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In this paper, we present a method for multiple target two-dimensional tracking using multiple sensors with very low azimuth
resolution. Due to the scarce azimuth resolution, the data association is performed using range and Doppler information only
from four radars. The proposed algorithm is tailored to perform in maritime scenarios. In order to test the algorithm perform-
ance, sea clutter data have been taken under consideration when simulating data.
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I . I N T R O D U C T I O N

Object/target tracking refers to the problem of using sensor
measurements to determine the location, path, and character-
istics of objects of interest [1]. A sensor can be any measuring
device, such as radar, sonar, camera, infrared sensor, micro-
phone, ultrasound, or any other sensor that can be used to
collect information about objects in the environment [2].
The typical objectives of target tracking are the determination
of the number of objects, their identities, and their states, such
as positions, velocities, and in some cases their features. There
are a number of sources of uncertainty in the object tracking
problem that render it a highly non-trivial task. For example,
object motion is often subject to random disturbances, objects
can go undetected by sensors and the number of objects in the
field of view of a sensor can change randomly. The sensor
measurements are subject to random noise and the number
of measurements received by a sensor from one look to the
next can vary and be unpredictable. Objects may be close to
each other and the measurements received might not
produce enough information to distinguish these objects.

In this paper, we describe an algorithm, for combining
range-Doppler (RD) data from multiple sensors to perform
multi-target tracking. In particular, we considered the
problem of very poor azimuth resolution. In this case, more
than two sensors are needed to triangulate target tracks and
techniques like multilateration are needed to overcome the
problem.

With respect to previous work [3], a study of a model for
the sea clutter has been carried out and simulated sea clutter

has been added to the simulated received signal. This has
been done in order to test the robustness of the proposed algo-
rithm in a more realistic scenario since real data is not avail-
able yet. The algorithm has also been tested in conditions of
nearly constant acceleration (nCA) [4–6] instead of the
more limiting scenario of nearly constant velocity (nCV) [3].

An approach for combining RD data from multiple sensors
is described in [7]. However, this algorithm requires a very
large number of iterations, which could lead to the algorithm
computational overload.

This paper is organized as follows: Section II describes the
detection algorithm used to detect the targets from the RD
maps of each of the sensors, Section III provides a description
of the tracking algorithm. The description of the simulated
signal, of the scenario and the results are shown in Section
IV. Finally, conclusions are drawn in Section V and future
works are discussed. The processing chain is shown in Fig. 1.

I I . D E T E C T I O N

Detections in the RD domain for each sensor are considered as
input to the tracking system. As the information related to a
detection only contains range and Doppler information (and
no azimuth), the target cannot be localized in a two-
dimensional (2D) spatial domain (geographical coordinates)
with single-sensor information only. Therefore, at least three
sensors are needed to localize the target without any
ambiguities.

A) RD maps
The RD maps are obtained from the baseband (BB) signal by
applying a two dimensional fast Fourier transform (2D-FFT)
[8]. A first FFT is taken along the columns of the matrix. Then
a second set of FFTs is then taken along the slow time, that is,
the total number N of sweeps. Note that N is dictated by the
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more stringent parameter between the desired velocity reso-
lution and the desired coherent integration gain (Fig. 3).

B) Constant false alarm rate (CFAR) detector
In detail a cell-averaging CFAR (CA-CFAR) is used [9]. It cal-
culates the threshold level by estimating the level of the noise
floor around the cell under test (CUT). This can be found by
taking a block of cells around the CUT and calculating the
average power level. To avoid corrupting this estimate with
power from the CUT itself, cells immediately adjacent to the
CUT are normally ignored (and referred to as “guard cells”).
A target is declared present in the CUT if it is both greater
than all its adjacent cells and greater than the local average
power level.

C) Clustering
A clustering step is then applied in order to remove the false
alarms present in the black and white (BW) map obtained
after the CFAR detector as well as overcoming the missed
detections. In particular, a closing operation following
Matlab functions have been developed which consists of a
dilation followed by an erosion (using the same structuring
element for both operations). This calculates the number of
connected components found and, if that number overtakes
a certain threshold value, the smaller ones are removed.

I I I . T R A C K I N G

A) RD tracker
A first tracking stage in the RD domain has been developed in
order to eliminate most of the false alarms. We use a primary
tracking stage, which can handle clutter and missed detec-
tions, by forming tracks directly in the range/range-rate
domain. The tracker used in this section is the same described
in the next section, where we assume a third-order motion
model. The state vector is given by ẑ = (r, ṙ, r̈)T , where r
and ṙ are measured and r̈ is initialized with zero mean.
With this assumption, we restrict the movements of potential
tracks to reasonable behavior of range and corresponding
range-rate.

B) Cartesian tracker
First of all an algorithm for transforming RD coordinates into
Cartesian coordinates has been developed. It consists of a
series of operations which are described in detail in [3].

Then a multi-target tracking (MTT) algorithm based on a
Linear Kalman Filter [2, 10] that exploits the measurements in
the zero-elevation plane returned by the Clustering algorithm,
has been applied. Data association is then performed and the
track initiation, confirmation, and cancellation are obtained
using a “m out of n” logic.

The main problem of the data association is how to find
which measurements correspond to which target (track).
The aim of this step is to determine the origin of each meas-
urement by associating them with the existing tracks, new
tracks or declaring them to be false detections. Between all
techniques, in our work the Global nearest neighbor approach
is used to perform the data association. It attempts to find and
to propagate the single most likely data association hypothesis
at each scan.

In order to simplify the data association, a gating tech-
nique, performed for each target is currently being tracked
for elimination and unlikely observation-to-track pairings, is
implemented. A gate is formed around the predicted measure-
ment and all observations that satisfy the gating relationship
(fall within the gate) are considered for track update. The
remaining observations that have not been gated are used to
initiate potentially new tracks. In detail, an ellipsoidal gate is
used since, [2], as it is suitable in the case of the global nearest-
neighbor approach. Every un-associated detection (measure-
ment) initiates a tentative track. If in the subsequent scans, a
tentative track is associated with some measurements
(which fall into its gate), then a tentative track is promoted
to a confirmed track. Otherwise, a tentative track is deleted.
A confirmed track is deleted if it is not updated by measure-
ments over several scans or a certain period of time. A flow-
chart, that resume all the MTT algorithm, is represented in
Fig. 2)

I V . S I M U L A T I O N A N A L Y S I S

A) Simulated signal
In order to perform the multi-sensor/multi-target tracking
algorithm, a simulation of the backscattered signal from mul-
tiple targets has been developed. We simulated the BB signal
(equation (1)) after the matched filter, from which the RD

Fig. 1. Flow chart.

Fig. 2. Tracking algorithm block diagram.
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maps for every sensor has been evaluated. After that, we
applied the detection algorithm on the maps, in order to esti-
mate the RD coordinates of each centroid for each acquisition
in time. The model of the transmit signal is a sawtooth
frequency-modulated continuous wave (FMCW) [11]. The
frequency at time t within each sweep is given by f ¼ f0 +
ta where a ¼ B/TR is the slope of the ramp, B the signal
bandwidth, TR the duration time of a sweep and f0 the
carrier frequency. In particular f0 ¼ 9.6 GHz, B ¼ 300 MHz,
TR ¼ 750 ms, and the observation time is set to 0.2 s

sbb[m, n] = cos(fbb[m, n]), n = 1, . . . ,N − 1,

m = 1, . . . ,M − 1.
(1)

In equation (1) N is the total number of sweeps, M ¼ TR/TS,
where TS is the sample period (TS ¼ (1/fs) ¼ 10 ms) and

fbb[m, n] = 2p[f0 + a(mTS − nTR)

− a

2
t(mTS)]t(mTS), (2)

t(mTS) =
2R0

c
+ 2vr

c
mTS, (3)

where R0 is the distance of the target from the sensor at the
instant t0, vr is the radial velocity of the target, and c the
speed of the light. The signal sbb[m,n] and the relative RD
maps are represented in Fig. 3. The RD maps are obtained
from the BB signal by applying a 2D-FFT.

B) Sea clutter simulation
In this work, a simulation of a correlated K-distributed model
for sea clutter is added to the received signal [12]. It combines
a fast Gamma distributed random variable generation method
to make the procedure much simpler. The statistics of a com-
pound K-distributed random variable X are described by the
probability density function (PDF):

fx(x) =
2c
G(n)

cx
2

( )n
Kn−1(cx), (4)

where x . 0, D(.) is the standard Gamma function, and
Kv21(.) is the modified second-kind Bessel function of order
v 2 1. The K-distribution is completely specified by the
shape parameter v which defines the spikiness of sea clutter

and by the scale parameter c which is a positive constant
related to the power characteristic of returned echo signals:
the less is the value of the scale parameter, the more powerful
are reflected signals from the sea surface. The shape and the
scale parameters are chosen accordingly with [13].

The compound K distribution can be regarded as a
complex Gaussian process modulated by a process whose
PDF is a generalized Chi-distribution. Let X be the
K-distributed clutter, it can be expressed as the multiplication
of two components as:

X(k) = Xx(k)XN (k), (5)

where Xx is a Chi-distributed random sequence, and XN is a
complex Gaussian process. Since the Chi-distribution can be
regarded as the square root of the Gamma distribution, the
final model can be expressed as:

X =
����
XG

√
XN .

Regarding sea clutter reflectivity, a parametrized expression
[14], which could be used as a basis for such a new empirical
sea clutter model using the Nathanson tables as the point of
reference, has been used. These tables give the value of sea
clutter reflectivity as a function of frequency, grazing angle,
sea state, and polarization. The proposed expression has the
form:

sH,V =c1 + c2 log(sin(a))

+ (c3 + c4a) log10(f )
(1 + c5a+ c6SS) c7(1 + SS)

1
2+c8a+c9SS,

where a is the grazing angle (degrees), SS is the sea state, and f
is the radar frequency (GHz). Using the nine parameters, c1,
c2, . . .,c9, the functional form of the equation, from which
the sea clutter reflectivity can be calculated, is defined.
Different sets of these nine parameters are needed for horizon-
tal and vertical polarization, respectively [14].

An Autoregressive (AR) model of the first order has been
used in order to produce a mathematical model with which
the clutter signal can be generated and processed to test the
detection algorithm [12]. This will help to obtain the corre-
lated complex Gaussian process. A more accurate model of
radar sea clutter will be developed by considering a higher
AR model order, since the higher the order of the AR
process, the more accurate the approximation will be.

Fig. 3. Matrix of the BB signal (on the left) and relative RD map (on the right).
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C) Setup
The simulated maritime scenario considered in this paper is a
schematic representation of the harbor of Salerno. It is made
up of four active high-resolution radars whose parameters of
interest are summarized up in Table 1. The target used in
the simulations, a Swerling I target model, is a ship [3],
made of about 2000 scatterers. Since the radars used have
high-resolution, the target will appear in more than one reso-
lution cell. Its models for the evolution in time of the state
vector have been considered as nCV and nCA. The target vel-
ocity has been randomly initialized according to the typical
velocities of targets in the considered scenario, while target
acceleration is initially set equal to zero. All targets are
assumed to be lying on the zero-elevation plane while the
radars are placed at a height of 20 m. The origin of the
common Cartesian reference system is chosen to coincide
with one of the four radars (in this case it was chosen to cor-
respond with the sensor represented in cyan in Fig. 10). Then,
for each sensor, we stack the target’s detections in the RD
domain. False alarms thermal noise and simulated sea
clutter are also added to the stack of detections. It is worth

mentioning that not all the targets are necessarily visible
from every sensor, because of the azimuth aperture limitation.
Moreover, some trajectories may be partially formed at the
output of one sensor while being complete or partially
formed at the output of another sensor.

D) Results
First of all, in Fig.s 4–7, we can see the results after the detec-
tion step that are the target estimated centroids and bounding
box (in red in Figs 4 and 6).

Then, the first tracking stage represented by the RD
tracker, has been used to reduce the amount of false alarms
randomly added before the detection step and with the same
power of the received target signal. In Figs 8 and 9 two exam-
ples of the RD-tracker performance applied, respectively, to
the first and third sensor are shown. We can clearly notice
that the number of false alarms after this stage is much
lower compared with the case where the RD tracking is not
applied.

The successive part is relative to the result of the Cartesian
tracking. The results shown are obtained in two different
cases: the first one when all the 2000 scatterers that form
the target are considered, the second one when only half of
the total number of scatterers are taken into account. The con-
sidered scatterers are selected by taking only those scatterers
that lie in the space closer to the transmitter with respect to
the plane passing for the target’s centroid and perpendicular
to the one given by the intersection between the z-axis and
the line of sight that connects the transmitter and the
target’s centroid (Figs 11 and 12 show the scatterers of the
same target seen, respectively, from the first and the second
transmitter).

Table 1. Parameters of interest of each sensor.

Radar frequency 9.6 GHz
Bandwidth of Tx signal 300 MHz
Waveform FMCW
Azimuth aperture 608
Elevation aperture 208
Range resolution 0.5 m
Number of Rx channels 3
Antenna type Fixed

Fig. 4. Output from the CFAR detector with estimated centroids and bounding box.
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With respect to the first case, Fig. 10 shows the estimated
trajectories (red lines) and the actual ones (in blue). It is pos-
sible to observe the capability of the algorithm to correctly
estimate the position of the target with a mean square error
(MSE) value of about 4.5%. As explained accurately in [3],
during the pre-tracking stage we have to tolerate an error in
terms of distance and speed due to the centroids estimation.
In this case, the errors are approximately 1–2 m and 0.2 m/s.
The algorithm described is also able to handle ghost targets.
In fact, it is possible to see that no ghost targets appear.

That proves that the algorithm is able to discriminate a real
target from a ghost.

Figure 13 shows the case where only half of the 2000 scat-
terers are considered. Here, the same distance and speed
errors as the previous case have been accepted. In Fig. 14,
the errors are higher (5 m and 1.5 m/s, respectively). In this
case, the algorithm performance falls down from 4.5 to 20%
(Fig. 13) to 11% (Fig. 14). This is an obvious consequence of
the fact that the centroid of a target seen, for example, from
Tx1 differs from the same centroid seen by another of the

Fig. 5. Estimated centroids and bounding box put on top of the RD maps of each sensor.

Fig. 6. Zoom of the output from the CFAR detector applied to the RD map of
the first sensor.

Fig. 7. Zoom of the estimated centroids and bounding box put on top of the
RD map of the first sensor.
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Fig. 8. Output relative to sensor 1 from the RD tracker. In blue are represented
the real measurements, and in red the estimated tracks.

Fig. 9. Output relative to sensor 3 from the RD tracker. In blue are represented
the real measurements and in red the estimated tracks.

Fig. 10. Results obtained by considering all the scatterers that form the target.
In blue the real trajectories are shown, while the estimated tracks are
represented in red.

Fig. 11. Masked target seen by Tx 1.

Fig. 12. Masked target seen by Tx 2.

Fig. 13. Results obtained by considering only the visible scatterers that form
the target. In blue the real trajectories are shown, while the estimated tracks
are represented in red. Distance and speed errors are equal to 1–2 m and
0.2 m/s, respectively.
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remaining transmitters. This error in the centroid position
estimation also affects the capability of the algorithm to
detect the ghost targets. The algorithm is still capable of redu-
cing the number of ghosts but some ghosts could still persist.

V . C O N C L U S I O N S

This paper presents a multi-target tracking algorithm in a
multi-sensor maritime scenario when only range and
Doppler information of the target are used. The algorithm
has proven to be effective in simulated scenarios and performs
well even with regard to the ‘deghosting’ problem and in the
presence of sea clutter. The algorithm seems to be robust
both for the nCV and the nCA target models for the evolution
in time. Table 2 sums up the results of the simulation
described in Section IVD).
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