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X-band T/R-module front-end based

on GaN MMICs
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Amplifiers for the next generation of T/R modules in future active array antennas are realized as monolithically integrated
circuits (MMIC) on the basis of novel AlIGaN/GaN (is a chemical material description) high electron mobility transistor
(HEMT) structures. Both low-noise and power amplifiers are designed for X-band frequencies. The MMICs are designed,
simulated, and fabricated using a novel via-hole microstrip technology. Output power levels of 6.8 W (38 dBm) for the
driver amplifier (DA) and 20 W (43 dBm) for the high-power amplifier (HPA) are measured. The measured noise figure
of the low-noise amplifier (LNA) is in the range of 1.5 dB. A T/R-module front-end with mounted GaN MMICs is designed
based on a multi-layer low-temperature cofired ceramic technology (LTCC).
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Il. INTRODUCTION

Active electronically scanned array (AESA) radars are increas-
ingly being favored over conventional mechanically scanned
systems. The achievable radar range of such an AESA radar
is mainly determined by the output power and the noise
figure of the antenna. Both properties can be improved
using GaN technology. T/R modules are key elements in
active phased-array antennas for radar and electronic
warfare applications [1]. Inside these T/R modules two main
building blocks are the amplifier chain in the transmit path
and the low noise amplifier (LNA) in the receive path.

In most of today’s T/R modules GaAs monolithically inte-
grated circuit (MMIC) amplifiers are used with typical output
power levels in the range of 5-10 W [2-4]. Higher output
power levels, broader bandwidth, increased power-added
efficiency (PAE) values, and higher operating voltages are
advantages for performance improvement to meet future
requirements. For these applications the use of amplifiers
based on AlGaN/GaN is a very promising approach [5-8].
With the GaN technology, high-power amplifiers (HPAs) with
higher output power compared to GaAs MMICs are already
demonstrated [9-11]. With limited prime power and also
limited cooling capacity, as often existing in military systems,
another important parameter is the PAE of the amplifier. Due
to the higher breakdown voltage of the GaN device compared
to a GaAs device, the supply voltage can be significantly
increased. This leads to an additional increase in efficiency on
system level, because of lower losses in the power supply.
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Besides the noise figure performance the robustness against
high input power overdrive is also a key issue for the receive
path in a T/R module. The AlGaN/GaN technology with its
high breakdown voltage is very well suited for robust low
noise applications [12,13].

To satisty these future needs, a T/R-module front-end
composed of novel GaN MMICs and multi-layer packaging
technology is designed.

In this paper the design and the achieved performance of
single GaN MMIC amplifiers and of a whole T/R-module
front-end based on these GaN MMICs are presented.

The MMIC and front-end design, simulation, and
measurements are performed at European Aeronautic
Defence and Space (EADS) Defence Electronics, Ulm. The
wafer and MMIC fabrication is done at the Fraunhofer
Institute of Applied Solid-State Physics, Freiburg.

II. GaN MMIC TECHNOLOGY AND
MODELING

The AIGaN/GaN HEMT MMIC technology is based on multi-
wafer growth of single heterojunction devices on 3-in s.i. SiC
substrates by metal organic chemical vapor deposition
(MOCVD). The 3-in HEMT technology uses electron-beam-
defined gates with 0.25-pum gate-length including fieldplates
for high-power operation.

The two-terminal breakdown voltages of the power HEMT's
are BV > 100 V. Typical output power densities are beyond
5 W/mm at 10 GHz with an associated drain efficiency n >
50% at Vpg = 28 V for high efficiency operation. For low-noise
operation, the AIGaN/GaN HEMTs yield a minimum noise
figure of NF < 0.8 dB at f= 10 GHz and Vps=10V.

After the front side processing, the full 3-in SiC wafer is
thinned to 100 pm thickness and a via-hole back side process
is applied. In Fig. 1 photo of the cross-section is shown. The via-
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Fig. 1. Photo of the cross-section of a 100-pum-thick SiC wafer substrate, with a
HEMT structure on the front side, via-holes, and back side metallization.

holes are well covered by metal from the back side, which
ensures good grounding of the front side elements.

For the design a library of passive microstrip components is
available, including all technology-specific elements like capaci-
tors, resistors, and inductances. The large-signal GaN HEMT
modeling is based on an in-house two-dimensional voltage-lag
model to appropriately describe thermal effects and low-
frequency dispersion, and their impact on gain and PAE [14].

1. DRIVER AMPLIFIER MMIC

The MMIC driver amplifier (DA) is designed as a two-stage
amplifier with one transistor 8 x 60 wm gate-finger width in
the first stage and one transistor 8 X 125 pm gate-finger
width in the second stage (see Fig. 2). The amplifier is designed
for an impedance of 50 ohm at the input and output ports and
for operation in linear mode, not using the whole available
output power of the transistor. One design objective was to
provide enough input power for two HPAs in parallel configur-
ation in the frequency band from 8 to 12 GHz. Although this
amplifier will be used for operation in linear mode, the output
matching is designed using harmonic balance simulation.

In Fig. 3 a whole wafer mapping of the measured small
signal gain is shown. Comparing the simulated small signal
gain at Vpg= 15 V with the on-wafer measurements, a very
good compliance is observed. The uniformity is very good
over the entire 3-in wafer.

Fig. 2. Photo of a GaN DA MMIC chip. Chip size: 3 mm x 2 mm.
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Fig. 3. Measured on-wafer small signal gain versus frequency of the GaN DA
MMIC at Vpg = 15 V compared with the simulated performance.

The maximum measured output power is higher than
38 dBm while operating in saturation mode with up to 5-dB
gain compression (Fig. 4). This output power leads to a
power density of 7.4 W/mm at the transistor level. The
measured saturated output power is even a little bit higher
than that predicted by the simulation. The achieved output
power is sufficient for driving one or two HPAs in the fre-
quency range between 8.5 and 14 GHz, while operating the
DA below the 1-dB compression point.

Iv. HIGH-POWER AMPLIFIER MMIC

The MMIC HPA is designed as a two-stage amplifier based on
four transistors with 8 x 125 pm gate-finger width in the
second stage and two transistors with the same size in the
first stage (see Fig. 5). The amplifier is designed for an impe-
dance of 50 ohm at input and output ports. The output com-
biner is optimized for maximum output power in the
frequency range from 8.5 to 11 GHz.

Previous intensive load-pull simulations have been per-
formed to find the optimum load impedance for maximum
output power.
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Fig. 4. Comparison of the simulated and measured output power versus
frequency of the GaN DA MMIC at 1dB gain compression and at
saturation with Vpg= 30V and Vgg= —4.9 V.
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Fig. 5. Photo of a GaN HPA MMIC chip. Chip size: 4 mm X 3 mm.

For electrical stabilization of the second-stage RC networks
close to all transistor inputs are used. Odd-mode stability
analysis has been performed for the parallel transistor struc-
ture. The first-stage transistors are stabilized by the gate bias
circuits. The interstage network and the output combiner
are optimized by electromagnetic simulations of distributed
elements. An improved PAE performance is obtained by the
application of second harmonic short networks at all gates
of the second-stage transistors.

The on-wafer measurement of the small signal gain is indi-
cating a slightly higher slope in the frequency range from 8 to
10 GHz compared to the result obtained by simulation (see
Fig. 6). The uniformity over the entire wafer is again very
good. The output power, gain, and PAE measurement
results in pulsed mode are shown in Fig. 7.

Here, pulse conditions with 50 s pulse length and 10% duty
cycle are used for all pulsed measurements. The maximum
measured output power is 20 W, when biased for class-AB
operation. This output power leads to a power density of
5.7 W/mm at the transistor level. In this case the small signal
gain is about 18 dB and the associated PAE value is 31%.

The small signal gain at Vb= 30 V is higher than 15 dB
over the whole frequency range from 8.5 to 11 GHz
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Fig. 6. Measured on-wafer small signal gain versus frequency of the GaN HPA
MMIC at Vg = 15 V compared with the simulated performance.
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Fig. 7. Measured power performance of the GaN HPA MMIC at 11 GHz with
Vps =30V and Vgg= —5 V. P,,., = 43 dBm and PAE,,,, = 31%.

(see Fig. 8). The simulated small signal gain is more flat for
lower frequencies, as already seen when operating the HPA
with Vpg= 15 V. A part of the measured slope is linked to
a weak input matching at frequencies around 8.5 GHz.
More than 14 W output power is measured over a frequency
range from 8.75 to 11.5 GHz. Again the simulated output
power fits very well with the measurement results.

V. LOW-NOISE AMPLIFIER MMIC

For the designed MMIC LNA the same transistor size of 8 x
30 pm is used for the first and second stage (see Fig. 9). For
this first iteration design the transistor layout was not opti-
mized for low-noise operation. It is similar to the power tran-
sistor layout. The transistor size of the first stage is a trade-off
between low-noise performance and large signal robustness.

To allow a simultaneous noise match and input match over
a sufficiently broad bandwidth, an additional source induc-
tance is used. The design model is based on small signal and
noise parameter measurements of the transistor, without
any inductive feedback.
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Fig. 8. Comparison of the simulated and measured saturated output power
and small signal gain versus frequency of the GaN HPA MMIC. Bias point:
Vps=30Vand Vgg= —5.0 V.
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Fig. 9. Photo of a GaN LNA MMIC chip. Chip size: 3 mm x 2 mm.

For decoupling purpose, but also to increase the robustness
[15], a resistor is used in the gate bias network. This LNA
MMIC was originally designed for transistors with shorter gate
length for the frequency range from 8 to 12 GHz [16]. Using a
new transistor geometry a shift to lower frequencies occurred.

Taking into account the new transistor model a gain
between 15 and 17 dB is simulated in the frequency range
from 6.5 to 10 GHz. The expected noise figure is about 1.5 dB.

Again a very good agreement between simulation and
measurement of the small signal gain exists (see Fig. 10).
The shape of the frequency response is well predicted
through the simulation. The average measured gain is about
1 dB higher than the simulated gain.

In Fig. 11 the simulated and measured noise figure of the
GaN LNA MMIC is shown. The obtained noise figure is very
close to the expected one over the whole frequency band. The
minimum noise figure is only about 1.45 dB. For frequencies
up to 10.5 GHz the noise figure of this GaN LNA is only
0.5 dB worse than the normally used GaAs LNA [17].

Besides the good noise performance the behavior of LNA
with large input power signals is very important for this
type of LNA. The saturated output power of the LNA is
about 26.5 dBm (see Fig. 12). First robustness tests have
been performed up to 6 W input power. At this input power
level the LNA is about 27 dB in compression.

20 T : T - : ! T T

0 1 i i 1 i i i I
5 6 ife 8 9 10 1 12 13 14
Frequency [GHz)

Fig. 10. Measured on-wafer small signal gain versus frequency of the GaN
LNA MMIC at Vg = 15 V compared with the simulated performance.
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Fig. 11. Comparison of the simulated and measured gain and noise figure
versus frequency of the GaN LNA MMIC with Vps=15V and Vgs=
—2.2 V. NF,;,, = 1.45 dBm.

VI. T/R-MODULE FRONT-END
For the front-end a multi-layer low-temperature cofired
ceramic (LTCC) substrate is used. After obtaining first experi-
ence with an amplifier chain on LTCC with GaN MMICs [17]
some modifications are realized. In Fig. 13 the completely
assembled new front-end is shown.

One big challenge is the thermal situation with these GaN
MMICs having a very high-power density compared to
today’s state-of-the-art GaAs MMICs.

Gate Current [mA]

15

Qutput power [dBm)]
=

Input power [dBm]

Fig. 12. Measured output power and gate current versus input power of the
GaN LNA MMIC. Bias Point: Vpg= 15 V and Vgg= —2.2 V.

Fig. 13. Photo of a T/R-module front-end with GaN MMIC chips.
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(b)

Fig. 14. Thermal photos of the GaN MMIC mounted on different substrates. Brighter colors represent higher temperature: (a) LTCC and (b) HTCC.

A first approach was to use AIN high-temperature cofired
ceramic (HTCC) instead of LTCC because of its significantly
higher thermal conductivity. In this case the DA and the two
HPAs were mounted directly on the HTCC substrate in cav-
ities. In Fig. 14 thermal photos of the GaN MMICs are
shown. During the measurement the same dissipation power
was used for both assemblies, the LTCC version (Fig. 14(a))
and the HTCC version (Fig. 14(b)). When mounting the DA
on top of the HTCC substrate, the thermal situation is
improved. The thermal conductivity of HTCC is much higher
than the thermal conductivity of LTCC with thermal via-holes.
But the situation is changing in the case of HPAs. The
thermal situation is dramatically declined compared to the
LTCC version where the HPAs are mounted on a metallic
heatsink.

The favored solution today is using the proven LTCC tech-
nology for T/R modules used in series production and solder-
ing the DA similar to the HPAs on a CuMo heatsink.

The T/R module front-end consists of a whole transmit
path with one DA and two HPAs in parallel, a circulator, a
receive path with LNA and limiter and a GaAs switch combin-
ing both paths. It can be used as a front-end for a software-
defined radar or can be combined with any core chip using
CMOS, SiGe, or GaAs technology.

Besides the RF relevant components, like power splitter
and combiner, also the whole DC control electronics is inte-
grated on the substrate. The control electronics provides the
pulsed 30v drain voltage for the GaN high-power MMICs,
the LNA bias voltages, and the T/R switch control.

For the transmit operation mode the output power, gain,
and PAE measurement results in pulsed mode are shown in
Fig. 15. The maximum measured output power is 32 W. In
this case the small signal gain is about 31 dB and the associ-
ated front-end PAE value is 24%, also taking into account
the dissipation power of the control electronics.

More than 20 W output power is measured over a bandwidth
of 2.5 GHz (see Fig. 16). The small signal gain of the front-end
has a positive slope versus frequency up to 11 GHz.
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Fig. 15. Measured power performance of the GaN T/R-module front-end at
11 GHz with Vpg= 30V and Vgs= — 5 V. P,.x = 45 dBm, PAE,,,,. = 24%.
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Fig. 16. Measured saturated output power and small signal gain versus frequency
of the GaN T/R-module front-end. Bias point: Vps= 30 V and Vgs= —5.0 V.
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Fig. 17. Measured gain and noise figure versus frequency of the GaN T/R
module front-end. Initial measurements (solid lines) and after applying 7 W
input power (dashed lines). NF,,,;,, = 2 dBm.
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Fig. 18. Measured output power and gate current versus input power of the
GaN T/R-module front-end in the receive mode.

In the receive operation mode a small signal gain in the
range of 12.5 dB is measured. The associated noise figure is
about 2 dB at room temperature (see Fig. 17). After the
initial noise figure measurement the input power at the
front-end was stepwise increased up to 7 W. After each step
the noise figure measurement was repeated. In Fig. 17 the
noise figure measurement result after applying 7 W input
power is the same just like the initial measurement result.
Also there is no variation of the receive gain visible.

In Fig. 18 the compressed output power of the front-end in
receive mode is shown. Up to 7 W input power the output
power stays below 8 dBm. This allows a safe operation of
the following small signal MMICs like GaAs core chips.

VIil. CONCLUSION

A whole GaN MMIC amplifier chip set for an X-band T/R
module front-end was designed, simulated, fabricated, and
measured. Output power levels up to 20 W for the transmit
path HPA and a noise figure of 1.45 dB for the receive path

https://doi.org/10.1017/51759078709990389 Published online by Cambridge University Press

LNA are achieved. A T/R module front-end with three types
of amplifiers (DA, HPA, and LNA) integrated on multi-layer
LTCC substrates is successfully demonstrated. To our knowl-
edge, this is the first published GaN-based T/R module
front-end, outperforming the state-of-the-art GaAs-based
T/R module front-end in terms of transmit output power
and receive noise figure. With such a front-end, T/R
modules with more than 20 W transmit output power and a
receive noise figure below 3 dB can be realized.
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