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Abstract

We explored the seed-associated bacterial endophytic microbiome in seeds of the endemic
holoparasitic species Cistanche armena from a saline and arid habitat in Armenia. A combin-
ation of culture-dependent and molecular techniques was employed for identifying the seed
endomicrobiome (culturable and unculturable). From surface-sterilized seeds, 10 phyla, com-
prising 256 endophytic bacterial genera, were identified. Of the culturable strains, we also
investigated the plant growth-promoting (PGP) traits. Most of the isolates were spore forming,
halotolerant and alkaliphile Bacillus spp., indicating that the endophytic bacteria of C. armena
seeds own traits related to the natural habitat of their host plant. Our results confirm that
Bacillus species are common and dominated endophytes from plants growing on saline and
arid soils. Pantoea spp. and Stenotrophomonas spp. are more favourable PGP endophytes
in seeds of C. armena. The PGP traits of these bacteria, such as production of indole, a pre-
cursor of auxin, ACC-deaminase and organic acids have the potential to improve the tolerance
of their host plants against the abiotic stresses present in their natural habitat. To the best of
our knowledge, this is the first report concerning bacterial seed endophytes of the C. armena.

Introduction

With approximately 4750 species, parasitic plants constitute 1.6% of the angiosperms
(Nickrent, 2020). Parasitism, especially holoparasitism, represents the most extreme inter-
action between plants, with strong associations between host and parasite biogeography, ecol-
ogy, and probably with diversification (Schneider and Moore, 2017). Orobanchaceae is the
largest parasitic plant family with 102 genera and over 2100 species (Nickrent, 2020). One
of the most peculiar in this family is the genus Cistanche Hoffmanns. & Link, which includes
approximately 25 species, and is found mainly in arid, semi-arid and halophytic habitats
across Eurasia and North Africa. These magnificent, achlorophyllous species, with fleshy
stems, long underground stolons and intensely coloured inflorescences grow as obligate para-
site (holoparasite) on the roots of host-plant species mainly belonging to the Chenopodiaceae,
Zygophyllaceae, Tamaricaceae and Plumbaginaceae (Piwowarczyk et al., 2019). Species
belonging to this genus have been widely used in traditional Chinese medicine for centuries
(Li et al., 2016; Piwowarczyk et al., 2020a).

A particularity of parasitic plants is their production of huge numbers of seeds, which are
also among the smallest of all seed plants (Eriksson and Kainulainen, 2011). With a length of
less than 1 mm, they are often called ‘dust seeds’ (Yoneyama et al., 2008; Eriksson and
Kainulainen, 2011; Piwowarczyk, 2013). The seeds possess a unique simple structure, and con-
tain only a reduced embryo, as a spherical body without a plumule, and radicle or cotyledons.
The reticulated testa of these seeds with polygonal and sometimes deeply submerged walls
might enhance the contact of the seed surface with water or facilitate the seed dispersal by
wind. The endothelium (inner testa layer) containing mucilage and labyrinthine walls, allows
rapid absorption of water, which is crucial for imbibition and subsequent germination
(Piwowarczyk et al., 2020b). The cutinized endothelium has a protective role in the under-
ground part of the plant life cycle (Dinesh et al., 2015; Piwowarczyk et al., 2019). Lipids are
the main storage material in the seeds of Orobanchaceae (Ruraż et al., 2020). For germination,
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Cistanche seeds need to be very nearby their preferred host.
Germination depends on hormones-strigolactones exuded from
the host root (Yoneyama et al., 2008). Seeds of Cistanche, like
related Orobanche s.l. species, seem to be resistant to harsh envir-
onmental conditions and stay viable in the soil for several decades
(Joel et al., 2007). Among the wide range of plant protection
mechanisms, the endophytic microbes have a specific role for
improving the plant tolerance against different biotic and abiotic
stresses (Shrivastava and Kumar, 2015).

Recently, the interest in plant endophytes from ecosystems
with harsh environmental conditions, especially saline soils has
increased (Hrynkiewicz et al., 2019; Manasa et al., 2020). Such
endophytes can have the potential to mitigate the impacts of
adverse conditions such as soil salinization, high concentrations
of metals and climate change (Hallmann et al., 1997; Truyens
et al., 2016; Manjunatha et al., 2017; Hemida and Reyad, 2019).
Most of the seed-associated bacteria are considered to have an
environmental origin and to be important for the adaptation of
their host to harsh environmental conditions (Frank et al.,
2017). Therefore, tissues of halotolerant plants also contain halo-
philic bacterial communities (Etesami and Beattie, 2018) and the
composition of seed-associated bacterial communities should be
closely related to the soil bacterial communities. Besides the obli-
gate endophytes, plant tissues can be colonized by soil bacteria as
well. This is explained by the possible migration of bacteria from
the soil to the seeds (Frank et al., 2017; Johnston-Monje et al.,
2021). According to Barret et al. (2016), the endophytes reach
the seeds by: internal transmission through the vascular system
and floral transmission (external transmission) through the
stigma, fruits or flowers. Indeed, during the early stages of seed
development, the endophytes reach the seeds via the xylem and
nonvascular plant tissues. Bacteria can also use the floral pathway
to reach the seeds. However, the floral route has a selective func-
tion, and only endophytes with biocontrol ability and nonhost
pathogens can reach the seeds. However, the seeds endophytic
microbiome composition, diversity and bacterial proportions
depend on plant species genotype, natural habitat of host plant,
seeds dormancy and storage conditions, which was not investi-
gated sufficiently (Jonkers et al., 2022).

So far, ample endophytes have been isolated from different
seeds of many wild and agricultural/sylvicultural herbaceous

and woody plant species (e.g. Ulrich et al., 2008; Truyens et al.,
2013, 2014, 2016; Asaf et al., 2017; Glassner et al., 2018;
Sánchez-López et al., 2018; Compant et al., 2019), including
some holoparasitic species (tissue and seeds) such as
Phelipanche aegyptiaca, P. ramosa and Orobanche hederae
(Iasur Kruh et al., 2017; Fitzpatrick and Schneider, 2020; Huet
et al., 2020; Durlik et al., 2021). The microbiome of P. aegyptiaca
in different developmental stages was investigated by Iasur Kruh
et al. (2017). Surface-sterilized tissues of roots, haustoria and
shoots harboured bacteria belonging to the Proteobacteria
(Rhizobium, Pseudomonas, Comamonadaceae, Sphingomonas
and Burkholderia, Actinobacter sp., Bacillus sp.). In addition,
Novosphingobium and Methylophilus were reported as specific
endophytes for this plant species (Iasur Kruh et al., 2017). A
study of the endophytic microbiome of O. hederae reported that
Orobanche leaves (scales) contain Acidobacteria, Proteobacteria,
Verrucomicrobia and bacteria belonging to the Enterobacteriaceae,
Pseudomonadaceae and Rhizobiaceae (Fitzpatrick and Schneider,
2020). The first report about seed endophytes of the holoparasitic
P. ramosa reported a dominance of four bacterial phyla, i.e.
Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes (Huet
et al., 2020). In another study on surface-sterilized seeds of P.
ramosa, culturable Brevibacterium frigoritolerans and Bacillus sim-
plex were isolated (Durlik et al., 2021; Table 1). Different bacterial
phyla also have been isolated from plants growing in arid and semi-
arid regions, like Larrea tridentata from the desert plant Salsola
(Soussi et al., 2016) and the saline wetland species Salicornia
(Szymańska et al., 2018). Furthermore, some authors argue that
the bacterial phyla Proteobacteria, Bacteriodetes, Firmicutes,
Planctomycetes, Actinobacteria and Fibrobacteres are common for
halotolerant plants from arid and wetland soils (Soussi et al.,
2016; Asaf et al., 2017; Szymańska et al., 2018).

Although many investigations highlight the importance of
endophytes in plant health, the knowledge concerning communi-
ties of bacterial seed endophytes, especially about the microbiome
of seeds of holoparasitic plant species, is still limited (Iasur Kruh
et al., 2017; Fitzpatrick and Schneider, 2020; Huet et al., 2020;
Durlik et al., 2021). Therefore, the major objective of our study
was to explore the bacterial endophytes (culturable and uncultur-
able) from seeds of the holoparasitic endemic plant Cistanche
armena (K. Koch) M.V. Agab. (Orobanchaceae) from a saline

Table 1. Endophytic bacterial taxa isolated from different tissues of holoparasitic plant species

Holoparasitic plant Endophytic bacteria

Phelipanche aegyptiaca,
host plant:
tomato (Lycopersicum esculentum)
Iasur Kruh et al., 2017

Pre-haustorium stage
α,β,γ,δ Proteobacteria, Actinobacteria, Flavobacteria, Sphingobacteria
Spider stage
α,β,γ,δ Proteobacteria, Flavobacteria, Sphingobacteria, Firmicutes
Shoots
α,β,γ Proteobacteria, Actinobacteria, Sphingobacteria, Clostridia,
Flavobacteria, Firmicutes

Orobanche hederae,
host plant:
ivy (Hedera sp.)
Fitzpatrick and Schneider, 2020

Roots
Armatimonadetes, Bacteroidetes, Proteobacteria, Actinobacteria,
Acidobacteria, Verrucomicrobia
Leaves
Bacteroidetes, Actinobacteria, Proteobacteria

Phelipanche ramosa,
host plants:
oilseed rape (Brassica napus), hemp (Cannabis sativa),
tomato (Solanum lycopersicum), tobacco (Nicotiana tabacum),
sunflower (Helianthus annuus), melon (Cucumis melo)
Huet et al., 2020; Durlik et al., 2021

Seeds
Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes
Brevibacterium frigoritolerans, Bacillus simplex
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and semi-desert habitat of Armenia. The other aim was to inves-
tigate the potential plant growth-promoting (PGP) traits of the
culturable seed endophytes that might have a role in plant
responses and tolerance to abiotic stresses.

The present study combined culture-dependent and molecular
approaches. Moreover, the effectivity of the sterilization method is
a crucial step to isolate just the seed endophytes. For this purpose,
the micromorphology of the seeds was studied to help us to select
the appropriate method of surface sterilization, due to the unique
structure of the reticulated testa and the endothelium of the seed
coat. Molecular techniques were used to identify the culturable
bacteria and to describe the diversity of the microbial communi-
ties in seeds of the examined plant species. PGP traits such as the
ability to produce Indole-3-acetic acid (IAA), ACC-deaminase,
siderophores and organic acids of the culturable endophytic bac-
terial strains were also investigated.

To the best of our knowledge, this is the first report about bac-
terial seed endophytes of the holoparasitic endemic plant species
C. armena.

Materials and methods

Species natural habitat and plant material

Mature seeds of Cistanche armena (Orobanchaceae) were used.
C. armena (K. Koch) M.V. Agab. is an endemic, critically endan-
gered species. It is known only from the Ararat and Armavir pro-
vinces in southern Armenia, in the Arax River valley and at the
foot of Mount Ararat, NW of the village Lusarat, near the Khor
Virap monastery (39°53′01′′N, 44°34′49′′E) at about 820–840 m
above sea level (Piwowarczyk et al., 2017, 2019). This locality is
one of the hottest and extremely arid regions of Armenia. The
mean daily air temperature ranges from a maximum of 42°C in
July to a minimum of −33°C in January. The average annual rain-
fall is 300 mm, while the annual evaporation reaches up to
1000 mm. The area is characterized by strong salinity (total salt
content of the soil 1–3%) with considerable carbonization
(Panosyan et al., 2018). It is a semi-desert, with sandy, saline
soils and a halophytic vegetation. C. armena parasitizes Alhagi
maurorum (Fabaceae) and Salsola dendroides (Chenopodiaceae).

The mature seeds were collected in June 2017. Seeds from at
least 10 plant individuals of the total population from the region

were collected. Mature and dry seeds were collected from dry
fruits and used for further experiments. The seeds were collected
and identified by Renata Piwowarczyk, and herbarium materials
were deposited in the Herbarium of the Jan Kochanowski
University in Kielce (KTC), Poland, and Yerevan State University
(ERCB), Armenia. The seeds were dried under natural conditions.
Field studies, including the collection of plant and seed material
complied with relevant local, institutional, national, and inter-
national guidelines, permissions and legislation.

Microscopic observation and morphometric analysis of seeds

General seed morphology was studied using an Axio Zoom.V16
Stereo Zoom system (Carl Zeiss, Germany) in bright-field illu-
mination (objective lenses PlanApo Z 1.5×, FWD = 30 mm) and
processed in ImageJ software using Fiji macros. The terminology
of seed surfaces was taken from Barthlott (1981) and
Piwowarczyk et al. (2020b). At least 30 seeds were examined,
and quantitative and qualitative morphological characteristics
were determined several times for each seed (Fig. 1).

Seed surface sterilization and cultivation conditions of
culturable seed endophytic bacteria

The aim of seed surface sterilization was to obtain only the endo-
phytic bacterial communities of the seeds. For this purpose,
50 mg of seeds were transferred into 1.5 ml Eppendorf tubes, sub-
mersed in 70% ethanol for 60 s, then 1 ml of a 0.85% sterile NaCl
solution was added, followed by shaking on a vortex (8000 rpm)
at 21°C for 2.5 h. Subsequently, the washed seeds were kept at
4°C for 15 min. Before rinsing with sterile double distilled
water, the seeds were centrifuged for 30 s at 12,000 rpm
(13,400 × g). The washing process was repeated five times with a
decreasing time of shaking from 2 h to 30 min (2 h, 1.5 h,
60 min, 45 min and 30 min). Each time samples were centrifuged
for 30 s, rinsed with sterile double distilled water, and kept at 4°C
for 15 min. The rinsing procedure was repeated three times. For
proving the effectiveness of the sterilization procedure, the last
rinsing water was plated on previously prepared Petri dishes
with LB medium. The surface-sterilized seeds were mechanically
homogenized using a sterile pellet pestle (Kimble®) in 0.5 ml,

Fig. 1. ZOOM microscopy micrographs of seeds of Cistanche armena. Photo by Y. Krasylenko.
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10 mM MgSO4. Part of the homogenous seed suspension was
used for DNA extraction, another part for isolation of culturable
bacteria.

Total DNA extraction from seeds, library preparation and
Illumina sequencing

For identification of the total (cultivable and uncultivable) bacterial
community, the homogenized suspension of the surface-sterilized
seeds was used. The DNA isolation was performed using the
Mobio Power Plant protocol. The isolation of total bacterial
DNA was conducted in four replicates.

All DNA samples were subjected to bacterial 16S rRNA
gene amplicon PCR. In the first round of 16S rRNA gene PCR,
an amplicon of 291 bp was generated, using primers 515F-
GTGYCAGCMGCCGCGGTAA and 806R-GGACTACNVGG
GTWTCTAAT (Walters et al., 2016), with an Illumina adapter
overhang nucleotide sequence, resulting in the following
sequences, 515F-adaptor: 5′-TCG TCG GCA GCG TCA GAT
GTG TAT AAG AGA CAG-3′ and 806R-adaptor: 5′-GTC TCG
TGG GCT CGG AGA TGT GTA TAA GAG ACA G-3′. For
the first round of PCR the Q5 High-Fidelity DNA Polymerase sys-
tem (M0491, NEB), a reaction volume of 25 μl per sample was pre-
pared containing 1 μl of extracted DNA (final DNA-concentration
per reaction 1–10 ng), 1 × Q5 Reaction Buffer with 2 mM MgCl2,
200 μM dNTP mix, 1 × Q5 High GC Enhancer (for the seed and
bacterial samples), 0.25 μM forward or reverse primer, and
0.02 U μl−1 Q5 High-Fidelity DNA polymerase, and for the seed
endophytic extracts, additionally 0.5 μl mitoPNA blocker (2 μM
final concentration added from a 50 μM stock), 0.5 μl (seeds)
plastidPNA blocker (2 μM final concentration from 50 μM stock)
(Kusstatscher et al., 2021) were used. The PCR program started
with an initial denaturation for 3 min at 98°C, followed by a 10 s
denaturation at 98°C, a 30 s annealing at 56°C for V3V4 (58°C
for ITS) and a 30 s extension at 72°C; all three steps were repeated
for a total of 30 cycles. The reaction was ended by a final 7 min
extension at 72°C. The amplified DNA was purified using the
AMPure XP beads (Beckman Coulter) and the MagMax magnetic
particle processor (ThermoFisher, Leuven, Belgium). Subsequently,
5 μl of the cleaned PCR product was used for the second PCR
attaching the Nextera indices (Nextera XT Index Kit v2 Set A
(FC-131-2001), and D (FC-131-2004), Illumina, Belgium). For
these PCR reactions, 5 μl of the purified PCR product was used
in a 25 μl reaction volume and prepared following the 16S
Metagenomic Sequencing Library Preparation Guide. PCR condi-
tions were the same as described above, but the number of cycles
reduced to 20, and 55°C annealing temperature. PCR products
were cleaned with the Agencourt AMPure XP kit, and then quan-
tified using the Qubit dsDNA HS assay kit (Invitrogen) and the
Qubit 2.0 Fluorometer (Invitrogen). Once the molarity of the sam-
ple was determined, the samples were diluted down to 4 nM using
10 mM Tris pH 8.5 prior to sequencing on the Illumina MiSeq.
Samples were sequenced using the MiSeq Reagent Kit v3 (600
cycle) (MS-102-3003) and 15% PhiX Control v3 (FC-110-3001).
For quality control, a DNA-extraction blank and PCR blank were
included throughout the process, and also the ZymoBIOMICS
Microbial Mock Community Standard (D6300) to test efficiency
of DNA extraction (Zymo Research).

Bioinformatic processing of reads

Sequences were demultiplexed using the Illumina Miseq software,
and subsequently quality trimmed and primers removed using

DADA2 1.10.1 (Callahan et al., 2016) in R version 3.5.1.
Parameters for length trimming were set to keep the first 290
bases of the forward read and 200 bases of the reverse read,
maxN = 0, MaxEE = (2.5) and PhiX removal. Error rates were
inferred, and the filtered reads were dereplicated and denoised
using the DADA2 default parameters. After merging paired
reads and removal of chimeras via the removeBimeraDenovo
function, an amplicon sequence variant (ASV) table was built
and taxonomy assigned using the SILVA v138 training set
(Quast et al., 2013; Yilmaz et al., 2014). The resulting ASVs and
taxonomy tables were combined with the metadata file into a phy-
loseq object (Phyloseq, version 1.26.1) (McMurdie and Holmes,
2013). Contaminants were removed from the dataset using the
package Decontam (version 1.2.1) applying the prevalence
method with a 0.5 threshold value (Davis et al., 2018). A phylo-
genetic tree was constructed using a DECIPHER/Phangorn pipe-
line as described before (Murali et al., 2018).

Data visualization and statistical analyses

The ASV table was further processed removing organelles
(chloroplast, mitochondria), and prevalence filtered using a 2%
inclusion threshold (unsupervised filtering) as described by
Callahan et al. (2016). Alpha-diversity metrics such as Chao1,
Simpson’s and Shannon’s diversity indexes were calculated on
unfiltered data using scripts from the MicrobiomeSeq package.
Hypothesis testing was done using analysis of variance
(ANOVA) and the Tukey Honest Significant Differences method
(Tukey HSD). When assumptions of normality and homoscedas-
ticity were not met, a Kruskal–Wallis Rank Sum test and a
Wilcoxon Rank Sum test was performed. The results were sum-
marized in boxplots. Relative abundances were calculated and
visualized in bar charts using Phyloseq. All performed statistical
tests were corrected for multiple testing and alpha < 0.05 was con-
sidered as statistically significant. All graphs were generated in R
version 4.0.4.

Isolation of culturable endophytes

The first part of the suspension obtained after crushing the seeds
(see above) was used for DNA extraction, the second part for isola-
tion of culturable bacteria. Serial dilutions were made 106 cfu ml−1

and then 100 μl was plated onto 1/869 rich medium with compos-
ition: 0.035 g l−1 CaCl2 × 2H2O, Glucose D 0.1 g l−1, NaCl 0.5 g l−1,
Trypton 1 g l−1, Yeast Extract 0.5 g l−1, Agar 15 g l−1 (Eevers et al.,
2015) and incubated at 30°C for 7 d. For further experiments, single,
morphological diverse colonies were picked and purified.
Subsequently, they were grown in 96-well master blocks and tripli-
cated: one block was used for DNA-extraction, the second one was
used for PGP tests and the third was stored at −45°C in 15% gly-
cerol (75 g glycerol, 4.25 g NaCl, 425 ml dH2O).

Genomic DNA extraction and taxonomic identification of the
culturable endophytic bacterial strains

DNA isolation was performed using standard procedure for DNA
isolation from bacterial pellets with MagMAX. DNA was quanti-
fied with a Qubit® 2.0 Fluorometer (ThermoScientific, US)
and checked for purity on a Nanodrop spectrophotometer
(ThermoScientific, US) with an A260/A280 ratio of 1.7–2.0. The
near full-length sequences of the 16S rRNA gene were amplified
with the primers 27f (5-AGAGTTTGATCMTGGCTCAG-3) and
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1492r (5-GGTTACCTTGTTACGACTT-3). The products were
checked on agarose gel and then shipped to Macrogen for 16S
rRNA Sanger sequencing. Sequencing results were quality filtered
using Geneious v4.8, were analyzed over the ribosomal database
SILVA (https://www.arb-silva.de/aligner/) and NCBI GenBank
databases using the program Standard Nucleotide BLAST and
database RDP (https://rdp.cme.msu.edu/seqmatch/seqmatch_in-
tro.jsp).

Plant growth-promoting (PGP) characteristics

In order to evaluate the ability of the isolated strains to induce
plant growth promotion, in vitro PGP tests were performed. All
tests were performed at least two times.

The tryptophanase activity was tested using the Salkowski test
(Patten and Glick, 2002). Bacteria were grown in a 1/10 869
medium containing tryptophan. 25 μl of bacterial suspension
with 0.7 ml of medium with tryptophan were incubated for 4 d
at 30°C and shaken at 150 rpm in the dark. Thereafter, the sus-
pension was centrifuged for 10 min at 4000 rpm. 1 ml
Salkowski reagent was added to 0.5 ml supernatant. After
20 min reaction time coloured pink means positive for IAA
production.

To check for organic acid production, the method of
Cunningham & Kuiack was used. The bacteria were cultivated
in a Sucrose Tryptone (ST) medium with composition: sucrose
20 g l−1, tryptone 5 g l−1, 10 ml trace element solution SET
(Na2MoO4⋅2H2O 20 mg l−1, H3BO3 200 mg l−1, CuSO4⋅5H2O
20 mg l−1, FeCl3 100 mg l−1, MnCl2⋅4H2O 20 mg l−1, ZnCl2
280 mg l−1). The bacterial suspension was incubated for 5 d at
30°C and 200 rpm, after which the pH-sensitive colour indicator
100 μl Alizarine Red S 0.1% was added (Cunningham and Kuiack,
1992). The organic acid production was checked after 15 min
reaction time: yellow = positive, pink = negative.

ACC-deaminase activity was tested in SMN medium with
5 mM ACC as N-source with HCl and autoclaved (Belimov
et al., 2005). SMN medium composition: 970 ml: 0.4 g l−1

KH2PO4, 2 g l−1 K2HPO4 (pH 6.6), 10 ml MgSO4 solution,
10 ml CaCl2 solution and 10 ml micronutrient stock were added
after filter sterilization. 50 ml C-mix stock with 2 g l−1 glucose,
2 g l−1 sucrose, 2 g l−1 Na-acetate, 2 g l−1 Na-citrate, 2 g l−1

Malic acid and 2 g l−1 Mannitol and 10 ml ACC-stock were
added. 250 μl of the bacterial suspension added to 1.2 ml SMN
medium with 5 mM ACC as N-source were incubated for 3 d at
30°C and centrifuged at 4000 rpm for 15 min. The pellet was
resuspended in 100 μl 0.1 M Tris-HCl buffer (pH 8.5) and 3 μl tolu-
ene was added for cell lysis, and vortexed for 5 min. In the next step,
10 μl 0.5M ACC and 100 μl 0.1 M Tris-HCl buffer (pH 8.5), vor-
texed and incubated for 30 min at 30°C and 150 rpm. 690 μl
0.56N HCl and 150 μl 0.2% 2.4-dinitrophenylhydrazine in 2N
HCl and 1 ml 2N NaOH were added. The obtained results were
evaluated: brown = positive, yellow = negative.

Production of siderophores was studied by using the 284
medium with 0.25 μl optimal iron concentration with CAS solu-
tion (Schwyn and Neilands, 1987). Tris 6.06 g l−1, NaCl 4.68 g l−1,
KCl 1.49 g l−1, NH4Cl 1.07 g l

−1, Na2SO4 0.43 g l
−1, MgCl2⋅6H2O

0.2 g l−1, CaCl2⋅2H2O 0.03 g l−1, Na2HPO4⋅2H2O 0.04 g l−1, S17
trace elements 1 ml, 0.25 mM Fe(III)Citrate solution, Sodium lac-
tate (sol. 50%) 0.7 ml, D-(+)-glucose 0.52 g l−1, D-gluconic acid
sodium salt 0.66 g l−1, D-(+) fructose 0.54 g l−1, Sodium
succinate⋅6H2O 0.81 g l−1. The 284 medium with 0 and 3 μl
were used as control. 800 μl 284 medium (0 μM, 0.25 μM and

3 μM Fe) with 20 μl of the bacterial suspension were incubated
for 5 d at 30°C and 200 rpm. 100 μl Chroom-Azurol S Solution
(CAS-Solution) were added. After 4 h reaction time, orange =
positive, blue = negative.

Results

Seed micromorphology

C. armena seeds are dark brown, 541–1003 μm long, 347–631 μm
wide with a 1.1–2.3 length-to-width ratio and 164,333–
445,987 μm2 area. The shape was oblongoid to ovoid, rarely sub-
rectangular. The seed ornamentation was constantly alveolate.
The testa of the seeds had smooth, thin outer periclinal walls adja-
cent to the inner periclinal wall with perforated (pitted) sculpture.
The seed coat surface was formed by polygonal and isodiametric
cells with different sizes, 41–159 μm long and 33–96 μm wide
with a 1.0–3.1 length-to-width ratio. The number of cells along
the seed longitudinal axis was 7–13; in the lateral view; it varied
from 34 to 79. The anticlinal walls were of slight depth with a
width of 7.7–14.6 μm (Fig. 1).

Seed endophytic bacterial community composition

The number of paired raw Illumina reads after filtering low qual-
ity reads, adapters, barcodes and primers, there were about 2300
effective read for the 4 replicates of C. armena seeds. The
Shannon–Wiener biodiversity index, Chao1 and Simpson indexes
for the seed endophytes of C. armena were 2.82, 27, and 13.9,
respectively (Supplementary Fig. S1) with P-value 0.05. A total
of 75 different Operational Taxonomic Units (OTUs) on genus
level was found from 10 phyla. The relative abundance of the
dominant bacteria comprising the seed endophytic community
at different taxonomic levels is presented in Supplementary
Fig. S2.

From the surface-sterilized seeds, 10 phyla and 256 bacterial
genera were identified. The taxonomy of the sequences was
described primarily at the phylum level. For the C. armena
seeds, we determined Proteobacteria, Firmicutes and
Actinobacteriota, whereas the Bacteroidetes, Acidobacteria,
Verrucomicrobia, Mixococcota, Planctomycetes, Patescibacteria
and Chloroflexi were less abundant (Supplementary Fig. S2).
Firmicutes were the predominating phylum in the seeds of the
examined plant population, followed by Proteobacteria and
Actinobacteriota. The phylum Actinobacteriota was classified only
in three biological replicates. Only Bacilli, Gammaproteobacteria
and Actinobacteria dominated at the class level (Table 2). Indeed,
Bacilli were the most abundant class (Supplementary Fig. S2). The
majority of endophytic bacterial community of seeds of C. armena
belonged to the order Bacillales that at genus level was represented
by Psychrobacillus, Bacillus and Domibacillus. The most abundant
family of Firmicutes identified in examined seeds was
Planococcaceae with Paenisporosarcina as a predominant genus.

The Gammaproteobacteria were identified as another abun-
dant class, that at the order level was represented by
Xanthomonadales, Pseudomonadales and Enterobacterales. At
genus level, Pseudomonas, Stenotrophomonas and Serratia domi-
nated (Table 2). Finally, Microbacterium and Curtobacterium
were the dominating genera of the phylum Actinobacteriota.
Unclassified groups were found also at different taxonomic levels.
The results are presented based on the most representative and
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dominating OTUs (identified at genus level with a relative abun-
dance higher than 1%).

Diversity of cultivable endophytes from surface-sterile seeds
and in vitro characterization of PGP bacteria

Forty-three bacterial strains were picked up from the 1/869
medium. Using 16S rRNA gene Sanger sequencing, we found
that 35 bacteria (81.4%) of the total isolates were Firmicutes
and only 18.6% were Proteobacteria with Stenotrophomonas mal-
tophilia and different strains of Pantoea. The majority of
Firmicutes isolates belonged to the genera Bacillus and
Paenibacillus (Table 3).

A total of 36 strains scored positive for IAA production and
only 3 strains of Bacillus spp. tested positive for siderophore pro-
duction. Relatively similar outcomes were obtained for production
of ACC-deaminase and organic acids: 26 and 27 strains, respect-
ively, showed positive (Fig. 2). In the in vitro tests, Pantoea spp.
and Stenotrophomonas maltophilia demonstrated higher growth-
promoting capacities compared to Bacillus spp. and other isolates
(Fig. 2).

Discussion

The seed surfaces of holoparasitic C. armena possess an alveolate
ornamentation with perforated (pitted) sculpture formed by pol-
ygonal and isodiametric cells with different sizes. The quite coarse
structure of the seed coat (Fig. 1) can complicate the surface ster-
ilization of the seeds. The preliminary results obtained by apply-
ing the generally used sterilization protocols (Watts et al., 1993;
Metwaly et al., 2018) showed to be inadequate. We assumed
that the sterilizing agents could not always sufficiently reach the
deepest zones of the coarse seed surface. Due to this, not all bac-
teria residing on the surface of the seeds could be eliminated.
Finally, the combination of 70% ethanol and 0.85% NaCl sterile
solution together with intense shaking showed to be adequate
to remove all bacteria from the surfaces of C. armena seeds.

This allowed us to isolate only the bacteria present inside the
seeds.

The aim of current work was the identification of the total
endophytic bacterial community and the culturable fraction of
the endophytes isolated from the seeds of C. armena. It is
known that the majority of plant associated bacteria are uncultur-
able, and it is often assumed that only 0.001–1% of the total bac-
terial community can be grown in laboratory conditions (Eevers
et al., 2015). Consequently, in order to obtain more information
about the composition of the total endophytic bacterial commu-
nities of the seeds (culturable and unculturable) of C. armena,
molecular techniques were used. The Illumina MiSeq data showed
that the seeds of C. armena were mainly inhabited by
Gram-positive, spore forming Bacilli (36.8%) (Supplementary
Fig. S2). In case of a holoparasitic plant, like C. armena, this is
very plausible because these seeds, similarly to Orobanche s.l.,
have to stay viable in the soil for several decades (Joel et al.,
2007). Plant colonization by spore forming Bacillus spp. that pos-
sess potential to mitigate environmental stress can help plants to
survive in harsh environmental conditions. C. armena adapted to
the arid and saline environment of specific areas in Armenia
(Piwowarczyk et al., 2017, 2019). We demonstrated that C.
armena was colonized by halotolerant, alkalophilic, spore form-
ing, motile Bacillus spp. strains (Petrosyan et al., 2022). Some iso-
lated strains were also thermophilic. They are able to produce one
or more hydrolytic enzymes, especially cellulase and protease.
Some strains also produced amylase and pectinase too.
Production of auxins (IAA) and gibberellins (GA) and phosphate
solubilization was also characteristic for the Bacillus spp. isolated
from the seeds of C. armena.

Our results demonstrated that at the genus level Paenibacillus,
Bacillus, Psychrobacillus, Domibacillus and Paenisporosarcina were
well represented in the seeds of the investigated population of C.
armena (Table 2). The dominating Paenisporosarcina have been
described as gen. nov. and not sufficiently investigated (Parte,
2018). However, some members of the family Planococcaceae
were isolated from a semi-arid tropical soil from India (Raj

Table 2. Cumulative list of dominating endophytic bacteria in the seeds of Cistanche armena and their taxonomic information

Phyla Classes Orders Families Genera

Firmicutes Bacilli Paenibacillales
Bacillales

Paenibacillaceae
Bacillaceae
Planococcaceae

Paenibacillus
Psychrobacillus
Bacillus
Domibacillus
Paenisporosarcina

Proteobacteria γProteobacteria Xanthomonadales
Pseudomonadales
Enterobacterales

Xanthomonadaceae
Pseudomonadaceae
Yersiniaceae

Stenotrophomonas
Pseudomonas
Serratia

Actinobacteriota Actinobacteria Micrococcales Microbacteriaceae Microbacterium
Curtobacterium

Table 3. Cumulative list of cultivable endophytic bacteria in the seeds of Cistanche armena and their taxonomic information

Phyla Classes Orders Families Genera

Firmicutes Bacilli Paenibacillales
Bacillales

Paenibacillaceae
Bacillaceae

Paenibacillus (27.90%)
Bacillus (41.86%)
Others (11.82%)

Proteobacteria γProteobacteria Xanthomonadales
Enterobacteriales

Xanthomonadaceae
Enterobacteriaceae

Stenotrophomonas (4.47%)
Pantoea (13.95%)
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et al., 2013). Thus, their presence in the examined seeds is not
surprising because of the natural habitats of C. armena. From
surface-sterilized seeds of C. armena, we could isolate 43 cultiv-
able bacterial strains using culture-dependent microbiological
methods.

Our results indicated that all cultivable strains isolated from
the seeds of C. armena were belonging to the bacterial phyla
Firmicutes and Proteobacteria (Tables 2 and 3). Thirty-five bac-
terial strains (81.4%) of the total isolates were Firmicutes from
which different strains of Bacillus (41.86%), Paenibacillus
(27.90%) and other genera of family Bacillaceae (11.82%) and
only 18.6% were Proteobacteria with Stenotrophomonas maltophi-
lia (4.47%) and different strains of Pantoea (13.95%). The major-
ity of Firmicutes isolates belonged to the genera Bacillus and
Paenibacillus (Table 3).

Forty-three isolated strains were well adapted to the growing
conditions of their host plant and showed potential PGP traits
(production of organic acids, ACC-deaminase, indole and sidero-
phores). Most of the isolated strains (83.7%) were positive for
indole production (Fig. 2). Endophytic bacteria can increase
plant growth through their ability to produce plant growth hor-
mones, particularly auxins. Auxin-producing PGP endophytes
improve plant growth even under stress by effectively mitigating
the effects of all the growth-inhibiting conditions (Grobelak
et al., 2018). Respectively 26 and 27 of the isolates produced
ACC-deaminase and organic acids, and only 3 Bacillus spp.
could produce siderophores (Fig. 2). All these traits have potential
to improve plant growth also under stress conditions (Grobelak
et al., 2018; Shameer and Prasad, 2018). Hassan and Bano
(2016) explored the IAA production of Stenotrophomonas malto-
philia strains isolated from a halophytic herb Cenchrus ciliaris and
mentioned that bacterial IAA production played a positive role in
the salt tolerance of their host plant.

Compared to Bacillus spp. and Paenibacilus spp. strains that
demonstrated relatively low levels of production of PGP com-
pounds, Pantoea spp. and Stenotrophomonas maltophilia demon-
strated a high production of indole (100%), ACC-deaminase

(100%) and organic acids (96.3%) (Fig. 2), which is in agreement
with earlier reports (Singh and Jha, 2017; Lumactud and
Fulthorpe, 2018). The production of various organic acids by
seed endophytic Paenibacillus sp., Pantoea sp. and Bacillus sp.
inhibits the growth of pathogens and can significantly enhance
plant growth and resistance against plant pathogens (Herrera
et al., 2016; Shahzad et al., 2017). The high levels of IAA produc-
tion among P. agglomerans and S. maltophilia strains correspond
with findings of other authors (Ambawade and Pathade, 2015;
Luziatelli et al., 2020).

Conclusion

We explored the endophytic bacterial community of the seeds
of the endemic holoparasite C. armena. The sterilization pro-
cedure for the seed surface was optimized. Ten phyla and
256 bacterial genera were identified. However, also some
unclassified and unexplored taxonomic groups were found in
the seeds.

Our results confirm that spore forming Bacillus spp. are com-
mon and dominated endophytes from seeds of plants growing in
harsh environmental conditions, especially from arid saline soils.
Pantoea spp. and Stenotrophomonas spp. seem the most favour-
able PGP endophytes in seeds of C. armena. The PGP traits of
these bacteria, such as production of indole, ACC-deaminase
and organic acids seem correlated with the natural habitat of
their hosts and have the potential to improve plant tolerance
against abiotic stresses. To elucidate the effective benefits of
these endophytic bacteria for their host plants, particularly for
the seeds, seed germination and development of the seedling,
more research is required.

Supplementary material. To view supplementary material for this article,
please visit: https://doi.org/10.1017/S0960258522000204.

Data availability. The sequence data available in the NCBI Genbank
(https://www.ncbi.nlm.nih.gov/) Sequence Read Archive with accession num-
ber PRJNA819412.

Fig. 2. PGP activity of tested bacteria and relative PGP traits between isolated bacterial species (%). The left figure presents the PGP activity for all tested isolates.
The figure on right shows the relative IAA (blue), ACCD (violet), siderophore (green) and organic acids (red) production ability among the isolated bacterial genera.
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