
J. Fluid Mech. (2023), vol. 954, A16, doi:10.1017/jfm.2022.1003

Bubble re-acceleration behaviours in
compressible Rayleigh–Taylor instability with
isothermal stratification

Cheng-Quan Fu1, Zhiye Zhao1,†, Pei Wang2, Nan-Sheng Liu1,
Zhen-Hua Wan1 and Xi-Yun Lu1

1Department of Modern Mechanics, University of Science and Technology of China, Hefei,
Anhui 230026, PR China
2Institute of Applied Physics and Computational Mathematics, Beijing 100094, PR China

(Received 18 July 2022; revised 23 October 2022; accepted 30 November 2022)

The highly nonlinear evolution of the single-mode stratified compressible Rayleigh–Taylor
instability (RTI) is investigated via direct numerical simulation over a range of Atwood
numbers (AT = 0.1–0.9) and Mach numbers (Ma = 0.1–0.7) for characterising the
isothermal background stratification. After the potential stage, it is found that the bubble is
accelerated to a velocity which is well above the saturation value predicted in the potential
flow model. Unlike the bubble re-acceleration behaviour in quasi-incompressible RTI with
uniform background density, the characteristics in the stratified compressible RTI are
driven by not only vorticity accumulation inside the bubble but also flow compressibility
resulting from the stratification. Specifically, in the case of strong stratification and high
AT , the flow compressibility dominates the bubble re-acceleration characters. To model the
effect of flow compressibility, we propose a novel model to reliably describe the bubble
re-acceleration behaviours in the stratified compressible RTI, via introducing the dilatation
into the classical model that takes into account only vorticity accumulation.

Key words: buoyancy-driven instability

1. Introduction

Rayleigh–Taylor instability (RTI) occurs in the interface when a light fluid is accelerated
against a heavy fluid (Rayleigh 1882; Taylor 1950). It has been widely encountered as
an important role in supernovae ignition fronts (Burrows 2000; Swisher et al. 2015),
inertial confinement fusion (Zhang et al. 2020) and various topics in geophysics (Wilcock
& Whitehead 1991; Houseman & Molnar 1997; Zhou 2017). In these problems, the
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background or initial state is stratified and the Reynolds number is large, resulting in flow
compressibility over a wide range of length and time scales (Wieland et al. 2019; Luo
et al. 2020; Fu et al. 2022). However, the effects of flow compressibility on the stratified
compressible RTI evolution, especially at the highly nonlinear stage, are still unclear and
thus of great interest for further detailed studies.

Since great advancement has been achieved for the RTI evolution from linear to
nonlinear saturation stages (Layzer 1955; Goncharov 2002), increasingly more research
interests are being focused on the subsequent highly nonlinear evolution of the instability
after the nonlinear saturation stage. Previous experiments (Wilkinson & Jacobs 2007) and
numerical simulations (Betti & Sanz 2006; Ramaprabhu et al. 2006; Banerjee et al. 2011;
Ramaprabhu et al. 2012; Yan et al. 2016; Hu et al. 2019; Bian et al. 2020) have shown that
the elegant potential model (Goncharov 2002) analytically predicting the bubble saturation
velocity becomes inapplicable when RTI achieves the highly nonlinear evolution. In
ablative RTI, Betti & Sanz (2006) revealed that attributed to vorticity accumulation inside
the bubble resulting from the vorticity convection off the ablation front, the bubble
is re-accelerated to velocities well above the saturation value. They have successfully
described the bubble re-acceleration (RA) behaviours by introducing the vorticity to
improve the saturation velocity model. It is also found that a similar phenomenon occurs in
classical RTI at low Atwood numbers, where the secondary Kelvin–Helmholtz instabilities
are responsible for vorticity generation leading to bubble RA (Ramaprabhu et al. 2006,
2012; Hu et al. 2019), and the Betti–Sanz model is proven again to reliably describe
the RA behaviours. Bian et al. (2020) conducted a systematic analysis of the effects
of perturbation Reynolds number Rep and Atwood number AT on the highly nonlinear
evolution of RTI using fully compressible simulations with uniform background density.
Their main conclusions are that the bubble re-accelerates to speeds above the saturation
velocity when Rep is sufficiently large, and increasing AT with Rep fixed suppresses the
bubble front development resulting from that the longer travel distances for vortices to
enter the bubble tip region at higher AT lead to the dissipative attenuation of vortices for a
fixed Rep.

Isothermal stratification has complicated effects on the compressible RTI flows,
although its influence on highly nonlinear bubble evolution has not been well studied.
Specifically, isothermal stratification can either suppress or enhance the growth of RTI
at the nonlinear saturation stage, depending upon the value of AT at the interface
(Reckinger, Livescu & Vasilyev 2012, 2016; Luo et al. 2020; Fu et al. 2022). As the
hydrostatic and thermal equilibriums are initialised consistently in numerical simulations,
the commensurate density stratification suppresses the bubble growth for small AT by
reducing the buoyancy driving the bubble (Reckinger et al. 2012, 2016). Luo et al.
(2020) revealed that the enhancement of bubble growth for high AT is related to the
expansion–compression effect (i.e. flow compressibility effect). Fu et al. (2022) further
proposed a modified buoyancy-drag model to interpret the enhancement of bubble growth
at the nonlinear saturation stage. For high AT , density stratification reduces the drag on the
bubble greatly whereas the buoyancy is relatively slightly, which makes the rising bubble
compress the heavy fluid ahead of the fronts and enhance the bubble growth (Fu et al.
2022). It is worth noting that flow compressibility becomes dominating in compressible
RTI of strong stratification and high AT due to the compression of heavy fluid exerted by
the rising bubble. Furthermore, flow compressibility is critical to the RTI evolution, such
as converting the internal energy into the kinetic energy of RTI (Zhao et al. 2020b; Luo &
Wang 2021; Zhao, Betti & Aluie 2022) and resulting the asymmetries in the RTI growth
(Wieland et al. 2019).
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Bubble re-acceleration behaviours in compressible RTI

Motivated by the aforementioned findings, the goal of this work is to find the effects
of flow compressibility on the highly nonlinear evolution of the stratified compressible
RTI, with special interest directed to answer the following questions. Can similar bubble
RA behaviours occur in a stratified compressible RTI? Of special interest, how will flow
compressibility coupled with vorticity accumulation set in the bubble RA? Towards this
goal, direct numerical simulation (DNS) of two-dimensional (2-D) single-mode stratified
compressible RTI is performed to examine the highly nonlinear bubble growth behaviour
via increasing the stratification strength at different AT values. The present focus on initial
stratification strength is intended to reveal the effects of flow compressibility on RTI
evolution.

2. Numerical simulations

2.1. Governing equations
According to the previous studies (Wieland et al. 2019; Fu et al. 2022), the perturbation
wave length (λ∗), initial temperature (T∗

I ), density (ρ∗
I ) and the isothermal speed of sound

(U∗
I ≡ √

p∗
I /ρ

∗
I ) at the interface are chosen as the characteristic scales. The initial pressure

p∗
I can be obtained from the ideal gas equation of state, i.e. p∗

I = ρ∗
I R∗T∗

I /[(W∗
h + W∗

l )/2],
where W∗

h and W∗
l represent the molar masses of the heavy and light fluids, respectively,

and R∗ is the universal gas constant. The dimensional physical quantities at the initial
interface are denoted by the subscript ‘I’ and the superscript ‘*’. The dimensionless
governing equations read as

∂ρ

∂t
+ ∂(ρui)

∂xi
= 0, (2.1)

∂(ρui)

∂t
+ ∂(ρuiuj)

∂xj
= − ∂p

∂xi
+ 1

Re
∂σij

∂xj
− Ma2ρδi2, (2.2)

∂(ρe)
∂t

+ ∂[(ρe + p)ui]
∂xi

= 1
Re

∂

∂xi
(σijuj + qT

i + qY
i ) − Ma2ρu2, (2.3)

∂(ρYh)

∂t
+ ∂(ρYhui)

∂xi
= 1

ReSc
∂

∂xi

(
ρD

∂Yh

∂xi

)
, (2.4)

where ρ is the fluid density, ui is the velocity component in the xi direction, i.e. (u1, u2) =
(u, v) with (x1, x2) = (x, y), e = CvT + uiui/2 denotes the specific total energy with Cv

being the specific heats at constant volume, Yh = ρh/ρ is the species mass fraction of
heavy fluid and Yl = 1 − Yh is the species mass fraction of light fluid, the pressure p is
calculated by the dimensionless ideal gas equation of state p = ρT/W and the molar mass
of fluid W is calculated by 1/W = Yh/Wh + Yl/Wl and δij is the Kronecker symbol. The
shear stress tensor is obtained as

σij = μ

(
∂ui

∂xj
+ ∂uj

∂xi

)
− 2μδij

3
∂uk

∂xk
, (2.5)

where the viscosity coefficient μ = (T)3/2(1 + c)/(T + c) is computed by the Sutherland
law with c = 124/Tr and Tr being the reference temperature. The heat flux for the thermal
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(qT
i ) and interspecies mass (qY

i ) diffusions (Li et al. 2019), are defined as

qT
i = γ κ

(γ − 1)Pr
∂T
∂xi

, qY
i =

∑
m=h,l

ρDCpmT
Sc

∂Ym

∂xi
, (2.6a,b)

where κ is the heat conduction coefficient, γ is the ratio of specific heat, D is the diffusion
coefficient and Cpm is the constant-pressure specific heat with m = h, l denoting the heavy
and light fluids. The fluid properties are defined as linear combinations of the individual
species’ properties weighted by the mass fractions, for example, Cv = ∑

m=h,l CvmYm.
The dimensionless parameters in the governing equations (2.1)–(2.4) are the Mach

number Ma, the Reynolds number Re, the Schmidt number Sc and the Prandtl number
Pr, defined by

Ma =
√

g∗λ∗

p∗
I /ρ

∗
I
, Re = ρ∗

I U∗
I λ

∗

μ∗
I

, Sc = μ∗
I /ρ

∗
I

D∗
I

, Pr = C∗
pI

μ∗
I

κ∗
I

, (2.7a–d)

respectively. Here, the Mach number characterises the strength of the isothermal
background stratification (Livescu 2004; Reckinger et al. 2012, 2016).

2.2. Initialisation and numerical methods
Owing to the RTI initiated with a hydrostatic equilibrium (ui = 0), the momentum
equation (2.2) can be integrated analytically with the ideal gas equation of state and the
isothermal assumption (T = 1) (Reckinger et al. 2012, 2016; Hu et al. 2019) to give

ρH
h,l = (1 ± AT) exp[−Ma2(1 ± AT)y], (2.8)

pH
h,l = exp[−Ma2(1 ± AT)y], (2.9)

where AT = (W∗
h − W∗

l )/(W∗
h + W∗

l ) is the Atwood number. To smooth the interface
density jump, the error function is introduced (Reckinger et al. 2012; Hu et al. 2019).

A single-mode perturbation, I(x) = a0 cos(2πx), where a0 = 0.02λ is the perturbation
amplitude (Luo et al. 2020), is introduced at the initially flat interface positioned at y = 0
to launch the RTI. In the present study, we set a range of Mach numbers (Ma = 0.1 ∼ 0.7)
and Atwood numbers (AT = 0.1 ∼ 0.9) to examine the bubble RA behaviours with various
stratification strengths and density ratios. As pointed by Bian et al. (2020), the perturbation
Reynolds number (Rep ≡ ρ∗

I λ
∗√AT/(1 + AT)g∗λ∗/μ∗

I ) has a significant influence on the
bubble RA behaviours. For Rep � 1000, the bubble re-accelerates transiently but then
decelerates at small AT � 0.25. Nevertheless, for Rep � 6000, the bubble re-accelerates
robustly at late times when AT is small. To this end, the perturbation Reynolds number
Rep is chosen as 1500 and 10 000, high enough for the RTI flow to evolve into the RA
stage and to study the influence of Rep. Other parameters in the governing equations
(2.1)–(2.4) are fixed as Pr = 0.72, Sc = 1 and γ = 1.4. The computational domain sizes
are set as Lx × Ly = [0, 1] × [−10, 10] for Ma = 0.1 ∼ 0.5, Lx × Ly = [0, 1] × [−10, 8]
for Ma = 0.6 and Lx × Ly = [0, 1] × [−10, 6] for Ma = 0.7. In addition, the bubble
height hb refers to the distance from y = 0 to the bubble tip location yb where the average
mass fraction value Ȳh along the x-axis equals 99 % (Wieland et al. 2019), and the bubble
velocity Vb is computed from the derivative of the bubble height to time (Vb = dhb/dt).
To compare the nonlinear bubble behaviours in the cases of different parameter settings,
the bubble velocity and time in the following discussions are rescaled to ensure that the
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Figure 1. The bubble velocity Vb versus time for (a) weak (Ma = 0.1) and (b) strong (Ma = 0.7) stratification
strengths. The solid and dashed lines in each panel represent the bubble velocities with Rep = 10 000 and
Rep = 1500, respectively. The horizontal black long dashed line in each panel represents the bubble saturated
velocity Vt predicted in potential flow models.

bubbles have the same scaled velocity when entering the nonlinear stage at the same scaled
time. To this end, we follow the recent work (Bian et al. 2020; Luo et al. 2020) using a time
scale

√
λ/(ATg) that is obtained by the RTI linear growth rate γ = √

ATgk (Rayleigh 1882;
Taylor 1950) to characterise the time, for which the coefficient

√
2π introduced by the

wavenumber k = 2π/λ is left out. As for the scaling of the bubble velocity, the saturated
velocity Vt = √

ATgλ/[3π(1 + AT)] is used neutrally as the characteristic velocity while
leaving out the coefficient

√
1/(3π), as done by Bian et al. (2020) and Fu et al. (2022).

The high-fidelity DNS has been performed to solve the governing equations (2.1)–(2.4)
in the present study. Specifically, the convection and diffusion terms are discretised by the
seven-order WENO scheme and eight-order central difference scheme, respectively, and
the third-order Runge–Kutta scheme is employed for the time integration (Zhao, Liu &
Lu 2020a; Zhao et al. 2020b; Fu et al. 2022). Periodic boundary conditions are applied
along the x-direction, and the variables, i.e. ρ, ui, e and Yh, are fixed at their initialised
values at the y-direction boundaries (Reckinger et al. 2012; Hu et al. 2019; Hu, Zhang
& Tian 2020; Luo et al. 2020). To meet the requirement for the mesh Grashoff numbers
(GrΔ = 2ATgΔ3/ν2

I ) below 1 (Cabot & Cook 2006; Bian et al. 2020; Luo & Wang 2021),
the uniform square mesh sizes Δ for Rep = 1500 and 10 000 are set as 0.005 and 0.00125,
respectively.

In addition, we have carefully examined the physical model and numerical approach
used in this study and have verified that the calculated results are reliable in our previous
work on compressible Rayleigh–Taylor flows (Zhao et al. 2020a,b, 2021; Fu et al. 2022).

3. Bubble RA behaviours

To investigate the bubble RA behaviours in stratified compressible RTI, the bubble velocity
Vb is plotted in figure 1 at different AT and Rep for weak (Ma = 0.1) and strong (Ma = 0.7)
stratification strengths. At early time, Vb increases exponentially for all cases and reaches
the nonlinearly saturated value Vt predicted by potential flow models at t ≈ 1.5. After
that, the bubble undergoes RA so that Vb is well above Vt except for the cases with Ma =
0.7 and AT = 0.1. However, the effects of AT on the RA behaviour are quite different
for Ma = 0.1 and 0.7. For weak stratification (Ma = 0.1), increasing the AT from 0.1 to
0.9 while keeping Rep fixed at 1500 or 10 000 reduces the maximum value of Vb (see
figure 1a), which is consistent with the effect of AT in unstratified RTI where the RA
results from vorticity accumulation inside the bubble (Bian et al. 2020). The effect of AT
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Figure 2. The density profiles along the vertical lines across the bubble tip (x = 0) with Rep = 10 000 for
(a) Ma = 0.1, AT = 0.9, (b) Ma = 0.1, AT = 0.1, (c) Ma = 0.7, AT = 0.9 and (d) Ma = 0.7, AT = 0.1. The
circle marked on the density profile denotes the vertical position of the bubble tip and the square represents the
position of the spike tip at each moment.

is attributed to the fact that the sites of vortex generation around the sinking spike drift
further away from the bubble tip at higher AT , corresponding to a longer travel distance
so that vortices obtain an attenuated dissipation before entering the bubble tip region for a
fixed Rep (Bian et al. 2020). Unlike the effect of AT on the bubble RA behaviours at Ma =
0.1, for strong stratification (Ma = 0.7), it is clearly seen in figure 1(b) that the bubble
accelerates more robustly at higher AT and decreasing AT from 0.9 to 0.1 suppresses the
bubble front development. In particular, at low AT (e.g. AT = 0.1), Vb starts to decrease
after reaching the saturated value.

These interesting behaviours of the bubble at high Ma can be explained by examining
the balance between the buoyancy and drag forces via the modified buoyancy-drag model
(BDM) proposed in our previous study (Fu et al. 2022). Note that, for the unstratified
RTI, balance is realised for the buoyancy and drag forces resulting in a saturated bubble
velocity at the potential stage, for example, at the critical moment t ≈ 1.5 when hb ≈ 0.2λ
(Wei & Livescu 2012). Therefore, the variations of the buoyancy and drag forces estimated
by the modified BDM with respect to their unstratified counterparts are used to account
for the bubble velocity characteristics. As indicated in figure 2, as the bubble height grows
at high Ma = 0.7, the density difference at the bubble tip decreases corresponding to a
decrease in the buoyancy driving the bubble compared with the unstratified counterparts;
this situation also happens to the drag force due to the decrease of the heavy fluid density
in front of the bubble. For example, in the high-Ma stratified RTI of AT = 0.9 at t ≈ 1.5,
the modified BDM estimates a decrease extent of 7.47 % in the buoyancy and of 10.52 % in
the drag compared with its unstratified counterpart; in the case of AT = 0.1, the decrease
extent is estimated as 7.55 % for the buoyancy and 6.27 % for the drag. Accordingly, the
growing bubble obtains a late-time robust acceleration at high AT = 0.9 whereas there is
a deceleration at low AT = 0.1. Thus, decreasing AT from 0.9 to 0.1 suppresses the bubble
front development, as observed in figure 1(b).

Figure 1 also presents a striking dependence of bubble RA behaviours on Rep at
Ma = 0.1 and 0.7. For weak stratification (Ma = 0.1), there are two different trends at
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Figure 3. Phase diagram of Ma–AT illustrating the bubble RA with (a) Rep = 10 000 and (b) Rep = 1500.
Red and blue symbols indicate that the bubble RA mechanism is dominated by vorticity accumulation and flow
compressibility, respectively.

AT = 0.1 for the Vb development when Rep = 1500 and 10 000. Specifically, for AT = 0.1
in figure 1(a), Vb of Rep = 1500 starts to decay after accelerating to twice the saturated
velocity, whereas Vb of Rep = 10 000 undergoes a further RA at t ≈ 6. In addition,
figure 1(a) shows a clear trend of more intense fluctuations in Vb for Re = 10 000 with
respect to Rep = 1500 at a fixed AT . This significant dependence of RA behaviours on
Rep also appears in unstratified RTI, and Bian et al. (2020) attributes it to less vorticity
dissipation at higher Rep which leads to more vortices accumulating inside the bubble tip
resulting in higher vorticity and, in turn, Vb fluctuating in time. In contrast to the great Vb
dependence on Rep at Ma = 0.1, the Vb values are almost the same in the cases of strong
stratification for Rep = 1500 and 10 000 (see figure 1b) at a fixed AT , indicating a weak
influence of Rep on Vb.

To further elucidate the RA behaviours in stratified compressible RTI, the late-time
behaviour of the bubble is classified into three phases in figure 3 according to Bian et al.
(2020): robust RA, transient RA and non-RA. A robust RA phase denotes that the bubble
re-accelerates robustly at late times (e.g. Ma = 0.1, AT = 0.1 with Rep = 10 000 and
Ma = 0.7, AT = 0.9 with Rep = 1500 or 10 000); in the transient RA phase, a bubble
re-accelerates transiently but then decelerates (e.g. Ma = 0.1, AT = 0.1 with Rep = 1500
and Ma = 0.7, AT = 0.5 with Rep = 1500 or 10 000); in the non-RA phase, bubble
velocity starts to decay before reaching the saturated value (e.g. Ma = 0.7, AT = 0.1 with
Rep = 1500 or 10 000). Figure 3(a) summarises the following findings in a phase diagram
in the (Ma, AT ) space with Rep = 10 000. (1) For Ma = 0.1, the late-time bubble is in the
robust RA phase at small AT � 0.3 and becomes the transient RA phase as AT is increased
to a larger value. (2) When Ma = 0.2, the late-time bubble is in the robust RA phase at
large AT � 0.7. (3) For 0.3 � Ma � 0.4, increasing AT at a constant Rep leads to a phase
change for the late-time bubble from transient RA to robust RA. (4) For higher Ma � 0.5,
the late-time bubble at low A = 0.1 is in the non-RA phase. Increasing AT changes the
bubble phase from non-RA to transient RA and finally to robust RA. For comparison,
figure 3(b) presents the Ma-AT phase diagram illustrating the bubble RA with Rep = 1500.
In contrast to the cases of Rep = 10 000, the bubble phase of Rep = 1500 changes from
robust RA to transient RA at small Ma and AT , but unaltered at high Ma � 0.4. The effects
of AT and Rep on the bubble RA behaviour at strong stratification differs from those at
weak stratification, indicating that a novel mechanism coupling vorticity accumulation
and flow compressibility sets in the later-time bubble RA for the stratified compressible
RTI at high Ma.
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Figure 4. (a,c) Contour plots of compressive (vc, left half) and the solenoidal (vs, right half) components of
vertical velocity v and (b,d) profiles of v, vc, and vs along the vertical lines across the bubble (x = 0, denoted by
the solid lines) and spike (x = 0.5, denoted by dashed lines) tips with Rep = 10 000 for (a,b) AT = 0.1, Ma =
0.1 and (c,d) AT = 0.9, Ma = 0.7 at t = 4 when the bubble is in the robust RA phase. The dark lines in panels
(a,c) represent the heavy/light fluid interface where Yh = 0.5.

4. Bubble RA model

The bubble RA in quasi-incompressible RTI is driven by vorticity accumulation inside
the bubble based on some studies (Ramaprabhu et al. 2006, 2012; Hu et al. 2019; Bian
et al. 2020). For stratified compressible RTI, our most recent work shows that drag
reduction on the bubble caused by stratification leads to the compression of the heavy
fluid in front of the bubble, namely, the increased flow compressibility becomes more
important to enhance the bubble growth (Fu et al. 2022). Here, to clarify the role that
flow compressibility plays in the RA mechanism, we employ the velocity Helmholtz
decomposition (Wang et al. 2013), i.e.

ui = us
i + uc

i , (4.1)

where (us
1, us

2) = (us, vs) and (uc
1, uc

2) = (uc, vc) are the solenoidal and compressive
(irrotational) components, respectively. The clear flow physics are indicated by the contour
plots of vc and vs with Rep = 10 000 for the case Ma = 0.1, AT = 0.1 (figure 4a) and
Ma = 0.7, AT = 0.9 (figure 4c) at t = 4 when the bubble is in the robust RA phase. For
weak stratification of AT = 0.1, it is clearly seen in figure 4(a) that abundant vortices
generated at the spike’s interface penetrate into the bubble tip and vs is dominant to v

inside the bubble (see figure 4b). The vertical compressive velocity vc in figure 4(a) is
almost zero over the whole field, indicating that the effects of flow compressibility can
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be ignored for the case with Ma = 0.1 and AT = 0.1. However, for strong stratification of
AT = 0.9, vc is significant across the bubble tip (see figure 4d) caused by the compression
of the rising bubble on the heavy fluid in its front (Fu et al. 2022). It is also noted in
figure 4(c) that vs near the bubble tip is negligible compared with vc, because it is difficult
at high AT for the vortices generated at the spike interface to be convected into the bubble
front (Bian et al. 2020). In addition, figure 4(c) presents that vc near the bubble tip is
almost uniform along the horizontal direction.

The analysis shows that both vorticity accumulation and flow compressibility work
as the mechanisms driving the bubble RA in stratified compressible RTI. In order to
determine which of these two mechanisms is dominant, based on the fact that the
bubble velocity (Vb = dhb/dt) is equal to the vertical velocity of fluid at the bubble tip
(vb) (Goncharov 2002), Vb can be decomposed into Vs

b and Vc
b by setting Vs

b = vs
b and

Vc
b = vc

b. Here, vs
b and vc

b denote the solenoidal and compressive components of vb, which
are related to the vorticity and the dilatation, respectively. Furthermore, the values of
〈Vs

b − Vs
b|ts〉 and 〈Vc

b − Vc
b|ts〉 correspond to the contributions of vorticity accumulation

and flow compressibility at the bubble RA stage, respectively. Here, 〈·〉 denotes the time
average from the moment (ts) when the bubble velocity reaches the saturation value of the
unstratified RTI to the end of simulation, Vs

b|ts and Vc
b|ts denote the values of Vs

b and Vc
b at

time ts, respectively. It is clearly shown in figure 3 that flow compressibility dominates the
bubble RA behaviour in the cases of strong stratification and high AT whereas vorticity
accumulation dominates at small Ma and small AT . Therefore, the AT effect and Rep effect
at strong stratification are different from those at weak stratification (see figure 1).

Next, we attempt to propose a model to describe the bubble RA behaviours in
stratified compressible RTI, quantifying the effects of vorticity accumulation and flow
compressibility. As different mechanisms, Vs

b and Vc
b need to be modelled separately.

Bian et al. (2020) modified the RA model (Betti & Sanz 2006) by adding an efficiency
factor η = 0.45 to the vorticity term to account for the attenuation of vortices as they
travel through the bubble tip region and predict well the bubble RA behaviours driven by
vorticity accumulation. In that, Vs

b in stratified compressible RTI can also be modelled as

Vω
b =

√
g(1 − rd)

Cdk
+ ηrd

ω2
0

4k2 . (4.2)

Here, Cd = 3 for two dimensions, ω0 = ∫
V ρ|ω| dV/

∫
V ρ dV , ω = ∂v/∂x − ∂u/∂y and V

is the volume inside the bubble from the bubble front to a vertical distance of 2/k below (k
is the wavenumber). Here rd = ρ′

l/ρ
′
h is the density ratio where ρ′

h is the maximum density
at the bubble vertex and ρ′

l is average density in the volume V (Betti & Sanz 2006). It is
shown in figure 5(a,d,g) that the model Vω

b agrees well with Vs
b evaluated from DNS.

Note that the Vω
b model can also predict the suppression effects at small AT caused by the

stratification on the bubble growth (e.g. the case at AT = 0.1 and Ma = 0.7).
For Vc

b caused by flow compressibility, the dilatation θ (i.e. divergence of velocity) has
been introduced naturally to the model. According to the Helmholtz decomposition, θ =
∂uc

i /∂xi. By employing Green’s formula, integrating θ yields

�
S
θ dS =

∮
∂S

uc dy − vc dx. (4.3)

Here, S is the integral region above the bubble tip (yb = hb) where the heavy fluid is
compressed by the bubble, i.e. S = [0, Lx] × [yb, y+∞], where y+∞ is referred to as any
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Figure 5. Values of Vs
b, Vc

b and Vb obtained from the DNS (symbols) and Vω
b , Vθ

b and Vω,θ
b calculated by the

models (lines) with Rep = 10 000 versus time for (a–c) Ma = 0.1, (d–f ) Ma = 0.4 and (g–i) Ma = 0.7. The
horizontal black long dashed line in each panel represents the bubble saturated velocity Vt predicted in potential
flow models.

location far away from the bubble tip where the fluid keeps the hydrostatic equilibrium and
thus the fluid velocity is zero. Therefore, the upper boundary of the computational domain
with the fluid velocity being almost zero is used as y+∞. Considering vc at the height of the
bubble tip is almost uniform along the periodic x-direction and thus can be approximated
as Vc

b , the right-hand side of (4.3) is approximated as −LxVc
b . The left-hand side of (4.3)

can be expressed by the spatial average dilatation θ̄ in the region S, i.e.
�

S θ dS = hLxθ̄ ,
where h = y+∞ − yb is the height of the region S. Thus, Vc

b is modelled as

Vθ
b = −hθ̄ . (4.4)

Figure 5(b,e,h) shows excellent agreement between the model prediction (Vθ
b ) with the

DNS result (Vc
b). Furthermore, for a given AT , Vθ

b at the RA stage obtains a remarkable
increase as Ma is increased, resulting from that the stronger density stratification at higher
Ma leads to a greater reduction in drag acting on the bubble and in turn more intense
compression of the bubble on the heavy fluid ahead.

By summing the equations (4.2) and (4.4), a novel model describing the bubble RA
behaviours in stratified compressible RTI can be obtained as

Vω,θ
b =

√
g(1 − rd)

Cdk
+ ηrd

ω2
0

4k2 − hθ̄ . (4.5)

Figure 5(c, f,i) shows that the model (4.5) captures well the bubble velocity development
after the potential stage (t ≈ 1.5). This agreement further supports the interpretation that
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both vorticity accumulation inside the bubble tip and flow compressibility are responsible
for the bubble RA.

Although our discussion is based on 2-D simulations, the uncovered mechanisms of
bubble RA are straightforwardly applicable to the three-dimensional (3-D) compressible
RTI, as the model (4.5) can also be extended to the 3-D flows by modelling the Vs

b and Vc
b

separately. For 3-D RTI Vs
b can be modelled as the same form of (4.2) in which Cd = 1

(Betti & Sanz 2006; Yan et al. 2016). On the other hand, Vc
b related to flow compressibility

for 3-D situation can be modelled by�
V ′ θ dV =

�
∂V ′ uc dy dz + vc dz dx + wc dx dy. (4.6)

Here, Gauss’s law is employed along with the Helmholtz decomposition, θ = ∂uc
i /∂xi, and

the gravity direction is fixed along the y-direction. We use V ′ to denote the integral volume
above the bubble tip where the heavy fluid is compressed by the bubble, i.e. V ′ = [0, Lx] ×
[yb, y+∞] × [0, Lz]. Considering that vc at the height of the bubble tip is almost uniform
along the periodic x- and z-directions and, thus, can be approximated as Vc

b , the right-hand
side of (4.6) is approximated as −LxLzVc

b . Similar to the 2-D case, the left-hand side of
(4.6) is expressed by the spatially averaged dilatation θ̄ in the volume V ′, i.e.

�
V ′ θ dV =

hLxLzθ̄ , where h = y+∞ − yb is the height of the volume V ′. Thus, Vc
b is also modelled as

Vθ
b = −hθ̄ . To this end, the model Vω,θ

b is extended to the 3-D compressible RTI and has
the same form as its 2-D counterpart, i.e. (4.5).

To verify that the model Vω,θ
b is applicable to the 3-D case, the 3-D stratified

compressible RTI for Rep = 1500 has been simulated in three typical cases: (1) Ma =
0.1, AT = 0.1 corresponding to the bubble RA determined by vorticity accumulation; (2)
Ma = 0.7, AT = 0.9 corresponding to the bubble RA dominated by flow compressibility;
(3) Ma = 0.7, AT = 0.1 corresponding to the bubble deceleration. Here, the computational
domain is set as Lx × Ly × Lz = [0, 1] × [−5, 5] × [0, 1] and the uniform cubic mesh
size Δ = 0.01 is used. Considering that the horizontal component of vorticity accelerates
the bubble growth (Yan et al. 2016), the vorticity term in (4.5) is calculated as ω0 =∫

V ρ

√
ω2

x + ω2
z dV/

∫
V ρ dV for 3-D cases, where ωx and ωz are the x- and z-directions

components of vorticity, respectively. The efficiency factor of the vorticity term in (4.5)
is selected as η = 0.85 for 3-D cases. It is clearly seen in figure 6 that Vω

b and Vθ
b agree

well with Vs
b and Vc

b evaluated from the simulations, respectively, and the current model
Vω,θ

b also captures well the 3-D bubble velocity development after the potential stage
(t ≈ 2.0). This agreement further supports that the two mechanisms accounting for the
bubble RA are applicable to the 3-D compressible RTI. To this point, the model Vω,θ

b
provides a theoretical basis for the systematic study of nonlinear behaviours for 3-D
stratified compressible RTI in the future.

5. Concluding remarks

In summary, highly nonlinear bubble evolution occurring in a single-mode stratified
compressible RTI has been reported via DNS. Specifically, the bubble RA behaviours
are found except in the cases with high Ma quantifying the isothermal stratification
and small AT . For small Ma, both decreasing AT and increasing Rep make the bubble
RA more intense, which is the same as that in the quasi-incompressible RTI with
uniform background density. However, it is interesting that for high Ma, increasing AT
enhances the bubble development and Rep has little effect on the bubble RA behaviour.
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Figure 6. Values of Vs
b, Vc

b and Vb obtained from the simulations (symbols) and Vω
b , Vθ

b and Vω,θ
b calculated by

the 3-D models (lines) with Rep = 1500 versus time for three typical cases. The horizontal black long dashed
line in each panel represents the 3-D bubble saturated velocity predicted in potential flow models.

This flow phenomenon is ascribed to flow compressibility which results from the
background stratification and sets in the bubble RA as a novel mechanism coupled with
vorticity accumulation inside the bubble for stratified compressible RTI. Inspired by the
aforementioned flow physics, a novel model has been proposed via the introduction of
the dilatation to account for the effects of flow compressibility, into the classical RA
model that only takes into account vorticity accumulation. This improved model performs
reliably to capture the bubble velocity development after the potential stage in the stratified
compressible RTI.

Note that the current novel bubble RA model which inherits the illuminating idea of
the Betti–Sanz model (Betti & Sanz 2006), still requires the simulation and thus is not
predictive. Nevertheless, it succeeds in quantifying the importance of flow compressibility
and vorticity accumulation to the bubble growth in stratified compressible RTI, presenting
a functional description of bubble velocity. One should keep in mind that, due to
the challenging complexity and high nonlinearity of the late-time bubble behaviour in
compressible RTI, a predictive model to describe the bubble RA is still lacking. To this
point, we believe that the bubble RA mechanism quantified in this extended model would
be instructive to the research community working to develop a predictive model for the
nonlinear bubble behaviour.
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