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We elucidate the effect of the secondary baroclinic vorticity (SBV) on the
Richtmyer–Meshkov instability (RMI) accelerated by a weak incident shock and develop
a vortex-based model for spike and bubble growth rates. Two major mechanisms of the
single-mode RMI, the primary baroclinic vorticity (PBV) and the pressure perturbation,
are distinguished by simplified models with the vortex-surface field. We find that the effect
of the pressure perturbation can be neglected in the present RMI, and the growth of the
interface or vortex surface is first driven by the PBV. Subsequently, the SBV, generated
by the misalignment between the density gradient across the interface and the pressure
gradient produced by the PBV-induced velocity, leads to the nonlinear growth of the
interface with the generation of spikes and bubbles. Inspired by this mechanism, we
develop a predictive model of spike and bubble growth rates using the motion of viscous
vortex rings. The circulation of the vortex ring is modelled with the SBV effect. This
model is validated by five data sets of direct numerical simulations and experiments of the
single-mode RMI with various initial conditions.
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1. Introduction

The Richtmyer–Meshkov instability (RMI) is initiated when a shock wave impacts on a
perturbed interface between two fluids of different densities (Richtmyer 1960; Meshkov
1969). The RMI is of importance for the supernova explosion (e.g. Arnett et al. 1989;
Arnett 2000; Almgren et al. 2006), ignition in inertial confinement fusion (e.g. Lindl,
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McCrory & Campbell 1992; Taccetti et al. 2005; Aglitskiy et al. 2010) and combustion in
scramjet engines (e.g. Yang, Kubota & Zukoski 1993; Khokhlov, Oran & Thomas 1999).

The RMI is generally explained by two mechanisms (see Brouillette 2002): (i) the
primary baroclinic vorticity (PBV) generated by the misalignment of the shock pressure
gradient and the interfacial density gradient, and (ii) pressure perturbations behind
distorted transmitted and reflected waves. These two mechanisms, however, are still
coupled in some extent, e.g. the pressure perturbations can modify the baroclinic vorticity
(Fraley 1986). Furthermore, most previous studies on the pressure perturbations (e.g.
Ishizaki et al. 1996; Wouchuk & Nishihara 1997; Goncharov 1999; Velikovich et al.
2000; Wouchuk 2001) are based on the pressure perturbation equation (Richtmyer 1960;
Zaidel 1960; Briscoe & Kovitz 1968) derived from linearized Navier–Stokes (known as
NS) equations using asymptotic analysis. They cannot distinguish the effects from the
distorted waves and the vorticity-induced velocity on the pressure perturbations, and
they are restricted to the linear growth rate. As a result, the mechanisms controlling the
nonlinear growth of the interface, in particular, the generation of spikes and bubbles (see
Brouillette 2002), have not been elucidated.

The PBV is generated as the shock impacting on the interface, and its effects on the
RMI have been extensively investigated (see Zabusky 1999; Zhou 2017a,b). Subsequently,
the secondary baroclinic vorticity (SBV) was reported to be produced by the interaction
of the interface and reflected waves (e.g. Zabusky & Zeng 1998; Zabusky & Zhang 2002;
Zhang & Zabusky 2003) or the interaction of the interface and vortex-induced velocity.
The latter type of the SBV was first found in the Kelvin–Helmholtz instability in stratified
shear layers (e.g. Soteriou & Ghoniem 1995; Staquet 1995; Reinaud, Joly & Chassaing
2000), so its effects on the RMI were often mentioned in the late stage, particularly during
the roll-up of the interface. Zabusky et al. (2003) found that this SBV dominates after the
interface becomes multivalued and produces a negative circulation in a two-dimensional
RMI. Peng, Zabusky & Zhang (2003) quantified this SBV effect and found that the SBVs
with opposite signs are generated near the roll-up spike region and produce very unstable
vortex bi-layers. These SBV effects were also found in the interaction of the shock with gas
cylinders (e.g. Gupta, Zhang & Zabusky 2003; Vorobieff et al. 2004; Zhang et al. 2004) or
the curtain-shaped interface (e.g. Zhang, Peng & Zabusky 2005). On the other hand, since
the magnitude of SBV is much smaller than that of PBV, the SBV effects were usually
neglected in the early stage of the RMI. We remark that the PBV may not directly lead to
the asymmetric interfacial growth, e.g. the shock impacting on a symmetric interface may
only generate the symmetric PBV, so the relatively small, vortex-induced SBV can still
play an important role in generating the asymmetric spike and bubble at early times.

The nonlinear growth of the interface with spikes and bubbles, which occurs after
a short linear growth (e.g. Richtmyer 1960; Fraley 1986; Ortega et al. 2010), is a key
feature of the RMI. The perturbation analysis (see Haan 1991; Zhang & Sohn 1996;
Vandenboomgaerde, Gauthier & Mügler 2002; Velikovich, Herrmann & Abarzhi 2014)
found that the perturbation parameter with the density difference between the interface
leads to a second-order term in the perturbation expansion, which is further linked to
the asymmetric interfacial growth. A number of nonlinear models have been developed
to predict the growth rates of spikes and bubbles. Zhang & Sohn (1997) derived a
weakly nonlinear model by asymptotic expansions to the fourth-order term with the Padé
approximation. This model was firstly for the two-dimensional RMI, and later extended to
three dimensions (Zhang & Sohn 1999) and improved using higher-order approximations
(Vandenboomgaerde et al. 2002). These weakly nonlinear models agree with experimental
data at earlier times, but gradually deviate from the data at later times (see Niederhaus
& Jacobs 2003; Jacobs & Krivets 2005). In the late stage, Alon et al. (1995) gave an
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asymptotic power law of spike and bubble growth rates with time. Then several models
were developed to match the growth rates from the weakly nonlinear models at early
times and the power law at late times (e.g. Sadot et al. 1998; Mikaelian 2003; Dimonte
& Ramaprabhu 2010; Luo, Wang & Si 2013), but this matching usually relies on empirical
functions and parameters and lacks physical interpretations.

Since the PBV is deposited at the interface, it is natural to model the growth rates
from vortex dynamics, which appears to involve more flow physics than the asymptotic
models. Jacobs & Sheeley (1996) approximated the growth rate of the two-dimensional
RMI by the induced velocity of two rows of positive and negative line vortices, which was
restricted to the vanishing Atwood number A with a constant velocity circulation estimated
by the initial growth rate. This model was extended to incorporate the effect of A using
the time-varying circulation obtained from the direct numerical simulation (DNS) (Peng
et al. 2003) or introducing an empirical perturbed vortex spacing (Likhachev & Jacobs
2005). On the other hand, the two-dimensional vortex-based models cannot estimate spike
and bubble growth rates related to different time-varying circulations, and they can be
inaccurate in predicting growth rates in the three-dimensional RMI (Chapman & Jacobs
2006) in which the motion of vortex rings should be considered.

In the present study for the three-dimensional RMI arising from a single-mode
light/heavy interface accelerated by a weak planar shock, we distinguish the effects
of the density difference, the PBV and the pressure perturbation on the RMI by
developing a series of simplified models. With the aid of the vortex-surface field (VSF),
a Lagrangian-based structure identification method developed by Yang & Pullin (2010),
we characterize the asymmetric evolution of the vortex surface (VS) coinciding with the
interface, and elucidate the mechanism of the SBV in the generation of spikes and bubbles.
Inspired by the dynamics of the VS, we develop a predictive model for the nonlinear
growth rates of spikes and bubbles based on the motion of viscous vortex rings with the
SBV effect.

The outline of this paper is as follows. The DNS set-up of the single-mode RMI is
described in § 2. We determine the PBV and introduce the VSF framework in the RMI in
§ 3, and elucidate the mechanism of the SBV in the nonlinear growth of the RMI in § 4.
Then we develop a vortex-based model of spike and bubble growth rates, and validate the
model using various DNS or experimental data sets in § 5. Some conclusions are drawn
in § 6.

2. Simulation overview

2.1. Governing equations
The three-dimensional RMI is governed by the multicomponent Navier–Stokes equations
in the conservative form (Kawai & Lele 2008; Tritschler et al. 2014):

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.1)

∂(ρu)
∂t

+ ∇ · (ρuu + pI − τ ) = 0, (2.2)

∂E
∂t

+ ∇ · [Eu + ( pI − τ ) · u + qc + qd
] = 0, (2.3)

∂(ρYi)

∂t
+ ∇ · (ρuYi)− ∇ · J i = 0. (2.4)

911 A56-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
80

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1080


N. Peng, Y. Yang, J. Wu and Z. Xiao

Here, ρ denotes the mixture density, u = uxi + uyj + uzk the velocity, p the pressure
and I the identity tensor, where i, j and k are unit vectors in the x-, y- and z-directions,
respectively. Equations (2.1)–(2.4) are closed with the equation of state for ideal gas

p = ρ
R
M̄

T = (γ̄ − 1) ρe, (2.5)

where R is the ideal gas constant, M̄ the molar mass, T the temperature, γ̄ the ratio of
specific heat capacities of the mixture and e the internal energy with

ρe = E − 1
2ρu · u. (2.6)

In (2.2) and (2.3), the viscous stress tensor

τ = 2μ̄S − 2
3 μ̄ (∇ · u) I (2.7)

for a Newtonian fluid obeys Stokes’ hypothesis (see Graves & Argrow 1999), where μ̄ is
the mixture viscosity, S = [∇u + (∇u)T]/2 the strain-rate tensor and E the total energy
per unit volume. In (2.4), Yi is the mass fraction of species i with i = 1, 2 and Y1 = 1 − Y2
for two fluids. In (2.3), the heat flux is estimated by Fourier’s law

qc = −κ̄∇T (2.8)

with the mixture heat conductivity κ̄ . Moreover, the effect of the enthalpy diffusion flux is
incorporated using the interspecies diffusional heat flux (Cook 2009)

qd =
2∑

i=1

hiJ i (2.9)

with

J i = −ρ
⎛
⎝Di∇Yi − Yi

2∑
j=1

Dj∇Yj

⎞
⎠ , (2.10)

where hi and Di are, respectively, the enthalpy and the effective binary diffusion coefficient
of species i. For each species, the viscosityμi is calculated by the Chapman–Enskog model
(see Chapman & Cowling 1990) and Di is approximated by the model in Ramshaw (1990).
Then the multicomponent/molecular mixing rules are applied to obtain M̄, γ̄ , μ̄ and κ̄ (see
Reid, Pransuitz & Poling 1987). Calculation of these parameters are detailed in appendix
A in Tritschler et al. (2014).

2.2. Initial and boundary conditions
The RMI is simulated in a shock tube in the domainΩ within 0 ≤ x, y ≤ L and −L ≤ z ≤
L. It arises from a weak planar shock wave travelling from a light fluid with ρ1 to a heavy
fluid with ρ2 and accelerating the interface between the two fluids. The quantities with
subscript 1 or 2 denote those on the light or heavy fluid side, respectively. The single-mode
perturbation

ϕI(x) = z
a0

− cos(kx) cos(ky) = 0 (2.11)

is imposed on the interface with the amplitude a0, wavenumber k = 2π/λ and wavelength
λ = L.
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The incident shock, initially at z = −L/2, travels along the z-direction at the shock
Mach number MS. The initial preshock state is given by the stagnation pressure p0 and
temperature T0 in quiescent fluids, and the density is set to ρi = p0Mi/(RT0) with the
species molar mass Mi. The post-shock density

ρS = (γ̄ + 1)M2
S

2 + (γ̄ − 1)M2
S
ρ1, (2.12)

pressure

pS = 2γ̄M2
S − γ̄ + 1
γ̄ + 1

p0 (2.13)

and velocity US = USk with

US = 2
(
M2

S − 1
)

(γ1 + 1)MS

√
γ1p0

ρ1
(2.14)

are calculated by the Rankine–Hugoniot (known as RH) conditions (see Courant &
Friedrichs 1999), and the post-shock temperature TS = pSM1/(ρSR) is calculated from
(2.5).

Initial distributions of the density, pressure, temperature and velocity in the shock tube
are sketched in figure 1. They are given by

ρ(x, t = 0) = (ρ2 − ρ1)H(ϕI)− (ρS − ρ1)H(z/L + 1/2)+ ρS, (2.15)

u(x, t = 0) = [1 − H(z/L + 1/2)
]

USk, (2.16)

p(x, t = 0) = − ( pS − p0)H(z/L + 1/2)+ pS, (2.17)

T(x, t = 0) = − (TS − T0)H(z/L + 1/2)+ TS, (2.18)

Y1(x, t = 0) = 1 − H(ϕI), (2.19)

where H denotes the Heaviside function. In the shock tube, periodic boundary conditions
are applied in the x- and y-directions, and the Riemann boundary condition is used in the
z-direction (see § II.A in Liu & Xiao 2016).

2.3. DNS
In the present DNS, the density interface is formed by the contact of air (light) and SF6
(heavy). The Atwood number A = (ρ2 − ρ1)/(ρ1 + ρ2) for the air–SF6 interface is A =
0.67 with M1 = 28.964 g mol−1 and M2 = 146.057 g mol−1. In order to study the effects
of A, we artificially vary the molar mass of the heavy fluid, as M2 = 53.7903 g mol−1 and
260.676 g mol−1, for additional two DNS cases at A = 0.30 and 0.80, respectively.

We set L = 0.1 m, a0 = 4 × 10−3 m, p0 = 101.3 kPa, T0 = 293 K and a low shock
Mach number MS = 1.1 without reshock. To keep the interface in the middle of Ω during
the evolution, the initial velocity in the z-direction is subtracted by U+

0 to offset the
interface translation driven by the shock, where U+

0 denotes the post-shock speed of the
interface (Yang, Zhang & Sharp 1994) with the superscript ‘+’ for a post-shock quantity.

The DNS for solving (2.1)–(2.4) is carried out by the high-order turbulence solver
(HOTS) developed by Liu & Xiao (2016). The HOTS is based on the high-order
compact difference scheme with localized artificial diffusivity (known as LAD)
(see Shankar, Kawai & Lele 2011; Olson & Lele 2013) and parallelized with the
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Figure 1. Schematic diagram of the initial distribution of the shocked light fluid (SLF), unshocked light fluid
(ULF) and unshocked heavy fluid (UHF) with the shock and interface in the shock tube. The symmetry plane
in the x-direction is colour-coded by ρ1 ≤ ρ ≤ ρ2 from blue through white to red.

A U+
0 (m s−1) ȧ0 (m s−1) Z0 (m) �t (s)

0.30 49.35 4.98 0 8 × 10−7

0.67 36.22 8.50 0.025 1 × 10−6

0.80 29.56 8.23 0.040 8 × 10−7

Table 1. Parameters in three DNS cases.

message-passing interface. The spatial derivatives in (2.1)–(2.4) and the gradient terms in
(2.8) and (2.10), are evaluated using a sixth-order compact finite difference scheme with
the artificial diffusivity added near the shock and interface, and the temporal integration
is marched by the third-order total-variation-diminishing (known as TVD) Runge–Kutta
scheme (Gottlieb & Shu 1998). The HOTS has been validated to be stable and reasonably
accurate for DNS of the RMI at MS ≤ 1.6, in which the localized artificial diffusivity does
not affect the high accuracy of the numerical results for the interfacial mixing (see Liu &
Xiao 2016; Wu, Liu & Xiao 2019).

The computational domain Ω is discretized by uniform grid points N2 × 2N with
the mesh spacing �x = L/N ≈ 3.91 × 10−4 m and N = 256. Two long sponge layers
with non-uniform coarse grids are added at z < −L and z > L to avoid the effect of
reflected waves at the outlet boundary in the z-direction (see Liu & Xiao 2016). For
the finite thickness of the interface and shock, the Heaviside function in (2.15)–(2.19) is
approximated by

H(α) = 1
2

[
erf
(
α

2δ0

)
+ 1
]

(2.20)

with the initial thickness δ0 = 4 × 10−4 m. The time period for the DNS is from t = 0 to
t = 0.032 s with the time stepping �t satisfying the Courant–Friedrichs–Lewy condition.
Additionally, the initial interface location is shifted to z = Z0 to avoid the long spikes
moving out of Ω . The DNS parameters for the three cases are listed in table 1.
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kȧ0t

k(
a 

− 
a 0)

N = 256
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Figure 2. Temporal evolution of the scaled amplitude variation in the DNS grid convergence test at A = 0.8.

We conducted a convergence test for the case at A = 0.8 with N = 64, 128 and
256. Figure 2 plots the evolution of the scaled amplitude variation k(a − a0) with
the dimensionless time kȧ0t, and its profiles with various N converge at N = 256.
Furthermore, the baroclinic term in (3.10), which will be investigated in detail, is
well-resolved for N = 256 in our convergence test (not shown). Hence, the resolution
N = 256 is used in the present study.

Here, the amplitude a(t) = [as(t)+ ab(t)]/2 (see Brouillette 2002) of the interfacial
perturbation is the average of the spike amplitude as(t) and bubble amplitude ab(t).
Referencing to the calculation of the mixing width (e.g. Thornber et al. 2010; Oggian et al.
2015), we calculate the spike and bubble amplitudes by integrating the mass fractions as

as(t) =
∫ L

−L
Y2(x = 0, y = L/2, z, t) dz − L + ZI(t) (2.21)

and

ab(t) =
∫ L

−L
Y1(x = 0, y = 0, z, t) dz − L − ZI(t), (2.22)

respectively, with as(0) = ab(0) = a0. Both as(t) and ab(t) depend on the location of
the mean interface plane ZI(t) which is estimated by the interfacial location from the
simulation with a0 = 0 (see Long et al. 2009). Then the spike or bubble growth rate ȧs/b(t)
is the temporal derivative of as/b(t), where the subscript ‘s/b’ denotes the quantity for
spikes (s) or bubbles (b). The initial growth rate ȧ0 = ȧs(0) = ȧb(0) is calculated from
the initial DNS result at various A and listed in table 1, and ȧ0 will be useful in further
modelling in § 5. It is noted that, although ȧ0 can be approximated using the impulsive
model of Richtmyer (1960), the reduction factor in this model can vary significantly with
different initial conditions (see Liang et al. 2019).

3. PVB

3.1. Density and pressure distributions as the shock accelerating the interface
When the shock accelerates on the perturbed interface, complex waves are generated,
along with significant density and pressure variations in Ω . Figure 3 sketches three stages
of the accelerating process. The shock, located at z = c(t), −L ≤ c(t) ≤ L, first touches
the interfacial trough at z = −a0 and t = tI , and then moves away from the interfacial
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(a)

S
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2
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11
2
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IF

(b)

1+
2+

RS

TS

S

2
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2+

RS

(c)
TS

Figure 3. Schematic diagram for the interaction between the shock and the interface (IF): (a) before the
incident shock (IS) accelerating the interface; (b) during the shock accelerating the interface, when a part
of the incident shock becomes the transmitted shock (TS) and reflected shock (RS) is generated; (c) after the
shock accelerating the interface. Dash lines denote transverse waves behind transmitted and reflected shocks.

crest at z = a0 and t = tI + δtI . Assuming that the shock travels at a uniform velocity SIk,
SI = MS

√
(γ1p0)/ρ1 is determined using the Rankine–Hugoniot conditions, and then the

accelerating time and period are, respectively, approximated as

tI = L/2 + Z0 − a0

SI
= L + 2(Z0 − a0)

2MS

√
ρ1

γ1p0
(3.1)

and

δtI = 2a0

SI
= 2a0

MS

√
ρ1

γ1p0
. (3.2)

Before the incident shock accelerates the interface at t < tI in figure 3(a), the flow field
is divided into a post-shock active region S with a finite velocity driven by the incident
shock and two preshock quiescent regions 1 and 2. While the incident shock accelerates
the interface at tI ≤ t ≤ tI + δtI in figure 3(b), the reflected shock is generated due to
ρ2 > ρ1, and the incident shock across the interface becomes a transmitted shock. Due to
the compression, the post-shock interface amplitude

a+
0 ≈ a0 − 1

2
U+

0 δtI =
(

1 − U+
0

MS

√
ρ1

γ1p0

)
a0 (3.3)

is slightly reduced (see Richtmyer 1960), and the interface in (2.11) becomes

ϕ+
I (x) = z

a+
0

− cos(kx) cos(ky) = 0. (3.4)

Under the interfacial perturbation, both the reflected and transmitted shocks are distorted,
followed by transverse waves (see Brouillette 2002), represented by dashed curves in
figure 3(b,c). The transverse waves can further generate more complex waves, e.g. sound
waves, and lead to pressure perturbations. In this stage, the flow field is divided into
preshock regions 1 and 2 and post-shock regions S, 1+ and 2+. The PBV is generated
by the shock–interface interaction, which will be discussed in detail in § 3.2. After the
transmitted shock leaves the interface at t > tI + δtI in figure 3(c), preshock region 1
disappears. When the transmitted and reflected shocks with transverse waves are remote
from the interface, only post-shock regions 1+ and 2+ remain in Ω .
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A A+ T+
1 (K) T+

2 (K) p+
0 (kPa) a+

0 (m)

0.30 0.32 313.9 299.5 128.8 3.4 × 10−3

0.67 0.68 318.5 301.0 135.6 3.6 × 10−3

0.80 0.81 320.9 301.7 139.1 3.7 × 10−3

Table 2. Post-shock integral component of the quantities and post-shock Atwood number in the three DNS
cases at various A.

To obtain the physical quantity P for ρ, u, p or T in post-shock regions 1+ and 2+, we
decompose

P(x, t) = P+(z, t)+ P ′(x, t) (3.5)

into a post-shock integral component P+(z, t) and a perturbed one P ′(x, t). Here P+(z, t)
is estimated by solving a one-dimensional Riemann problem along the z-direction (see
Yang et al. 1994). The results indicate that post-shock regions 1+ and 2+ have different
ρ+

1 and ρ+
2 , and T+

1 and T+
2 , whereas have the same U+

0 = U+
0 k and p+

0 . The post-shock
integral component of the quantities and the post-shock Atwood number

A+ = ρ+
2 − ρ+

1

ρ+
1 + ρ+

2
(3.6)

in regions 1+ and 2+ in the three DNS cases at various A are calculated and listed in
table 2.

When the incident shock accelerates the interface at tI ≤ t ≤ tI + δtI , we approximate

ρ+(x, t) = �ρ+H(ϕ+
I )+ ρ+

1 , (3.7)

p+(x, t) = −�p+H(ξ)+ p+
0 (3.8)

and
T+(x, t) = �T+H(ϕ+

I )+ T+
1 , (3.9)

where the post-shock density and temperature differences across the interface ϕI = 0 are
�ρ+ = ρ+

2 − ρ+
1 and �T+ = T+

2 − T+
1 , respectively, and the pressure difference across

the distorted shock located at ξ(x, t)=0 is �p+ = p+
0 − p0.

Moreover, P ′(x, t) in (3.5) contains effects of the PBV-induced velocity near the
interface and of the pressure perturbations from the distorted transmitted/reflected shocks
with transverse waves, which will be discussed in § 4.1 in detail.

3.2. Determination of the PBV
Taking the curl of (2.2) yields the vorticity equation

Dω

Dt
= ω · ∇u − ω(∇ · u)+ 1

ρ2 (∇ρ × ∇p)+ ν̄∇2ω, (3.10)

where D/Dt = ∂/∂t + u · ∇ is the material derivative, ω = ∇ × u = ωxi + ωyj + ωzk
the vorticity and ν̄ = μ̄/ρ the kinematic mixture viscosity.

We assume that ω is generated post-shock (see Rasmus et al. 2018) at the intersection
of the shock and interface, and neglect viscous effects (see Samtaney & Zabusky 1994).
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11 2

1+

2+

∇ρ+

ωPB

TS
IF

∇p+

Figure 4. Schematic diagram of the production of PBV by the misalignment of the pressure gradient across
the planar TS with the density gradient across the IF during their interaction.

Thus only the baroclinic term (∇ρ × ∇p)/ρ2 remains on the right-hand side of (3.10).
It is noted that the vorticity generation may be very complex from pressure perturbations
of distorted shocks and transverse waves (e.g. Samtaney & Zabusky 1994; Samtaney, Ray
& Zabusky 1998). As sketched in figure 4, we define that the PBV is generated at the
interaction between the interface and the transmitted shock at ξ(x, t) = [z − c(t)]/a+

0 = 0.
In other words, we assume that the transmitted shock stays planar by removing the effects
of pressure perturbations from distorted waves. Then we calculate the PBV

ωPB(x) =
∫ tI+δtI

tI

Dω

Dt
dt =

∫ tI+δtI

tI

1
(ρ+)2

(∇ρ+ × ∇p+) dt (3.11)

by integrating (3.10) between tI ≤ t ≤ tI + δtI in the Lagrangian view. Starting from (3.7)
and (3.8), after some algebra (detailed in appendix A), we derive

ωPB = 4A+k�p+

ρ̄+
(

MS

√
γ1p0

ρ1
− U+

0

)δ(ϕ+
I )
[
Ky(x, y)i + Kx(x, y)j

]
(3.12)

with
Kx(x, y) = cos(kx) sin(ky) and Ky(x, y) = − sin(kx) cos(ky). (3.13)

Hence, the PBV distribution is symmetric with respect to the interface and the plane z = 0.
Without loss of generality, we obtain the initial circulation

Γ0 =
∫∫

A

ωPB,x(x = 0, y, z) dy dz = (4 + 2π)A+a0�p+

MSρ̄+

√
ρ1

γ1p0
(3.14)

through the right half of the symmetric slice

A =
{
( y, z)

∣∣∣∣ x = 0,
L
2

≤ y ≤ L,−L ≤ z ≤ L
}

(3.15)

with ωPB = ωPB,xi and ωPB,x > 0 in A. The initial circulations in the present DNS cases
are calculated using (3.14) as Γ0 = 0.474, 0.706 and 0.617 m2 s−1 at A = 0.30, 0.67 and
0.80, respectively.

We remark that Γ0 in (3.14) is derived from the PBV in (3.12) rather than approximated
by ȧ0 in previous vortex models (e.g. Jacobs & Sheeley 1996; Likhachev & Jacobs 2005;
Morgan et al. 2012). In addition, a more sophisticated estimation of Γ0 was developed
in Samtaney & Zabusky (1994) and Samtaney et al. (1998) by considering the effects of
pressure perturbations such as the three-wave node.
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Mechanism and modelling of SBV in RMI

3.3. VSF in the RMI
We use the VSF (see Yang & Pullin 2010) to visualize the evolution of vortical structures
in the RMI. The VSF φv(x, t) is a smooth scalar satisfying the constraint ω · ∇φv = 0 so
that ω is tangent at every point (except for vorticity nulls) on an isosurface of φv , i.e. each
VSF isosurface is a VS consisting of vortex lines. The VSF has been applied to transitional
wall flows (Zhao, Yang & Chen 2016; Zhao et al. 2018), fully developed turbulence (Xiong
& Yang 2019b), combustion (Zhou et al. 2019) and magnetohydrodynamics (Hao, Xiong
& Yang 2019) to characterize vortex dynamics in the Lagrangian view.

Given the PBV in (3.12), the VSF at t = tI + δtI is constructed as

φv0(x) = z
a+

0
− exp

(
−[ϕ+

I (x)]
2m
)

cos(kx) cos(ky) (3.16)

with a weighting index m. Appendix B proves that φv0(x) = 0 is equivalent to ϕ+
I (x) = 0,

so the isosurface of φv0(x) = 0 coincides with the interface ϕ+
I (x) = 0 at t = tI + δtI .

We set a large m = 10 so that exp{−[ϕ+
I (x)]

2m} decays rapidly for ϕ+
I /= 0. The resultant

approximation φv0(x) ≈ z/a+
0 implies that

φv0(x, y,−z) ≈ −φv0(x, y, z) (3.17)

is antisymmetric in the z-direction.
For this single-mode RMI with ωz ≈ 0, we further demonstrate in appendix B that the

VSF is simply governed by the Lagrangian transport equation

∂φv

∂t
+ u · ∇φv = 0 (3.18)

with the initial condition φv(x, t = 0) = φv0(x), i.e. the VS φv(x, t) = 0 coincides with
the material interface in the entire evolution. The periodic boundary condition is applied
for φv in the x- and y-directions, and an ‘opposite periodic’ boundary condition

φv0(x, y, z = L, t) = −φv0(x, y, z = −L, t) (3.19)

is used in the z-direction owing to (3.17). The convection term of (3.18) is approximated
by the fifth-order weighted essentially non-oscillatory scheme (Jiang & Shu 1996) and the
integration in t is also marched by the third-order total-variation-diminishing Runge–Kutta
scheme.

In the numerical implementation, (3.18) is solved along with the DNS. The temporal
evolution of the VSF isosurface of φv = 0 in this RMI at A = 0.67 is shown in figure 5. The
surfaces are colour-coded by 0 ≤ |ω|/|ω|max ≤ 0.8, where |ω|max denotes the maximum
of |ω| in Ω . The moving direction of the surface can be inferred from the vortex lines
on the surfaces with the Biot–Savart law. The PBV is deposited on the initial VS at
kȧ0(tI + δtI) = 0.013 shortly after the shock accelerating the interface in figure 5(a), and
then evolves through a short linear stage at kȧ0t = 1.0 in figure 5(b) into asymmetric
structures, i.e. spikes (upper part) and bubbles (lower part), in a nonlinear stage at
kȧ0t = 3.0 in figure 5(c). Finally the spikes and bubbles roll up into vortex rings at
kȧ0t = 10 in figure 5(d).

The VSF isoline of φv = 0 and contours of ωx for various A at a late time kȧ0t = 10
are compared on the slice at x = 0 in figure 6. We observe that the separation between
spikes and bubbles grows with A. In general, if the PBV with the same Γ0 is added at
the initial time, the roll-up of the interface is stronger for smaller A (e.g. Zabusky et al.
2003; Sohn 2004). On the other hand, Γ0 calculated by (3.14) in the three DNS cases has
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x y

z

(a)

x y

z

(b)

x y

z

(c)

x y

z

(d )

Figure 5. Temporal evolution of the VSF isosurface of φv = 0 at (a) kȧ0(tI + δtI) = 0.013, (b) kȧ0t = 1.0,
(c) kȧ0t = 3.0 and (d) kȧ0t = 10 at A = 0.67. Some vortex lines are integrated and plotted on the surfaces
colour-coded by 0 ≤ |ω|/|ω|max ≤ 0.8 from blue through white to red.

z

y

as

ab

(b)(a) (c)

Figure 6. Comparison of the VSF isoline of φv = 0 (solid line) and distribution of ωx (colour-coded by
−0.8 ≤ ωx/|ωx|max ≤ 0.8 from blue through white to red) on the slice x = 0 at kȧ0t = 10 with (a) A = 0.30,
(b) A = 0.67 and (c) A = 0.80. The spike and bubble amplitudes calculated by (2.21) and (2.22) at A = 0.67
are marked in panel (b).

the maximum value at A = 0.67, and Γ0 at A = 0.67 is nearly 1.5 times that at A = 0.30.
As shown in figure 6(b), the vorticity at A = 0.67 is the most intensive and concentrated
within spikes and bubbles, so the case at A = 0.67 with the notable vortex dynamics is
used in the following analysis and modelling.

4. SBV

4.1. Double-density model of the RMI
As summarized in Nishihara et al. (2010), three types of perturbations, the density
difference between the perturbed interface, the PBV and the pressure perturbation caused
by distorted waves, can trigger the RMI. In order to distinguish the role of each factor, we
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ρ2
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0 T +
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uPB

p+
0
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ρ̄+ T̄ +

(b)(a) (c)

Figure 7. Schematic comparison of the initial conditions of the (a) RMI, (b) DDM and (c) SDM.

develop two simplified models, the double-density model (DDM) and the single-density
model (SDM).

Initial conditions in the RMI, DDM and SDM are compared in figure 7. In the DDM
with the density difference and PBV, the perturbed interface with amplitude a+

0 separates
the two fluids. The initial velocity uPB is induced by the PBV in (3.12) for modelling
the effect of the incident shock, and the pressure perturbation from distorted waves is
excluded. In the SDM only with the PBV, the density is uniform without the interface and
incident shock, and the PBV-induced velocity is imposed as in the DDM. Additionally,
the VSF is constructed in both models, and the isosurface of φv = 0 coincides with the
interface in the RMI.

In the DDM, the initial flow field at t = 0 corresponds to that at t = tI + δtI after the
shock accelerating the interface in the RMI. The initial density, pressure and temperature
are modelled by the post-shock integral quantities in regions 1+ and 2+ in figure 3(c) as

ρDD(x, t = 0) = �ρ+H(ϕ+
I )+ ρ+

1 , (4.1)

pDD(x, t = 0) = p+
0 , (4.2)

TDD(x, t = 0) = �T+H(ϕ+
I )+ T+

1 . (4.3)

The initial velocity
uDD(x, t = 0) = uPB(x) (4.4)

is induced by the PBV in (3.12), where

uPB(x) = F−1
{

ikF × F {ωPB}
|kF|2

}
(4.5)

is obtained by the Biot–Savart law (see Xiong & Yang 2019a) with the wavenumber kF in
Fourier space and operators of the Fourier transform F {·} and inverse Fourier transform
F−1{·}. Other fluid quantities μ, D, γ and κ are the same as those in the RMI.

In the SDM, the initial density

ρSD(x, t = 0) = ρ̄+ = 1
2

(
ρ+

1 + ρ+
2
)

(4.6)

and temperature

TSD(x, t = 0) = T̄+ = 1
2

(
T+

1 + T+
2
)

(4.7)

are set to the averages of integral ones in post-shock regions 1+ and 2+. The initial pressure
and velocity are the same as (4.2) and (4.4) in the DDM, respectively. Then μ, D, γ and κ
in the SDM are also set to be the averaged ones.
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Figure 8. Temporal evolution of the scaled amplitudes of the spike and bubble in the RMI at A = 0.67 and
corresponding DDM, SDM and SDM–SBV (discussed in § 4.4).

We examine the DDM and SDM corresponding to the RMI at A = 0.67. The simulations
of the DDM and SDM are essentially the same as the DNS of the RMI except for using
different initial conditions and removing the sponge layers. The evolution of the scaled
spike and bubble amplitudes k(as/b − a+

0 ) are shown in figure 8, where the dimensionless
time for the RMI in figure 8 has kȧ0(tI + δtI) subtracted. The amplitudes in the DDM
are nearly identical to those in the RMI, and both DDM and RMI show the asymmetric
growth of spikes and bubbles. By contrast, the structural evolution is symmetric in
the SDM.

The VSF isosurface of φv = 0 in the RMI, DDM and SDM are compared at a late time
kȧ0t = 10 in figure 9. Note this VS is equivalent to the interface in the RMI and DDM, and
there is no interface in the SDM. We observe spikes and bubbles in the RMI and DDM
and symmetric structures in the SDM, consistent with the results in figure 8.

The nearly identical evolutions in the RMI and DDM demonstrate that the present
single-mode RMI is mainly triggered by the density difference across the perturbed
interface and PBV, whereas the pressure perturbation from distorted waves can be
neglected. Therefore, the dynamical process of the VSF isosurface φv0 = 0 driven by the
vorticity-induced velocity in the DDM can model the nonlinear growth of the interface
in the RMI, and the VS will refer to the isosurface of φv0 = 0 in the rest of this
paper.

4.2. Generation of the SBV
Next we use the DDM to clarify each role of the density difference and the PBV in
the nonlinear evolution of the VS in the RMI. The symmetric slice at x = 0, containing
the essential evolutionary geometry of VSs, is chosen to analyse vortex dynamics in the
three-dimensional single-mode RMI. From the symmetries with ux = 0, ωy = ωz = 0 and
∂/∂x = 0, we have simplifications x = yj + zk, ∇ = (∂/∂y)j + (∂/∂z)k, u = uyj + uzk
and ω = ωi, and presume that the flow is nearly incompressible for low MS without shocks
(see Meiron & Meloon 1997; Kotelnikov, Ray & Zabusky 2000). In this way, the vorticity
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x y

z

x y

z

x y

z

(b)(a) (c)

Figure 9. Comparison of the VSF isosurface of φv = 0 of the (a) RMI, (b) DDM and (c) SDM for A = 0.67 at
kȧ0t = 10. Some vortex lines are integrated and plotted on the vortex surface colour-coded by 0 ≤ |ω|/|ω|max ≤
0.8 from blue through white to red.

(a) (b)

–L/2

L/2

VS

–20
–10

0

10

20

p′
0(Pa)

VS ∇ρ0

∇p̃0

ωSB0+
 > 0

ωSB0+
 < 0

Figure 10. Generation mechanism of the SBV. (a) Distributions of the initial PBV-induced velocity (vectors)
and the pressure perturbation (the contour colour-coded by −20 Pa ≤ p′

0 ≤ 20 Pa from blue through white
to red) on the slice of x = 0 within −L/2 ≤ z ≤ L/2. (b) Schematic diagram for the generation of the SBV
at t = 0+ owing to the misalignment of ∇ρ0 (solid arrows) across the VS with ∇p̃0 (open arrows) in the
low-pressure region.

equation (3.10) on the plane x = 0 is simplified to

Dω
Dt

= 1
ρ2 (∇ρ × ∇p)+ ν̄∇2ω (4.8)

with

∇ρ × ∇p = ∂ρ

∂y
∂p
∂z

− ∂ρ

∂z
∂p
∂y
. (4.9)

Since the viscous term ν̄∇2ω uniformly diffuses ω, the asymmetry of ω can be only
contributed from the baroclinic term (∇ρ × ∇p)/ρ2.

The initial density ρ0 = ρDD in (4.1) varies across the interface, so ∇ρ0 is normal to the
VS pointing to the heavy fluid, marked by solid arrows in figure 10(b). Considering the
right half-wave of the VS with the symmetry axis marked by the dash-dotted line in
figure 10(b), ∇ρ0 is antisymmetric with respect to the symmetry axis.
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Applying the decomposition (3.5) to the initial pressure p̃0 in the DDM, we have

p̃0(x) = p+
0 + p′

0(x). (4.10)

As the pressure perturbation from distorted waves has been excluded in the DDM, p′
0(x) is

only generated by the induced velocity of the PBV, and is governed by the variable-density
pressure Poisson equation

∇2p′
0 = 1

ρ0

(∇ρ0 · ∇p′
0
)− ρ0∇uPB : ∇uPB, (4.11)

which is obtained by taking the divergence of (2.2) and neglecting ∇ · u. By solving (4.11)
using the iteration method with the initial condition p′

0 = 0, p′
0(x) is obtained and plotted

in figure 10(a), together with the PBV-induced velocity.
We find that the velocity induced by the PBV is continuous owing to the finite

thickness of the interface approximated by (2.20). The distribution of uPB depicts a pair of
counter-rotating vortices with the mirror symmetry with respect to the line x = 0, y = L/2.
The vortices produce low pressure regions via (4.11), and ∇p̃0 is symmetric with respect
to the symmetry axis of the right half of the VS, marked by open arrows in figure 10(b).

This misalignment of ∇ρ0 and ∇p̃0 produces another type of the baroclinic vorticity,
referred to as the SBV. Being different from the PBV, the pressure gradient in the
generation of the SBV is due to the low pressure region rather than the discontinuity of the
incident shock.

4.3. Spikes and bubbles driven by the SBV
From the Lagrangian view, ω can be obtained by integrating the right-hand side of (4.8)
and decomposed into

ω(x, t) = ωSB(x, t)+ ων(x, t)+ ω0(x) (4.12)

with the SBV

ωSB(x, t) =
∫ t

0

1
ρ2(x, t′)

[∇ρ(x, t′)× ∇p(x, t′)
]

dt′, (4.13)

the component produced by the viscous term

ων(x, t) =
∫ t

0
ν̄(x, t′)∇2ω(x, t′) dt′ (4.14)

and the initial vorticity ω0 = ωPB,x.
At t = 0+ shortly after the initial time in the DDM, the SBV is approximated byωSB0+ =

(∇ρ0 × ∇p̃0)�t/ρ2
0 as sketched by dashed curves with arrows in figure 10(b). We find that

ωSB0+ has opposite signs around the symmetry axis of the right half of the VS.
The synergistic effect of the PBV and SBV on the generation of spikes and bubbles is

depicted on the right half of the VS in figure 11(a). Owing to the opposite signs of ωSB0+ , ω
increases and decreases on the two sides of the symmetry axis marked by the dash-dotted
line in figure 11(b), so the vorticity at t = 0+ becomes asymmetric. Driven by the induced
velocities of the PBV and SBV, the acceleration of the trough and deceleration of the crest
of the VS leads to spikes and bubbles in the temporal evolution, respectively, as sketched
in figure 11(b).

Therefore, the SBV is not only important in the late mixing stage in the RMI (see Peng
et al. 2003; Zabusky et al. 2003), but also plays a key role in the asymmetric evolution
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(a) (b)

> 0 < 0
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VS ω ↑ ω ↓
ωPB,x
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ω > 0

acc. to spike

dec. to bubb.

Figure 11. Generation mechanism of spikes and bubbles. (a) Contours of ωPB and ωSB0+ at t = 0+ on the
slice of x = 0 near the VS. They are colour-coded by −1.5 × 105 s−1 ≤ ωPB ≤ 1.5 × 105 s−1 and −15 s−1 ≤
ωSB0+ ≤ 15 s−1 from blue through white to red. (b) Schematic diagram for the generation of spikes and bubbles
(bubb.) owing to acceleration (acc.) and deceleration (dec.) of the VS driven by the SBV.

of the VS at early times. To quantify the persistent effects of the SBV, we calculate the
evolution of the circulation and its components

Γ (t) =
∫∫

A

ω(x, t) dy dz = γSB(t)+ γν(t)+ Γ0 (4.15)

by integrating (4.12) in region A in (3.15), where the SBV component γSB(t) and viscous
component γν(t) are the integrals of ωSB(x, t) and ων(x, t) over A, respectively, and the
initial circulation in (3.14) is Γ0 = 0.706 m2 s−1 at A = 0.67. We remark that (4.15) is an
approximation, because the dilatation effect is neglected in (4.8).

Moreover, we further divide A into the spike region As and bubble region Ab with
A = As ∪ Ab based on the evolving vortex surface (see appendix C), and decompose the
circulation into

Γ (t) = Γs(t)+ Γb(t) =
∫∫

As

ω(x, t) dy dz +
∫∫

Ab

ω(x, t) dy dz. (4.16)

This decomposition also applies to the components in (4.15) as γSB(t) = γ s
SB(t)+

γ b
SB(t), γν(t) = γ s

ν (t)+ γ b
ν (t) and Γ0 = Γs(0)+ Γb(0) with Γs(0) = Γb(0) = Γ0/2 =

0.353 m2 s−1.
The difference in the evolutions of Γs(t) and Γb(t) contributes to the asymmetric growth

of the VS via the vorticity-induced velocities (see figure 11). The temporal evolution
of circulation variations �Γs/b = Γs/b − Γ0/2 and circulation components scaled by Γ0
in spike and bubble regions in figure 12 shows that the SBV keeps influencing vortex
motions. The positive γ s

SB in spike regions increases ω and the negative γ b
SB in bubble

regions decreases ω. Moreover, γ s/b
SB are very close to �Γs/b in both regions, whereas

γ
s/b
ν can be neglected. Therefore, the nonlinear growth of the interface in the RMI is

persistently driven by the SBVs with opposite signs in spike and bubble regions. This
SBV effect also provides a physical interpretation for the acceleration/deceleration caused
by the perturbation parameter in the perturbation analysis of RMI (see Velikovich et al.
2014).

4.4. SDM with the time-varying SBV
The discussions in §§ 4.2 and 4.3 suggest that a major role of the density difference is
to produce the SBV which dominates the nonlinear growth of the interface. To further
support this important modelling ingredient, we simplify the DDM into the SDM with
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Figure 12. Temporal evolution of the scaled circulation variations, SBV and viscous components of the
circulation in the (a) spike and (b) bubble regions.

the time-varying SBV (SDM–SBV). The initial conditions of the SDM–SBV are the
same as those in the SDM, including the PBV and uniform density ρ̄+, pressure p+

0 and
temperature T̄+, except that a source term is added to the momentum equation (2.2) as

∂(ρu)
∂t

+ ∇ · (ρuu + pI − τ ) = ΞSB (4.17)

for the simulation of the SDM–SBV. Here, the source term is

ΞSB = ∂ (ρuSB)

∂t
, (4.18)

where the SBV-induced velocity

uSB(x) = F−1
{

ikF × F {ωPB}
|kF|2

}
(4.19)

is calculated from the DDM. The evolution of the scaled amplitudes k(as/b − a+
0 ) of the

SDM–SBV generally agrees with those in the RMI and DDM in figure 8.
In summary, the nonlinear interfacial evolution of the present RMI can be modelled

using the PBV and SBV in a uniform mixture without the density difference and shocks.
The PBV first drives the interfacial instability, and then the SBV alters the vorticity
distribution, leading to the nonlinear interfacial growth. The evolution of the modelling
strategy with the increasing simplification level is illustrated in figure 13.

5. Modelling of spike and bubble growth rates

5.1. Vortex-ring model for the RMI
Inspired by the simplifications in the SDM–SBV, we model the interfacial evolution of
spikes and bubbles in the RMI by two series of vortex rings moving in opposite directions
in a uniform mixture without shocks, so the growth rates ȧs(t) and ȧb(t) are estimated by
the velocities of corresponding vortex rings in the z-direction. This model in a periodic
box is illustrated in figure 14(a). Considering the periodic boundary conditions, the model
with infinite series of vortex rings in the top view is sketched in figure 14(b).

The spikes and bubbles are modelled by evolving vortex rings with different circulations.
We introduce moving dual polar coordinates to characterize the motion of a vortex ring
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Figure 13. Schematic diagram of the simplification from (a) the RMI with the IS and IF separating two fluids,
through panel (b) the DDM with the interface/VS separating two fluids and the imposed PBV, to (c) the
SDM–SBV with the uniform mixture, imposed the PBV and SBV. The symmetry plane x = L/2 is coloured
by ρ1 ≤ ρ ≤ ρ2 from blue through white to red.

in figure 15. In this coordinate system moving with the vortex ring, the polar coordinates
(R, θ) are built for the vortex ring with the origin at the ring centre, and (r, ϕ) are built on
a cross-section of the ring with the origin at the central axis of the ring. Given the radius
R(t) of the vortex ring at a particular time, spatial coordinates (r, ϕ, θ), with unit basis er,
eϕ and eθ , are related to the Cartesian coordinates by

x = [R(t)+ r cosϕ] cos θ, y = [R(t)+ r cosϕ] sin θ, z = r sin θ. (5.1a,b)

We assume that ω(x, t) = ωθ(r, t)eθ is uniform along the θ -direction in this model, then
the circulation

Γ (t) =
∫ 2π

0
dϕ
∫ ∞

0
ωθ(r, t)r dr (5.2)

determines the velocity of the vortex ring. Since figure 12 shows that the circulations vary
with time under the influence of the SBV and they are very different between spikes and
bubbles, we divide the modelling of ȧs/b(t) into two steps: (i) model the temporal evolution
of Γs/b(t) affected by the SBV; (ii) model ȧs/b(t) based on the modelled Γs/b(t) of vortex
rings.

5.2. Modelling of circulations based on the SBV
The circulation of vortex rings is estimated by the integration (5.2) of ωθ(r, t), which
models the SBV effect in the RMI and SDM–SBV. We propose several assumptions on
the evolution of vortex rings as follows.

(i) All the physical quantities are uniform along the θ -direction, i.e. ∂/∂θ = 0.
(ii) The velocity only has the ϕ-component and is uniform in the ϕ-direction, i.e. u =

uϕ(r, t)eϕ .
(iii) The vorticity only has the θ -component and is uniform in the θ -direction, i.e. ω =

ωθ(r, t)eθ .
(iv) The flow is considered to be incompressible, because it has low MS and no shock

(see Meiron & Meloon 1997; Kotelnikov et al. 2000).
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– ȧsκ

ȧbκ

x y

z y
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(a) (b)

PbPs

Figure 14. Schematic diagram of the vortex-ring model. (a) The spike and bubble modelled by vortex rings
in a periodic box. The arrows denote the opposite moving directions of vortex rings with rates ȧs(t) and ȧb(t).
(b) Configuration of periodic vortex rings in the entire domain in the top view. Red and blue rings are,
respectively, vortex rings of spikes and bubbles. The arrow denotes vorticity direction and the dash-dotted
box the boundary of a periodic box.

θ
ϕ

r(a) (b)

R(t)

Figure 15. Schematic diagram of the moving dual polar coordinates, consisting of (a) polar coordinates for the
vortex ring and (b) polar coordinates on a cross-section of the ring. The red arrow denotes the moving direction
of the vortex ring at the rate ȧs(t) or ȧb(t).

Thus the vorticity equation (3.10) is simplified to

∂ωθ

∂t
= B(ρ, p)+ V(ωθ ) (5.3)

with the baroclinic term

B(ρ, p) = 1
ρ2r

∂ρ

∂ϕ

∂p
∂r

(5.4)

and the viscous term

V(ωθ ) = ν̄

(
∂2ωθ

∂r2 + 1
r
∂ωθ

∂r

)
. (5.5)

Next, we re-express B and V in algebraic forms with known quantities.
In the SDM with vanishing B(ρ, p), the exact solution of (5.3) (see Tung & Ting 1967;

Saffman 1970) is

ωθ(r, t) = Γ0

4πν̄t
exp
(

− r2

4ν̄t

)
and uϕ(r, t) = Γ0

2πr

(
1 − exp

(
− r2

4ν̄t

))
, (5.6a,b)

which implies that Γ (t) = Γ0 is constant.
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Mechanism and modelling of SBV in RMI

In the SDM–SBV and RMI, the influence of the SBV is introduced by finite B(ρ, p) in
(5.3), leading to the time-varying Γ (t). From (5.6a,b) and figure 6, we assume that

ωθ(r, t) = Γ (t)
4πν̄t

exp
(

− r2

4ν̄t

)
(5.7)

and

uϕ(r, t) = Γ (t)
2πr

(
1 − exp

(
− r2

4ν̄t

))
(5.8)

have Gaussian distributions along r. From (5.8), the radius of the vortex core

rC(t) = 2
√
ν̄t (5.9)

is defined by the distance from the ring centre to the location where uϕ peaks (see Saffman
1970).

To estimate B(ρ, p) in (5.3), we re-express the momentum equation (2.2) as

− u2
ϕ

r
= − 1

ρ

∂p
∂r

(5.10)

in cylindrical coordinates with the above assumptions, and then obtain the radial pressure
gradient

∂p
∂r

= ρΓ 2(t)
4π2r3

(
1 − exp

(
− r2

4ν̄t

))2

. (5.11)

Subsequently, the azimuthal density gradient in B(ρ, p) in (5.4) is produced by the mass
transfer owing to the roll-up of the interface between two fluids with ρ+

1 and ρ+
2 . Here,

∂ρ/∂ϕ is positive in the spike region where the heavy fluid is rolled into the light one. On
the contrary, it is negative in the bubble region. Thus it is modelled by

∂ρ

∂ϕ
= ±�ρ

+

�ϕ
(5.12)

where the upper/lower sign applies to spikes/bubbles, and the variation of the azimuthal
angle is calculated by the temporal integral of the angular velocity as

�ϕ =
∫ t

0

uϕ(r, t′)
r

dt′. (5.13)

To simplify (5.13) by removing the dependence on r, we approximate (5.8) by uϕ(r, t) =
uϕ(rC, t)/2, roughly the average of uϕ within the vortex ring. Then we derive

�ϕ =
(
1 − e−1) ȧ0

16πν̄k
G(Γ, t) with G(Γ, t) =

∫ t

0

kΓ (t′)
ȧ0t′

dt′, (5.14)

where k and ȧ0 are introduced to make G dimensionless. Then (5.12) is approximated by

∂ρ

∂ϕ
= ±16πν̄k�ρ+(

1 − e−1
)

ȧ0G(Γ, t)
. (5.15)

Based on the SDM–SBV, we assume the uniform density ρ = ρ̄+ and the uniform
averaged mixture kinematic viscosity

ν̄ = μ̄

ρ̄+ = μ1
√

M2 + μ2
√

M1

ρ̄+ (√M1 + √
M2
) , (5.16)
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where μ̄ is calculated from Reid et al. (1987) and μ1 and μ2 are, respectively, determined
at T+

1 and T+
2 . In the three DNS cases, we obtain ν̄ = 5.61 × 10−6, 3.74 × 10−6 and

2.31 × 10−6 m2 s−1 at A = 0.30, 0.67 and 0.80, respectively. Substituting (5.11) and (5.15)
into (5.4) and using A+ = �ρ+/(2ρ̄+) from (3.6) yields

B = ±8A+ν̄kΓ 2(t)(
1 − e−1

)
πȧ0r4G(Γ, t)

(
1 − exp

(
r2

4ν̄t

))2

. (5.17)

Substituting (5.7) into (5.5) yields

V = Γ (t)
4πν̄t2

(
r2

4ν̄t
− 1
)

exp
(

− r2

4ν̄t

)
. (5.18)

Substituting (5.17) and (5.18) into (5.3) yields

∂ωθ

∂t
= ±8A+ν̄kΓ 2(t)(

1 − e−1
)
πȧ0r4G(Γ, t)

(
1 − exp

(
− r2

4ν̄t

))2

+ Γ (t)
4πν̄t2

(
r2

4ν̄t
− 1
)

exp
(

− r2

4ν̄t

)
. (5.19)

Taking the time derivative of (5.7) yields

∂ωθ

∂t
= 1

4πν̄t
dΓ
dt

+ Γ (t)
4πν̄t2

(
r2

4ν̄t
− 1
)

exp
(

− r2

4ν̄t

)
. (5.20)

By equating (5.19) and (5.20), we have

dΓ
dt

= ± 32A+kν̄2tΓ 2(t)(
1 − e−1

)
ȧ0r4G(Γ, t)

(
exp
(

r2

4ν̄t

)
+ exp

(
− r2

4ν̄t

)
− 2
)
. (5.21)

This equation is further simplified, in appendix D, by approximating the exponential
functions and removing the dependence on r.

Finally, we obtain the model equation of circulations for spikes/bubbles

dΓs/b

dt
=

±2A+kΓ 2
s/b(t)(

1 − e−1
)

ȧ0 (t + tδ)G(Γs/b, t + tδ)
(5.22)

with the initial condition Γs(0) = Γb(0) = Γ0/2. Here, the singularity at t = 0 in (5.21) is
removed by introducing a small tδ = δ2

0/(4ν̄), which is obtained from (5.9) by assuming
the initial rC(tδ) = δ0. Equation (5.22) implies that the SBV dominates the evolution of
circulations, consistent with the numerical results in figure 12. We solve (5.22) numerically
using the fourth-order Runge–Kutta method, and approximate the numerical solution by

Γs/b(t) = Γ0

[
0.5 ± CΓ (kȧ0t)((3±1)/4)A+]

(5.23)

with constant CΓ = 0.15. In figure 16, the model results in (5.23) and numerical solutions
of (5.22) generally agree with DNS results of the RMI, so the explicit expression (5.23) is
used in the further modelling. The discrepancies may come from the assumption of ωθ in
(5.7), e.g. the distribution of ωθ at A = 0.30 or for all the bubbles in figure 6 deviates from
the Gaussian one.
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Figure 16. Comparisons of scaled circulations of the (a) spike and (b) bubble calculated from DNS
(symbols), numerical solutions of (5.22) (dashed lines) and the model (5.23) (solid lines) at various A.

5.3. Modelling of growth rates using viscous vortex rings
The spike/bubble growth rate is modelled by the velocity of the vortex ring in the
z-direction in this RMI. This velocity is the superposition of the self-induced velocity
of the vortex ring and the induced velocities from infinite other vortex rings due to the
periodicity in figure 14(b). However, the magnitude of the latter part decays as O(r−2), so
it can be absorbed into the leading terms as an amplification factor C0.

For example, the spike/bubble growth rate at Ps/Pb in figure 14(b) is approximated by
the self-induced velocity of a vortex ring in viscous flows (see Saffman 1970; Fukumoto
& Moffatt 2008)

ȧs/b(t) =
C0Γ

E
s/b(t)

4π4−nRb(t)

[
log

4Rb(t)√
ν̄t

− 3.672
ν̄t

R2
b(t)

− 0.558

]
, (5.24)

with the number n = 2, 3 of dimensions, where the effective circulation

Γ E
s/b(t) =

[
1 − exp

(
−ανR2

b(t)
4ν̄t

)]
Γs/b(t) (5.25)

considers the vorticity cancellation at r = 0 (see Fukumoto & Kaplanski 2008) with a
correction factor αν in this RMI. It is noted that although the viscous effect is usually
considered to be negligible in the interfacial growth (e.g. Carlès & Popinet 2002), it can
be notable on the evolution of the vorticity distribution (e.g. Niederhaus & Jacobs 2003;
Movahed & Johnsen 2013), especially near the vortex core via the vorticity cancellation,
so it is still incorporated in (5.24) in our vortex-based modelling.

Then we assume that the spike/bubble radius Rs/b(t) = R0 is invariant with time, where
the initial radius

R0 =

∫∫∫
Ω

|ωPB|
√

x2 + y2 dV∫∫∫
Ω

|ωPB| dV
= 1

k
(5.26)

is calculated by the weighted-average distance. Since the maximal time scale in this RMI
is O(10−2) s, 3.672ν̄t/R2

0 	 log(4R0/
√
ν̄t) is negligible in (5.24). Using a small drift time
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Parameter Physical meaning Determination method

n Number of dimensions Given parameter
k Wavenumber of the perturbed interface Given parameter

A+ Post-shock Atwood number (3.6)
ν̄ Averaged mixture kinematic viscosity (5.16)
ȧ0 Initial growth rate Initial data of DNS or experiment
Γ0 Initial circulation (3.14)

Table 3. Summary of the parameters in the model (5.28) of growth rates.

tε to remove the temporal singularity at t = 0, (5.24) becomes

ȧs/b(t) = C0

4π4−n kΓs/b(t)
(

1 − exp
(
− αν

4k2ν̄t

)) [
log

4
k
√
ν̄ (t + tε)

− 0.558
]
. (5.27)

In the SDM with uniform density and A = 0, the circulations Γs(t) = Γb(t) = Γ0/2
are constant and the growth rates ȧs(t) = ȧb(t) = ȧSD(t) are symmetric. Then we obtain
C0 = 1.3 and αν = 1.587 × 10−4 by fitting ȧSD(t) from the SDM result at A = 0.67. We
remark that the two parameters obtained from this particular case appear to be universal,
which is validated by further a posteriori model tests.

Substituting (5.23) and all the parameter values into (5.27), finally we obtain a predictive
model for the spike/bubble growth rate as

ȧs/b(t) = kΓ0

4π4−n

[
0.65 ± 0.195 (kȧ0t)((3±1)/4)A+] [

1 − exp
(

−3.97 × 10−5

k2ν̄t

)]

×
[

log
4

k
√
ν̄ (t + tε)

− 0.558
]
, (5.28)

where the positive/negative sign, respectively, applies to spikes/bubbles, and

tε = 16
k2ν̄

exp
(

−12.31π4−n ȧ0

kΓ0
− 1.116

)
(5.29)

is determined from ȧs(0) = ȧb(0) = ȧ0. The physical meaning and determination method
of the model parameters in (5.28) are summarized in table 3. From (5.28), we find that the
nonlinear growth of the RMI mainly depends on A+, and is only slightly mitigated by the
viscous effect (see Mikaelian 1993; Niederhaus & Jacobs 2003; Sohn 2009).

5.4. Model assessment
We assess the model in (5.28) using results from the present DNS and other four data sets
in the literature, including DNS data of Latini, Schilling & Don (2007) and Long et al.
(2009) and experimental data of Jacobs & Krivets (2005) and Liang et al. (2019) with key
parameters summarized in table 4.

Figure 17 validates the model prediction using the present DNS result of scaled growth
rates and amplitude variations at three A. In general, our model is able to predict the
nonlinear growth of spikes and bubbles, and the predictions (solid lines) agree with the
DNS results (symbols) at various A. The slight discrepancy of the model prediction
is primarily due to the error from the circulation modelling in (5.22) and figure 16.
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Parameter Latini et al. Long et al. Jacobs & Krivets Liang et al.

Type DNS DNS Experiment Experiment
n 2 3 2 2

a0 (m) 2.00 × 10−3 3.45 × 10−3 2.90 × 10−3 4.00 × 10−3

λ (m) 0.0593 0.0889 0.0590 0.0600
MS 1.210 1.220 1.292 1.200

p0 (kPa) 95.60 101.3 101.3 101.3
T0 (K) 296 293 293 293

A+ 0.61 0.69 0.71 0.57
ȧ0 (m s−1) 7.020 12.08 10.55 12.05
ν̄ (m2 s−1) 3.10 × 10−6 2.81 × 10−6 2.49 × 10−6 5.62 × 10−6

Γ0 (m2 s−1) 0.517 1.05 1.03 0.983

Table 4. Parameters of DNS and experimental series in the literature.

0 2 4 6 8 10

–1.0

–0.5

0

0.5

1.0
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Figure 17. Comparisons of scaled (a) growth rates and (b) amplitudes of spikes and bubbles calculated from
the DNS results of the RMI (symbols) with the present model (5.28) (solid lines) at various A. The growth
rates are scaled by ȧ0,0.67 ≡ ȧ0 = 8.50 m s−1 at A = 0.67 for distinguishing results at different A.

In figure 18, the comparison of the scaled amplitudes from model predictions of (5.28)
(solid lines) and various DNS/experimental results (symbols) also shows overall good
agreement.

In appendix E, the present model is compared with several existing models of spike
and bubble growth rates for all the DNS/experimental series above. In general, the
overall prediction from our vortex-based model is comparable or slightly better than
the others. Therefore, we demonstrate that the model (5.28) can predict the nonlinear
interfacial growth in the RMI at a range of parameters and with various initial
conditions.

Compared with existing models, the features of the present one are summarized
below.

(i) Spike and bubble growth rates are modelled by the motion of vortex rings in viscous
flows. The modelling is based on the dynamics of VSs, instead of the asymptotic
analysis and empirical matching.

911 A56-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
80

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1080


N. Peng, Y. Yang, J. Wu and Z. Xiao

0 1 2 3 4 5

–4

–2

0

2

kȧ0t
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Figure 18. Comparisons of scaled spike and bubble amplitudes from the DNS and experimental results
(symbols) with the present model (5.28) (solid lines). The line colour corresponds to the symbol colour for
the comparison of the same series.

(ii) The mechanism of the SBV is elucidated and used to model the increase or decrease
of circulations, which leads to enhancement or suppression of the growth of spikes
or bubbles, respectively.

(iii) The present vortex-based model for two- and three-dimensional RMIs involves
time-varying circulations. The initial circulation is derived from the explicit
expression of the PBV rather than approximated by the initial growth rate.

On the other hand, the present model is based on the assumption of incompressible
flows, so it is restricted to low MS, e.g. MS < 1.3 (see Peng et al. 2003) in table 4.
Additionally, the pressure perturbation by distorted waves and the multimode initial
perturbation in the complex RMI with reshocks and turbulent mixing (e.g. Hill, Pantano
& Pullin 2006; Pantano et al. 2007) have not been considered.

6. Conclusions

In this study, we distinguish the effects of the PBV and SBV in the RMI accelerated by a
weak incident shock, and demonstrate that the SBV plays an important role in the nonlinear
growth of the interface. Then we develop a predictive model for spike and bubble growth
rates based on the motion of viscous vortex rings with the effects of the SBV.

The present RMI arises from a planar shock at low MS = 1.1 accelerating a single-mode
light/heavy interface at A = 0.30, 0.67 and 0.80 in a shock tube. The PBV produced by the
shock–interface interaction is derived in (3.12). The VSF is constructed and evolved with
the DNS of the RMI. We find that the evolution of the interface with spikes and bubbles is
driven by the dynamics of the VS.

In order to distinguish each role of the density difference across the perturbed interface,
the PBV and the pressure perturbation required to trigger the nonlinear growth in the
RMI, we develop two simplified models: the DDM excluding pressure perturbations and
the SDM only with the PBV. The evolution of the VS with the generation of spikes and
bubbles in the DDM is nearly identical to that in the corresponding RMI, whereas it
remains symmetric in the SDM. Thus, this single-mode RMI is mainly triggered by the
density difference and the PBV.
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Mechanism and modelling of SBV in RMI

We elucidate the synergistic effect of the PBV and SBV on the generation of spikes and
bubbles using the DDM. The SBV is generated by the misalignment between the density
gradient across the interface and the pressure gradient within the low pressure region
produced by the PBV-induced velocity. The SBV persistently accelerates or decelerates
the interface via the velocity induced from the circulation of the VS, and leads to the
nonlinear growth of the interface with spikes and bubbles. After the PBV deposited at the
interface, the SBV leads to the nonlinear growth, so the RMI can be further simplified
into the SDM–SBV with the uniform density, the imposed initial PBV and the temporally
evolving SBV.

Inspired by this mechanism, we develop a vortex-based model for interfacial growth
rates in the RMI. The spikes and bubbles are modelled by two series of vortex rings
moving in opposite directions in viscous flows. Their growth rates are estimated by
induced-velocities of corresponding vortex rings. The SBV effect is incorporated to model
different time-varying circulations of spikes and bubbles, leading to asymmetric growth
rates. We obtain a predictive model of spike and bubble growth rates in (5.28), which
depends on initial conditions with a one-dimensional Riemann solution and ȧ0 determined
from the initial DNS or experimental data. Compared with existing models, the present one
is based on dynamics of the VS rather than asymptotic analysis. The model is validated
at a range of A and with various initial conditions by the present DNS and other four
DNS/experimental data sets of the RMI in the literature.

The present model can be extended to more complex RMIs by considering the following
effects: (i) compressibility for high MS; (ii) pressure perturbations caused by distorted
waves, which can be important in RMI with reshocks (e.g. Hill et al. 2006; Thornber et al.
2012) and converging geometries (e.g. Lombardini & Pullin 2009); (iii) inclined (e.g. Hahn
et al. 2011) or multimode perturbed initial interfaces triggering turbulent mixing (e.g.
Zhou 2001; Thornber et al. 2011). Additionally, the vortex-based model can be extended
to the Rayleigh–Taylor instability and the induced turbulent mixing (e.g. Zhou 2017a,b;
Kokkinakis, Drikakis & Youngs 2019).
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Appendix A. Derivation of the PBV

Taking the gradient of (3.7) and (3.8) yields

∇ρ+ = ρ+
x i + ρ+

y j + ρ+
z k (A1)

and

∇p+ = −�p+

a+
0
δ(z̃)k (A2)
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with ρ+
x = k�ρ+ sin(kx) cos(ky)δ(ϕ+

I ), ρ
+
y = k�ρ+ cos(kx) sin(ky)δ(ϕ+

I ), ρ
+
z = �ρ+

δ(ϕ+
I )/a

+
0 and z̃ = [z − c(t)]/a+

0 . Substituting (3.7), (A1) and (A2) into the baroclinic
term in (3.10) yields

1
(ρ+)2

(∇ρ+ × ∇p+) = k�ρ+�p+

a+
0
[
�ρ+H(ϕ+

I )+ ρ+
1
]2 δ(ϕ+

I )δ(z̃)
[
Ky(x, y)i + Kx(x, y)j

]
,

(A3)
so the baroclinic term is non-vanishing only where the shock crosses the interface.

For the Heaviside function defined by

H(ϕ+
I ) =

⎧⎪⎪⎨
⎪⎪⎩

0, ϕ+
I < 0,

1/2, ϕ+
I = 0,

1, ϕ+
I > 0,

(A4)

(A3) is simplified to

1
(ρ+)2

(∇ρ+ × ∇p+) = 4k�ρ+�p+

a+
0
(
ρ+

1 + ρ+
2
)2 δ(ϕ+

I )δ(z̃)
[
Ky(x, y)i + Kx(x, y)j

]
. (A5)

Then substituting (A5) to (3.11) yields the PBV

ωPB = 4k�ρ+�p+δtI
a+

0
(
ρ+

1 + ρ+
2
)2 δ(ϕ+

I )
[
Ky(x, y)i + Kx(x, y)j

]
. (A6)

Finally, substituting δtI in (3.2) and a+
0 in (3.3) to (A6) and replacing�ρ+ and (ρ+

1 + ρ+
2 )

by A+ and ρ̄+, we derive (3.12) for the PBV.

Appendix B. Evolution of the VSF in the RMI

The two-time method (Yang & Pullin 2011; Peng & Yang 2018) is used to calculate the
VSF evolution. The temporal evolution at each time step is divided into prediction and
correction substeps. In the prediction substep, the temporary VSF solution φ∗

v (x, t) is
evolved as a Lagrangian field as

∂φ∗
v (x, t)
∂t

+ u(x, t) · ∇φ∗
v (x, t) = 0, t ≥ 0 (B1)

with the initial condition φv(x, t = 0) = φv0(x). Here, φ∗
v (x, t) can slightly deviate from

an accurate VSF owing to the breakdown of the Helmholtz vorticity theorem in non-ideal
flows. In the correction substep, at a fixed physical time t, φ∗

v (x, t) is transported along the
frozen vorticity in pseudo time τ as

∂φv(x, t; τ)
∂τ

+ ω(x, t) · ∇φv(x, t; τ) = 0, τ ≥ 0 (B2)

with the pseudo initial condition φv(x, t; τ = 0) = φ∗
v (x, t), and then φv(x, t) is updated

by
φv(x, t) = lim

τ→∞φv(x, t; τ) (B3)

from (B2) when φv(x, t; τ) is converged.
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Mechanism and modelling of SBV in RMI

We demonstrate that the isosurface of φv(x, t) = 0 can be tracked in time and it
coincides with the interface. In the prediction substep, the solution

φ∗
v (x, t) = (−1)nt(z−uzt)φv0(x − ut) (B4)

of (B1) is obtained from the Cauchy problem of the first-order quasi-linear hyperbolic
equation (see Evans 1998) with the index

nt(α) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⌊
α

L
+ 1

2

⌋
+ 1, α ≥ L,

⌊
α

L
+ 1

2

⌋
, α < L,

(B5)

to satisfy the ‘opposite periodic’ boundary condition (3.19) in the z-direction, where �·� is
the floor function. Similarly, the solution of (B2) is

φv(x, t; τ) = (−1)nt(z−ωzτ)φ∗
v (x − ωτ, t). (B6)

In the present single-mode RMI perturbed in the x- and y-directions withωz ≈ 0, we obtain

φv(x, t) = lim
τ→∞(−1)nt(z̃)

{
z̃

a+
0

− exp
(
−[ϕ+

I (
ˆ̃x)]2m

)
cos(kx̂) cos(kŷ)]

}
(B7)

by substituting (B6), (B4) and (3.16) to (B3), where ˆ̃x = x̂i + ŷj + z̃k denotes translated
coordinates with x̂ = x − uxt − ωxτ , ŷ = y − uyt − ωyτ and z̃ = z − uzt. Equation (B7)
has φv(x, t) = 0 for ϕ+

I (
ˆ̃x) = 0 and

φv(x, t) ≈ (−1)nt(z−uzt)

a+
0

(z − uzt) (B8)

for ϕ+
I (

ˆ̃x) /= 0, so the isosurface of φv(x, t) = ψ is given by

z =
⎧⎨
⎩

a+
0 lim
τ→∞ cos[k(x − uxt − ωxτ)] cos[k( y − uyt − ωyτ)] + uzt, ψ = 0,

(−1)nt(z−uzt)a+
0 ψ + uzt, ψ /= 0.

(B9)

In (B9), the correction substep only influences the VSF isosurface of φv(x, t) = 0
consisting of vortex lines of dx/ωx = dy/ωy, but it does not change the surface geometry.
Therefore, the isosurface of φv(x, t) = 0 describes the evolution of the same vortex surface
and coincides with the interface, and the VSF evolution is only governed by (B1) in this
single-mode RMI.

In general, there is a slight deviation of the numerical solution of φv from the exact one,
and the VSF deviation is defined by (see Yang & Pullin 2010)

λω ≡ ω · ∇φv
|ω||∇φv| . (B10)

We find that the volume-averaged deviation 〈|λω|〉 in present DNS cases of the RMI at
various A are negligible (less than 3 %).
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z
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(b)(a) (c)
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Figure 19. The boundary (dash-dotted line) separating integral regions of spikes and bubbles into A = As ∪
Ab on x = 0 at (a) kȧ0t = 0, (b) kȧ0t = 5 and (c) kȧ0t = 10, with the VS (solid line) and distribution of ωx
(colour-coded by −0.8 ≤ ωx/|ωx|max ≤ 0.8 from blue through white to red).

Appendix C. Integral regions for circulations of spikes and bubbles

We determine the integral boundary separating the spike region As and bubble region Ab
using the Lagrangian-based VSF. At the initial time, the distribution of ωx has a symmetry
on a half-plane at x = 0 in figure 19(a), so we use a piecewise function

ϕT( y, z) = z − L2

16π(a+
0 )

2
fT( y) = 0 (C1)

with

fT( y) =

⎧⎪⎪⎨
⎪⎪⎩

y2 − Ly + 3L2

16
,

L
2

≤ x <
3L
4

y2 − 2Ly + 15L2

16
,

3L
4

≤ x ≤ L

(C2)

to separate As and Ab, which is perpendicular to the VSF isosurface of φv = 0 at ( y, z) =
(3L/4, 0) marked by the dash-dotted line in figure 19(a), and is normalized by 1 m for
consistent dimensions.

Then we construct a tracking function φT( y, z, t) with the initial condition φT( y, z, t =
0) = 1 − 2H(ϕT). If φT is evolved by the VSF equation (3.18) on the plane x = 0, the
isoline of φT = 0 can be the region boundary as φT > 0 for As and φT < 0 for Ab, as
shown in figure 19 together with the contour of ωx and the VS. We observe that some parts
of φT = 0 are very close to the material surface at late times, but they do not divide the
region with the concentrated vorticity magnitude. Therefore, φT = 0 can still effectively
separate spike and bubble regions with different blobs of concentrated ωx in the evolution.
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Mechanism and modelling of SBV in RMI

Appendix D. Simplification of the modelled circulation equation

In order to simplify (5.21), we approximate

exp
(

± r2

4νt

)
≈ 1 ± r2

4ν̄t
+ r4

32ν̄2t2
(D1)

using the Taylor expansion, so that the dependence of (5.21) on r is removed as

dΓ
dt

= ±A+kΓ 2(t)(
1 − e−1

)G(Γ, t)
QT(t) (D2)

with

QT(t) = 2
kȧ0t

. (D3)

We remark that the requirement r 	 rC for the Taylor expansion in (D1) may not hold in
this model, so we perform another derivation directly from (5.2) to validate (D2).

Taking the time derivative of (5.2) yields

dΓ
dt

= 2π

∫ ∞

0
r

dωθ
dt

dr. (D4)

Substituting (5.19) into (D4), we have

dΓ
dt

= ±A+kΓ 2(t)(
1 − e−1

)G(Γ, t)
QI(t) (D5)

with

QI(t) = 16ν̄
kȧ0

∫ ∞

0

1
r3

(
1 − exp

(
− r2

4ν̄t

))2

dr, (D6)

where the integral of the viscous term V over r vanishes. Thus, the only difference between
(D2) and (D5) is due to the difference of QT and QI . We find that the temporal evolutions
of QT and QI agree very well (not shown), where QI is calculated by the Gauss–Legendre
integral. Hence, the Taylor expansion in (D1) is still effective, and (D2) can be used as the
model equation of circulations.

Appendix E. Comparison of models for spike and bubble growth rates in the RMI

We compare the present model (5.28) of spike and bubble growth rates in the RMI with
several existing ones listed below.

(i) The model suggested by Zhang & Sohn (1997, 1999):

ȧs/b(t) = ˙̃a(t)± λ3kȧ2
0t

1 + λ4λ
−1
3 k2ȧ0a+

0 t +
[
(λ4λ

−1
3 ka+

0 )
2 + λ5λ

−1
3

]
(kȧ0t)2

(E1)
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Figure 20. Comparison of the scaled spike/bubble amplitude calculated from the present DNS of the RMI at
A = 0.67, the present model (5.28) and existing models.
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Figure 21. Comparison of the scaled spike/bubble amplitude calculated from the present model (5.28) and
existing models, along with the data from (a) DNS of Latini et al. (2007), (b) DNS of Long et al. (2009),
(c) experiment of Jacobs & Krivets (2005) and (d) experiment of Liang et al. (2019).
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with

˙̃a(t) = ȧ0

1 + λ1k2ȧ0a+
0 t + max{0, (λ1ka+

0 )
2 − λ2}(kȧ0t)2

. (E2)

The parameters

λ1 = 1, λ2 = (A+)2 − 0.5, λ3 = A+, λ4 = 2A+, λ5 = 4
3 A+

[
1 − (A+)2

]
,

(E3a–e)
are for the two-dimensional RMI, and

λ1 = 0.088866(A+)2 + 0.455671, λ2 = 0.391357(A+)2 − 0.227835,

λ3 = 0.01221(A+)3 + 0.69844A+, λ4 = 0.07035(A+)3 + 0.56513A+,

λ5 = −0.30253(A+)3 + 0.38270A+,

⎫⎪⎪⎬
⎪⎪⎭ (E4)

are for the three-dimensional RMI.
(ii) The model suggested by Sadot et al. (1998):

ȧs/b(t) = ȧ0 (1 + kȧ0t)
1 + (1 ∓ A+)kȧ0t + Fs/b(kȧ0t)2

(E5)

with

Fs/b =

⎧⎪⎪⎨
⎪⎪⎩

1 ∓ A+

1 + A+ , A+ ≤ 0.5,

1.5
1 ∓ A+

1 + A+ , A+ > 0.5.

(E6)

(iii) The model suggested by Dimonte & Ramaprabhu (2010):

ȧs/b(t) = ȧ0
[
1 + (1 ± A+)kȧ0t

]
1 + Cs/bkȧ0t + Ds/b(kȧ0t)2

(E7)

with

Cs/b = 4.5 ∓ A+(2 ± A+)ka0

4
and Ds/b = 1 ∓ A+. (E8)

The model predictions of the scaled amplitude variation in the present DNS at A = 0.67
are compared in figure 20. We observe that all the models can predict the nonlinear growth
of spikes and bubbles, and the present model (5.28) gives the overall best prediction. The
model comparisons for other DNS and experimental series in the literature are shown in
figure 21. In general, the predictions from the present model are comparable to or slightly
better than the others.
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