previous GA~called NGA!, using
a lower number of fitness function evaluations.

The proposed approach seems very suitable for parallel-
ization, and that will probably be a path of research that we
will explore in the near future. Also, we are interested in
coupling this approach with another system based on ge-
netic programming that is currently under development. We
aim to benefit from a more powerful chromosomic repre-
sentation while keeping an efficient selection mechanism.
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