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Abstract

In this paper, we propose a population-based evolutionary multiobjective optimization approach to design combina-
tional circuits. Our results indicate that the proposed approach can significantly reduce the computational effort
required by a genetic algorithfGA) to design circuits at a gate level while generating equivalent or even better
solutions(i.e., circuits with a lower number of gajehan a human designer or even other GAs. Several examples taken
from the literature are used to evaluate the performance of the proposed approach.

Keywords: Circuit Design; Evolvable Hardware; Evolutionary Multiobjective Optimization; Genetic Algorithms;
Multiobjective Optimization

1. INTRODUCTION First, we aim to optimize circuitgising a certain metrjan

) ) , . adifferent way, and intuitively, we can think of producing
The genetic algorithmGA) has been widely used for opti- 46| designgsince there is no human interventjouch

mization taskgGoldberg, 198pand is known to be a very el designs have been shown in the padiler et al.,
powerful tool in certain domains. In our current work we 1999 2000: Coello Coello et al. 200Gecond, it would
wish to find a way to use the GA as a design tool, withe eyiremely useful to extract design patterns from such
particular emphasis in the design of digital combinationale,q|ytionary-generated solutions. This could lead to a prac-
circuits. _tical design process in which a smédiptima) circuit is

~As is known, there are several standard g.raphical desigflsed as a building block to produce complex circuits. Such
aids such as the Karnaugh Mapeeitch, 1952; Karnaugh, - 5 jyide-and-conquer approach has also been suggested in

1953, which are widely used by human designers. Thergpe pas{Torresen, 1998: Miller et al., 2000

are also other tools more suitable for computer implemen- oaver in the previ,ous work on evolutionary design
tation such as the Quine-McCluskey Meth@line, 1955, ¢ compinational circuits, efficiency has been an impor-
McCluskey, 1956 Espress¢Brayton etal., 198fand Misll 5+ jssue. The main approaches reported so far in the

(Brayton et al., 198y ) o ] literature require a significant amount of fitness function
_Despite the drawbacks of classical circuit design teChe, a1yations. The motivation of this work was precisely to
niques, some of them can handle truth tables with hundreds,,ceive an approach that could reduce the amount of
of inputs, whereas evolutionary algorithms are restricted (Qjiness function evaluations, while keeping the capabilities

relatively small truth tablegMiller et al., 2000. However, ¢ 4 GA to generate noveland compadt designs. This

the most interesting aspect of evolutionary design is theyses not mean that we claim that our approach will solve
possibility of studying its emergent patteri@oello Coello o gcaability problem that has characterized evolvable

etal,, 2000; Miller, 2000 The goals are, therefore, differ- parq\are(Thompson et al., 1999; Miller et al., 2000
ent when we design circuits using evolutionary algor'tth'Nevertheless, we believe that approaches such as the one
presented in this paper may contribute to the development
Reprint requests to: Dr. Carlos A. Coello Coello, P.O. Box 60326-394,Of alternative techniques that could |_mprove _the perfor-
Houston, TX 77025, USA. E-mail: ccoello@cs.cnvestav.mx mance of a GA, at least when solving relatively small
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circuits (under the assumption that they could be used asluced by humaraising Karnaugh Map&arnaugh, 1958
building blocks to produce larger circujts the Quine—McCluskey Proceduf®uine, 1955; McClus-

In the past, we have approached this problem using a GAey, 1956] and another GAMiller et al., 1998. Then, we
with a matrix encoding scheme, andmgardinality alpha- present a short discussion of our results, our conclusions
bet(after a series of experiments, we found tibsardinality — and some of the possible paths of future research.
representation scheme to be more robust than the tradi-
tional binary representatiofCoello Coello, 1996; Coello
et al., 1997, 2000. 2. MULTIOBJECTIVE OPTIMIZATION

Our original GA-based approach presents great rese

blance with the one proposed by Kalganova et(3298 rrMulnobjectlve optimization(also called multicriteria opti-

and further developed by Miller and his colleagu#897, mization, multiperformance or vector optimizatjacan be

1999, 2000. The two main differences between the two defined as the problem of findin@syczka, 1985
approaches are the encoding scheme and the fitness func-
tion, as we will explain later in this paper. However, Mill-
er’s initial work emphasized generation of functional circuits,
rather than optimization. It was until recently, that Kalga-
nova and Miller(1999 experimented with a two-stager
multiobjective, as they call)fitness function. We adopted
that sort of fitness function from the beginning of our re-
search in this are@Coello Coello, 1996; Coello Coello et al.,
1997). However, the use of truly multiobjective optimiza-
tion techniquege.g., based on the concept of Pareto opti-
mality (Coello Coello, 1999 remained as an open area of Formally, we can state the general multiobjective optimi-
research in combinational circuit design, as indicated byzation problen{MOP) as follows.

Kalganova and Mille1999.

In this paper, we propose the use of an evolutionary multi
objective optimization techniqu@ather than just a multi-
objective fitness functiorto design combinational circuits.
There is somdrelatively scarceprevious work on using
multiobjective techniques to handle constraints. This work,
however, has concentrated on numerical optimization onlythep equality constraints
Our approach is probably the first attempt to use this
kind of technique in the design of circuits, and it seems to
considerably reduce the amount of fithess function evalua-
tions required by a GAat least compared to our previous
GA (Coello Coello et al., 2000and to Miller et al.’s(1997)
approach o NN R

Our proposal is to handle each of the matches between a ) = [H0, (R, AT )
solution generated by a GA and the values specified by the . T o
truth table as equality constraints. This, however, intro-WNe€re X =[xy, Xz,...,x,] " is the vector of decision
duces some dimensionality problems for conventional multiVarables. =
objective optimization techniquéthis is because checking
for dominance is a®(n?) procesy, and therefore the idea
of using a(more efficienj population-based approach sim-
ilar to the Vector Evaluated Genetic Algorith(VEGA)

(Schaffer, 1985 Another important concept is that of Pareto optimality,

Th? remainderof.this Paper Is organized as foII_ow.s: ﬁ,rSt’Which was stated by Vilfredo Pareto in the 19th century
we give some basic defmmo_ns related to mUItIOt?lecuve(Pareto, 189§ and constitutes by itself the origin of re-
optimization. Then, we describe some of the previous re3earch in multiobjective optimization:

lated work on using multiobjective optimization techniques
to handle constraints. After that, we state the problem of DeriNiTION 2 (PARETO OPTIMALITY). We say that
interest to us, and introduce our approach, giving some ex¢* € F, is Pareto optimal if for every X € Q and| =
amples of its performance. Results are compared againét, 2, ... k} either,

those produced by our previous approgaehGA with an

n-cardinality alphabet and a two-stage fitness function that D( £.(%) = (X)) 4)
we will simply denote as NGAand against designs pro- icl

a vector of decision variables which satisfies constraints
and optimizes a vector function whose elements repre-
sent the objective functions. These functions form a math-
ematical description of performance criteria which are
usually in conflict with each other. Hence, the term “op-
timize” means finding such a solution which would give
the values of all the objective functions acceptable to the
designer.

DEeFINITION 1 (GENERAL MOP). Find the vectorx™ =
Ixi,x3,...,xx]17 which will satisfy the m inequality
constraints:

g(X)=0 i=1,2,...m (2)

h()=0 i=12,...p 2)

and optimizes the vector function

In other words, we wish to determine from among the set
F of all numbers which satisfgl) and(2) the particular set
X1, X5,...,Xs which yields the optimum values of all thke
objective functions of the problem.
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or there is at least oné € | such that(assuming Surry et al.(1995, and Surry and Radcliffé€1997) pro-
maximization posed the use of Pareto rankitfepnseca & Fleming, 1993
and VEGA(Schaffer, 198bto handle constraints using this
f.(%) = f (X*). (5)  technique. In their approach, called COMOGA, the popu-
lation was ranked based on constraint violatigcsunting
the number of individuals dominated by each solutidimen,
one portion of the population was selected based on con-

In words, this definition says that" is Pareto optimal if ~ Straint ranking, and the rest based on real ¢fistess of
there exists no feasible vectowhich would increase some the individuals.
criterion without causing a simultaneous decrement in at Parmee and Purchas&994 implemented a version of
least one other criterion. VEGA (Schaffer, 198bthat handled the constraints of a

Pareto optimal solutions are also termed noninferior, adgas turbine problem as objectives to allow a genetic algo-
missible, or efficient solution§Horn, 1997 their corre-  fithm to locate a feasible region within the highly con-
sponding vectors are termed nondominated. These solutiogérained search space of this application. However, VEGA
may have no clearly apparent relationship besides their menyas not used to further explore the feasible region, and
bership in the Pareto optimal set. This is the set of all soluinstead Parmee and Purchd$694 opted to use special-
tions whose corresponding vectors are nondominated witized operators that would create a variable-size hypercube
respect to all other comparison vectors. When plotted irground each feasible point to help the genetic algorithm to
objective space, the nondominated vectors are collectiveljemain within the feasible region at all times.
known as the Pareto front. Camponogara and Talukd&t997) proposed the use of

In this paper, we will be referring to these concepts, al-@ Procedure based on an evolutionary multiobjective opti-
though our approach does not necessarily produce Parefdization technique. Their proposal was to restate a single
optimal solutions. The Vector Evaluated Genetic Algorithmobjective optimization problem in such a way that two
(VEGA) in which our approach is inspired is known to be objectives would be considered: The first would be to op-
biased towards the generation of individuals that excel irfimize the original objective function and the second would
one dimension of performangee., in one objective func- be to minimize the total amount of constraint violation of
tion rather than generating good “trade-offs,” which is whatan individual.
other approaches such as Pareto rankfanseca & Flem- Once the problem is redefined, nondominated solutions
ing, 1993 tend to dg. However, we argue that in the con- with respect to the two new objectives were generated. The
text of circuit design(as well as other design ar@ashe  solutions found defined a search directidr= (x; — ;)/
cooperative mechanism implicit in a population-based ap{Xi — X[, wherex; € §, x; € §, and§ and§ are Pareto
proach such as VEGA can be exploited to perform a moréets. The direction searchis intended to simultaneously
efficient search. Therefore, we do not really aim to generaténinimize all the objectivesCamponogara & Talukdar,
Pareto opt|ma| designsi but instead, we aim to approacﬂ‘ggn. Line search is performed in this direction so that a
efficiently (i.e., at a low computational costhe feasible solutionx can be found such thatdominates andx; (i.e.,
region of circuit design problen{s task that normally con- X is a better compromise than the two previous solutions
sumes a lot of CPU timeThus, the reason why the previ- found). Line search takes the place of crossover in this
ous concepts were included is for completeness, so th@&Pproach, and mutation is essentially the same, where the
some of the related work and related concepts mentioned ifiirectiond is projected onto the axis of one variapie the

this paper can be fully understood and, therefore, the pap&olution spacéCamponogara & Talukdar, 199/Addition-
can be self-contained. ally, a process of eliminating half of the population is ap-

plied at regular intervaléonly the less fitted solutions are

replaced by randomly generated po)jnts
3. HANDLING CONSTRAINTS Jiménez and Verdegd$999 proposed the use of a min-

max approactiChankong & Haimes, 19830 handle con-
The idea of using multiobjective optimization techniques tostraints. The main idea of this approach is to apply a set of
handle constraints is not new. Some researchers have presimple rules based on constraint violation to decide the se-
posed to redefine the single-objective optimizatiori ©F) lection processindividuals with the lowest amount of con-
as a multiobjective optimization problem in which we will straint violation would be preferred in a binary tournament
havem + 1 objectives, wheram is the number of con- In the context of combinational logic circuits design, we
straints. Then, we can apply any multiobjective optimiza-are not aware of any work in which the direct use of a
tion technique(Fonseca & Fleming, 1995; Coello Coello, multiobjective optimization technique had been proposed,
1999 to the new vectod = ( f(X), f;(X),...,f,(X)), where  except for the single circuit solved in Coello Coel2D00.
f1(X),...,T,(X) are the original constraints of the problem. The idea was, however, suggested by Kalganova and Miller
An ideal solutiorx would thus havé, (X) =0forl=i=m  (1999. Nevertheless, evolutionary multiobjective optimi-
andf (X) = f(y) for all feasibley (assuming maximization  zation approaches have been used by several researchers to
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solve some other related problems. For example, Wilsoi®bviously, we perform this analysis for only fully func-
and Macleod 1993 used Pareto rankin@soldberg, 1989  tional circuits.
to design multiplierless IIR filters; Zebulum et 41998 An interesting aspect of this work relates to the analysis
used a GA with a target vector approaghith adaptive of the type of solutions that the GA generates. We have
weightg for the synthesis of low-power operational ampli- found in the pas{Coello Coello et al., 2000(and again in
fiers; Harris and Ifeachof1996 used Pareto ranking to the work currently reportedhat the GA tends to find cer-
design nonlinear Finite Impulse RespolB€R) filters; and  tain design patterns that, through replication, can produce
so forth. very compact designs. In fact, through a careful analysis of
the solutions generated by a GA, we have been able to
extract some of its design patterns and to use them both to
improve convergence of the GA itself and to enrich the set
The problem of interest to us consists of designing a circuibf simplification rules normally used by human designers
that performs a desired functigspecified by a truth tabje ~ [see Islas Pérez et al., 2001, for dethilSome of these
given a certain specified set of available logic gates. design aspects will be briefly discussed in Section 8.

In circuit design, one can use various criteria to define
_mlnlmal-cost_expressmns. For_e_xa_mple, from a mathemat,;_ THE GENETIC ALGORITHM USED
ical perspective, one could minimize the total number of
literals or the total number of binary operations or the totalWe used a matrix to represent a circuit also adopted in
number of symbols in an expression. The minimization probprevious work(Coello Coello et al., 1997, 2000as shown
lem is difficult for all such cost criteria. In gate networks, in Figure 1. This matrix is encoded as a fixed-length string
one could minimize the total number of gates subject toof integers from 0 tdN—1, whereN refers to the number of
such restrictions as fan-in, fan-out, number of levels, or theows allowed in the matrigwe call itn-cardinality alphabet
total number of SSI packages. In general, it is very difficult More formally, we can say that any circuit can be repre-
to find such minimal networks or to prove the minimality of sented as a bidimensional array of gaggs wherej indi-
a given network(Brzozowski & Yoeli, 1976. In spite of  cates thdevel of a gate, so that those gates closer to the
this, it is possible to solve a number of minimization prob-inputs have lower values gt (Level values are incre-
lems using systematic techniques, provided that we are samented from left to right in Figure 1For a fixedj, the
isfied with less general solutions. indexi varies with respect to the gates that are “next” to

The complexity of a logic circuit is a function of the each other in the circuit, but without being necessarily con-
number of gates in the circuit. The complexity of a gatenected. Each matrix element is a géteere are five types
generally is a function of the number of inputs to it. Be- of gates: AND, NOT, OR, XOR, and WIRE that receives
cause a logic circuit is a realizatidimplementationof a  its two inputs from any gate at the previous column as
Boolean function in hardware, reducing the number of lit-shown in Figure 1. Although our GA implementation al-
erals in the function should reduce the number of inputs tdows gates with more inputs and these inputs might come
each gate and the number of gates in the circuit—thus refrom any previous level of the circuit, we limited ourselves
ducing the complexity of the circuit. to two-input gates and restricted the inputs to come only

In this work, we propose a GA that uses a population-from the previous level. This restriction could, of course, be
based approach to design circuits. The results producelaxed, but we adopted it to allow a fair comparison with
are compared against those produced by anothefo@lled  our previous GA-based approaghshould be kept in mind
n-cardinality GA or NGA(Coello Coello et al, 2000. We  that the main motivation of this work was to improve the
also compare our results against with those generated byefficiency of our previous GA
human designer using Karnaugh maps and another one A chromosomic string encodes the matrix shown in Fig-
using the Quine—McCluskey Procedufgnless indicated ure 1 by using triplets in which the two first elements refer
otherwise in the examplesThe comparison against hu- to each of the inputs used, and the third is the correspond-
man designers is in many ways unfair because of differingng gate from the available set.
capabilities of man and machine. For example, a human The matrix representation adopted in this work was orig-
designer tends to use only the gates NOT, AND, OR andnally proposed by Louig1993; Louis & Rawlins, 1991,
has more difficulties using XOR because the Karnaughl993. He applied his approach to a two-bit adder and to the
Map and the Quine—McCluskey Procedure do not suppor-parity check problentfor n= 4,5,6. This representation
the identification of XOR terms as well as they supporthas also been adopted by Miller et 1997, 2000 with
“seeing” simple product terms. The computer, using a GA-some differences. For example, the restrictions regarding
based approach, and not being restricted by human pattethe source of a certain input to be fed in a matrix element
recognition abilities, uses many XOR gates, often disrevaries in each of the three approaches: Ldui893 has
garding the NOT gate.

Our overall measure of circuit optimality is the total num- — . o i )

WIRE basically indicates a null operation, or in other words, the ab-

ber of gates usgd, regardless of their kind. This is apprQXi§ence of gate, and it is used just to keep regularity in the representation
mately proportional to the total part cost of the circuit. used by the GA that otherwise would have to use variable-length strings.

4. STATEMENT OF THE PROBLEM
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INPUT | INPUT 2 TYPE OF
I 12 GATE ]

I1 AND

OR

NOT

XOR

WIRE

:

Fig. 1. Matrix used to represent a circuit. Each gate gets its inputs from either of the gates in the previous column. Note the encoding
adopted for each element of the matrix as well as the set of available gates used.

INPUTS OUTPUTS

strong restrictions, Miller et a(1997) have no restrictions, of WIREs. We also aimed to reduce the computational cost
and we have relatively light restrictions. The encoding isof our previous GA-based approach.

also different in all cases. Louig993 only encoded infor-

mation regar.dmg one input and the type of gate to be u;eg_ DESCRIPTION OF THE APPROACH

at each matrix position. He also used binary representation.

In our case, we used ancardinality alphabet and decided The main idea behind our proposed approach is to use a
to encode the gate to be placed at each matrix location plysopulation-based multiobjective optimization technique such
its two inputs. Miller et al.(1997) encode a full Boolean as VEGA(Schaffer, 1985to handle each of the outputs of
operation using a single integer. This representation is mora circuit as an objective. In other words, we would have an
compact, but it has the problem of requiring that mutationoptimization problem withm equality constraints, whera
takes the place of crossover to introduce enough diversitis the number of value§.e., output$ of the truth table that

in the population, so that the evolutionary algorithm canwe aim to match. So, for example, a circuit with three in-
approach the feasible region. That is the reason why Milleputs and a single output, would hare= 2° = 8 values to

et al.(2000 have adopted an evolutionary strategy in theirmatch.

recent work. The technique may be better illustrated by Figure 2. At

Finally, the last difference among the three approachesach generation, the population is split imiot 1 subpop-
previously mentioned is regarding the fitness function. Louisulations, wherenis defined as indicated befo(e&e have to
(1993 simply maximizes the number of matches betweeradd one to consider also the objective functidbach sub-
the outputs produced by the circuit and those indicated ipopulation is on charge of optimizing a constraint of the
the truth table. We have used a fitness function that workgroblem(in this case, an output of the circué@nd an addi-
in two stages: First, it maximizes the number of matdlass tional subpopulation will optimize the original objective
in Louis’ casg. However, once feasible solutions are found, function (unconstrained Therefore, the main goal of each
we maximize the number of WIRES in the circuit. By doing subpopulation is to match its corresponding output with the
this, we actually optimize the circuit in terms of the numbervalue indicated by the user in the truth table. Although the
of gates that it uses. Miller et a(1997 did something size of each subpopulation may be variable, it was decided
similar to Louis until recently{they have recently intro- to allocate the same size to each of them in the experiments
duced a two-stage fitness function like the one adopted byeported in this paper, but the use of different subpopula-
us (Kalganova & Miller, 1999]. tion sizes is also possible.

Thus, we can say that our goal was to produce a fully The objective function in our case is defined as in previ-
functional desigri.e., one that produces all the expectedous work(Coello Coello et al., 1997, 2000it is the total
outputs for any combination of inputs according to the truthnumber of matchesbetween the outputs produced by an
table given for the problejnwhich maximizes the number encoded circuit and the intended values defined in the truth
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Generation (t) Generation (t+1)
Individual 1 Sub-popu- Individual 1 Individual 1
lation 1
Individual 2 Individual 2 Individual 2
Sub-popu-
Individual 3 lation 2 Individual 3 Individual 3
. Create Sub-popu- | ghyffle . Apply .
_—= lation 3 —_—=
¢ Sub popu entire ¢ genetic ¢
. lations o population . operators N
Sub-popu-
Individual N lation M+1 Individual N Individual N

Individuals are now Start all over again

mixed

M+1 sub populations
are created

Initial Population
Size N

Fig. 2. Graphical representation of the approach proposed in this paper. Note that although individuals are selected using different
criteria depending on the subpopulation in which they are placed, crossover is allowed between individuals of different subpopula-
tions. The new population is generated after shuffling the old population and applying to it crossover and mutation.

table defined by the usgrFor each match, we increase the table, andw(X) is the number of WIREs in the circuik

value of the objective function by one. If the encoded cir-Therefore, selection is performed using different rules within

cuit is feasible(i.e., it matches the truth table completgly each subpopulation. However, crossover and mutation are

then we add onéthe so-called “bonug”for each WIRE  applied to the entire populatigne., no “speciation” mech-

present in the solution. anism is used This intends to recombine the chromosomic
Using the proposed scheme, a fraction of the populatiomaterial corresponding to different partially functional cir-

will be selected using the objective function as its fithesscuits, as to allow convergence towards fully feasible circuits.

(i.e., it will try to maximize the total number of matches The algorithm of our approach is the following:

another fraction will use the match of the first output as its )

fitness and so ofsince they are all binary values, we only 1. Generate randomly a population of ske

check if it matches or not, without computing any extra 2. Split the population inton + 1 subpopulationgm =

values as required in numerical optimizatiomhe main number of outputs to matgh

issue here is how to handle the different situations that could 3. Compute fitness values according to the goals of each

arise. Fitness within each subpopulation is computed using individual within each subpopulation:

the following scheme: : . .
9 o If the target output is not matched, fitness is zero.

if 0/(X) £t then fitnesx) = 0 o Else, if the target output is matched, but the circuit
ebg ifo 7&’0 then fitnessx) = —v is not functional, then fitness is the number of out-
else fitness(X) = f () puts not matched multiplied by-1).

e Else, if the target output is matched AND the cir-
cuit is functional, then fitness is given by the addi-
tion of the number of outputs matched plus the
number of wires of the circuit.

whereo, (X) refers to the value of outputfor the encoded
circuit X; t; is the value specified for outpytin the truth
table; andv is the number of outputs that are not matched
by the circuitX (= m). Finally, f(X) is the fitness function

described before: 4. Shuffle the entire population and select parents from

each subpopulation based on tfareviously com-
puted fitness value of each individual.

Apply crossover and mutation to the entire population.
Individuals of any given subpopulation are allowed to
breed with individuals of any other subpopulation. This
will generate the new populatid®'.

0 if f (X) is infeasible
w(X) otherwise. 5.

f(X) = h(x) + {

In this equationh(X) refers to the number of matches
between the circuik and the values defined in the truth
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6. If convergence criterion reached, then stop. In each case, the size of the matrix used to fit the circuit
7. Otherwise, return to step 2 was determined using the following procedure:
There are a few interesting things that can be observed 1. Start with a square matrix of size 5.

from this procedure. First, each subpopulation associated 2. If no feasible solution is found using this matrix, then

with an output of the circuit will try to match it with the increase the number of columns by one.
value defined in the truth table. Once this is achieved, then 3, |f no feasible solution is found using this matrix, then
the fithess function will try to maximize the number of increase the number of rows by one.

matches of the rest of the outputs. In other words, this sub-
population will cooperate with the others that are having
difficulties to match their outputs. If the circuit is feasible,

then all the subpopulations will join efforts to maximize the

num.be_r of WIRES in th? circuit. sufficient. However, in one of the examples, it was neces-
It is important to clarify that the current approach doessary to reach a matrix size oP67. This made necessary to

not use dominance to impose an order on the constraint$, \" 1he GA for more generations, performing, in conse-

based on their violatiofes in the case of COMOGESUr-  ance, more fitness function evaluations. This situation

ry et al., 1995] .which is a more expenSiY? proceéa normally arises with circuits having several outputs, al-
terms of CPU time that also requires additional param- 4,4 in some cases, such as in the two-bit multiplier of

eters. In fact, the current approach does not rank individy ;- tourth example, even a%% 5 matrix may be enough to

uals, but it uses instead different fitness functions for ead?ind the best known circuit.
of the subpopulation allocatdevhose number depends on To choose the size of each subpopulation in the MGA,

the. pumber OT OL,HPUtS in a C"‘?D‘i“ep‘?”‘?””g on the fea- we started with 10, and performed 20 runs. If we did not
S'b,'“t,y of the |nd.|V|duaIs contained within gach of.them. find feasible solutions in at least one-fourth of our runs, we
This is easier to |mplem§a_nt, d?’es not require special 0peryq g increase the subpopulation size by 10 and would
ators to preserve feasibilifyas in the case of Parmee and perform 20 more runs. This process was repeated until a
Purchasg’s approgo(l1994)], makes unnecessary the use suitable subpopulation size was found.

of a sharing function to preserve diversitpeb & Gold- 14 gther issue is regarding the crossover and mutation
berg, 1989 [such as the traditional multiobjective optimi-

; : \ rates. After a series of experiments, we decided to use a
zation techniquesFonseca & Fleming, 1995 and does . ns5over rate of 50% and a mutation rate such that each
not require extra parameters to control the mixture of fea

_ : ) T ; string had a 50% probability of being mutated at a certain
sible and infeasible individualgas in the case of CO- position. Since mutation was applied on a single-gene ba-
MOGA (Surry etal., 199§. e o sis, we used as our probability of mutation the result of

VEGA is known to have difficulties in multiobjective ;iging this 50% by the length of the string. For example,
optimization problems due to the fact that it tries to find \, o 2 5% 5 matrix was used, the length of the chromo-

individuals that excel only in one dimension regardless ofg i string was 75. Therefore, the probability of mutation
the othersgthe so-called “middling” problertSchaffer, 1985; |\ .\1d be 0.006667.

Fonseca & Fleming, 1995; Coello Coello, 19R9How-

ever, that drawback turns out to be an advantage in this

context, because what we want to find are precisely circuity.1. Example 1

that are fully functional, instead of good compromises that ' . .

may not satisfy one of the outpuf@hich are the kinds of Our first exa_mple IS a three-even parity prob]em, who;e
solutions that a Pareto ranking strategy would normally pro-truth table W.'th three inputs gnd one output. is shown in
duce; Coello Coello, 1999Also, the use of subpopulations Table 1. In this case, 'the matrix usgd was of ?"295‘ and

is much more efficient than using Pareto dominance, beEhe length of each string representing a circuit was then 3
cause of the potentially high number of objectives involved5 X 5= 75. The cardinalityc used for this problem was

(this will be illustrated in the examples shown in this paper max(r, 9), wherer refers to the number of rows in the_ma_—
trix and g to the number of allowable gates in the circuit

(since only the inputs from the previous level are consid-
7. COMPARISON OF RESULTS ered, the number of columns does not affect the cardinality

used. Sinceg = 5, andc = 5 for this example, then the size
We have used several circuits of different degrees of comef the intrinsic search space for this problentis= 5° ~
plexity to test our approach. For the purposes of this pape®.6 X 10°2. Fitness is computed in the following way: 8
five examples were chosen to illustrate our apprdaelled  (number of outputs that we must match to have a feasible
multiobjective genetic algorithm, or MGA for shortand  circuit) + 5 X 5 (size of the matrix— number of gates used
the results produced were compared with those generatdde., different of WIREB. Therefore, a fitness of 2&he best
by human designers and by our previgusardinality GA  value produced for this circyitmeans that the circuit
(called NGA; Coello Coello et al., 1997, 2000 is feasible(otherwise, its fitness could not possibly be

4. Repeat steps 2 and 3 until a suitable matrix is produced.

As we will see in the following examples, it was nor-
mally the case that for small circuits a matrix ok55 was
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Table 1. Truth table for the Table 3. Truth table for the

circuit of the first example circuit of the second example
X Y z F z W X Y F
0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 1 1
0 1 0 0 0 0 1 0 0
0 1 1 1 0 0 1 1 1
1 0 0 0 0 1 0 0 0
1 0 1 1 0 1 0 1 0
1 1 0 1 0 1 1 0 1
1 1 1 0 0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0
. . 1 1 0 1 1
above 8, and it has four gate6.e., 21 WIRES$, because 1 1 1 o 0
8+(25_4):8+21:29 1 1 1 1 0

Results are compared in Table 2. Human Designer 1 used
Karnaugh Maps plus Boolean algebra identities to simplify
the circuit, whereas Human Designer 2 used the Quine—
McCluskey Procedure. In both cases, they produced solu-
tions with more gates than the MGA or the NGA.

A subpopulation size of 10 was enough for the MGA.7 2 Example 2
Since the circuit has eight outputs, there were nine objec-
tives. Therefore, the total population size was set to 90. W®ur second example has four inputs and one output, as

set the maximum number of generations to 300. shown in Table 3. A matrix of the same size as before was
To make a fair comparison, the same representationsed(i.e., 5X 5).
scheme and the same genetic operatow®-point cross- The comparison of the results produced by the MGA, the

over with a probability of 0.5, and uniform mutation with a NGA, a human designer using Karnaugh Maps, and Sasao’s
probability of 0.00666Y were used for both the MGA and approach(1993 are shown in Table 4. Sasd®993 has
the NGA (for more details on the NGA, refer to Coello used this circuit to illustrate his circuit simplification tech-
Coello et al., 200D nique based on the use of ANDs and XORs. His solution
The MGA consistently found a solution with a fitness uses, however, more gates than the circuit produced by the
value of 29(75% of the time¢, and it produced feasible NGA or the MGA.
circuits 100% of the time. The average fitness of the 20 Since this example has 16 outputs, there are 17 objec-
runs performed was 28.75, with a standard deviation ofives for the MGA. A population size of 170 was enough
0.433012. The graphical representation of this solution io solve this circuit. The maximum number of generations
depicted in Figure 3. in this case(for both the MGA and the NGAwas set to
On the other hand, the best solution that the NGA could400.
find using the same population size had also a fithess of 29 The MGA found a solution with a fithess value of 34
(i.e., a circuit with four gates but it appeared only 10% of (i.e., a circuit with seven gatg45% of the time, and solu-
the time. Also, 20% of the time, the best solution found wastions with eight gates were found 25% of the time. The
infeasible. The average fitness of these 20 runs was 21.4GA produced feasible circuits 100% of the time. The av-
with a standard deviation of 8.438009244. erage fitness of the 20 runs performed was 32.1, with a

Table 2. Comparison of the best solutions found by the n-cardinality GA (NGA), our multiobjective genetic
algorithm (MGA), and two human designers (HD 1 and HD 2) for the circuit of the first example

MGA NGA HD 1 HD 2

F=(X+Y)Z0O (XY) F=2Z(X+Y)O((XY) F=2z2(XOY)+Y(XO2Z) F=X'YZ+ X(YO 2)

4 gates 4 gates 5 gates 6 gates

2 ANDs, 1 OR, 1 XOR, 1 NOT 2 ANDs, 1 OR, 1 XOR 2 ANDs, 1 OR, 2 XORs 3 ANDs, 1 OR, 1 XOR, 1 NOT

A population size of 90 was used with both GAs.
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Fig. 3. Graphical representation of the best circuit found by the MGA and the NGA for the first example.

standard deviation of 1.252366. The graphical representasnly twice in the 20 runs performed. In most ca§&8% of
tion of the best solution found is depicted in Figure 4. the runs performedthe best solution found was infeasible.
The best solution that the NGA could find using the sameThe average fitness of these 20 runs was 66.65, with a
population size had a fitness of 3ile., a circuit with 10  standard deviation of 7.638372657.
gates, and it appeared only once in the 20 runs performed. The comparison of the results produced by the MGA, the
Also, 95% of the time, the best solution found was infeasi-NGA, two human designers, and Miller et #1997 are
ble. The average fitness of these 20 runs was 15.55, with shown in Table 6. It should be mentioned that Miller et al.
standard deviation of 3.677456. (1997 considered their solution to contain only seven gates
because of the way in which they encoded their Boolean
functions(the reason is that they encoded NAND gates in
7.3. Example 3 their representation However, since we considered each
ate as a separate chromosomic element, we count each of
em, including NOTSs that are associated with AND and
R gates. Regardless of that fact, it is more important to
égoint out that Miller et al(1997) found their solution with
runs of 3,000,000 fitness function evaluations each, whereas
in our case, we performed runs of only 325,000 evaluations
each.

Our third example has four inputs and four outputs, as show
in Table 5. A matrix of the same size as before was use
(i.e., 5X 5).

Since this example has 64 outputs, there are 65 obje
tives for the MGA. A subpopulation size of 1@e., total
population size of 650 was sufficient for the MGA. The
maximum number of generations in this cafm both the
MGA and the NGA was set to 500.

The MGA found a solution with a fitness value of 82 7-4- Example 4
(i.e., a circuit with seven gatpd5% of the time, and it Our fourth example has four inputs and three outputs, as
produced feasible circuits 100% of the time. The averageshown in Table 7. In this case, the matrix used was of size
fitness of the 20 runs performed was 80.4, with a standar@ X 7, and the chromosomic length was 1@6= 6,q =
deviation of 1.142481141. The graphical representation of,t = 6 X 7 = 42,1 = 3 X t = 126). The cardinalityc =
the best solution found by the MGA is depicted in Figure 5.max(r, g) = 6 The size of the intrinsic search space for this

On the other hand, the best solution that the NGA couldproblem isc' = 6125~ 1.1x 10°.
find using the same population size of 650 had a fitness of The comparison of the results produced by the MGA, the
80 (i.e., a circuit with nine gatgsThis solution appeared NGA, and two human designers are shown in Table 8.

=D e
O ) S>>
o ADI:

Fig. 4. Circuit produced by our MGA for the second example.
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Table 5. Truth table for the two-bit multiplier of the third
example

Ay Ao B, Bo Cs C, G, Co
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 1
0 1 1 0 0 0 1 0
0 1 1 1 0 0 1 1
1 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0
1 0 1 0 0 1 0 0
1 0 1 1 0 1 1 0
1 1 0 0 0 0 0 0
1 1 0 1 0 0 1 1
1 1 1 0 0 1 1 0
1 1 1 1 1 0 0 1

Since this example has 48 outputs, there are 49 objec-
tives for the MGA. A subpopulation size of 1@e., total
population size of 490 was sufficient for the MGA. The
maximum number of generations in this cdf® both the
MGA and the NGA was set to 2000.

The MGA found a solution with a fitness value of 81
(i.e., a circuit with nine gatgsl5% of the time, and it pro-
duced feasible circuits 100% of the tin®5% of the time,
the MGA found better solution than the best found by the
NGA). The average fitness of the 20 runs performed was
78.9, with a standard deviation of 1.020835571. The graph-
ical representation of the best solution found by the MGA is
depicted in Figure 6.

On the other hand, the best solution that the NGA could
find using the same population size of 490 individuals had
a fitness of 7§(i.e., a circuit with 12 gatés This solution
appeared only once in the 20 runs performed. In most cases
(80% of the runs performedthe best solution found was
infeasible. The average fitness of these 20 runs was 52.15,
with a standard deviation of 11.92641915.

8. DISCUSSION OF RESULTS

We will start by summarizing the results obtained from our
experiments. Table 9 contains of summary of the best re-
sults produced by the MGA, the NGA, and the best human
designer in each of the circuits analyzed. We can see that
the MGA consistently outperformed its competitors, pro-
ducing the lowest number of gates in each case.

Since one of the main aspects of the approach proposed
in this paper is its capability to improve the efficiency of
the GAto design combinational circuits, we decided to per-
form another comparison in which we analyzed the compu-
tational cost required by our original NGA and our proposed
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Fig. 5. Circuit produced by our MGA for the third example.

5
sjslejs

MGA to obtain equivalent resultén terms of optimality. comes more significant as we attempt to solve more com-
The analysis was conducted on the five examples presentgaex circuits.
in this paper, and considering only the minimum number of We believe that the good performance obtained with this
fitness function evaluations requirdtiminimum” in this  algorithm is mainly due to an emergent behavior obtained
case refers to the combination of population size and maxtrom the cooperation of the different subpopulations aim-
imum number of generations that produced the lowest reing to satisfy a simple goal. This line of thought is consis-
sult when multiplied. Since the best results in all casestent with the recent work by Potter and DeJof&§00),
correspond to the MGA, we established a methodology t@ccording to which the resolution of complex problems with
try different parameters for the NGA, so that we could reachevolutionary algorithms requires a cooperative effort.
similar results[our methodology was similar to the one  Additionally, the current technique can also be consid-
described in previous wortCoello Coello, 200y . ered a variation of the divide-and-conquer approach to
The comparison of computational costs for the MGA andevolvable hardware suggested by TorresE808. In this
the NGA(reaching the best results reported in this paper fompproach, a system is evolved through its smaller compo-
each of the five examples chgse presented in Table 10. nents, only that in our case, these smaller components
In all cases, the number of fithess function evaluations inhappen to be individual outputs of a circuit. Torre$&899
dicated correspond to the complete run of the @#en if,  also showed that a scheme of this sort could substantially
as in most cases, convergence to the best result obtainedduce the computational power required to evolve a sys-
was achieved before reaching the last generatiboan be  tem. The savings that this sort of population-based ap-
clearly appreciated that the MGA outperforms the NGA inproach can produce could be very useful in other design
most cases. The difference in terms of performance, bedomains such as structural optimization. We are in fact

) > — s o
B[ D u ?ﬁD ok
)~

I e ar

Fig. 6. Circuit produced by our MGA for the fourth example.
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MIL

(AoByg)’ (A1By)
Cs=(A1By 0 AgBy)" (A1By)

A,By 0 AB,

AoBo
6 ANDs, 1 XOR, 2 NOTs

9 gates

Co=
, =

C,
C

HD 2
(By + Bo) (A + Ag) ((A1A0) O (B, By))

A1B; (AgBy)’
A1B1 AgByo

AoBo
12 gates
8 ANDs, 1 XOR, 2 ORs, 1 NOT

Co
Cy=

C,
C,

HD 1
AoBo
A.B, 0 A, B,
A;B; (AgBy)
A1Aq BBy

6 ANDs, 1 XOR, 1 NOT

8 gates

Cy=

C,
G,

NGA
AoBo
A;Aq ByB; O (AgB; + A By)
C,=(AgBy + A;B;) 0 AyBy
A1B; AoBo
9 gates

5 ANDs, 2 ORs, 2 XORs

Co
C;=

C,

A1By O (AgBo Ay By)
AoBo A1 B,

AoB, O A, By
7 gates

AoBo
A population size of 650 was used with both the MGA and the NGA

Table 6. Comparison of the best solutions found by the n-cardinality GA (NGA), our multiobjective genetic algorithm (MGA), two human dediytie®sHBE 2), andMiller

et al. (MIL) for the circuit of the third example

5 ANDs, 2 XORs

MGA

Co=
2
L=

G,
C
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Table 7. Truth table for the circuit of
the fourth example.
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currently exploring the use of this type of approach in that
domain.

Another interesting aspect of this work is the analysis of
the design patterns used by the GA. It is important to men-
tion that the GA does not really possess any specific do-
main information that could help it to bias the search. In
fact, it does not even “know” anything about the simplest
simplification rules existinge.g., NOT (NOT A) = A).
Nevertheless, itis able to emulate both simple and complex
simplification rules used in Boolean algebra, and even pro-
duce others that tend to escape human creativity. Some of
the uncommon design patterns used by the GA can be hinted
by comparing its solutions against those generated by a
human designer. For instance, in Example 4 from the pre-
vious section, the Boolean expression of one of the outputs
is identical to the expression generated by the MGA. The
two others, in contrast, araore complexn the case of the
MGA. Then, why is the total number of gates of this circuit
smaller? The answer is simple: If the solution of the MGA
is carefully analyzed, it can be seen that its apparent com-
plexity is due to the fact that it is reusing the same block to
produce the three outputs. This is counterintuitive for a hu-
man using a visual aid technique such as the Karnaugh
maps, but it is an emerging property of the application of
natural selection to the circuit design process.

In some of our recent work, we have focused our atten-
tion to the discovery of these design pattdwther research-
ers such as Miller et al1999 and Thomsor{2000 have
done similar work. To our surprise, besides rediscovering
some of the most common simplification rules of Boolean
algebra, and others not so simple such as a DeMorgan theo-
rem applied to XOR gatesX O Y')' =XOY=X"0Y’,
we also discovered some more complex simplifications, such
as(A+ (A B)) O (A O B) = AB, which are not intuitive


https://doi.org/10.1017/S0890060401020054

Design of circuits through multiolﬁective optimizations 51
=z

n
% g Table 9. Comparison of the number of gates
E= 5 2 contained in the best solutions produced by: our
=) S multiobjective genetic algorithm (MGA), the

0 . . . .
=) S 5 g N-cardinality genetic algorithm (NGA), and the
% 20 N best human designer (BHD) for each of the
b Gi’ % & examples analyzed in this paper
S Jro8%

= o

> ~ T <u( S Example
3 [ NI No. MGA NGA BHD
S I [N Ay N "
= 5 1 4 4 5
= z 2 7 10 11
>
= @ 3 7 9 8

a
) R = 4 9 12 13
= vl Z2
= << <
e] o + + -
c ] —~ (4]
< o 8 o g
= ~ +
< Six
o) o< 8
S <0 890
= - T‘.’f T 3 to any human designer. Through the use of case-based rea-
= g e soning, we have been able to store this “knowledge” gen-
S erated by the GA for further reuse. The interested reader is
Tg ~ referred to Islas Pérez et 42001 for further details.
2 Q We believe that our approach can be of great help in
5 < problems that are decomposable. There are examples in the
P + literature of cooperative search approaches designed for such
= o problemgle.g., Murthy et al., 1999; Parmee & Watson, 1999
S < Since our approach is based on such a cooperétivesr-
2 ~ gen behavior, it is highly Ii_kely tha@ it will perform very
g ﬁ g well (and at a low computational cgsh problems that can
5 RS o be solved using such cooperative techniques.
e 2 It is worth mentioning one last issue that may be related
S 5 E to the work presented in this paper. Rece.ntlyz Knowlgs et al.
Z < 5, (2000 suggested that transforming certain single-objective
(<_t° Ta 'g optimization problems into multiobjectivea process that
= X ST they call “multi-objectivizing’) can remove local optima
= 5oo 2 and therefore, become easier to solve by a heuristic. Their
< T2 f{ hypothesis was validated with a certain instance of the trav-
s g eling salesperson problem. In this problem, the application
? .~ © AP . :
c oo < of the multi-objectivizing process previously mentioned al-
(0] Y . . . .
£ 5 oo 8 é’ lowed for use of a simple hillclimber to solve it.
2 S T § X It is therefore possible that the process described in this
9 z|dod- _ paper is another form of multi-objectivizing single-objective
§ £ circuit design problems. This transformation of the fitness
(2] —
c o £
o o
= O Ke]
=} = =
B m =
g E'( E Table 10. Comparison of the number of fitness
g ¥ °§ function evaluations required to reach the
0 2 o ) optimum by each of the two GA-based
o 2 g
= I~ s hes compared in this paper
5 % <3 2 pt approac P pap
3 =0 o~ || 8
8 < c° % g E Example
=t o<t 2 8 No. MGA NGA
Q o <-no 7]
Eo 1o g g 1 27,000 27,000
0% 6ol & | 8 2 68,000 500,000
o © Cen © = 3 325,000 600,000
o E =ou g 2 4 980,000 5,600,000
relis) < [ -e] <
© .= O ladmon OX
= o S Ll om

https://doi.org/10.1017/50890060401020054 Published online by Cambridge University Press


https://doi.org/10.1017/S0890060401020054

52

C.A. Coello Coello and A. Hernandez Aguirre

landscapéproduced by the process of multi-objectivizing Coello Coello, C.A(2000. Treating constraints as objectives for single-

the problem may transform a difficult search space into

objective evolutionary optimizatioEngineering Optimization 32(3)
275-308.

another more amenable for the application of a genetic alcoelio Coello, C.A., Christiansen, A.D., & Herandez Aguirre, A.

gorithm. This allows us to find not only very good results
but also to find them in a relatively reduced amount of time.

9. CONCLUSIONS AND FUTURE WORK

We have proposed a multiobjective optimization technique
to design combinational logic circuits. The proposed ap

(1997. Automated design of combinational logic circuits using ge-
netic algorithms. InProc. Int. Conf. Artificial Neural Nets and Ge-
netic Algorithms University of East Anglia, England, pp. 335-338.
Austria: Springer-Verlag.

Coello Coello, C.A., Christiansen, A.D., & Hernandez Aguirre(2000.

Use of evolutionary techniques to automate the design of combina-

tional circuits.International Journal of Smart Engineering System De-

sign 2(4) 299-314.

Deb, K., & Goldberg, D.E(1989. An investigation of niche and species
formation in genetic function optimization. IRroc. Third Int. Conf.

proach uses a population-based technique to split the search Genetic AlgorithmsGeorge Mason University, pp. 42-50. San Mateo,

task among severdbmall) subpopulations. The approach
compared well with respect to two human designers, and

previous GA developed by us which uses anchrdinality

CA: Morgan Kaufmann Publishers.

Eonseca, C.M., & Fleming, P.J1993. Genetic algorithms for multi-
objective optimization: Formulation, discussion and generalization. In
Proc. Fifth Int. Conf. Genetic AlgorithmdUniversity of lllinois at

alphabet and a two-stage fitness function. Our approach, Urbana-Champaign, pp. 416-423. San Mateo, CA: Morgan Kauffman

called MGA, consistently found better solutions than the

Publishers.
Fonseca, C.M., & Fleming, P.01995. An overview of evolutionary al-

human designers, and was able to find the same or even gorithms in multiobjective optimizationEvolutionary Computation

better solutions than our previous Gealled NGA), using
a lower number of fithess function evaluations.

3(1), 1-16.
Goldberg, D.E(1989. Genetic Algorithms in Search, Optimization and
Machine LearningReading, MA: Addison-Wesley Publishing.

The proposed approach seems very suitable for parallelarris, S.P., & Ifeachor, E.G1996. Nonlinear FIR filter design by ge-

ization, and that will probably be a path of research that we
will explore in the near future. Also, we are interested in

netic algorithm. Inlst Online Conference on Soft Computing
Horn, J.(1997). Multicriterion decision making. IrHandbook of Evolu-
tionary Computation(Back, T., Fogel, D., & Michalewicz, Z., Eds.

coupling this approach with another system based on ge- \vol. 1, pp. F1.9:1 — F1.9:15. IOP Publishing Ltd. and Oxford Univer-

netic programming that is currently under development. We
aim to benefit from a more powerful chromosomic repre-
sentation while keeping an efficient selection mechanism.

ACKNOWLEDGMENTS

The first author acknowledges partial support from CINVESTAV

through project JIRA'200108, and from the Mexican Consejo

Nacional de Ciencia y Tecnologia through CONACYT project No.
34201-A. The second author acknowledges support for this work
in part by DoD EPSCoR and the Board of Regents of the State of,
Louisiana under grant F49620-98-1-0351, and from the NASA Jet

Propulsion Laboratory, under contract No. 1230282.

REFERENCES

Brayton, R.K., Hachtel, G.D., McMullen, C.T., & Sangiovanni-Vincentelli,
A.L. (1984). Logic Minimization Algorithms for VLSI Synthesi3or-
drecht, The Netherlands: Kluwer Academic Publishers.

Brayton, R.K., Rudell, R., Sangiovanni-Vincentelli, A., & Wang, A.R.
(1987). MIS: A multiple-level logic optimization systenEEE Trans-
actions on Computer-Aided Design CAD-6,(6D62-1081.

Brzozowski, J.A., & Yoeli, M(1976. Digital Networks Englewood Cliffs,
NJ: Prentice Hall.

Camponogara, E., & Talukdar, S.KL997). A genetic algorithm for con-
strained and multiobjective optimization. Trhird Nordic Workshop
on Genetic Algorithms and Their Applications (3NWGHiversity
of Vaasa, Vaasa, Finland, 49-62.

Chankong, V., & Haimes, Y.Y(1983. Multiobjective Decision Making:

sity Press, UK.

Islas Pérez, E., Coello Coello, C.A., & Hernandez Aguirre,(2001).
Extraction of design patterns from evolutionary algorithms using case-
based reasoning. I&volvable Systems: From Biology to Hardware
(Yong Liu, Kiyoshi Tanaka, Masaya Iwata, Tetsuya Higushi & Mon-
toshi Yasunagi Tokyo, Japan: Springer-Verlag.

Jiménez, F., & Verdegay, J.l(1999. Evolutionary techniques for con-

strained optimization problems. IBeventh European Congress on
Intelligent Techniques and Soft Computing (EUFIT'9®chen, Ger-
many: Springer-Verlag.

Kalganova, T., & Miller, J(1999. Evolving more efficient digital circuits

by allowing circuit layout and multi-objective fitness. Rroc. First

NASA/DoD Workshop on Evolvable Hardwanep. 54—63. Los Alam-

itos, CA: IEEE Computer Society Press.

ganova, T., Miller, J., & Fogarty, T1998. Some aspects of an evolv-

able hardware for multiple-valued combinational circuit desigiric.

Second Int. Conf. Evolvable Systems (ICES'#8) 78-89. Lausanne,

Switzerland: Springer-Verlag.

Karnaugh, M.(1953. A map method for synthesis of combinational logic
circuits. Transactions of the AIEE, Communications and Electronics
72 (1), 593-599.

Knowles, J.D., Watson, R.A., & Corne, D.W2001). Reducing local
optima in single-objective problems by multi-objectivization. In
First Int. Conf. Evolutionary Multi-Criterion Optimizatign
pp. 268-282. Lecture Notes in Computer Science No. 1993,
Springer-Verlag.

Louis, S.J(1993. Genetic algorithms as a computational tool for design
Ph.D. Thesis, Bloomington, IN: Department of Computer Science,
Indiana University.

Louis, S.J., & Rawlins, G.J1991). Using Genetic Algorithms to Design
Structures, Technical Report 326, Bloomington, IN: Computer Sci-
ence Department, Indiana University.

Louis, S.J., & Rawlins, G.J.E1993. Pareto optimality, GA-easiness and
deception. IrProc. Fifth Int. Conf. Genetic Algorithmep. 118-123.
San Mateo, California: Morgan Kaufmann Publishers.

Theory and MethodologyAmsterdam: Systems Science and Engineer- McCluskey, E.J(1956. Minimization of Boolean functionsBell Systems

ing, North-Holland.

Coello Coello, C.A(1996. An empirical study of evolutionary techniques
for multiobjective optimization in engineering desigeh.D. Thesis,
New Orleans, LA: Tulane University.

Coello Coello, C.A.(1999. A comprehensive survey of evolutionary-
based multiobjective optimization techniqué&nowledge and Infor-
mation Systems. An International Journal 1,(3$9-308.

https://doi.org/10.1017/50890060401020054 Published online by Cambridge University Press

Technical Journal 35(5)1417-1444.

Miller, J.F., Job, D., & Vassilev, V.K(2000. Principles in the evolutionary
design of digital circuits—Part Genetic Programming and Evolvable
Machines 1(12), 7-35.

Miller, J.F., Thomson, P., & Fogarty, T1997). Designing electronic cir-
cuits using evolutionary algorithms. arithmetic circuits: A case study.
In Genetic Algorithms and Evolution Strategy in Engineering and Com-


https://doi.org/10.1017/S0890060401020054

Design of circuits through multiobjective optimizations

puter SciencéQuagliarella, D., Périaux, J., Poloni, C., & Winter, G.,
Eds) pp. 105-131. Chichester, England: Wiley.
Miller, J., Kalganova, T., Lipnitskaya, N., & Job, 01999. The genetic

53

Systems: From Biology to HardwaréMiller, J., Thompson, A.,
Thomson, P., & Fogarty, T.C., Edspp. 229-240. Edinburgh, Scot-
land: Springer-Verlag.

algorithm as a discovery engine: Strange circuits and new principlesTorresen, J(1998. A divide-and-conquer approach to evolvable hard-

In Proc. AISB Symposium on Creative Evolutionary Systems (CES’99)

pp. 65—74. Edinburgh, UK.

Murthy, S., Akkiraju, R., Goodwin, R., Keskinocak, P., Rachlin, J., Wu, F.,
Kumaran, S., & Daigle, R(1999. Enhancing the decision-making
process for paper mill schedulefappi Journal 82(7)42—-47.

Osyczka, A(1985. Multicriteria optimization for engineering design. In
Design Optimizatior(Gero, J.S., Ed, pp. 193-227. New York: Aca-
demic Press.

Pareto, V(1896. Cours D’Economie Politiquevol. | and Il, Lausanne: F.
Rouge.

Parmee, I.C., & Purchase, GL994). The development of a directed ge-
netic search technique for heavily constrained design spacAslap-
tive Computing in Engineering Design and Control-/%4niversity of
Plymouth, Plymouth, UK, pp. 97-102.

Parmee, I.C., & Watson, A.H1999. Preliminary airframe design using
co-evolutionary multiobjective genetic algorithms. Bmoc. Genetic
and Evolutionary Computation Conference (GECCO;99)I. 2, pp.
1657-1665. San Francisco, CA: Morgan Kaufmann.

Potter, M., & DeJong, K(2000. ‘Cooperative coevolution: An architec-
ture for evolving coadapted subcomponerisolutionary Computa-
tion 8(1), 1-29.

Quine, W.V.(1955. A way to simplify truth functionsAmerican Math-
ematical Monthly 62(9)627-631.

Sasao, T., ed1993. Logic Synthesis and OptimizatioBordrecht, The
Netherlands: Kluwer Academic Publishers.

Schaffer, J.D(1985. Multiple objective optimization with vector evalu-
ated genetic algorithms. l@enetic Algorithms and their Applications:
Proc. First Int. Conf. Genetic Algorithmgp. 93-100. Hillsdale, New
Jersey: Lawrence Erlbaum.

Surry, P.D., & Radcliffe, N.J1997). The COMOGA method: Constrained
optimisation by multiobjective genetic algorithn@ontrol and Cyber-
netics 26(3)391-412.

Surry, P.D., Radcliffe, N.J., & Boyd, 1.0{1995. A multi-objective ap-
proach to constrained optimisation of gas supply networks: The CO
MOGA method. InEvolutionary computing. AISB workshop. Selected
papers pp. 166-180. Sheffield, U.K.: Springer-Verlag.

Thompson, A., Layzell, P., & Zebulum, R.81999. Explorations in de-

sign space: Unconventional electronics design through artificial evo-.

lution. IEEE Transactions on Evolutionary Computation 3 (B3)7-196.
Thomson, P.(2000. Circuit evolution and visualisation. lEvolvable

https://doi.org/10.1017/50890060401020054 Published online by Cambridge University Press

ware. InProc. Second Int. Conf. Evolvable Systems (ICES'®8)

57-65. Lausanne, Switzerland: Springer-Verlag.

Veitch, E.W.(1952. A chart method for simplifying Boolean functions.
Proceedings of the ACML.27-133.

Wilson, P.B., & Macleod, M.D.(1993. Low implementation cost IIR
digital filter design using genetic algorithms. IEE/IEEE Workshop
on Natural Algorithms in Signal Processin@helmsford, U.K., pp.
4/1-4/8.

Zebulum, R.S., Pacheco, M.A., & Vellasco, ¥1.998. A multi-objective

optimisation methodology applied to the synthesis of low-power op-

erational amplifiers. IProc. XllII Int. Conf. Microelectronics and Pack-

aging, Curitiba, Brazil, Vol. 1, pp. 264-271.

Carlos A. Coello Coelloreceived a Ph.D. in Computer
Science from Tulane University in 1996. He is currently an
associate professor at CINVESTAV-IPN, in México. He has
published over 50 research papers in peer-reviewed inter-
national journals and conferendedl of them on evolution-
ary algorithm$ and has coauthored the boBkolutionary
Algorithms for Solving Multi-Objective Problemshich is
about to be published by Kluwer Academic Publishers. His
current research interests are evolutionary multiobjective
optimization, constraint-handling techniques for evolution-
ary algorithms, and evolvable hardware.

Arturo Herndndez Aguirre received a Ph.D. in Computer
Science from Tulane University in 1999. He worked for

several years at the Arturo Rosenblueth Foundation as a
Software Consultant in Mexico City and is currently a Vis-
iting Professor at Tulane University. His research interests
include computational learning, neural networks, and evo-
lutionary computation.


https://doi.org/10.1017/S0890060401020054

