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In this study, we revisit Rayleigh’s visionary hypothesis (Rayleigh, Proc. R. Soc.
Lond., vol. 29, 1879a, pp. 71–97), that patterns resulting from interfacial instabilities
are dominated by the fastest-growing linear mode, as we study nonlinear pattern
selection in the context of a linear growth (dispersion) curve that has two peaks of
equal height. Such a system is obtained in a physical situation consisting of two liquid
layers suspended from a heated ceiling, and exposed to a passive gas. Both interfaces
are then susceptible to thermocapillary and Rayleigh–Taylor instabilities, which lead to
rupture/pinch off via a subcritical bifurcation. The corresponding mathematical model
consists of long-wavelength evolution equations which are amenable to extensive
numerical exploration. We find that, despite having equal linear growth rates, either
one of the peak-modes can completely dominate the other as a result of nonlinear
interactions. Importantly, the dominant peak continues to dictate the pattern even when
its growth rate is made slightly smaller, thereby providing a definite counter-example
to Rayleigh’s conjecture. Although quite complex, the qualitative features of the
peak-mode interaction are successfully captured by a low-order three-mode ordinary
differential equation model based on truncated Galerkin projection. Far from being
governed by simple linear theory, the final pattern is sensitive even to the phase
difference between peak-mode perturbations. For sufficiently long domains, this phase
effect is shown to result in the emergence of coexisting patterns, wherein each
peak-mode dominates in a different region of the domain.

Key words: low-dimensional models, pattern formation, thin films

1. Introduction
One of oldest paradigms in interfacial pattern formation is that the wavelength with

the largest linear growth rate dominates the emergent pattern. It was first propounded
by Lord Rayleigh (1879a, 1879b) and has been found to hold in a variety of
interfacial problems (Johns & Narayanan 2002), for example, the capillary instability
of liquid jets (Rayleigh 1879a; Eggers 1997) and the Rayleigh–Taylor instability of a
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heavy fluid overlying a light one (Yiantsios & Higgins 1989). The interfaces in these
situations are often far above the instability threshold and consequently are linearly
unstable to perturbations over a range of wavelengths (unstable linear modes). While
a random noisy disturbance will excite the growth of all these modes, the length
scale of the new interfacial state (drops or fingers) is typically dictated by a single
linear mode – the one corresponding to the peak of the linear dispersion curve, i.e.
a plot of the disturbance growth rate against its wavelength. That this should occur
despite the influence of strong nonlinearities, which set in well before the final pattern
emerges, is far from obvious. It suggests that pattern selection in these situations is
primarily dictated by a difference of linear growth rates. Consequently, many basic
features of the pattern can be determined by analysing the nonlinear evolution of the
peak-mode alone.

In this work, we consider an unstable bi-layer fluid film for which the dispersion
curve has two peaks of equal height. These peaks correspond to two distinct locally
dominant modes that cannot be distinguished on the basis of linear growth rates. By
studying their competition and the evolution of the resulting pattern, we aim to gain
insight into the role of nonlinearity in wavelength selection.

The class of interfacial instabilities that we address are characterized by subcritical
bifurcations, or subcritical instabilities, and continual growth of unstable modes,
leading to interfacial rupture or pinch off. Such catastrophic growth is in stark
contrast to problems undergoing supercritical bifurcations, or supercritical instabilities,
such as the Rayleigh–Bénard and Taylor–Couette instabilities, in which the linear
growth of unstable modes is saturated by nonlinearities. The new patterned state
in these supercritical instabilities emerges smoothly from the un-patterned base
state, as a control parameter is varied past the instability threshold. Much work
has been done on the question of wavelength selection in the context of these
systems (Cross & Hohenberg 1993). Busse and coworkers showed, in the context of
Rayleigh–Bénard convection, that only a subset of unstable modes, surrounding the
most unstable wavelength, lead to stable nonlinear steady states (Busse 1978). The
selected wavelength of the nonlinear state has been shown to depend on constraints
such as rigid walls and the manner in which the instability is excited (Cross &
Hohenberg 1993). Raitt & Riecke (1995, 1997) considered the case of a double-peak
dispersion curve in a one-dimensional system and showed that two nonlinear steady
states, corresponding to the two peak-modes, can coexist as regions of distinct
wavenumbers in different parts of the physical domain (domain structures). Proctor &
Jones (1988) showed that if the peak wavelengths are in the ratio 1 : 2, then nonlinear
interaction of the peak-modes can lead to dynamic states including travelling waves,
modulated waves and homoclinic orbits. Similar resonant interactions have been
observed and analysed in finite two-dimensional systems, whose aspect ratios are
adjusted to codimension-two points of the neutral curve (Johnson & Narayanan 1996;
Echebarria, Krmpotic & Perez-Garcia 1997; Dauby, Colinet & Johnson 2000).

The results of the aforementioned studies on saturating instabilities, and the
approaches used therein, are not directly applicable to the non-saturating interfacial
instabilities of interest in this paper, for the following reasons. (i) The effect of
saturating nonlinearity on the competition between instability modes, which emerge
from the linear growth regime, is likely very different from that of the non-saturating
nonlinearities present in interfacial systems. (ii) Because the instability modes saturate
to nonlinear states, the question of wavelength selection in supercritical instabilities
can be formulated in terms of the relative stability of the corresponding nonlinear
states. If multiple nonlinear states are stable, then the relative sizes of their basins
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of attraction can indicate the preferred pattern (Cross & Hohenberg 1993). Such
approaches cannot be used in interfacial instabilities which do not saturate to nonlinear
states. In the latter case, the dominant wavelength is decided even as the pattern
continues to evolve and grow toward rupture/pinch off. In other words, whereas
transients are often neglected in the study of patterns resulting from supercritical
instabilities, the transient dynamics are essential to understanding pattern selection
in interfacial instabilities. (iii) Due to the rupture/pinch-off event, only a finite
time window is available for nonlinear effects to influence an interfacial pattern.
It is conceivable, therefore, that a particular wavelength may appear in the pattern
simply because nonlinear effects do not have sufficient time to suppress it in favour
of another.

With these distinguishing features in mind, we attempt to understand interfacial
pattern selection in the context of two-peak dispersion curves, by analysing the
response of the system to various forms of disturbances. In particular, we focus on
the two peak-modes and perturb them, first individually and then simultaneously. By
studying the evolution of the resulting patterns, we aim to gain insight into the role
of nonlinearity in the interaction between peak-modes and the extent to which it
governs their mutual growth and the nature of the final pattern.

This investigation is carried out in the context of a physical system, consisting
of two thin liquid layers suspended from a hot ceiling, that is unstable to long-
wave Rayleigh–Taylor and Marangoni (thermocapillary) instabilities. The long-
wave Marangoni instability in two-layer films was studied by Nepomnyashchy &
Simanovskii (2007), who showed that the instability can be either monotonic or
oscillatory, with the former case resulting in rupture of the interface. They analysed
the de-wetting patterns that arise under the combined influence of Marangoni and
intermolecular van der Waals forces via numerical simulations in two-dimensional
periodic domains (starting from random initial perturbations). The regime of
oscillatory instability was shown to result in non-rupturing oscillatory interfacial
dynamics. These oscillatory states were studied in more detail in Nepomnyashchy &
Simanovskii (2012), where the effect of stabilizing gravity was also included.

Our primary interest in this system is that it offers several examples of dispersion
curves that have two peaks of comparable heights. The presence of two interfaces and
two sources of instability enables us to tune the wavenumbers and heights of the two
peaks by adjusting fluid properties. Moreover, the thinness of the films allow their
dynamics to be described by just two long-wave evolution equations for the interface
heights. This facilitates numerical exploration of the nonlinear dynamics of the system.

The remainder of this paper is organized as follows. The governing equations are
presented in § 2, along with examples of two-peak dispersion curves. In § 3, we use
the single fluid limit of our model to briefly demonstrate how the fastest-growing
mode dominates patterns when the dispersion curve has a single peak. This then sets
the stage for § 4, in which we present the most revealing results of our numerical
calculations for the two-peak problem. These results show rather unexpected and
complex inter-mode interactions that can result in either of the peak-modes dominating
the pattern. A low-order ordinary differential equation (ODE) model, capable of
capturing the essential qualitative features of these interactions, is presented in § 5.
In the penultimate section, § 6, we extend the length of the simulation domain and
investigate the emergence of coexisting patterns, in which both peak-mode patterns
arise in different parts of the domain. We conclude in § 7, with a summary of the
key results.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

54
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.545


348 J. R. Picardo and R. Narayanan

x

g

z

FIGURE 1. (Colour online) Schematic of the system, consisting of two liquid layers
sandwiched between a hot plate at temperature TH and a passive atmosphere at a far-field
temperature T∞. The dashed lines represent the interface positions in the unperturbed base
state. γ1(T) is the (temperature-dependent) interfacial tension of the inter-liquid interface,
while γ2(T) is the surface tension of the free interface of liquid 2. ρi, µi and Di denote
densities, viscosities and thermal diffusivities, respectively.

2. Two-peak interfacial dynamical system
Consider first two immiscible liquids, layered between a hot plate at temperature

TH and a passive gas at a far-field temperature of T∞, as shown in figure 1. Liquid 1,
adjacent to the plate, has a mean thickness H1, while liquid 2 has a mean thickness
H2 − H1. The interfacial tensions of both interfaces are temperature dependent:
γi=γi∞−βi(T−T∞) with (i=1,2). The densities, viscosities and thermal diffusivities
of the liquids are denoted by ρi, µi and Di. Then focus on the case of thin viscous
films, for which the unsteady and convective contributions to the momentum and
energy balances can be neglected. Under these conditions, the two interfaces are
unstable solely to long-wavelength disturbances, and λ, the length scale of longitudinal
variations along x, is much larger than the local film thickness, which is of order H2.
Taking advantage of this separation of length scales, we reduce the Navier–Stokes
and thermal energy balance equations to a pair of long-wave evolution equations for
the interface positions (h1 and h2, cf. figure 1). These equations, non-dimensionalized
with length scale lc = H2, velocity scale uc = γ2∞/µ2 and time scale tc = λ/uc, are
presented below:

∂h1

∂t
=−

∂Q1

∂x
,

∂h2

∂t
=−

∂Q1

∂x
−
∂Q2

∂x
(2.1a,b)

Q1(x) =
h3

1

3µr

[
γr
∂3h1

∂x3
+ Bo(ρr − 1)

∂h1

∂x

]
+

h2
1

3µr

(
h1 +

3
2
(h2 − h1)

) [
∂3h2

∂x3
+ Bo

∂h2

∂x

]
−

Ma
µr

h2
1

2

[
βr
∂T1

∂x
+
∂T2

∂x

]
(2.1c)

Q2(x) =
{
(h2 − h1)

3

3
+

h1(h2 − h1)
2

µr
+

h1
2(h2 − h1)

2µr

} [
∂3h2

∂x3
+ Bo

∂h2

∂x

]
+

h2
1(h2 − h1)

2µr

[
γr
∂3h1

∂x3
+ Bo(ρr − 1)

∂h1

∂x

]
−Ma

βr

µr
h1(h2 − h1)

∂T1(h1)

∂x

−Ma
(h2 − h1)

2

(
h2 − h1 +

2h1

µr

)
∂T2(h2)

∂x
(2.1d)
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FIGURE 2. (Colour online) Two-peak linear growth curves (dispersion curves), obtained
from a normal-mode linear stability analysis of (2.1), considering a quiescent base state
with flat liquid layers of equal depth. The solid (blue) and dashed (red) lines correspond
to the two eigenmodes, with in-phase and out-of-phase interface deflection respectively.
Results are shown for two sets of parameter values, which constitute the two principal
cases studied in this work. (a) TP1: H1/H2= 0.5, Bo= 0.1, Ma= 0.5, γr = 1.5, βr = 0.85,
µr=3, ρr=27.697, Bi=1.4, kr=1.25; (b) TP2: H1/H2=0.5, Bo=0, Ma=0.2, γr=0.243,
βr = 2, µr = 1.2, ρr = 2, Bi= 1, kr = 2.

T1(h1)=
1+ Bi(h2 − h1)

1+ Bi(h2 − h1(1− k−1
r ))

, T2(h2)=
1

1+ Bi(h2 − h1(1− k−1
r ))

. (2.1e,f )

Here, Q1 and Q2 denote the respective phase flow rate. Ma= (TH − T∞)β2/γ2∞ is the
Marangoni number, and Bo=H2

2ρ2g/γ2∞ is the Bond number. Bi=UH2/k2 is the Biot
number, wherein U is the heat transfer coefficient between liquid 2 and the passive
gas and k2 is the thermal conductivity of liquid 2. µr, ρr, βr and kr are ratios of the
respective properties of liquid 1 to liquid 2, and γr = γ1∞/γ2∞.

These reduced equations are derived using the weighted residual integral boundary
layer method (Ruyer-Quil & Manneville 2000; Dietze & Ruyer-Quil 2013), assuming
a small Reynolds number, Re∼O(H2/λ), and a moderate Prandtl number, Pr∼O(1)
(or the Péclet number Pe = RePr ∼ O(H2/λ)). For simplicity, we have dropped all
terms of order (H2/λ)

2 and smaller, i.e. momentum and thermal inertia, longitudinal
thermal and viscous diffusion, and normal viscous surface stresses are neglected. The
transverse temperature profile is a linear conduction profile that is slaved to the local
interface positions. Equivalent equations can be derived using the long-wave expansion
method (Oron, Davis & Bankoff 1997; Nepomnyashchy, Simanovskii & Legros 2012).

The two fluid system described by these equations is unstable to the Marangoni
instability if Ma> 0 (TH >T∞, β > 0). The Rayleigh–Taylor instability destabilizes the
free interface if Bo> 0 (gravity acts in the positive z direction), while the inter-liquid
interface is destabilized if Bo> 0 and ρr > 1, or Bo< 0 and ρr < 1. For the case of
equal mean thicknesses of the liquids, the unstable quiescent base state corresponds
to (h1, h2) = (0.5, 1). Equations (2.1) are linearized about this state, considering
infinitesimal perturbations of the form (ĥ1, ĥ2) exp(iαx+ σ t). On solving the resulting
eigenvalue problem for σ , one obtains the linear growth rate (σr = Re[σ ]) as a
function of the wavenumber α (the corresponding plot is called the dispersion curve).

A special feature of this system is that, for appropriate combinations of fluid
properties, the dispersion curve can have two peaks with comparable growth rates.
Dispersion curves for two such cases, henceforth referred to as TP1 and TP2, are
presented in panels 2(a,b). Here, for each wavenumber α, there are two values of
σ corresponding to two distinct modes. One mode (solid blue line) corresponds
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to in-phase interface deflections, wherein a crest of the top interface coincides
with a crest of the bottom interface (ĥ1 and ĥ2 have the same sign). The other
mode (red dashed line) corresponds to out-of-phase interface deflections, wherein
a crest of the top interface coincides with a trough of the bottom interface (ĥ1

and ĥ2 have the opposite sign). In both cases, TP1 and TP2, there exists a range of
wavenumbers (where the solid and dashed curves meet) for which these two modes are
oscillatory and their eigenvalues form a complex-conjugate pair. However, the peaks
of the dispersion curves are located in regions where the modes are non-oscillatory
(Im[σ ] = 0). Here, the in-phase deflection mode is dominant, as its growth rate is
significantly larger than that of the out-of-phase deflection mode. Therefore, in what
follows we focus solely on the in-phase deflection mode (solid blue line).

Numerical solutions of (2.1) are obtained using a second-order finite difference
scheme for spatial discretization. Time integration is carried out with the NDSolve
routine of Mathematicar, which implements adaptive time stepping. The simulations
are terminated once the thickness of either fluid reaches 0.01 times its initial value.
By this stage, interface deformation ought to have progressed far enough for the
nonlinear pattern to fully emerge. Moreover, the interfaces would be close to either
pinching off or rupturing at the wall, and following the evolution further would require
the introduction of intermolecular forces, such as van der Waals forces (Israelachvili
2011). These forces are important only for ultra-thin films and do not affect the
pattern that is selected as the peak-modes of figure 2 transit from linear to nonlinear
growth.

3. Nonlinear reinforcement of the fastest-growing linear mode
In this section, we use a simple example to show how the fastest-growing linear

mode dominates interfacial patterns in the case of a single-peak dispersion curve. For
this, we consider the Marangoni instability of a single fluid film, in the absence of
gravity, obtained by setting h1= 0, γr= 0, βr= 0, µr= 1, ρr= 1, kr= 1 and Bo= 0 in
(2.1). The corresponding dispersion curve has a single peak, as depicted in panel 3(a).
The originally flat and static interface is subjected to two separate perturbations: one
corresponding to the peak-mode (exp(iαmx)) and another corresponding to a slower
mode of twice the wavelength (exp(iαmx/2)). Both calculations are carried out on a
periodic domain of length 4π/αm. Although the initial form of the perturbed interface
is quite different in the two cases (compare the two panels in figure 3b), the pattern
that emerges at later times is indistinguishable (compare figure 3c,d).

How is it that the peak-mode is able to dominate the pattern even when it is
absent from the initial perturbation? This occurs due to nonlinearities that generate
the peak-mode αm as a higher harmonic of the initial longer-wave disturbance αm/2.
Once generated, the αm mode quickly out paces the αm/2 mode and dominates the
emerging pattern. In this problem, the nonlinearity originates from (i) the Marangoni
surface stress that depends on interfacial temperature gradients, which in turn vary in
response to the evolving interface (Ma∂x[Ti(hi)] in (2.1)) and (ii) viscous stresses that
retard fluid flow, to an extent that increases as the film approaches the no-slip wall
(terms of the form h2

i /2 and h3
i /3 in (2.1)). On imposing the initial perturbation of

wavenumber αm/2, Marangoni forces begin to drain fluid symmetrically from under
the single trough (cf. bottom panel of figure 3b). However, viscous stresses, which
retard this flow, are strongest under the trough. Consequently, the largest outflow
occurs not directly under the trough, but at two points located symmetrically on
either side. The film height decreases faster at these locations, and the original trough
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FIGURE 3. Dominance of the fastest-growing linear mode when the dispersion curve
has a single peak. (a) Linear dispersion curve, corresponding to a single fluid on a
hot plate (Ma = 2, Bi = 1, Bo = 0), with a peak at αm = 0.613. (b) Spatial form of
linear modes corresponding to wavenumbers αm (top panel) and αm/2 (bottom panel).
The corresponding nonlinear evolution is shown in (c,d). The non-dimensional time is
mentioned above each panel.

eventually transforms into a crest, sandwiched between two new secondary troughs
(cf. top panel of figure 3d). This process is aided by the fact that the Marangoni
flow near the original trough changes direction along with the slope of the interface,
so that fluid drains out of the secondary troughs into the newly formed crest. In
this manner, shorter-scale structures are generated spontaneously, a short time after
imposing the initial perturbation. These include the αm mode, which then grows much
faster and quickly dominates the evolution of the interface.

The physical origin of nonlinearities capable of generating shorter-wavelength
modes is different in each problem. In the capillary break-up of jets, where there are
no wall effects, capillary pressure due to transverse curvature, inertia and the presence
of an outer viscous fluid are all sources of structure-generating nonlinearity (Eggers
1997; Pozrikidis 1999). Whatever their origin, these nonlinearities act to reinforce
the fastest linear mode so that it ultimately dominates the pattern, regardless of the
amplitude of the peak-mode in the initial disturbance. This explains why it is possible
to anticipate the dominant length scale in nonlinear patterns from the peak of a linear
dispersion curve and why the purely linear theory of interfacial pattern formation put
forth by Rayleigh (1879a) found reasonable agreement with experiment.

This section has shown how nonlinear effects enhance the growth of the mode with
the fastest linear growth rate. In the next section, we eliminate this linear growth
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bias by considering situations wherein the dispersion curve has two peaks with equal
growth rates. The basic question we ask is: will both peak-modes be present in the
final pattern or will nonlinearity select one of them?

4. Nonlinear selection in the context of two-peak dispersion curves
This section presents results of numerical simulations of (2.1), for cases that have

dispersion curves with two peaks of comparable height. To focus attention on the
peak-modes, the simulations are carried out in a finite periodic domain of length equal
to the wavelength of the longer-wave peak-mode, given by 2π/αL where αL is the
wavenumber of the longer-wave peak. In the simulations, we perturb the αL peak, as
well as a commensurate mode, αS = nαL, which is closest to the shorter-wavelength
peak. The peak-modes in figure 2 are very close to being commensurate, with n= 2
for case TP1 and n= 4 for case TP2. (This feature was a major reason for selecting
these particular cases for study.) We consider small initial perturbations of the form:

A0(ĥ1L, ĥ2L)eiαLx
+ B0(ĥ1S, ĥ2S)eiαSx+φ (4.1)

where the eigenvectors (ĥ1L, ĥ2L) and (ĥ1S, ĥ2S) are of unit norm. We compare the
interfacial patterns that emerge after exciting (i) only the longer-wave peak (A0 =

0.001,B0= 0), (ii) only the shorter-wave peak (A0= 0,B0= 0.001) and (iii) both peaks
in equal proportion (A0=B0= 0.001). The two peak-mode disturbances are allowed to
have a phase difference φ. In what follows, we present results for cases TP1 and TP2
(panels (a,b) of figure 2), which serve to illustrate all the key findings of this work.
The effect of extending the domain length and admitting modes longer than 2π/αL is
examined later, in § 6.

Figure 4 presents results for case TP1 (cf. panel 2a), wherein the two peak-modes
have equal linear growth rates. Column (a) shows the evolution of the interfacial
pattern that results from perturbing the longer-wave peak-mode, αL = 0.477. Column
(b) shows the result of perturbing the shorter-wave peak-mode, αS = 2αL = 0.954.
The corresponding eigenvectors are (ĥ1L, ĥ2L) = (0.253, 0.968) and (ĥ1S, ĥ2S) =

(0.820, 0.573). Apart from the difference in wavelengths, the qualitative nature of
the two patterns is very different. The top interface is more active in the case
of the αL perturbation, and the two interfaces meet each other and pinch off,
before the bottom interface meets the wall (figure 4a). In contrast, for the αS
disturbance, the bottom interface deforms more than the top interface, leading to
rupture of the bottom interface at the wall (figure 4b). When both the peak-modes
are perturbed simultaneously, these two contrasting patterns will grow together and
possibly compete. The principle of the fastest-growing linear mode suggests that
both modes should be present in the final pattern, because the two peak-modes have
identical linear growth rates. However, the result shown in column (c) of figure 4
is in complete contradiction with this line of reasoning. The shorter-wavelength αS
mode is seen to completely dominate the interfacial pattern – all evidence of the
longer-wavelength peak-mode is completely eliminated, even at relatively early times.

The situation becomes even more intriguing when the effect of a phase difference
between the two peak-mode perturbations is considered. Figure 4(d) shows that the
pattern changes completely when the perturbations are out of phase (φ =π in (4.1)),
compared to the case when they are in phase (φ = 0, cf. figure 4c). The nature of
pinch off in figure 4(d) is now governed by the αL mode, although contributions from
both peak-modes are present (with αL primarily influencing the top interface and αS
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FIGURE 4. Nonlinear selection among the two peak-modes, corresponding to case TP1 (cf.
figure 2a). Columns (a)–(d) depict the evolution of different initial perturbations: (a) only
the longer-wavelength peak-mode (αL= 0.477), (b) only the shorter-wavelength peak-mode
(αS = 2αL = 0.954), (c) equal in-phase superposition of peak-modes (A0 = 0.001, B0 =

0.001, φ = 0 in (4.1)), (d) equal, out-of-phase superposition of peak-modes (φ = π). The
eigenvectors corresponding to the two peak-modes are (ĥ1L, ĥ2L) = (0.253, 0.968) and
(ĥ1S, ĥ2S) = (0.820, 0.573). The non-dimensional time corresponding to each interfacial
pattern is mentioned above the respective panel.

impacting the bottom interface). Linear stability calculations are unaffected by phase
differences, and consequently, the linear dispersion curve is powerless to explain such
phase-dependent pattern evolution.

In hindsight, the influence of a phase difference can be understood by comparing
the early evolution of the two independent perturbations to the peak-modes. The
αL mode causes the interfaces to move downward at the centre of the domain
(figure 4a), whereas the αS mode causes the interfaces to move upward at the same
location (figure 4b). Therefore, the two modes compete when they are excited in
phase, with the result that αS dominates (figure 4c). On the other hand, out-of-phase
disturbances can grow together and coexist in the final pattern, as seen in figure 4(d).
Thus, the influence of phase differences is tied to the interaction between crests and
troughs of the two peak-mode patterns. By this logic, phase differences should cease
to matter when the two peak-modes have very different wavelengths. In this case,
a trough of the longer-wave pattern will overlap with several crests and troughs of
the shorter-wave pattern, and the net interaction of the two patterns should not be
significantly influenced by the phase difference. This holds true for case TP2 (wherein
αS=4αL, cf. panel 2b), as demonstrated by panels 5(a–d). Panels 5(a,b) show the final
pattern resulting from independent perturbations of the αL and αS modes respectively.
Panels 5(c,d) show the results of in-phase and out-of-phase superposed peak-mode
perturbations. As expected, the phase difference does not significantly affect the
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FIGURE 5. The influence of phase difference and a counter-example to Rayleigh’s
principle in the context of case TP2 (cf. figure 2b). Each panel shows the final
pattern obtained just before terminating the simulation, along with the corresponding
non-dimensional time (mentioned above each panel). In (a–d), the two excited peak-modes,
αL = 0.196 and αS = 4αL = 0.784, have equal linear growth rates of 0.00043. The
eigenvectors corresponding to the two peak-modes are (ĥ1L, ĥ2L) = (0.165, 0.986) and
(ĥ1S, ĥ2S) = (0.993, 0.120). The perturbations in each panel are: (a) only αL, (b) only
αS, (c) in-phase superposition (A0 = 0.001, B0 = 0.001, φ = 0 in (4.1)), (d) out-of-phase
superposition (φ = π). Panels (e–h) show how the final pattern for equal in-phase
perturbations (A0=0.001,B0=0.001, φ=0) changes as the growth rate of the shorter-wave
peak-mode (αS) is reduced in four stages (by increasing the interfacial tension ratio γr):
(e) 0.00042, ( f ) 0.00040, (g) 0.00038, (h) 0.00033.

qualitative nature of the pattern, which is completely dominated by the shorter-wave
αS peak-mode.

The erstwhile dominant peak-mode (shorter-wavelength peak) continues to dominate
even when its growth rate is slightly reduced. This result is demonstrated by
panel 5(e), which corresponds to a slightly modified case of TP2 (cf. panel 2b),
in which the αS mode has a slightly smaller growth rate than the αL mode (cf. the
caption of figure 5). This is a definite counter-example to Rayleigh’s paradigm of
the fastest-growing linear mode, because in this case the mode with a smaller linear
growth rate dominates the pattern! Of course, as the growth rate of the αS mode
is decreased further (panels 5f –h), the system eventually behaves like one with a
single-peak dispersion curve and the αL mode sets the pattern (compare panels 5a,h).
A similar result is found for in-phase perturbations of the peak-modes of case TP1.
The shorter αS mode (cf. figure 4b) continues to dominate even when its growth
rate is slightly reduced. Further reduction, however, eventually leads to the longer αL

peak-mode (cf. figure 4a) dominating.

5. Low-order ODE model: a truncated Galerkin approach

The previous section has demonstrated that interfacial pattern evolution cannot be
anticipated from linear stability theory alone, in cases where the dispersion curve
has two peaks of comparable height. Numerical investigations tell us that either
peak-mode can dominate the pattern and that the outcome may also depend on the
phase difference between initial perturbations, but not always. Anticipating the final
pattern requires one to account for nonlinear interactions between the peak-modes. At
the same time, full numerical simulations are computationally expensive and may be
unfeasible in many situations, especially when different types of perturbations must
be considered. An alternative is to develop a low-order ordinary differential equation
model that accounts for only the key interactions between peak-modes, in order to
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predict which of the two dominates. In systems close to the onset of instability,
at codimension-two supercritical points, such amplitude equations have been derived
using asymptotic techniques like multiple scale expansions (Cross & Hohenberg 1993)
or the centre manifold reduction (Carini, Auteri & Giannetti 2015; Roberts 2015). In
this work, we are primarily concerned with systems that are far above the instability
threshold and undergoing subcritical bifurcations. Moreover, we wish to describe the
evolution of the most unstable peak-modes and not those close to the cutoff neutral
wavenumber. Therefore, rather than applying a strict asymptotic procedure, we derive
a low-order model by carrying out a Galerkin projection of the governing equations
(2.1) onto a set of judiciously selected modes (Balmforth, Provenzale & Whitehead
2001).

By comparing various truncated models with full simulations of the partial
differential equation (PDE) model (2.1), we have found that the lowest-order ODE
model capable of adequately describing the system is one based on three modes –
the two peak-modes and a third mode that facilitates their interaction. The interface
heights are represented as a combination of these modes, as follows:[

h1
h2

]
= A(t)

[
ĥ1,L

ĥ2,L

]
ei(αL)xeiφ1(t) + B(t)

[
ĥ1,S

ĥ2,S

]
ei(αS)xeiφ2(t)

+C(t)
[

ĥ1,L

ĥ2,L

]
ei(αS)xeiφ3(t) + c.c. (5.1)

Here αS=nαL, where n is an integer, as we are considering commensurate peak-modes.
The first two modes, with amplitudes A(t) and B(t), correspond to the longer-wave
and shorter-wave peak-modes respectively. The third mode, with amplitude C(t), has
the eigenvector of the longer-wave peak-mode (ĥ1L, ĥ2L) but the spatial variation of
the shorter-wave peak-mode (e(iαS)x). This mode is especially important when the
two eigenvectors (ĥ1L, ĥ2L) and (ĥ1S, ĥ2S) are orthogonal. In this case, a nonlinear
term (quadratic if n= 2, as in case TP1) acting on the αL mode will not make any
contribution to the equation for the αS mode, after Galerkin projection. The third
mode, on the other hand, will always be affected nonlinearly by the αL mode while
simultaneously contributing to the equation for the αS mode, thereby facilitating
communication between the two peak-modes. The importance of considering this
third interaction mode is illustrated in figure 8, to be introduced later.

Expression (5.1) is substituted into (2.1), which is then projected onto the three
modes. Projection involves taking the scalar product of the equations with the mode,
followed by spatial integration. After equating real and imaginary parts, this results
in six nonlinear coupled ODEs for the amplitudes A(t), B(t) and C(t) and the phases
φ1(t), φ2(t) and φ3(t). For simplicity, only the lowest-order nonlinear terms that enable
the peak-modes to interact are retained. For case TP1, second-order terms are required,
because the peak-mode wavenumbers are in a 1 : 2 ratio, whereas, terms up to fourth
order must be retained for case TP2 where the peak-modes are in a 1 : 4 ratio (cf.
panels 2a,b). (It was verified that higher-order terms do not modify the prediction
of the dominant mode.) The following initial conditions were used, to simulate the
evolution of an initial perturbation to both peak-modes: A= B= 0.001, C= 0, φ1= 0,
φ2 = φ and φ3 = 0. Here, φ is the phase difference between the initial peak-mode
perturbations, as defined in (4.1), and the disturbance amplitude of 0.001 is the same
as that used in the simulations of the PDE model (2.1).

Figure 6 compares the prediction of this three-mode ODE model (dashed lines)
with the amplitudes extracted from simulations of the PDE model (solid lines), for
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FIGURE 6. Low-dimensional description of the evolution of the peak-modes for case
TP1 of panel 2(a). A(t) is the amplitude of the longer-wave peak-mode while B(t) is
the amplitude of the shorter-wave peak-mode. The solid lines represent the amplitudes
of the peak-modes (cf. (5.1)) extracted from the simulation of the PDE model (2.1),
while the dashed lines are the predictions of the three-mode ODE model. Panels (a,b)
depict the phase plane trajectory and temporal evolution of the amplitudes, for the case of
in-phase peak-mode perturbations (φ= 0 in (4.1)). Panels (c,d) correspond to out-of-phase
peak-mode perturbations (φ = π in (4.1)). The associated spatial evolution is presented
in panels 4(c,d), respectively. In (a,c), time progresses along the phase plane trajectories,
starting at the origin. The dotted lines in these panels are diagonals.

case TP1 (cf. panel 2a). Panels 6(a,c) depict phase plane plots for in-phase (φ = 0)
and out-of-phase (φ=π) initial peak-mode perturbations, while panels 6(b,d) show the
corresponding temporal evolution. The ODE model is able to capture the qualitative
features of the evolution of the peak-modes, including the influence of the phase
difference. It successfully predicts the dominance of the shorter-wave peak-mode
for in-phase perturbations (panel 6a), and the co-existence of both peak-modes for
out-of-phase perturbations (with the longer-wave peak-mode playing a larger role,
cf. panel 6c). Quantitative accuracy of the model is, however, restricted to small
values of the amplitudes (panels 6b,d). As the amplitudes of the peak-modes increase,
the neglected high-order interaction terms (cubic and greater in this case) become
increasingly relevant. Moreover, higher harmonics of the peak-modes get excited
and may begin to influence the growth of the peak-modes. These effects cannot be
captured by the truncated three-mode ODE model. The fact that the ODE model is
able to predict the dominant mode, in spite of these limitations, implies that pattern
selection is largely determined by direct nonlinear interaction between the peak-modes,
at a relatively early stage of their evolution.

Figure 7 presents results for case TP2 (cf. panel 2b). The ODE model successfully
predicts the dominant mode to be the shorter-wave peak-mode, for both in-phase
(panels 7a,b) and out-of-phase perturbations (panels 7c,d). If the interfacial tension
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FIGURE 7. Low-dimensional description of the evolution of the peak-modes for case
TP2 of panel 2(b). A(t) is the amplitude of the longer-wave peak-mode while B(t) is
the amplitude of the shorter-wave peak-mode. The solid lines represent the amplitudes
of the peak-modes (cf. (5.1)) extracted from the simulation of the PDE model (2.1),
while the dashed lines are the predictions of the three-mode ODE model. Panels (a,b)
depict the phase plane trajectory and temporal evolution of the amplitudes, for the case of
in-phase peak-mode perturbations (φ= 0 in (4.1)). Panels (c,d) correspond to out-of-phase
peak-mode perturbations (φ = π in (4.1)). The final spatial patterns corresponding to
these two cases are presented in panels 5(c,d), respectively. The dotted lines in (a,c) are
diagonals.

ratio is increased so as to slightly decrease the linear growth rate of the shorter-wave
peak-mode, the ODE model continues to predict the dominance of the shorter-wave
mode, in agreement with panels 5(c,e).

Similar to the results for case TP1 (cf. figure 6), the ODE model is quantitatively
accurate only for small amplitudes. Beyond t ≈ 11 000, the ODE prediction for B(t)
increases much more rapidly than the PDE results (cf. panels 7b,d). In fact the ODE
solution displays a singularity at t≈11 800. This non-physical behaviour may be cured
by including additional modes in the ODE model. However, this is not necessary if
the primary goal is to predict which peak-mode is dominant in the final pattern.

A particularly encouraging aspect of the ODE model is its ability to capture the
influence of the phase difference between perturbations, which significantly impacts
the final pattern in case TP1 (compare panel 4c with 4d and panel 6a with 6c). As
the model contains only three modes, it may be possible to gain insight into inter-peak
interaction and the role of phase differences, by a direct examination of the ODEs. To
obtain the equations for case TP1, the parameter values corresponding to case TP1
(cf. caption of panel 2a) are substituted into the full PDE model (2.1), which is then
projected onto the three modes (5.1). The calculations are carried out with the aid of
symbolic computing in Mathematicar. The equations take on a relatively simple form
if we restrict ourselves to in-phase and out-of-phase perturbations (φ = 0,π in (4.1)):
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FIGURE 8. Demonstration of the importance of the interaction mode (of amplitude C(t) in
(5.1)) in the reduced-order ODE model. Phase plane orbits (a) and the temporal evolution
(b) of the peak-modes are presented, for the system in panel 2(b), considering in-phase
perturbations. (a) The solid lines are obtained from a simulation of the PDE model (2.1)
and are identical to the solid lines in panels 7(a,b). The dashed lines are predictions of
a two-mode ODE model that does not include the interaction mode. These predictions
should be compared with the dashed lines in 7(a,b), obtained from the three-mode
ODE model which retains the interaction mode. While the three-mode ODE model is
qualitatively accurate and predicts the dominance of the shorter-wave peak-mode, the
two-mode ODE model fails entirely and predicts the opposite result.

dA
dt
= σA−m1AC−m2AB cos(φ) (5.2a)

dB
dt
= σB−m3C sec(φ)−m4A2 sec(φ) (5.2b)

dC
dt
=ωC+m5A2 (5.2c)

Here, σ and ω are the individual linear growth rates of each mode and mi are positive
constants. The values of these coefficients are specific to the parameter values of case
TP1: σ = 0.008, ω = −0.063, m1 = 0.137, m2 = 0.053, m3 = 0.0003, m4 = 0.002,
m5 = 0.012. The coefficient σ is the same for the two peak-mode amplitudes A and
B because we have used parameter values corresponding to case TP1, for which the
peak-modes have equal linear growth rates.

The other terms in (5.2) account for inter-mode interaction, and include nonlinearities
up to second order (the lowest order required for nonlinear interaction between the
peak-modes, which are in a 1 : 2 wavelength ratio). Particularly important are the
third terms on the right-hand side of (5.2a) and (5.2b). For in-phase perturbations
(φ = 0), these terms show that the two peak-modes compete, with the growth of B
suppressing that of A (via −m2AB) and vice versa (via −m4A2). Because m2 >m4, in
this case, the shorter-wave mode dominates the pattern. For out-of-phase perturbations
(φ = π), on the other hand, the sign of these terms reverse, indicating that the
two modes cooperate and allow each other to coexist in the final pattern. This
competition/cooperation stems from the manner in which crests and troughs of the
two peak-modes overlap, as was discussed pictorially in § 4.

We have tested the three-mode ODE model for other cases as well, and have
found similar positive results, with regard to the qualitative nature of the peak-mode
interaction and the prediction of the dominant mode. For the sake of brevity, we only
present one additional example in appendix A, for which the peak-mode wavelengths
are in a 1 : 3 ratio. In this particular case, both modes play nearly equal roles in
establishing the final pattern and neither is able to dominate.
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We conclude this section by demonstrating the importance of including the
interaction mode, of amplitude C(t), in the ODE model. This mode is particularly
important for case TP2 (cf. panel 2b), because the eigenvectors corresponding
to the peak-modes are close to being orthogonal (ĥ1L, ĥ2L) = (0.165, 0.986) and
(ĥ1S, ĥ2S) = (0.993, 0.120). In this case, although fourth-order nonlinearities would
generate a harmonic of the longer-wave mode (of wavenumber αL) with a spatial
variation matching the shorter-wave mode (of wavenumber 4αL), its projection
onto the latter would be very small. Thus a two-mode ODE model, with just the
peak-modes, will not be able to capture their interaction. This is shown by the results
in figure 8, which corresponds to in-phase perturbations of the peak-modes of case
TP2. The two-mode model completely fails, as it predicts the dominance of the
longer-wave peak-mode, when in fact the shorter-wave mode dominates.

This deficiency of the two-mode model has been overcome by including just one
extra mode – the interaction mode, which combines the spatial variation of the shorter-
wave peak-mode (αS) with the eigenvector of the longer-wave peak-mode (ĥ1L, ĥ2L)
(cf. (5.1)). The longer-wave mode can strongly excite the interaction mode, which in
turn influences the evolution of the shorter-wave peak-mode via linear coupling. For
case TP1, this interaction is represented by the second terms on the right-hand side
of (5.2c) and (5.2b). These terms do not play a major role in case TP1 because the
eigenvectors are far from being orthogonal, (ĥ1L, ĥ2L)= (0.253, 0.968) and (ĥ1S, ĥ2S)=
(0.820, 0.573), which enables a strong direct interaction between the peak-modes. In
contrast, the interaction mode is important in case TP2 where direct interaction is
weak, and it is only by including the interaction mode that the ODE model is able to
successfully identify the dominant peak-mode (compare panel 7a with 8a).

6. Coexisting patterns on long domains
In the numerical simulations of § 4, the non-dimensional domain length (L) was

chosen to be just large enough to accommodate the longer-wave peak-mode, i.e. L=
2π/αL. Increasing the domain length further admits modes of larger wavelengths. Due
to their smaller growth rates, one may expect them to be dominated by the peak-
modes. However, these long-wavelength modes may be able to affect the interfacial
pattern by modulating the local phase difference between the peak-modes. In situations
where the pattern depends on the phase difference, such as case TP1 (cf. panels 4c,d),
this phase modulation could result in the emergence of coexisting patterns on long
domains.

To demonstrate this, we consider an extended domain of L = 4 × 2π/αL for case
TP1 (cf. panel 2a). This domain is four times that of figure 4. Both peak-modes are
perturbed with equal amplitudes (A0=B0=0.001 in (4.1)), but with a spatially varying
phase difference φ(x) such that the peak-modes are in phase on the left half of the
domain and out of phase on the right half. The function φ(x) is plotted in panel 9(a)
and its exact form is given below:

φ(x)=
π

2

(
1+

2
π

arctan(4(x− L/2))
)
. (6.1)

The interfacial pattern that results from this perturbation is shown in panel 9(b).
The left half of the domain resembles the pattern in panel 4(c), wherein the bottom
interface approaches rupture at the wall. The right half of the domain resembles
panel 4(d), wherein the two interfaces approach pinch off. The patterns transition
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FIGURE 9. Emergence of coexisting patterns on a long domain, L= 4× 2π/αL. (a) The
spatially varying phase difference φ(x) used in the initial perturbation (4.1) to the peak-
modes. (b) The coexisting pattern that results from perturbing the peak-modes of case
TP1 (panel 2a) with the spatially varying phase difference given in (a). (c) The result of
perturbing all admissible unstable modes of case TP1 (with wavenumbers α=2mπ/L, m=
1, 2, 3...), without any phase differences. Here the relative phase between the peak-modes
is modulated naturally, due to the excitation of the longest wavelengths in the domain. (d)
Result of a similar perturbation as that in (c), but for case TP2 (cf. panel 2b) wherein the
phase difference between peak-mode perturbations does not affect the pattern appreciably.

from one to the other at the centre of the domain. The shorter-wave peak dominates
on the left half (cf. panel 4a) while the signature of the longer-wave peak is apparent
on the right half (cf. panel 4b), in accordance with the influence of the phase
difference on inter-peak competition (cf. § 5).

That such modulation of the local phase difference between peak-modes can arise
naturally, due to the influence of very-long-wavelength modes, is demonstrated by
panel 9(c). Here all admissible wavelengths (α=2mπ/L=mαL/4, with m=1,2,3 . . .),
with positive linear growth rates, are excited equally and in phase. The signature of
the longer-wave peak-mode can be seen in the centre of the domain while the shorter-
wave peak-mode dominates near the two ends of the periodic domain.

Panel 9(d) shows the results of a similar calculation for case TP2 (cf. panel 2b)
where the phase difference between peak-mode perturbations does not appreciably
affect the pattern (cf. panel 5c,d). Here, although the interface is less deformed in
certain regions of the domain, the shorter-wave peak-mode (panel 5b) dominates
throughout and there is no signature of the longer-wave peak-mode (panel 5a). These
results show that coexisting patterns are likely to arise for cases wherein the phase
difference between peak-modes significantly influences their interaction.

It should be noted that systems undergoing supercritical bifurcations also exhibit
coexisting patterns, which are called domain structures (Raitt & Riecke 1995, 1997).
This was demonstrated by Raitt & Riecke (1995) for a fourth-order (in space)
Ginzburg–Landau equation that has a two-peak linear dispersion curve. Here the
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peak-modes saturate to nonlinear states with distinct wavelengths, which exist
alongside one another in different regions of the domain. In the absence of a
rupture-like catastrophe, these systems can evolve indefinitely. Therefore, for a
coexisting pattern to be observed it is necessary for the state with coexisting patterns
to be stable to perturbations. Otherwise, one pattern would invade the other and lead
to a uniformly patterned state. This issue does not arise in the interfacial system
under study, because rupture/pinch off occurs before the patterns arising in different
regions can influence each other significantly.

7. Conclusions
This work has focused on pattern selection in interfacial problems that are char-

acterized by subcritical bifurcations and nonlinear growth that leads to rupture/pinch
off. In systems with single-peak linear dispersion curves, the characteristic scales
of the final pattern are often set by the mode with the fastest linear growth rate.
This occurs even though the system if far above the instability threshold because
nonlinearity reinforces the growth of the peak-mode. The situation is very different,
however, when the dispersion curve has two peaks of comparable heights. This work
has shown that either of the two peak-modes can completely dominate the pattern,
even if they have identical linear growth rates. Furthermore, the pattern remains
unaltered on reducing the growth rate of the dominant peak-mode, within a finite
margin. This is in direct contradiction of the usual assertion that the fastest-growing
linear mode dominates the pattern. Such unexpected behaviour results from nonlinear
interaction between the peak-modes, which may be influenced by the phase difference
between the initial peak-mode perturbations.

To capture the essentials of the peak-mode interaction, we have developed a simple
three-mode ODE model, which has proven to be remarkably effective in predicting
the qualitative nature of the emergent pattern. This model is obtained by projecting
the governing nonlinear partial differential equations onto the two peak-modes and
an additional interaction mode, which is particularly important when the peak-mode
eigenvectors are orthogonal. This methodology can be applied to any two-peak
system, and will be especially useful in computationally demanding problems, for
which running a host of direct numerical simulations is unfeasible.

The possible dependence of the final pattern on the phase difference between
peak-modes has been shown to result in the emergence of coexisting patterns, when
the domain is sufficiently large. The additional long-wavelength modes admitted by
increasing the domain size have the effect of modulating the local phase difference
between the peak-modes, which in turn allows distinct patterns to emerge in different
parts of the domain.
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Appendix
An additional case of a two-peak dispersion curve in briefly considered in this

appendix. This case differs from those in figure 2 in that the two peaks of the
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FIGURE 10. (Colour online) Case with peak-modes in a 1 : 3 wavelength ratio. (a) Linear
growth curve: the solid (blue) and dashed (red) lines correspond to the two eigenmodes,
with in-phase and out-of-phase interface deflection respectively. Panels (b–d) present the
final spatial pattern resulting from various initial perturbations: (b) only the longer-wave
peak-mode (αL = 0.377), (c) only the shorter-wave peak-mode (αS = 3αL = 1.131), (d)
equal in-phase perturbation of both peak-modes (A0 = 0.001, B0 = 0.001, φ = 0 in (4.1)).
The eigenvectors corresponding to the two peak-modes are (ĥ1L, ĥ2L)= (0.017, 1.000) and
(ĥ1S, ĥ2S)= (0.937, 0.348). The non-dimensional time corresponding to each pattern in (b)
to (c) is mentioned above the respective panel. Parameter values: H1/H2 = 0.5, Bo= 0.2,
Ma= 0.5, γr = 1.5, βr = 0.9, µr = 24, ρr = 13.0386, Bi= 1.4, kr = 0.4.
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FIGURE 11. Low-dimensional description of the evolution of the peak-modes for the case
in panel 10(a), considering in-phase perturbations. A(t) is the amplitude of the longer-wave
peak-mode while B(t) is the amplitude of the shorter-wave peak-mode. The solid lines
represent the amplitudes of the peak-modes (cf. (5.1)) extracted from the simulation of the
PDE model (2.1), while the dashed lines are the predictions of the three-mode ODE model.
Panels (a,b) depict the phase plane trajectory and temporal evolution of the amplitudes.
The final spatial patterns corresponding to these two cases are presented in panels 10(c,d),
respectively. The dotted line in (a) is a diagonal.

dispersion curve are close to a ratio of 1 : 3, as shown in panel 10(a). For the
numerical simulations, we perturb the longer-wave peak-mode (αL = 0.377) and a
commensurate shorter-wave mode (αS = 3αL = 1.131) that is close to the second
peak. Both peak-modes have the same linear growth rate. The final spatial patterns
that result from perturbations corresponding to (a) only the longer-wave peak-mode,
(b) only the shorter-wave peak-mode, and (c) equal in-phase superposition of both
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peak-modes are presented in panels 10(b–d). The final pattern contains significant
signatures of both peak-modes, and neither is able to dominate over the other.

The low-order ODE model captures this behaviour well, as shown in figure 11,
which compares the prediction of the three-mode ODE model with the PDE
simulation. However, as in cases TP1 (cf. figure 6) and TP2 (cf. figure 7), quantitative
accuracy is limited to small values of the peak-mode amplitudes. The phase difference
between peak-mode perturbations does not influence the final pattern appreciably, in
this case.
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