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This study investigates the effects of a Bethe–Zel’dovich–Thompson (BZT) dense
gas (FC-70) on the development of a turbulent compressible mixing layer at a
convective Mach number Mc = 1.1. Three-dimensional direct numerical simulations
are performed with both FC-70 and air. The initial thermodynamic state for FC-70
lies inside the inversion region where the fundamental derivative of gas dynamics (Γ )
becomes negative. The complex Martin–Hou thermodynamic equation of state is used
to reproduce thermodynamic peculiarities of the BZT dense gas (DG). The unstable
growth phase in the mixing layer development shows an increase of xy-turbulent
stress tensors in DG compared to perfect gas (PG). The following self-similar period
has been carefully defined from the time evolution of the integrated streamwise
production and transport terms. During the self-similar stage, DG and PG mixing
layers at Mc = 1.1 display close values of the momentum thickness growth rate,
which seems similarly affected by the well-known compressibility-related reduction
for PG. The same mechanisms are at stake, related to the reduction of pressure–strain
terms. Turbulent kinetic energy (TKE) spectra show a slower decrease of TKE at
small scales for DG compared with PG. The filtered kinetic energy equation balance
developed by Aluie (Physica D, vol. 247 (1), 2013, pp. 54–65) is applied for the
first time to a compressible mixing layer. The equation is reshaped to better account
for TKE transport across the mixing layer. This new formulation brings out the role
played by Σl, the pressure strengths power. A detailed comparison of the contributions
to the filtered TKE equation is provided for both PG and DG mixing layers.

Key words: compressible turbulence, shear layer turbulence, turbulence simulation

1. Introduction

Dense gases (DGs) have been widely studied during the past forty years because of
their increasing use as working fluids in organic Rankine cycles (ORCs), which collect
heat from low-temperature heat sources (solar, geothermal, biomass combustion, etc.)
in order to produce electricity. Using DGs in ORC power plants has many benefits

† Email address for correspondence: aurelien.vadrot@ec-lyon.fr
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(lower operating pressure, reduction of blade corrosion, large heat capacities, etc.), the
main one being the lower boiling temperature compared with water, which enables
operation with targeted lower-temperature heat sources. For comparable reasons, DGs
are also used in Stirling engines (Invernizzi 2010), hypersonic and supersonic wind
tunnels (Wagner & Schmidt 1978; Anders, Anderson & Murthy 1999) and chemical
transport and processing (Kirillov 2004).

Dense gases are single-phase vapours characterized by long chains of carbon atoms
and by a medium to large molar mass. In the vicinity of the critical point, DGs exhibit
an unusual behaviour compared with classical gases. In this study, specific DGs called
Bethe–Zel’dovich–Thompson (BZT) gases are considered. The name BZT was given
by Cramer (1991) to acknowledge the pioneering works of Bethe (1942), Zel’dovich
(1946) and Thompson (1971) on these gases which are also widely used in industry.
Examples of BZT gases include hydrocarbons, perfluorocarbons and siloxanes. The
BZT gases display an ‘inversion zone’, that is, a thermodynamic region where the
fundamental derivative of gas dynamics becomes negative (Γ < 0).

The fundamental derivative of gas dynamics was introduced by Hayes (1958), and
then rewritten by Thompson (1971) as

Γ =
v3

2c2

∂2p
∂v2

∣∣∣∣
s

=
c4

2v3

∂2v

∂p2

∣∣∣∣
s

= 1+
ρ

c
∂c
∂ρ

∣∣∣∣
s

, (1.1)

where v is the specific volume, ρ the density, c =
√
∂p/∂ρ|s the speed of sound, p

the pressure and s the entropy. The term ‘fundamental’ emphasizes the importance of
Γ in the determination of the nonlinear behaviour of DGs. This physical quantity is a
measure of the rate of change of the speed of sound in an isentropic transformation. It
is directly related to the curvature of isentropic curves in the p–v diagram (∂2p/∂v2

|s).
There are three main regimes depending on the value of the fundamental derivative:

(i) Regime Γ > 1 corresponds to classical ideal gas behaviour. For thermally and
calorically perfect gases, the fundamental derivative is a constant and given by
Γ = (γ + 1)/2.

(ii) Regime 0<Γ <1 corresponds to classical non-ideal gas behaviour. In this regime,
the speed of sound decreases in isentropic compressions (∂c/∂ρ|s < 0).

(iii) Regime Γ < 0 corresponds to non-classical behaviour referred to as the BZT
effect. It is a narrow region in the p–v diagram as shown in figure 1. In that
zone, because of the negative sign of the fundamental derivative, rarefaction
shock waves can occur.

Bethe (1942) and Zel’dovich (1946) were the first to justify this possible occurrence
of expansion shock waves in BZT flows. Such unusual features can only be modelled
when using a sufficiently complex equation of state (EoS). The simplest EoS enabling
the prediction of expansion shock waves is the van der Waals EoS. In the vicinity
of the critical point, the isothermal curves (for example the critical one) display a
negative curvature (concave), so that ∂2p/∂v2

|T < 0. Using one of Maxwell’s relations:

∂T
∂v

∣∣∣∣
s

=−
∂p
∂s
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v

∂s
∂T

∣∣∣∣
v

=−
T
cv

(
∂p
∂T

)
v

(1.2)

justifies that if the heat capacity is large (cv � 1), the isentropic curves will follow
the isothermal ones (∂T/∂v|s � 1). Colonna & Guardone (2006) provided further
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FIGURE 1. The initial thermodynamic state and its evolution over time are represented
in the non-dimensional p–v diagram for FC-70. The DG zone (Γ < 1) and the inversion
zone (Γ < 0) are plotted for the Martin–Hou equation of state. Parameters pc and vc are,
respectively, the critical pressure and the critical specific volume. The initial value of the
fundamental derivative of gas dynamics is Γinitial=−0.284. The normalized distribution of
thermodynamic states at τ = 1700 (beginning of the self-similar period) is coloured along
the corresponding adiabatic curve.

explanations using an advanced molecular study of forces at stake, depending on the
molecular complexity. They showed that the minimum molecular complexity that must
be reached in a gas in order to fulfil the BZT gas conditions is N>NBZT

=33.33, with
N being the molecular complexity corresponding to the number of active degrees of
freedom of the molecule (Colonna & Guardone 2006).

Many researchers have studied the non-classical phenomena occurring in (BZT)
DGs, such as rarefaction shock waves, by considering at first the fluid as inviscid
(Cramer & Kluwick 1984; Menikoff & Plohr 1989; Rusak & Wang 1997; Wang
& Rusak 1999; Congedo, Corre & Cinnella 2007, 2011). Adding viscosity effects
enabled the study of boundary layers and shock–boundary layer interactions (Cramer
& Crickenberger 1991; Cramer & Park 1999; Fergason & Argrow 2001; Kluwick
2004). Conclusions show the benefits of using DGs in ORC turbines since, when
operating in the dense gas region (0<Γ < 1) at transonic regime, DG effects reduce
friction drag and boundary layer separation (Cinnella & Congedo 2007). Also, when
the expansion operates within the inversion region (Γ < 0), shock intensity decreases
and entropy losses are reduced.

From an experimental viewpoint, it is very difficult to observe rarefaction shock
waves because of the vicinity of the critical point where physical quantities experience
strong variations. Borisov et al. (1983) and Kutateladze, Nakoryakov & Borisov
(1987) claimed to have experimentally observed rarefaction shock waves. However,
their results were questioned by Cramer & Sen (1986) and Fergason et al. (2001)
who showed that the fluid used in the experiment (F-13, CClF3) does not satisfy the
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Thompson & Lambrakis (1973) requirements and concluded that the observed shock
wave was not a single-phase rarefaction shock wave.

Since then, works of Fergason et al. (2001), Colonna et al. (2008), Spinelli et al.
(2010) and Spinelli et al. (2013) enabled the design of shock tubes and test rigs, such
as the Test Rig for Organic Vapors (TROVA) at Politecnico di Milano or the Flexible
Asymmetric Shock Tube (FAST) built at Delft University of Technology (Mathijssen
et al. 2015). The experimental proof of rarefaction shock waves remains an active
research area.

From a numerical viewpoint, Argrow (1996) was the first to perform a numerical
simulation of a single-phase DG inviscid flow in a shock tube. This pioneering
work on the simulation of inviscid DG flows was followed by contributions of
Monaco, Cramer & Watson (1997), Brown & Argrow (1998), Colonna & Rebay
(2004) and Cinnella & Congedo (2005) with the simulation of inviscid DG flows
over airfoils or turbine cascades. Cinnella & Congedo (2007) performed for the first
time DG simulations for laminar and turbulent external flows over airfoils and flat
plates using Reynolds-averaged Navier–Stokes equations with the simple algebraic
model of Baldwin and Lomax in the latter case. Harinck et al. (2010b), Wheeler &
Ong (2013) and From et al. (2017) subsequently achieved simulations of turbulent
DG flows using, respectively, k–ε and k–ω two-equation models, Spalart–Allamaras
one-equation model and an explicit algebraic Reynolds stress model. Dura Galiana,
Wheeler & Ong (2016) also performed large-eddy simulations (LES) of turbulent DG
flow over a turbine vane using the Smagorinsky–Lilly model. Up to now, the closure
of the Reynolds-averaged Navier–Stokes equations or the filtered Navier–Stokes
equations originally established for ideal gas flows has been implicitly extended to
turbulent DG flows. It can be argued that the peculiar thermodynamic behaviour of
DGs, in particular BZT gases, questions the validity of this extension. Yet, the lack
of experimental data makes the verification of the presently used turbulence models a
complex task. Note that the influence of the thermodynamic models on the numerical
prediction of DG flows is also an issue that has been investigated by several authors
(e.g. Harinck et al. 2010a; Merle & Cinnella 2014) and suffers from the same lack
of reference experimental data. In the present study, the Martin–Hou (MH) EoS will
be retained since it has been established that it provides an accurate representation
of DG thermodynamic behaviour (Guardone, Vigevano & Argrow 2004).

The tool of choice to be used in order to assess the potential specificities of
turbulence in a DG flow is direct numerical simulation (DNS), which enables the
resolution of every turbulent scale, from the largest swirls (limited by the size of
the domain) to the smallest ones (limited by the Kolmogorov scale), and thus gives
access to the flow physics without resorting to any turbulent closure model. Because
the number of degrees of turbulence grows faster than O(Re11/4) (Garnier, Adams
& Sagaut 2009), DNS remains naturally confined to simple flow configurations. For
larger and more complex systems, LES is a tool of choice since it resolves large
turbulent scales and models the small ones. However, as already mentioned, it relies
on subgrid models which have been tailored for turbulent flows of ideal gases so that
their validity for DGs is also questionable.

At the present time, few authors have achieved DNS of DG flows. Giauque, Corre
& Menghetti (2017) have performed a DNS of decaying homogeneous isotropic
turbulence (HIT) and concluded that the standard Smagorinski subgrid-scale (SGS)
model does not capture correctly the temporal evolution of the turbulent kinetic energy
(TKE) by comparing the LES prediction with the DNS reference results. The DNS
also evidenced localized flow regions with strongly positive values for the velocity
divergence that could correspond to expansion shock waves.
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Sciacovelli et al. (2016) have also studied the large-scale dynamics in decaying
HIT, assuming at first an inviscid DG. They evidenced strong differences of the
fluctuation levels for thermodynamic quantities (density, pressure, sound speed)
between the perfect gas (PG) and the DG. They pointed out the more symmetric
probability density function of the velocity divergence in the DG flow. Their DNS
results display flow regions with strong expansions and tubular structures unlike
the compression regions which are characterized by sheet-like structures. The more
symmetric distribution could be explained by the presence of expansion shock waves.

Sciacovelli, Cinnella & Grasso (2017b) next extended their previous decaying
HIT study by considering viscous effects and focused then on the small-scale
dynamics. Two different initial states were selected for the DG: one inside the
inversion region and one outside. It was observed that the global flow dynamics is
almost not influenced by local events such as expansion shock waves. The nature
of turbulent structures was also discussed based on DNS results. The formation of
convergent compressed structures like compression shock waves is strongly reduced
in the BZT zone. The occurrence of non-focal convergent structures in the DG
diminishes the vorticity and counterbalances enstrophy destruction.

Sciacovelli, Cinnella & Gloerfelt (2017a) achieved the DNS of a supersonic DG
flow in a channel. Significant differences from a supersonic ideal gas channel flow
were observed for some thermodynamic variables. For instance, the temperature is
lower at the centreline for the DG and the DG flow can actually be considered
quasi-isothermal contrary to the PG flow. Characteristics of the DG flow have been
found to be close to those of flow of variable-property liquids. Regarding turbulence
development, the authors did not notice significant differences between the PG and
the DG. The Reynolds stresses and the non-dimensional streamwise and spanwise
lengths of the structures are found to be nearly the same.

So far, no DNS of a DG compressible mixing layer has been reported in the
literature. Performing such a DNS enables a better understanding of DG behaviour in
a simple configuration which is also representative of a flow configuration occurring
inside an ORC turbine. While the decaying HIT can be seen as representative of a
small flow region in the inter-blade space, the mixing layer would be representative
of the blade wake region. Also, the speed of sound in a DG being likely to be much
lower (up to 10 times lower) than in a usual gas such as air, the Mach number
characterizing the DG compressible mixing layer can become large. A review of the
literature has been performed in order to select a reference ideal gas compressible
mixing layer at a large Mach number and also to identify some key results regarding
the compressible mixing layer of an ideal gas, with which the DG DNS results will
be confronted.

Mixing layer studies belong to a long-term research programme on the characteriza-
tion of turbulence. Turbulent mixing layers appear in many physical domains and
industry problems. The very first investigation of turbulent mixing layers was
performed by Liepmann & Laufer (1947) who demonstrated the self-preserving
feature of such flows. Subsequently, many experimental investigations were conducted
on turbulent mixing layers, especially for aeronautic purposes, such as scram-jet
engines and abatement of supersonic jet noise.

Quickly, compressibility effects proved to be a key point in high-speed mixing
layer flows. Bogdanoff (1983) introduced the concept of the convective Mach number,
taking into account not only the velocity and sound speed of each stream of the
mixing layer but also a combination of them. Denoting Ui and ci, respectively, as the
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flow speed and the sound speed of stream i (upper or lower) of the mixing layer, the
convective Mach number is defined as

Mc = (U1 −U2)/(c1 + c2)=1u/(c1 + c2). (1.3)

The convective Mach number provided the community with a similar comparative
scale when comparing different configurations. A consensus appeared on the reduction
of the mixing layer growth rate when increasing the convective Mach number
(Bradshaw 1977; Papamoschou & Roshko 1988).

Further studies were conducted in order to capture the key parameters allowing a
better understanding of the fundamental mechanisms at stake. Brown & Roshko (1974)
investigated density effects using two different gases and thoroughly analysed turbulent
structures to conclude that density effects are far less prominent than compressibility
effects. Although the mixing layer flow configuration appears rather simple, Bradshaw
(1966) showed that initial conditions and technical difficulties with the experimental
realization of the flow are the main sources of the discrepancies observed between
published results.

The first DNS of a compressible mixing layer was performed by Sandham &
Reynolds (1990), followed by Luo & Sandham (1994), Vreman, Sandham & Luo
(1996), Freund, Lele & Moin (2000), Pantano & Sarkar (2002), Fu & Li (2006),
Zhou, He & Shen (2012), Martínez Ferrer, Lehnasch & Mura (2017) and Dai et al.
(2018). These DNS of compressible mixing layers assume the fluid behaves like an
ideal gas. They all confirm that the spreading rate decay is due to a lower turbulent
production (Sarkar 1995). The compressible TKE equation includes additional terms
with respect to its incompressible formulation, namely compressible dissipation
and pressure–dilatation terms. Key questions, seemingly related, are why turbulent
production decreases and how these additional terms evolve with an increasing
convective Mach number.

Zeman (1990) and Sarkar et al. (1991) predicted that the dilatational part of the

dissipation increases with the turbulent Mach number (Mt =

√
u′iu′i/c, where ui

′

represents the fluctuating velocity in direction i) because of the occurrence of eddy
shocklets. They proposed a modelling of this term that captures the growth rate
reduction as the Mach number increases. However, Vreman et al. (1996) and Freund
et al. (2000) suggested that the proposed model is not realistic since eddy shocklets
at that time had not yet been observed in three-dimensional DNS with a convective
Mach number below one. Subsequently, Zhou et al. (2012) observed shocklets in
their three-dimensional simulation for a convective Mach number of 0.7. Although
eddy shocklets may occur in the compressible mixing layer for a convective Mach
number as low as 0.7, the compressible dissipation term remains small as shown by
Pantano & Sarkar (2002) for a convective Mach number of 1.1 and below. We will
see that this observation is confirmed by the present simulations. Considering a DG
instead of an ideal gas should even further reduce this dissipation term since entropy
jumps across shocklets are reduced within the inversion region.

The pressure–dilatation term is formed from the sum of the pressure–strain rate
correlations. It is negligible if compared with the most important terms of the TKE
equation (Vreman et al. 1996; Freund et al. 2000; Pantano & Sarkar 2002). However,
each pressure–strain correlation is far from being negligible and the decrease of these
correlations with an increasing Mach number is likely to explain the decay of the
growth rate (Vreman et al. 1996; Freund et al. 2000). Vreman et al. (1996) proposed
a model of the pressure–strain rate correlations and Freund et al. (2000) explained
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Tc (K) pc (atm) Zc Tb (K) m (= cv(Tc)/R) n

FC-70 608.2 10.2 0.270 488.2 118.7 0.493

TABLE 1. Physical parameters of FC-70 (Cramer 1989). The critical pressure pc, the
critical temperature Tc, the boiling temperature Tb and the compressibility factor Zc =

pcvc/(RTc) are the input data for the MH equation. The critical specific volume vc is
deduced from the aforementioned parameters. The acentric factor n and the cv(Tc)/R ratio
are used to compute the heat capacity cv(T) (R = R/M being the specific gas constant
computed from the universal gas constant R with M being the molar mass of the gas).

the decay of turbulent quantities by an abatement of pressure fluctuations causing a
communication breakdown across the large structures. Further explanations are given
by the sonic-eddy model of Breidenthal (1992). Since pressure–strain correlations
are composed of pressure fluctuations and strain-rate fluctuations, Martínez Ferrer
et al. (2017) suggested that the reduction of pressure fluctuations may not be
the only reason for the pressure–strain rate decay. Their three-dimensional DNS
simulations at convective Mach numbers between 0.35 and 1.1 suggest that the
strain-rate fluctuations also decrease with an increasing Mach number.

In the present article, the influence of a DG on the turbulent quantities characteristic
of the mixing layer and in particular on the mixing layer growth rate is investigated
for the first time using DNS for a convective Mach number of 1.1. This rather
large value is retained because it can be expected for DG mixing layers in practical
applications and also because several ideal gas DNS are available for this value of
Mc, which will allow the validation of our own ideal gas DNS.

The next section describes the main parameters of the numerical study. The present
DNS results are then validated in § 3 for an air compressible mixing layer at Mc= 1.1.
Finally, comparisons between ideal gas and DG mixing layers are performed in § 4.
The analysis focuses on the TKE balance, the specific TKE spectra and the filtered
kinetic energy balance. The aim is to analyse the differences, if any, in the integrated
turbulent terms but also over the whole spectrum, by looking at the key turbulent
quantities over the turbulent scales.

2. Problem description
2.1. Initial conditions

Direct numerical simulations of an Mc= 1.1 compressible mixing layer are performed
for a PG and for a (BZT) DG. In the first case, air is chosen and considered as a
PG as done by Freund et al. (2000). For the DG simulations, perfluorotripentylamine
(FC-70, C15F33N) is used. It is the same DG used by Fergason et al. (2001) in order
to simulate rarefaction shock waves in a shock tube. It is in particular used as heat
transfer fluid, is almost non-toxic and has been evaluated as synthetic blood (Costello,
Flynn & Owens 2000). Physical parameters useful for the thermodynamic description
of FC-70 are given in table 1, as taken from Cramer (1989).

The initial conditions of the mixing layer require the choice of the initial operating
thermodynamic point in the p–v diagram. As described in figure 1, this initial state
is chosen within the inversion zone of FC-70 in order to favour the occurrence of
expansion shocklets and to maximize DG effects on turbulence. This is also in that
region that compressibility effects are the largest since the sound speed is reduced
(Colonna & Guardone 2006), which maximizes the Mach number. Figure 1 also shows
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Mc ρ1/ρ2 Reδθ,0 Lx × Ly × Lz Nx ×Ny ×Nz 1u (m s−1) δθ,0 (nm)

Air 1.1 1.0 160 344× 172× 86 512× 256× 128a 375.18 12.348
Air 1.1 1.0 160 344× 172× 86 1024× 512× 256b 375.18 12.348
FC-70 1.1 1.0 160 344× 172× 86 512× 256× 128a 62.3183 188.18
FC-70 1.1 1.0 160 344× 172× 86 1024× 512× 256b 62.3183 188.18

TABLE 2. Simulation parameters. Lengths Lx, Ly and Lz denote computational domain
lengths measured in terms of initial momentum thickness and Nx, Ny and Nz denote the
number of grid points. All grids are uniform.

aReferred to as the 16.8M simulation, where 16.8M corresponds to the number of grid
cells.

bReferred to as the 134M simulation, where 134M corresponds to the number of grid
cells.

the adiabatic curve on which the initial operating point is lying in the non-dimensional
p–v diagram. The corresponding initial value of the fundamental derivative of gas
dynamics is Γinitial = −0.284. During the development of the mixing layer, the
thermodynamic conditions stay within a close range around the adiabatic curve as
shown in figure 1, because shocklet entropy losses and mechanical dissipation are
weak in our case. Also, almost all the thermodynamic states stay within the inversion
zone throughout the DG simulation. For air, the same values of reduced specific
volume and reduced pressure are selected for the initial thermodynamic state. Critical
values used for air are the critical pressure pc = 3.7663 × 106 Pa and the specific
volume vc = 3.13× 10−3 m3 kg−1 (Stephan & Laesecke 1985).

The main non-dimensional characteristics of the compressible mixing layer are
the convective Mach number (1.3) and the Reynolds number based on the initial
momentum thickness δθ,0:

Reδθ,0 =1uδθ,0/ν, (2.1)

where ν denotes the kinematic viscosity and the momentum thickness at time t is
defined as

δθ(t)=
1

ρ01u2

∫
+∞

−∞

ρ

(
1u2

4
− ũ2

x

)
dy, (2.2)

with ρ0 = (ρ1 + ρ2)/2 the averaged density and ũx the Favre averaged streamwise
velocity (defined in (2.13)).

The first part of the study aims at validating the present DNS results using the
results of Pantano & Sarkar (2002) as reference. Following this reference work, the
convective Mach number is set equal to 1.1 as previously mentioned, the initial
density ratio between the upper and lower streams is equal to unity and the Reynolds
number based on the initial momentum thickness is set equal to 160. Table 2 reports
the simulation parameters (domain size, grid resolution, dimensional values of velocity
and initial momentum thickness). The ratio r between the Kolmogorov scale and the
cell size is about 0.52 for the least refined mesh (16.8M simulation) during the
selected self-similar range (see § 3.1). To check grid convergence and because the
value r = 0.52 corresponding to the baseline mesh is not very large for a DNS,
a second DNS has been performed with a refined mesh obtained by doubling the
number of grid cells in each direction (134M simulation) yielding a ratio r equal to
1.03. Turbulent scales are adequately resolved since the TKE is very low close to the
Kolmogorov scale (Moin & Mahesh 1998).
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2

FIGURE 2. Schematic view of the temporal mixing layer configuration. The grey plane
represents the initial momentum thickness and its thickness is at scale with the lengths of
the computational domain.

In the present study, the temporal mixing layer, less computationally expensive,
is chosen instead of the spatial mixing layer. There are slight differences between
the two configurations. For the temporal mixing layer, the two streams flow in
opposite directions, which enables one to increase the differential speed with a less
important absolute speed for each stream (see figure 2). For the spatial mixing layer,
both streams flow in the same direction and a speed gap which corresponds to the
differential speed is imposed. The transition from one configuration to the other is a
change of Galilean reference frame given by (de Bruin 2001)

t1utemporal =
x1uspatial

uc
, (2.3)

where t denotes the time scale of the temporal configuration, 1utemporal the differential
speed of the temporal evolution, 1uspatial the differential speed of the spatial evolution,
uc = (U1 + U2)/2 the convective speed and x the streamwise position scale of the
spatial configuration.

The temporal mixing layer requires periodic boundary conditions in the x and z
directions. A non-reflective boundary condition is imposed in the y direction to prevent
the reflection of acoustic waves inside the computational domain. The NSCBC model
proposed by Poinsot & Lele (1992) is used.

The mean streamwise velocity is initialized with a hyperbolic tangent profile:

ūx(y)=
1u
2

tanh
(
−

y
2δθ,0

)
. (2.4)

The complete streamwise velocity field is obtained by adding a fluctuating
component to the mean component. For the y and z components of the velocity,
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the mean part is set equal to zero. A Passot–Pouquet spectrum is imposed for the
initial velocity fluctuation:

E(k)= (k/k0)
4 exp(−2(k/k0)

2), (2.5)

where k denotes the wavenumber. The peak wavenumber k0 corresponds to the
integral scale for which the TKE is maximum inside the initial mixing layer. Peak
wavenumber k0 is set to 2π/(Lx/48). The obtained velocity field is then multiplied
by an exponential decay over the y direction in order to inject turbulent energy in
the initial momentum thickness only. That is done in the same way as Pantano &
Sarkar (2002):

f (y)=
1

σ
√

2π
exp

(
−
(y− Ly/2)2

2σ 2

)
, (2.6)

where the full width at half maximum of the peak is set equal to the initial momentum
thickness δθ,0 = 2σ

√
2 ln(2). Also, the Gaussian distribution is normalized to reach a

maximum value of 1 at the centre y= Ly/2.

2.2. Governing equations
The unsteady, three-dimensional, compressible Navier–Stokes equations are solved to
describe the temporally evolving mixing layer:

∂ρ

∂t
+
∂(ρui)

∂xi
= 0, (2.7)

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
=−

∂p
∂xi
+
∂τij

∂xj
, (2.8)

∂(ρE)
∂t
+
∂[(ρE+ p)uj]

∂xj
=
∂(τijui − qj)

∂xj
, (2.9)

where τij = µ((∂ui/∂xj)+ (∂uj/∂xi)−
2
3(∂uk/∂xk)δij) denotes the viscous stress tensor

(µ is the dynamic viscosity), E= e+ 1
2 uiui the specific total energy (e is the specific

internal energy) and qj = −λ(∂T/∂xj) the heat flux given by Fourier’s law (λ is the
thermal conductivity).

For the DG (FC-70), dynamic viscosity and thermal conductivity follow the model
proposed by Chung et al. (1988). FC-70 is assumed to behave as a non-polar gas so
that its dipole moment can be neglected (Shuely 1996). For the PG (air), the dynamic
viscosity follows Sutherland’s law (Sutherland 1893) and a constant Prandtl number
equal to 0.71 is used. The selected constants for Sutherland’s law are the ones given
by White (1998), which are valid for the range of temperature met in the air mixing
layer studied in the present study (Grieser & Goldthwaite 1963).

Equations (2.7)–(2.9) are completed with thermal and calorific EoS. Air is
thermodynamically described by the PG EoS:

p= ρRT,

e= eref +

∫ T

Tref

cv(T ′) dT ′,

 (2.10)

where R is the specific gas constant, cv the specific heat capacity, p the pressure, T
the temperature and ρ the density.
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The specific heat capacity cv is defined as the slope of the sensible energy
(cv = (∂es/∂T)|v). The sensible energy is computed using the JANAF tables (Stull &
Prophet 1971). Specific heats are thus not constant and the relation Γ = (γ + 1)/2 is
no longer suitable, since it is only valid for a thermally and calorically PG.

The DG FC-70 is described by the MH EoS (Martin & Hou 1955), as improved
by Martin, Kapoor & De Nevers (1959). The MH EoS are given by the following
fifth-order equations:

p=
RT
v − b

+

5∑
i=2

Ai + BiT +Cie−kT/Tc

(v − b)i
,

e= eref +

∫ T

Tref

cv(T ′) dT ′ +
5∑

i=2

Ai +Ci(1+ kT/Tc)e−kT/Tc

(i− 1)(v − b)i−1
,

 (2.11)

where (.)ref denotes a reference state, b= vc(1− (−31 883Zc+ 20.533)/15), k= 5.475
and the coefficients Ai, Bi and Ci are numerical constants determined by Martin & Hou
(1955) and Martin et al. (1959) from the physical parameters summarized in table 1.

For the sake of physical analysis, the TKE equation can be derived from the Navier–
Stokes equations (2.7)–(2.9). Density, pressure and velocity are each decomposed into
a mean and fluctuating component as follows:

ρ = ρ̄ + ρ ′,
p= p̄+ p′,

ui = ũi + u′′i ,

 (2.12)

where φ̄ denotes the Reynolds average for a flow variable φ, while the Favre average
φ̃ is defined as

φ̃ =
ρφ

ρ
. (2.13)

The Reynolds fluctuation of φ is denoted φ′ while its Favre fluctuation is denoted
φ′′. Because of the periodic conditions, Reynolds averaging is equivalent to plane
averaging along the x and z directions. Introducing (2.12) into the instantaneous
Navier–Stokes equations, applying the averaging process and combining the resulting
equations (see details for instance in Bailly & Comte-Bellot (2003)) allow one to
obtain the TKE equation:

∂ρ̄k̃
∂t
+
∂ρ̄k̃ũj

∂xj
= −ρu′′i u′′j

∂ ũi

∂xj︸ ︷︷ ︸
Production

−τ ′ij
∂u′′i
∂xj︸ ︷︷ ︸

Dissipation

−
1
2
∂ρu′′i u′′i u′′j
∂xj︸ ︷︷ ︸

Turbulent transport

−
∂p′u′′i
∂xi︸ ︷︷ ︸

Pressure transport

+
∂u′′i τ ′ij
∂xj︸ ︷︷ ︸

Viscous transport

+p′
∂u′′i
∂xi︸ ︷︷ ︸

Pressure dilatation

−u′′i

(
∂ p̄
∂xi
−
∂τ̄ij

∂xj

)
︸ ︷︷ ︸

Mass-flux term

, (2.14)
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where k̃ = 1
2 ũ′′i u′′i denotes the specific TKE. Equation (2.14) details the physical

quantities at stake in a compressible mixing layer, with the production and the
dissipation terms being the main terms in this equation. The former depends on the
turbulent stress tensor while the latter corresponds to the viscous dissipation. For
incompressible configurations, the mass-flux coupling term and the pressure–dilatation
term are equal to zero. Also, the dissipation can be decomposed into solenoidal,
low-Reynolds-number and dilatational components. This compressible component
is related to the occurrence of eddy shocklets and can be written as (Sarkar &
Lakshmanan 1991)

εd =
4
3
ν̄

(
∂u′′k
∂xk

)2

. (2.15)

2.3. Numerical set-up
The numerical solver AVBP is used to solve the three-dimensional unsteady
compressible Navier–Stokes equations (2.7)–(2.9) closed by the EoS (2.10) for
air and (2.11) for FC-70. The AVBP solver is massively parallel and designed for
LES and DNS (Desoutter et al. 2009; Cadieux et al. 2012). It is widely used for
combustion in industry and allows the numerical resolution of the three-dimensional
compressible Navier–Stokes equations using a two-step time-explicit Taylor–Galerkin
scheme (TTGC) for the hyperbolic terms based on a cell-vertex formulation (Colin &
Rudgyard 2000). The scheme ensures third-order accuracy in space and in time. The
order of accuracy of the numerical scheme can be thought of as being low to perform
a DNS. That is why refined simulations (134M simulations) have been performed in
order to ensure the reliability of the computed flow solutions. The ratio r between
the Kolmogorov scale and the grid cell size (Lη/1x) is about 1.03 at the centreline
during the self-similar period for the PG simulation including 134M elements (see
table 3 in appendix A).

3. Direct numerical simulation validation for a PG compressible mixing layer
In order to assess the quality of the present DNS, this section is devoted to the

assessment of air (considered as a PG) simulations, which will be compared in
particular to the available results of Pantano & Sarkar (2002) for exactly the same
flow configuration but also with the general trends and correlations available from
the analysis of the literature on the compressible turbulent mixing layer.

3.1. Temporal evolution and selection of the self-similar period
Figure 3 shows the temporal evolution of the mixing layer momentum thickness
computed for the two levels of grid refinement, along with results from the available
literature (Pantano & Sarkar 2002; Fu & Li 2006; Martínez Ferrer et al. 2017). The
time is non-dimensional (τ = t1u/δθ,0) and the momentum thickness is normalized by
its initial value. Grid convergence seems well achieved since the mixing layer growth
rates are very close between both simulations (16.8M and 134M). Additional proofs
of grid convergence are provided in appendix A. The momentum thickness temporal
evolution is composed of three main sequences:

(i) The first one is a kind of delay, observed in the results of Martínez Ferrer
et al. (2017) and Fu & Li (2006) and in the present results, but which appears
rather short in the results of Pantano & Sarkar (2002). This delay is likely to
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Mc = 1.1: current DNS 16.8M
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Mc = 1.2: Fu & Li (2006)

Linear regression (self-similar period)

FIGURE 3. Temporal evolution of the mixing layer momentum thickness. Comparison is
made between the two different grid precisions (16.8M and 134M grid elements) to check
the grid convergence and with the available literature (Pantano & Sarkar 2002; Fu & Li
2006; Martínez Ferrer et al. 2017).

be a transition of modes. The energy is initially injected inside the mixing layer
through a Passot–Pouquet spectrum with a corresponding integral length set
equal to Lx/48. Afterwards, the energy is distributed over the whole spectrum
and some unstable modes are amplified leading to unstable growth.

(ii) The second step of the development of the mixing layer consists of an unstable
growth governed by two modes of instability, a wake mode superposed onto a
canonical mixing layer mode (Pirozzoli et al. 2015). It eventually turns into an
over-linear growth rate.

(iii) Finally, the system reaches a saturation point. At this time, a self-similar state
is developing until the turbulent structures exit the computational domain above
and below the mixing layer. Self-similarity is characterized by a linear evolution
of the momentum thickness over time.

In order to analyse and average the TKE balance (necessary to assess the
contribution of the significant turbulent terms), the flow needs to be in a statistically
stable state, which corresponds to self-similarity. The objective of this section is
to determine the appropriate self-similar range, which is a quite complex task
since criteria to characterize this self-similar period are not precisely defined in
the literature.

Barre & Bonnet (2015) define their flow as self-similar when they obtain
superposition of the mean velocity profiles. Rogers & Moser (1994) conclude that
self-similarity is reached because of the linear evolution of the momentum thickness,
the collapse on a single curve of the mean velocity profiles and the collapse on a
single curve of the Reynolds stress profiles. However, the determination of the proper
superposition of several curves is sometimes difficult and may be subjective. The
same remarks apply to the determination of the linear evolution of the momentum
thickness. Analysis of data obtained by Pantano & Sarkar (2002), Rogers & Moser
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FIGURE 4. Temporal evolution of the non-dimensional streamwise production and the non-
dimensional total transport terms integrated over the whole domain, respectively P∗int =

(1/(ρ01u3))
∫

Ly
ρ̄Pxx dy (with ρ̄Pxx =−ρu′′x u′′y(∂ ũx/∂y)) and T∗int = (1/(ρ01u3))

∫
Ly
(∂Tk/∂xk)

dy (with ∂Tk/∂xk= ∂(
1
2ρu′′i u′′i u′′j + p′u′′i − u′′i τ ′ij))/∂xk. Results are computed from the 134M

simulation.

(1994) and Zhou et al. (2012) shows that the growth rate is probably sub-linear,
as also stated by Pirozzoli et al. (2015). Many authors confirmed the difficulty
encountered in reaching a perfect self-similar state (Pantano & Sarkar 2002; Pirozzoli
et al. 2015). The diversity of results found in the literature for the well-known
growth rate versus convective Mach number graph comes in part from this difficulty
in accurately defining the growth rate.

Another method to determine self-similarity is used in this study. It consists of
computing the streamwise production term integrated over the whole domain. Vreman
et al. (1996) indeed demonstrate the following relation between the volumetric
streamwise production power (ρ̄Pxx =−ρu′′x u′′y(∂ ũx/∂y)) and the momentum thickness
growth rate:

δ′θ =
dδθ
dt
=

2
ρ01u2

∫
ρ̄Pxx dy. (3.1)

From the above, a constant evolution of the integrated volumetric streamwise
production power implies a constant growth rate of the mixing layer. Figure 4
displays this production term as well as the total transport term, which comprises
the pressure, the turbulent and the viscous contributions. The chosen self-similar
period is given on the graph (τ ∈ [1700; 2550]) and corresponds to a converged state
of the mixing layer. A long period has been chosen (about 900τ ) in comparison
with the available literature. Pantano & Sarkar (2002) and Rogers & Moser (1994),
respectively, selected in their studies a period of 257 and 45 non-dimensional times.

The temporal evolution of the production is consistent with the temporal evolution
of the momentum thickness. The three steps mentioned above can be identified.
During unstable growth, the production quickly increases, until it reaches a maximum.
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FIGURE 5. Distributions of the normalized specific power quantities over the y direction
are presented for air: P (production), D (dissipation) and T (transport) are normalized
by 1u3/δθ (t) and compared to results of Pantano & Sarkar (2002). Additional terms (R,
residuals; TD, time derivative) are given. The sampling space step of the averaging process
is (2Ly/δθ (τ = 1700))/Npoints, with Npoints = 24. Distributions have been averaged between
the upper and the lower stream to get perfectly symmetric distributions.

Afterwards, the mixing layer converges to a self-similar state. The chosen self-similar
range is also represented in figure 3 and corresponds closely to a linear evolution of
the momentum thickness, consistent with figure 4. The computed time evolution of
the momentum thickness shows a rather good match with the available literature even
though the mixing layer momentum thickness growth rate computed for the current
134M simulation is smaller (a difference of about 20 % is observed) than the one of
Pantano & Sarkar (2002). Since the computation of the growth rate depends on the
chosen self-similar period and since the self-similar period of the current simulation
is chosen late enough to achieve a complete convergence, the computed growth rate is
smaller. Appendix C provides additional comparisons between PG and DG performed
during the selected self-similar period.

3.2. Turbulent kinetic energy balance over the selected self-similar period
Once a relevant time interval has been selected to consider the mixing layer to
be self-similar, one can focus on the study of the turbulent kinetic power balance.
This equation evaluates terms at stake in the development of the turbulence. It also
helps to validate our simulation by comparing the present DNS results with those of
Pantano & Sarkar (2002). In figure 5, quantities are integrated over the two periodic
directions (x and z), normalized by 1u3/δθ(t) and drawn versus the non-dimensional
cross-stream direction y/δθ(t). Solutions are averaged over time in the self-similar
range (τ ∈ [1700; 2550]).

The present DNS results agree reasonably well, especially the production and
the transport terms, with the results of Pantano & Sarkar (2002): shape as well as
intensity are close. The gap between the dissipation terms could be explained by the
difference in the choice for the self-similar period. Since the dissipation is linked with
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the velocity fluctuation gradient and since this last quantity decreases after unstable
growth, if the self-similar period is chosen at a earlier time, the dissipation power
gets closer to the term of Pantano & Sarkar (2002).

The two additional quantities are the residuals and the time derivative of the TKE.
Residuals are almost zero and thus attest to the proper closure of the balance. The
time derivative is far from being negligible and has almost the same intensity as
the transport term. This term is rarely reported in the literature possibly because of
difficulties encountered when extracting it, especially for the temporal mixing layer.
Also, the convective derivative is negligible, in contrast with Zhou et al. (2012) who
studied a spatial mixing layer. In fact, the time derivative of the kinetic energy in
a temporal mixing layer and the convective derivative of the kinetic energy in a
spatial mixing layer play a symmetric role since the two configurations are linked
by a change of Galilean reference frame. It is thus expected that the time derivative
in the temporal mixing layer is non-negligible in the same way that the convective
derivative in the spatial mixing layer is significant. Finally, it has been noticed that
the compressible dissipation, the pressure dilatation, the mass-flux coupling term
including the velocity pressure gradient and the convective derivative are negligible
in the present study and are thus not represented. Similar observations have been
consistently made by several authors to support this fact as previously mentioned in
the introduction.

3.3. Validation of the specific TKE spectrum
The TKE balance computed over the whole range of turbulent scales is not the only
tool available to highlight the influence of the main terms of the TKE equation.
Spectra are very useful to compare TKE scale by scale. In the next section, devoted
to the comparison between PG and DG simulations, a comparison at each turbulent
scale will be performed through a comparison of the respective PG and DG flow
spectra. At this stage, the authors wish to validate the spectrum computed for air. To
this end, the present DNS results are compared with those of the current literature in
figure 6 (Freund et al. 2000; Tanahashi, Iwase & Miyauchi 2001; Okong’o & Bellan
2002; Pantano & Sarkar 2002). The current spectrum is computed over the centreline
and averaged over the self-similar period (τ ∈ [1700; 2550]). Because the spectra
from the literature display different large-scale values, they are normalized by their
value at 10k0. This value is indeed a good threshold to compare spectra at small
scales without being subjected to geometry differences. The present results are found
to compare favourably with the current literature and the expected reference slopes.
The −7 slope in the logarithmic scale has been established by Batchelor (1953) to
describe the evolution of kinetic energy at small scales and is consistent with the
present spectrum at high wavenumber range. This indicates a proper resolution of
the small scales. The −5/3 and −2 slopes are the slopes of isothermal homogeneous
isotropic turbulence inertial ranges, respectively, for incompressible and compressible
flows (Kritsuk et al. 2007).

The accuracy of the present PG DNS having been established by comparison with
available results from the literature, we can now proceed to compare the novel DG
(FC-70) flow computations with the results for air in order to identify the potential
specificities of DG turbulence.

4. Comparison between PG and DG
4.1. Temporal evolution and selection of the self-similar period

As done for the PG validation process, the computation of the TKE balance requires
first the selection of the self-similar range. This is achieved through a combined
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FIGURE 6. Streamwise specific TKE spectra computed over the centreline. Comparison is
made with the available literature.
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FIGURE 7. Temporal evolution of the mixing layer momentum thickness.

investigation of the momentum thickness evolution and the evolution of the integrated
production and transport terms over time. Figure 7 displays the momentum thickness
temporal evolution: PG and DG results show a similar evolution. The curves are
initially (τ 6 200) very close, with a different evolution for PG and DG mixing
layers taking place in the second step of the mixing layer development (approximately
200 6 τ 6 1500), when the unstable growth is governed by instability modes. The
DG unstable growth is faster than the PG one, likely because instability modes and
their amplification factor evolve differently for PG and DG mixing layers. Figure 7
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FIGURE 8. Temporal evolution of the non-dimensional streamwise production and the non-
dimensional total transport terms integrated over the whole domain, respectively P∗int =

(1/(ρ01u3))
∫

Ly
ρ̄Pxx dy (with ρ̄Pxx=−ρu′′x u′′y(∂ ũx/∂y)) and T∗int= (1/(ρ01u3))

∫
Ly
(∂Tk/∂xk)

dy (with ∂Tk/∂xk= ∂(
1
2ρu′′i u′′i u′′j + p′u′′i − u′′i τ ′ij))/∂xk. Results are computed from the 134M

simulation.

also displays the evolution of the DG momentum thickness for the 16.8M simulation,
which is very close to the 134M simulation, demonstrating grid convergence.

Figure 8 displays the integrated production and transport terms. The DG turbulent
production is found to be larger than the PG production, consistent with the larger DG
momentum thickness growth rate. Although the unstable evolution is faster for the DG
mixing layer, both mixing layers reach a self-similar stage almost at the same time as
confirmed in figure 8. The growth rate slopes calculated during the self-similar stage
are reported in figure 7: the slope is slightly larger for the DG than for the PG with
a typical 5 % difference between DG and PG mixing layers.

The evolution of the integrated transport term provides information on exit flux
from the computational domain. It seems that the DG mixing layer displays an
extended converged self-similar state compared with the PG mixing layer. The choice
has, however, been made in the current study to select a common self-similar range,
namely τ ∈ [1700; 2550].

From the above analysis, the comparison between the DG and the PG mixing layers
can be divided into two main parts: the initial unstable growth, where differences
between the two mixing layers are significant; and the self-similar range, where the
dynamics of the mixing layers seem rather close.

4.2. Unstable growth analysis
During the unstable growth, the momentum thickness evolution is governed by
instability modes and their amplification mechanism. A larger growth is directly
related to a larger production term according to Vreman et al. (1996). The streamwise
production term is composed of the Favre averaged velocity gradient and the turbulent

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

21
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.218


Turbulence in a dense gas compressible mixing layer 893 A10-19

-5 -4 -3 -2 -1 0 1 2 3 4 5

0.010

0.009

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0

y/∂œ(t)

R
xy

/Î
u2

† = 1000: FC-70 MH
† = 1000: Air PG
† = 500: FC-70 MH
† = 500: Air PG
† = 250: FC-70 MH
† = 250: Air PG
† = 50: FC-70 MH
† = 50: Air PG

FIGURE 9. Distribution of the xy component of the turbulent stress tensor (Rxy =

ρu′′x u′′y/ρ̄) over the non-dimensional direction y/δθ (t). Results are computed from the 134M
simulation. The curves for FC-70 and air at τ = 50 collapse.

stress tensor. The comparison of the first term does not show significant differences
between DG and PG unlike the second term. Figure 9 displays the distributions of
the xy component of the turbulent stress tensor Rxy = ρu′′x u′′y/ρ̄ normalized by 1u2

over the normalized cross-stream direction y/δθ(t) during the initial growth. The
DG xy component of the turbulent stress tensor increases much faster than the PG
one until τ ≈ 500. Afterwards, both tensors reach the same level at τ ≈ 1000. This
observation is consistent with the temporal evolution of the integrated streamwise
production term.

In order to better understand the difference of dynamics between PG and DG, the
comparison of PG and DG mixing layers during the unstable growth is investigated
using the specific TKE spectra. Spectra reported in figure 10 are computed on the
centreline in the streamwise direction. One can notice the sudden increase of the
specific TKE at the smallest scales for the DG. Consistent with observations made
by the authors for DNS of forced HIT (Vadrot, Giauque & Corre 2019) in a DG,
the dynamics at the smallest scales is different between the PG and DG. The slope
of the specific TKE decrease at the smallest scales tends to be larger for the DG in
comparison with the PG.

This increase is not likely to explain the different unstable growth phase between
DG and PG because this region of the spectrum corresponds to low-energy modes.
However, in the approximate range kx/k0 ∈ [10; 22], energy is much larger for the DG
when compared to the PG (a factor of between 2 and 3 is found). These modes are
high-energy modes and are responsible for the difference between the DG and the PG
during the unstable growth phase.

Another explanation can be found in the evolution of the turbulent Mach number
Mt, displayed in figure 11 for FC-70 and air. The turbulent Mach number is computed
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FIGURE 10. Specific TKE spectra in the streamwise direction computed over the
centreline during the unstable growth phase. Results are computed from the 134M
simulation.
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FIGURE 11. Temporal evolution of turbulent Mach number. Results are computed from
the 134M simulation.

using the following relation:

Mt =

√
u′2x + u′2y + u′2z

c
. (4.1)
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FIGURE 12. Distribution of thermodynamic states along the initial adiabatic curve.
Amplitude is normalized with the maximum value at τ = 1000. Results are computed from
the 134M simulation.

Turbulent Mach numbers increase during the unstable growth phase until Mt≈ 0.53.
Evolutions for DG and PG are very close during this first phase, with a slightly larger
value for the DG, which is consistent with the evolutions of the turbulent production
(figure 8). Next, turbulent Mach numbers decrease and reach an approximately
constant value during the self-similar period. Average values are almost equal for DG
and PG (Mtav,DG ≈ 0.38<Mtav,PG ≈ 0.39). Shocklets might be observed during a short
period of time during the unstable growth phase (τ ∈ [500; 750]), which corresponds
to the period of time during which discrepancies appears between DG and PG (see
figure 7). During this short period of time, even though the values of the turbulent
Mach number are almost the same for DG and PG, their effect on the mixing
layer growth is different. Since the majority of the thermodynamic states lie inside
the inversion region, expansion shocklets could be one reason for the discrepancy
between DG and PG. However, since it represents a very short period of time after
which Mt decreases well below the range of values for which shocklets are expected,
it is not likely to influence the self-similar period.

4.3. Turbulent kinetic energy balance computed over the self-similar period
Before analysing the TKE equation, it can be checked, in order to maximize the
differences between DG and PG, that the DG mixing layer thermodynamic states stay
inside the inversion region in the p–v diagram. Figure 12 presents the thermodynamic
state distributions on the adiabatic curve normalized by the maximum value at τ =
1000. One can note that almost all the thermodynamic states stay inside the inversion
region all along the development of the mixing layer. Also, the distributions seem to
become asymmetric towards larger reduced molar volumes (vr) which corresponds to
a decrease of the reduced pressures (pr) in figure 1.

During the self-similar period (τ ∈ [1700; 2550]), both DG and PG mixing layers
are in a statistically stable state and the terms of the TKE equation can be averaged.
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FIGURE 13. Distribution of the volumetric normalized powers over the non-dimensional
cross-stream direction y/δθ (t). Here P (production), D (dissipation) and T (transport) are
normalized by ρ01u3/δθ (t). Results are computed from the 134M simulation. The samp-
ling space step of the averaging process is (2Ly/δθ (τ = 1700))/Npoints, with Npoints = 24.
Distributions have been averaged between the upper and the lower stream to get perfectly
symmetric distributions.

Consistent with the evolution of the integrated production given in figure 8 and with
the formulation of Vreman et al. (1996), powers given in figure 13 are volumetric
unlike in figure 5 showing the comparison with Pantano & Sarkar (2002). The choice
of using the volumetric or the specific power formulation influences the comparison
between DG and PG. The difference between the two formulations can be more easily
expressed by a normalization with either ρ0 or ρ̄, respectively, for the volumetric
and for the specific powers. For the DG, the difference between both formulations
is reduced compared with the PG. The decrease of the Reynolds-averaged density
over the y direction is indeed lower for the DG than for the PG. It is likely that
the molecular complexity of the DG reduces the temperature increase related to the
viscous dissipation, which also reduces the density decrease and thus the difference
between the volumetric and specific power formulations (see thermodynamic analysis
in appendix B).

Figure 13 shows the comparison of the main volumetric TKE budget terms between
the PG and the DG mixing layers. Results are close between the two types of gases.
The production term is slightly larger for the DG when compared to the PG, which
is consistent with figure 8 and with the 5 % increase of the momentum growth rate.
The dissipation is also larger for the DG in order to counterbalance the turbulent
production. The transport term is almost identical between DG and PG. The pressure
transport and turbulent transport terms are close between the two types of gases (the
viscous transport is negligible). The DG seems to have a limited effect on these
turbulent quantities. However, one can highlight a slower propagation of the TKE
terms at the boundaries of the mixing layer as a visible effect induced by the DG:
the curves are indeed widened for the PG with respect to the DG. The observation
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FIGURE 14. Distribution of the main non-dimensional volumetric power terms of the
x turbulent stress tensor (Rxx) equation over the non-dimensional cross-stream direction
y/δθ (t). The Pxx (streamwise production), Πxx (streamwise pressure–strain) and Dxx
(streamwise dissipation) terms are normalized by ρ01u3/δθ (t). Results are computed
from the 134M simulation. The sampling space step of the averaging process is
(2Ly/δθ (τ = 1700))/Npoints, with Npoints= 24. Distributions have been averaged between the
upper and the lower stream to get perfectly symmetric distributions.

of this effect is confirmed by the distributions of mean axial velocity profiles given
in figure 26.

Concerning the other terms of the TKE equation, it is found that the compressible
dissipation, the pressure dilatation, the mass-flux coupling term and the convective
derivative of the TKE are negligible for both PG and DG. Residuals and time
derivative agree well between both gases.

As mentioned in the introduction, the well-known compressibility-related reduction
of the momentum thickness growth rate is explained by a reduction of the
pressure–strain terms (Πij). These terms only appear explicitly in the turbulent
stress tensor equations. Figures 14 and 15 give the turbulent stress tensor budget
terms over, respectively, the x and y directions. In the same way as for the PG, the
pressure–strain terms are not negligible for the DG, but no significant difference is
observed between the DG and the PG. The DG mixing layer seems to suffer the
same reduction of the pressure–strain terms as the Mach number increases, which is
due to both (i) the reduction of the pressure fluctuations and (ii) the reduction of the
gradient of velocity fluctuations when the convective Mach number increases.

At y/δθ(t) = 0, a non-monotonic behaviour is observed for DG, which is due
to the difference in thermodynamic behaviour illustrated in figure 23. The density
fluctuations are indeed larger at the centre of the mixing layer for DG, unlike PG
where peaks of root-mean-square density are located at the borders of the layer. This
higher density fluctuation rate at the centre is likely to disturb the distributions of
production since this term is calculated using Favre averaging.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

21
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.218


893 A10-24 A. Vadrot, A. Giauque and C. Corre

-5 -4 -3 -2 -1 0 1 2 3 4 5
y/∂œ(t)

2.5

2.0

1.5

1.0

0.5

0

-0.5

-1.0

-1.5

-2.0

-2.5

Vo
lu

m
ic

 p
ow

er
 n

or
m

al
iz

ed
w

ith
 ®

0Î
u3 /∂

œ(
t)

Pyy: FC-70 MH
Pyy: Air PG

Dyy: FC-70 MH
Dyy: Air PG

Ôyy: FC-70 MH
Ôyy: Air PG

(÷ 10-4)

FIGURE 15. Distribution of the main non-dimensional volumetric power terms of the
y turbulent stress tensor (Ryy) equation over the non-dimensional cross-stream direction
y/δθ (t). The Pyy (cross-stream production), Πyy (cross-stream pressure–strain) and Dyy
(cross-stream dissipation) terms are normalized by ρ01u3/δθ (t). Results are computed
from the 134M simulation. The sampling space step of the averaging process is
(2Ly/δθ (τ = 1700)/Npoints), with Npoints= 24. Distributions have been averaged between the
upper and the lower stream to get perfectly symmetric distributions.

In the vertical direction, production terms are even more non-monotonic for both
DG and PG (figure 15) because they involve the vertical gradient of the mean vertical
velocity. Since this gradient is calculated in the vertical direction, which corresponds
to the direction of the mixing layer growth, it induces much noisier distributions.

4.4. Specific TKE spectra computed during the self-similar period
The aforementioned results do not exhibit significant differences between DG and PG,
but that does not imply that there is no difference at all: a turbulent quantity may
appear to be the same for PG and DG when looked at as a global quantity over
the whole wavenumber range but may actually behave differently at some specific
turbulent scales. Since our final objective is to assess the need for new LES subgrid
models in the case of turbulent DG flows, it is important to take a closer look at
each quantity in the spectral domain. The streamwise specific TKE spectra computed
on the centreline are thus shown in figure 16 for DG and PG. Spectra are normalized
by 1u2δθ(t) following Pirozzoli et al. (2015). The longitudinal Taylor microscale λx

is also reported in figure 16, computed as (see Bailly & Comte-Bellot 2003)

λx =

√√√√√√ 2u′2x(
∂u′x
∂x

)2
. (4.2)
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FIGURE 16. Streamwise specific TKE spectra computed on the centreline.

Note that the following simplified equation often used in the literature:

λx =

√
30νu′2

ε
(4.3)

does not apply here since it is only valid for incompressible and homogeneous
turbulence (Kolmogorov 1941).

The evolution of TKE is similar for both PG and DG flows at the largest scales.
However, at small scales, the PG TKE is decreasing faster than the DG TKE, an
observation reminiscent of the one made for the unstable growth phase. The DG effect
therefore seems to increase small-scale energy. The dissipation term, which is the main
term at these scales, seems to be reduced. Figure 17 displays the ratio of the DG to
the PG spectra and enables one to precisely focus on quantities at stake. At scales
smaller than the Taylor microscale, the DG to PG energy ratio increases up to a factor
of six.

Note that the Lx/λx ratio is slightly smaller for the DG. The turbulent structures at
which dissipation plays an important role are smaller for the DG than for the PG.

4.5. Filtered kinetic energy equation computed over the self-similar period
The analysis of the filtered kinetic energy equation balance, developed for compressible
flows by Aluie (2013), is of interest in turbulence modelling because it enables one
to obtain the main terms at each scale in the spectrum. This approach has only been
applied so far to HIT (Wang et al. 2018). To the best of the authors’ knowledge, no
such analysis has been yet conducted for compressible mixing layers. It consists of
using a scale decomposition similar to the Favre filtering:

f̃l =
ρf l

ρ̄l
. (4.4)
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FIGURE 17. Dense gas/perfect gas streamwise specific TKE spectra ratio. Results are
computed from the 134M simulation.

Quantities at scales below the filtering scale l are filtered. The resulting filtered
equations for the density and the momentum remain almost unchanged. The only
difference is the appearance of the SGS stress tensor ρ̄ t̃ij = ρ(ũiuj − ũiũj):

∂ρ̄

∂t
+
∂ρ̄ũi

∂xi
= 0, (4.5)

∂ρ̄ũi

∂t
+
∂ρ̄ũiũj

∂xj
=−

∂ p̄
∂xi
+
∂(τ̄ij − ρ̄ t̃ij)

∂xj
. (4.6)

The filtered equation for the large-scale kinetic energy is obtained from (4.6):

∂

∂t

(
1
2
ρ̄ũ2

i

)
+ Jl =−Φl −Πl −Dl, (4.7)

where Jl represents the transport term, Φl is the large-scale pressure–dilatation term,
Πl is the SGS kinetic energy flux and Dl is the viscous dissipation term (using the
notations of Wang et al. (2018)):

Jl =
∂

∂xj

(
1
2
ρ̄ũ2

i ũj + p̄ũj + ρ̄ t̃ijũi − ũiτ̄ij

)
, (4.8)

Φl =−p̄
∂ ũi

∂xi
, (4.9)

Πl =−ρ̄ t̃ij
∂ ũi

∂xj
, (4.10)

Dl = τ̄ij
∂ ũi

∂xj
. (4.11)
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FIGURE 18. Filtered kinetic energy equation terms computed on the centreline of the
mixing layer and averaged during the self-similar period (τ ∈ [1700; 2550]) (R, residuals;
TD, time derivative). Results are computed from the 134M simulation.

The ensemble average can be next applied to (4.7) to yield〈
∂

∂t

(
1
2
ρ̄ũ2

i

)〉
+ 〈Jl〉 =−〈Φl〉 − 〈Πl〉 − 〈Dl〉. (4.12)

In the mixing layer under study, turbulence is homogeneous along the x and z
directions. Terms of (4.7) can thus be integrated along these two directions. As
previously done for figure 13, the filtered kinetic energy equation is obtained along
the mixing layer developing direction (y). Unlike HIT, the transport term integrated
over the x and z directions is not equal to zero. The turbulence is indeed not
homogeneous along the y direction and the boundary conditions are not periodic; it
thus cannot be averaged along the transverse direction y.

Also, the kinetic energy equation terms defined by Wang et al. (2018) do
not seem fully suitable to study the compressible mixing layer. The large-scale
pressure–dilatation term (Φl) and the large-scale pressure–transport term (∂(p̄ũj)/∂xj)
exchange energy together and evolve significantly within the wavenumber range and
from one integration plane to another. A more appropriate quantity seems to be Σl
corresponding to the sum of these two terms, which leads to a transformed (with
respect to (4.12)) averaged kinetic energy equation:〈

∂

∂t

(
1
2
ρ̄ũ2

i

)〉
+ 〈J∗l 〉 =−〈Σl〉 − 〈Πl〉 − 〈Dl〉, (4.13)

J∗l =
∂

∂xj

(
1
2
ρ̄ũ2

i ũj + ρ̄ t̃ijũi − ũiτ̄ij

)
, (4.14)

Σl = ũi
∂ p̄
∂xi
, (4.15)

where Σl represents the power of the pressure strengths computed from the filtered
variables. Figure 18 displays the terms of the filtered kinetic energy equation (4.13)
computed on the centreline of the mixing layer.
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FIGURE 19. Filtered transport terms composing J∗l computed on the centreline of the
mixing layer and averaged during the self-similar period (τ ∈ [1700; 2550]). Results are
computed from the 134M simulation.

As expected, the SGS kinetic energy flux (Πl) prevails at large scales and decreases
as the filtering wavelength gets smaller. Unlike the SGS kinetic energy flux, the
viscous dissipation (Dl) increases with the filtering wavenumber. These two terms are
counterbalanced by the transport term. The detailed decomposition of this last term is
given in figure 19. The residuals show a good closure of the balance for both types
of gases and mostly correspond to the temporal derivative of the TKE.

The comparison between the DG and the PG shows that the transition between the
large and small scales, identified by the intersection between the SGS kinetic energy
flux and the viscous dissipation term curves, is delayed to higher wavenumbers for
the DG when compared to the PG. This observation is consistent with the computed
value of the Taylor microscale given in figure 16. Also, the SGS kinetic energy flux
seems to be smaller at large scales for the DG when compared to the PG.

A detailed description of the quantities composing the transport term is given in
figure 19. One can note that at small scales, the transport term is mainly composed
of the convective flux of the filtered kinetic energy (−∂( 1

2 ρ̄ũ2
i ũj)/∂xj). At large scales,

this quantity decreases and the SGS kinetic energy transport term becomes the main
term.

Comparison between DG and PG shows that the main quantities are significantly
weaker for DG, consistent with figure 18.

5. Concluding remarks
Direct numerical simulations of the compressible mixing layer at convective Mach

number Mc = 1.1 have been achieved for air described as a PG and FC-70 (BZT
gas) described using MH EoS. Perfect gas results have been compared with available
results from the literature in order to demonstrate the quality of the present DNS
results before moving to the PG versus DG comparison and the identification of
DG turbulence specificities. Two sets of observations have been proposed and are
summarized here: the first set deals with the general study of compressible mixing
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FIGURE 20. Streamwise specific TKE spectra computed on the centreline.

layers while the second set is specific to the DG flow and its comparison to the PG
model.

The selection of the self-similar period is a key point in the study of mixing layers:
this choice remains complex and the diversity of the criteria used for the selection
process contributes to the diversity of results reported in the literature (also translating
into the diversity of δ̇θ = f (Mc) plots). Care has been given in the present study
to a well-justified selection of this self-similar period, based on the analysis of the
integrated streamwise production over time, which is proportional to the momentum
thickness growth rate under certain conditions (Vreman et al. 1996).

Looking at the evolution of the integrated transport term over time enables the
identification of the exit of turbulent structures from the computational domain, which
is an appropriate criterion to define the end of the self-similar period. The sensitivity
of the results to mesh refinement has also been investigated. The comparison of the
present results obtained for air with the previous DNS of Pantano & Sarkar (2002)
shows a good agreement and validates the present DNS of a compressible mixing
layer in air described with the PG EoS.

The comparison between PG and DG does not show major differences for
the momentum thickness growth rates and between the two TKE budgets. The
DG seems to face the same well-known compressibility-related reduction of
the momentum thickness growth rate, caused by the reduction of both pressure
fluctuations and the gradient of the velocity fluctuations leading to the reduction
of the pressure–strain terms. However, when these quantities are analysed at each
turbulent scale, distributions over the wavenumbers turn out to be quite different
between PG and DG. Results suggest that the DG effect yields an increase of the
TKE at small scales.

Because of a significant decrease in the speed of sound, very large turbulent
Mach numbers are expected to be observed experimentally when using DGs for
thermodynamic states located in the inversion region. The turbulent Mach number
is limited in the present study to approximately 0.4 on the centreline during the
self-similar period and only briefly increases beyond 0.5 during the unstable growth
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FIGURE 21. Distribution of the xy component of the turbulent stress tensor (Rxy =

ρu′′x u′′y/ρ̄) averaged over the self-similar period. Comparison is made between the 16.8M
and the 134M simulations for DG and PG. Distributions have been averaged between the
upper and the lower stream to get perfectly symmetric distributions.

phase. The analysis of a DG shear layer at a convective Mach number well above 1.1
will allow one to assess and possibly expand the conclusions drawn from the present
comparison between DG and PG to highly supersonic or hypersonic flows.
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Appendix A. Domain size and resolution

Additional proofs of grid convergence are given in figures 20 and 21. Spectra and
the xy component of the turbulent stress tensor computed for the 134M and the 16.8M
simulations during the self-similar period are found to be very close, demonstrating a
proper grid convergence of the results. For spectra, discrepancies occur at very small
scales only, where energy is very low. This shows that the energy decrease for the
16.8M simulations starts at kx/k0 ≈ 150, corresponding to about 1/2 to 1/3 of the
Nyquist–Shannon sampling frequency. This observation appears very reasonable, given
the third-order spatial accuracy of the numerical scheme.

To complement the grid resolution study, figure 22 displays a comparison between
DG and PG for the vertical distribution of r = Lη/1x at different non-dimensional
times within the self-similar range. At the centre of the mixing layer, the Kolmogorov
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FIGURE 22. Distributions of r= Lη/1x, the ratio between the Kolmogorov scale and the
grid cell size, for the DG (a) and the PG (b) at several non-dimensional times inside the
self-similar period (τ ∈ {1700; 1800; 2000; 2200; 2400}). Results are computed from the
134M simulation.

Mc Reδθ Reλx r= Lη/1x lx/Lx lz/Lz

Air (τ = 1700) 1.1 1874 143 0.97 0.073 0.063
Air (τ = 2550) 1.1 2413 156 1.09 0.124 0.076
FC-70 (τ = 1700) 1.1 2469 176 0.80 0.089 0.052
FC-70 (τ = 2550) 1.1 3304 241 0.87 0.197 0.053

TABLE 3. Non-dimensional parameters computed at the beginning (τ = 1700) and at the
end (τ = 2550) of the self-similar period. Parameter Reλx denotes the Reynolds number
based on the longitudinal Taylor microscale λx (see (4.2)) computed at the centreline and
Lη denotes the Kolmogorov length scale computed at the centreline.

length scale is at its minimum value since the turbulent activity is maximum.
A slightly better resolution at the centre can be observed for PG compared to DG,
but values of r stay above 0.80 in any case, which is enough for DNS resolution. As
a comparison, the ratio of Pantano & Sarkar (2002) was about 0.38.

Profiles are also different between PG and DG. The DG mixing layer is much more
localized at the centre of the domain unlike the PG mixing layer which produces a
wider distribution as noted in § 4.3.

Table 3 provides non-dimensional physical parameters of the simulation at the
beginning (τ = 1700) and at the end (τ = 2550) of the self-similar period. Reynolds
numbers based on the momentum thickness increase during the self-similar period
and are large enough to lead to a turbulent flow, which is slightly more turbulent
for the DG when compared to the PG. Reynolds numbers based on the longitudinal
Taylor microscale are larger for DG compared to PG consistent with figure 16. The
ratio r between the Kolmogorov scale and the grid cell size (Lη/1x) indicates the
proper resolution of the simulation. The integral lengths lx and lz are computed using
the streamwise velocity field:

lx =
1

2u2
x

∫ Lx/2

−Lx/2
ux(x)ux(x+ rex) dr, (A 1)

lz =
1

2u2
x

∫ Lz/2

−Lz/2
ux(x)ux(x+ rez) dr, (A 2)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

21
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.218


893 A10-32 A. Vadrot, A. Giauque and C. Corre

-5 -4 -3 -2 -1 0 1 2 3 4 5 -5 -4 -3 -2 -1 0 1 2 3 4 5

-5 -4 -3 -2 -1 0 1 2 3 4 5 -5 -4 -3 -2 -1 0 1 2 3 4 5

-5 -4 -3 -2 -1 0 1 2 3 4 5 -5 -4 -3 -2 -1 0 1 2 3 4 5

0.955
0.960
0.965
0.970
0.975
0.980
0.985
0.990
0.995
1.000

0.82
0.84
0.86
0.88
0.90

0.94
0.96
0.98
1.00
1.02

0.98
1.00
1.02
1.04
1.06
1.08

1.12
1.14
1.16
1.18

1.10

0.92

0.050
0.045
0.040
0.035
0.030
0.025
0.020
0.015
0.010
0.005

0

0.075
0.070
0.065
0.060
0.055
0.050
0.045
0.040
0.035
0.030
0.025

0.024
0.022
0.020
0.018
0.016
0.014
0.012
0.010

y/∂œ(t) y/∂œ(t)

p/
p 0

®/
® 0

T/
T 0

T r
m

s/
T 0

® r
m

s/
® 0

p r
m

s/
1 2® 0

Î
u2 )

(

(a) (b)

(c) (d)

(e) (f)

FC-70 MH
Air PG

FIGURE 23. The non-dimensional Reynolds-averaged (a,c,e) and root-mean-square (b,d, f )
values of temperature (a,b), density (c,d) and pressure (e, f ) are averaged over the self-
similar period (τ ∈ [1700; 2550]), plotted along the y direction and compared between
FC-70 using the MH EoS and air using the PG EoS. Results are computed from the 134M
simulation.

where ex and ez correspond to the unit vectors in the x and z directions, respectively.
The computed integral lengths in the present study are larger than those in the
simulation reported by Pantano & Sarkar (2002), with an integral length in the
streamwise direction of about 0.03 for the same Mc = 1.1 configuration but reaching
0.178 for a configuration with Mc= 0.7 and a density ratio of 4. Despite these larger
values for lx, the computational domain appears to be still sufficiently large to ensure
it does not disturb the development of turbulent structures. The same conclusion
applies to the spanwise integral length scales for DG and PG.

Appendix B. Mean and fluctuating thermodynamic quantities in the self-similar
stage

Figure 23 provides a comparison of pressure, temperature and density between
DG and PG flows over the self-similar period. For PG, when looking at the
Reynolds-averaged values, one can notice an increase of about 16 % of the temperature
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FIGURE 24. Temporal evolution of Reynolds number based on the momentum thickness.
Results are computed from the 134M simulation.

at the centre of the mixing layer, due to viscous dissipation. Density decreases in
similar proportions unlike pressure which is less impacted (4.5 % decrease). For
DG, the temperature is almost not affected by the viscous dissipation. Due to the
molecular complexity of DG flows, the thermodynamic evolution is almost isothermal
as already observed by Sciacovelli et al. (2017b).

When looking at the root-mean-square values of the fluctuations for PG, significant
temperature fluctuations occur at the edges of the mixing layer due to turbulent
mixing, leading to significant density variations. Pressure fluctuations are maximum
at the centre of the mixing layer. For DG, temperature fluctuations are suppressed.
Pressure fluctuations in the DG mixing layer are very close to fluctuations observed
in the PG mixing layer, which is consistent with the same pressure–strain levels
found in figures 14 and 15.

Appendix C. Additional comparison during the self-similar period
Figure 24 provides a comparison between FC-70 and air for the Reynolds numbers

based on the momentum thickness (Reδθ ). These Reynolds numbers are computed
using the domain-averaged viscosity. Results show a much larger increase of the
Reynolds number during the whole evolution for DG compared to PG. During
the unstable growth phase, this seems consistent with § 4.2. However, during the
self-similar period, the gap between DG and PG becomes larger and tends to increase.
This behaviour is explained by an increase of the viscosity for PG due to the increase
of the temperature (see figure 23). Since the flows are significantly turbulent, this
difference in the Reynolds number evolution between DG and PG does not influence
the mixing layer growth rates.

Figure 25 gives the profiles of xx, yy, zz and xy components of root-mean-square
velocities for PG and DG. The self-similar period selected (τ ∈ [1700; 2550]) seems
well confirmed by these distributions which collapse relatively well in this time
interval. At τ = 1000, the profiles are clearly not self-similar. At τ = 1400, it is

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

21
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.218


893 A10-34 A. Vadrot, A. Giauque and C. Corre

-5 -4 -3 -2 -1 0 1 2 3 4 5 -5 -4 -3 -2 -1 0 1 2 3 4 5

-5 -4 -3 -2 -1 0 1 2 3 4 5 -5 -4 -3 -2 -1 0 1 2 3 4 5

-5 -4 -3 -2 -1 0 1 2 3 4 5 -5 -4 -3 -2 -1 0 1 2 3 4 5

-5 -4 -3 -2 -1 0 1 2 3 4 5 -5 -4 -3 -2 -1 0 1 2 3 4 5

0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02

0

0.12

0.10

0.08

0.06

0.04

0.02

0

0.12

0.10

0.08

0.06

0.04

0.02

0

0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02

0

0.10
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

0

0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

0

0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

0

0.10
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

0

y/∂œ(t) y/∂œ(t)

R x
y/
Î

u
√

R z
z/
Î

u
√

R y
y/
Î

u
√

R x
x/
Î

u
√

† = 1000
† = 1400
† = 1800
† = 2200
† = 2500

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIGURE 25. Distributions of the non-dimensional root-mean-square velocities (xx (a,b), yy
(c,d), zz (e, f ) and xy (g,h) components) for the DG (a,c,e,g) and the PG (b,d, f,h) at several
non-dimensional times outside (τ ∈ {1000; 1400}) and inside (τ ∈ {1800; 2200; 2500}) the
self-similar period. Results are computed from the 134M simulation.

less obvious to decide whether self-similarity is already achieved or not. In order to
define the self-similar period from the root-mean-square velocity distributions, one
can follow the method given in Almagro, García-Villalba & Flores (2017) computing
the temporal mean and standard deviation of the Reynolds stresses for several time
intervals. In this paper, another methodology is retained to define the self-similar
period (see § 3.1). The comparison between DG and PG in figure 25 shows a similar
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FIGURE 26. Distribution of the non-dimensional mean streamwise velocity averaged over
the self-similar period. Comparison is made between FC-70 using the MH EoS and air
using the PG EoS. Results are computed from the 134M simulation.

evolution for the four computed components. The peak value averaged over the
self-similar period is about 0.14 and 0.09, respectively, for the xx and yy components,
which is in good agreement with (Pantano & Sarkar 2002) where these values are
reported as 0.14 and 0.10.

Figure 26 displays the distribution of the mean streamwise velocity for the DG and
the PG shear layers. These profiles confirm the effect highlighted in § 4.3, namely a
slower propagation at the boundaries of the domain for DG compared with PG.
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