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In this paper, we are concerned with the analysis of heavy-tailed data when a portion
of the extreme values is unavailable. This research was motivated by an analysis of the
degree distributions in a large social network. The degree distributions of such networks
tend to have power law behavior in the tails. We focus on the Hill estimator, which plays
a starring role in heavy-tailed modeling. The Hill estimator for these data exhibited a
smooth and increasing “sample path” as a function of the number of upper order statistics
used in constructing the estimator. This behavior became more apparent as we artificially
removed more of the upper order statistics. Building on this observation we introduce
a new version of the Hill estimator. It is a function of the number of the upper order
statistics used in the estimation, but also depends on the number of unavailable extreme
values. We establish functional convergence of the normalized Hill estimator to a Gaussian
process. An estimation procedure is developed based on the limit theory to estimate the
number of missing extremes and extreme value parameters including the tail index and
the bias of Hill’s estimator. We illustrate how this approach works in both simulations
and real data examples.
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1. INTRODUCTION

In studying data exhibiting heavy-tailed behavior, a widely used model is the family of
distributions that are regular varying. A distribution F is regularly varying of index α if

F̄ (tx)
F̄ (t)

→ x−α (1)

as t → ∞ for all x > 0, where α > 0 and F̄ (t) = 1 − F (t) is the survival function. The
parameter α is called the tail index or the extreme value index, and it controls the heaviness
of the tail of the distribution. This is perhaps the most important parameter in extreme
value theory and a great deal of research has been devoted to its estimation. The most used
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Figure 1. Hill plot of iid Pareto (γ = 2) variables (n = 1000). x-axis: number k of upper
order statistics used in the calculation. y-axis: Hn(k). Left: without removal. Right: top 100
removed.

and studied estimate of α is based on the Hill estimator for its reciprocal γ = 1/α (see Hill
[14], Drees et al. [12] and Section 2.1 of de Haan and Ferreira [10] for further discussion on
this estimator). The Hill estimator is defined by

Hn(k) =
1
k

k∑
i=1

log X(i) − log X(k+1),

for k = 1, 2, . . . , n − 1, where X(1) ≥ X(2) ≥ · · · ≥ X(n) are the order statistics of an inde-
pendent and identically distributed (iid) sample X1,X2, . . . , Xn ∼ F (x). The Hill estimator
is consistent in estimating γ: Hn(k) P→ γ as n → ∞, k = k(n) → ∞ and k/n → 0 (see, e.g.,
Section 3.2 of de Haan and Ferreira [10]).

As an illustration, the left panel of Figure 1 shows the Hill plot of 1000 iid observations
from a Pareto distribution with γ = 2 (F (x) = 1 − x−0.5 for x ≥ 1 and 0 otherwise). In
general, one chooses k for which the Hill plot remains relatively horizontal and uses the
corresponding value of Hn(k) as the estimate for γ.

If the largest several observations in the data are removed, the Hill curve behaves very
differently. For example, when the 100 largest observations of the previous Pareto sample
have been removed, the Hill plot renders a much smoother curve that is generally increasing.
As seen in the right panel of Figure 1, the Hill plot has no region in which it is horizontal.
Hence the choice of k in the Hill estimator is problematic in the presence of missing extremes,
especially if the number of missing is unknown. The principle objective of this paper is to
estimate the number of missing extremes simultaneously with other relevant parameters,
including the tail index α.

As a real-world example, a similar phenomenon is observed when we study the tail
behavior of the in- and out-degrees in a large social network. We looked at data from a
snapshot of Google+, the social network owned and operated by Google, taken on October
19, 2012. The data contain 76,438,791 nodes (registered users) and 1,442,504,499 edges
(directed connections). The in-degree of each user is the number of other users following the
user and the out-degree is the number of others followed by the user. The degree distributions
in natural and social networks are often heavy-tailed (see Chapter 8 of Newman [18]).
The resulting Hill plot for the in-degrees of the Google+ data (the first plot in Figure 2)
resembles the curve of the Hill plot for the Pareto observations with the largest extremes
removed. This raises the question of whether some extreme in-degrees of the Google+ data
are also unobserved. For example, some users with extremely large in-degrees may have been
excluded from the data. This pattern of a smooth curve becomes even more pronounced
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Figure 2. Hill plots of in-degrees of the Google+ network. Left: without removal. Middle:
500 largest values removed. Right: 1000 largest values removed.

when we apply an additional removal of the top 500 and 1000 values of the in-degree (the
second and the third plots in Figure 2).

In addition to detecting possible manipulation of data in the tail, modeling and analyz-
ing data in the presence of missing extremes can also be applied to a variety of fields. For
example, in studying natural disasters such as earthquakes, forest fires and floods, extreme
values might be missing due to difficulty in data collection. In actuarial sciences, claims of
extremely large amounts might be covered by a reinsurance company and not included in
the claims (Section 8.7 of Embrechts et al. [13], Benchaira et al. [4]).

In order to understand the behavior of the Hill curves of samples in which some of
the top extreme values have been removed, we introduce a new parametrization to the Hill
estimator. Let k = kn be an intermediate sequence. We denote the number of upper order
statistics used in the Hill estimator by θk and the number of missing extremes by δk, and
define a functional version of the Hill estimator without extremes (HEWE) as a function
of θ and δ. This new parametrization allows one to explore missing extremes both visually
and theoretically. The Hill estimator curve of the data without the top extremes exhibits
a strikingly smooth and increasing pattern, in contrast to the fluctuating shapes when no
extremes are missing. The differences in the shape of the curves are explained by the func-
tional properties of the limiting process of the HEWE. Under a second-order regular varying
condition, we show that the HEWE, suitably normalized, converges in distribution to a con-
tinuous Gaussian process with mean zero and covariance depending on δ and parameters
of the distribution F including the tail index α.

Based on the likelihood function of the limiting process, an estimation procedure is
developed for δ and the parameters of the distribution, in particular, the tail index α. The
proposed approach may also have value in assessing the fidelity of the data to the heavy-
tailed assumptions. Specifically, one would expect consistency of the estimation of the tail
index when more extremes are artificially removed from the data.

A natural question is whether the observed phenomenon, such as those illustrated in
the Hill plots in Figure 2, is an artifact of the data coming from a light-tailed distribu-
tion. In fact, our method is robust to the light-tailed case and can differentiate between
the case of heavy-tailed data with missing extremes and light-tailed data. A theoretical
justification can be found in Davis and Resnick [9], in which the consistency of the Hill
estimator when α = ∞ was established. We also include an example in the simulation
section to demonstrate the good performance of the proposed method when applied to
light-tailed data.

There has been recent work (Aban et al. Beirlant et al. [1–3]) that involves adapting
classical extreme value theory to the case of truncated Pareto distributions. The truncation
is modeled via an unknown threshold parameter and the probability of an observation
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exceeding the threshold is zero. Maximum likelihood estimators (MLE) are derived for the
threshold and the tail index.

Our focus here is to study the path behavior of the HEWE if any arbitrary num-
ber of largest values are unavailable. Moreover, the estimation procedure we propose has a
built-in mechanism to compensate for the bias introduced by non-Pareto heavy-tailed distri-
butions. Ultimately, the HEWE provides a graphical and theoretical method for estimation
and assessment of modeling assumptions. An R Shiny web application has been built to
interactively estimate and evaluate results from user uploaded data (see the supplementary
material for details).

In addition, we feel the proposed approach may shed some useful insight on classical
extreme value theory even when extreme values are not missing in the observed data. It is
possible to remove a number of top extreme values artificially and study the effect of the
artificial removal on the estimation of the tail index. In this case, we know the true value
of δ.

This paper is organized as follows. Section 2 introduces the HEWE process and states
the main result of this paper dealing with the functional convergence of the HEWE to a
continuous Gaussian process. Section 3 explains the details of the estimation procedure
based on the asymptotic results. Section 4 demonstrates how our estimation procedure
works on simulated data from both Pareto and non-Pareto distributions. We also illustrate
this procedure on a light-tailed distribution. Section 5 applies our procedure to several
interesting real data sets. All the proofs are postponed to the Appendix.

2. FUNCTIONAL CONVERGENCE OF HEWE

In this section, we set up the framework for studying the reparametrized Hill estimator.
To start, let X1,X2, . . . be iid random variables with distribution function F satisfying the
regular varying condition Eq. (1). Let X(1) ≥ X(2) ≥ · · · ≥ X(n) denote the order statistics
of X1, . . . , Xn. Let integer k ∈ {1, . . . , n − 1}. For fixed δ ≥ 0, the HEWE process is defined
to be the function of θ > 0 given by

Hk,n(θ; δ) =

{
1
�θk�

∑�θk�
i=1 log X(�δk�+i) − log X(�δk�+�θk�+1), θ ≥ 1/k,

0, θ < 1/k.
(2)

Strictly speaking, the process in Eq. (2) is defined only when �δk� + �θk� < n. Asymp-
totically, we will assume that k/n → 0, so the process will be defined for all δ ≥ 0 and
θ > 0.

To see the idea behind this definition, imagine that the top �δk� observations are not
available in the data set and the Hill estimator is computed based on �θk� extreme order
statistics of the remaining observations. Viewed as a function of the observable part of the
sample, Hk,n is the usual Hill estimator based on the �θk� upper order statistics. A special
case is when δ = 0 and no extreme values are missing, then Hk,n(θ; δ = 0) corresponds to
the usual Hill estimator based on the upper �θk� observations.

Here we treat δ as a fixed unknown parameter and Eq. (2) a single-parameter process
Hk,n(θ; δ) indexed by θ. Hk,n(θ; δ) will play a key role in estimating relevant parameters
such as δ and α. The estimation is based on the asymptotic distribution of Hk,n(θ; δ) and
is described in detail in Section 3.

In order to obtain the functional convergence of Hk,n(θ; δ), a second-order regular vari-
ation condition, which provides a rate of convergence in Eq. (1) is needed. This condition
can be found, for example, in Section 2.4 of de Haan and Ferreira [10], and it states that
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for x > 0,

lim
t→∞

log U(tx) − log U(t) − α−1 log x

A(t)
=

xρ − 1
ρ

, (3)

where ρ ≤ 0, U(t) = F←(1 − 1/t) and A is a positive or negative function with
limt→∞A(t) = 0. Assume that the sequence k = kn → ∞ satisfies

lim
n→∞

√
knA(n/kn) = λ, (4)

where λ is a finite constant. Note conditions Eqs. (3) and (4) imply that n/kn → ∞ and
that A is a regular-varying function with index ρ.

Distributions that satisfy the second-order condition include the Cauchy, Student’s tν ,
stable, Weibull and extreme value distributions (for more discussion on the second-order
condition, see, e.g., Drees [11] and Drees et al. [12]). In fact, any distribution with F̄ (x) =
c1x
−α + c2x

−α+αρ(1 + o(1)) as x → ∞, where c1 > 0, c2 
= 0, α > 0 and ρ < 0, satisfies the
second-order condition with the indicated values of α and ρ de Haan and Ferreira ([10]).

Pareto distributions with tail index α > 0 (F̄ (x) = x−α for x ≥ 1 and zero otherwise),
however, do not satisfy the second-order condition, as the numerator on the left side of Eq.
(3) is zero when t is large enough. As will be seen later, the results can be readily extended
to the case of Pareto distributions by replacing terms involving ρ with zero.

We now state the main result of this paper which establishes the functional convergence
of the HEWE to a Gaussian process.

Theorem 2.1: Assume the second-order condition Eq. (3) holds and Eq. (4) is satisfied for
a given sequence kn and λ. Then
(a) there exist versions of Hk,n(θ; δ) and a standard Brownian Motion W defined on the
same probability space such that as n → ∞,

Hk,n(θ; δ) =
gδ(θ)

α
+

1
α

1
θ
√

kn

∫ δ+θ

δ

(
1 − δ

x

)
dW (x)

+ A

(
n

kn

)
bδ,ρ(θ) + o

(
1√
kn

)
, a.s. (5)

holds uniformly in (θ, δ) on compact subsets of (0,∞) × [0,∞), where

gδ(θ) =

{
1, δ = 0,

1 − δ
θ log

(
θ
δ + 1

)
, δ > 0,

bδ,ρ(θ) =

{
1

1−ρ
1
θρ , δ = 0,

1+(θ/δ)ρ−(θ/δ+1)ρ

(θ/δ)(1−ρ)ρ
1

(δ+θ)ρ , δ > 0.

(b) For all δ ≥ 0,

√
kn

(
Hk,n(·; δ) − α−1gδ(·)

)
− λbδ,ρ(·) d→ α−1Gδ(·)

in D(0,∞), where

Gδ(θ) =
1
θ

∫ δ+θ

δ

(
1 − δ

x

)
dW (x) (6)
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is a Gaussian process with mean zero and covariance function

Cov
(
Gδ(θ1), Gδ(θ2)

)
=

{
1

θ1θ2

[
θ1 ∧ θ2 − 2δ log

(
1 + θ1∧θ2

δ

)
+ δ(θ1∧θ2)

δ+(θ1∧θ2)

]
, δ > 0

1
θ1∨θ2

, δ = 0.

Remark: Theorem 2.1 states the weak convergence of Hk,n(·; δ) for all fixed δ ≥ 0. In fact,
we have shown a stronger result (see Appendix) on the weak convergence of Hk,n(θ, δ) :=
Hk,n(θ; δ) viewed now as a random field indexed by the pair (θ, δ):

√
kn

(
Hk,n(·, ·) − α−1g̃(·, ·))− λb̃ρ(·, ·) d→ α−1G̃(·, ·) (7)

in D((0,∞) × [0,∞)), where g̃(θ, δ) = gδ(θ), b̃ρ(θ, δ) = bδ,ρ(θ), and G̃(θ, δ) = (1/θ)
∫ δ+θ

δ
(1 − δ/x)dW (x) with mean zero and the following covariance function. If δ1 ∨ δ2 > 0,

Cov
(
G̃(θ1, δ1), G̃(θ2, δ2)

)
=

1
θ1θ2

[
(δ1 + θ1) ∧ (δ2 + θ2) − (δ1 ∨ δ2)

− (δ1 + δ2) log
(

(δ1 + θ1) ∧ (δ2 + θ2)
δ1 ∨ δ2

)
+

δ1δ2

δ1 ∨ δ2
− δ1δ2

(δ1 + θ1) ∧ (δ2 + θ2)

]
.

If δ1 = δ2 = 0,

Cov
(
G̃(θ1, 0), G̃(θ2, 0)

)
=

1
θ1 ∨ θ2

.

Remark: For fixed θ, the functions gδ and bδ,ρ are continuous at δ = 0. For iid Pareto
variables X1,X2, . . . with tail index α > 0, the result of Theorem 2.1 still holds with the
bias term bδ,ρ replaced by zero.

Figure 3 shows the Hill estimates of the same sample from the Pareto distribution with
α = 0.5 as in Figure 1 overlaid with several mean curves. We chose kn = 100 with the top
100 observations removed from the original sample. This implies δ = 1. In the left panel
of Figure 3, the Hill estimates are overlaid with the mean curves gδ(θ)/α of the Gaussian
process with different values of δ while fixing the true value of α = 0.5. The right panel of
Figure 3 shows the mean curves with different values of α while fixing the true value δ = 1.
In both plots, the Hill plot is closest to the mean curve corresponding to the true value of
the parameter.

In order to demonstrate the variability generated by the limiting Gaussian process,
we compare the Hill plots for samples from Pareto and Cauchy distributions with their
Gaussian process approximations given by Theorem 2.1. Figure 4 presents the Hill plots for
the same Pareto sample as in Figures 1 and 3, without removal of extremes (left) and with
the top 100 observations removed (right), along with 50 independent realizations from the
corresponding Gaussian processes with bias bδ,ρ ≡ 0.

Figure 5 shows the Hill plots for a Cauchy sample (n = 1000, kn = 100, α = 1 and
ρ = −2), without removal of extremes and with the top 100 extremes removed, along with
50 independent realizations from the corresponding Gaussian processes with non-zero bρ.

https://doi.org/10.1017/S0269964818000542 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964818000542


206 J. Zou, R. A. Davis and G. Samorodnitsky

Figure 3. Fitting mean curves with different values of parameters to the Hill plot for the
Pareto sample as in Figure 1. Left: fixing α = 0.5. Right: fixing δ = 1.

Figure 4. Observed Hill plots for the Pareto sample (bold lines) and realizations from
corresponding Gaussian processes (thin lines). Left: with the original sample. Right: top
100 extreme values removed.

Figure 5. Observed Hill plots for a Cauchy sample (bold lines) and realizations from
corresponding Gaussian processes (thin lines). Left: with the original sample. Right: top
100 extreme values removed.

3. PARAMETER ESTIMATION

Let X1,X2, . . . Xn be a sample from a distribution F satisfying the second-order regular
variation condition Eq. (3), and let X(1) ≥ X(2) ≥ · · · ≥ X(n) denote the order statistics of
{Xi}. Suppose the �δkn� largest observations are unobserved in the data and the value of
δ is unknown.

In this section, we develop an approximate maximum likelihood estimation procedure
for the unknown parameters δ, α, and ρ given the observed data. The procedure is based on
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the asymptotic distribution of Hk,n(θ; δ). For typographical convenience, we suppress the
dependance of δ and kn and use the notation Hn(θ).

By Theorem 2.1, the joint distribution of (Hn(θ1), . . . , Hn(θs)) for fixed (θ1, . . . , θs)
can be approximated, when kn is large, by a distribution with density function at h =
(h1, . . . , hs) given by

1√
(2π)s|Σα,δ|

exp
[
− 1

2

(
h − gδ

α
− λbδ,ρ√

kn

)

Σ−1

α,δ

(
h − gδ

α
− λbδ,ρ√

kn

)]
, (8)

where

{gδ}i =

{
1, δ = 0,

1 − δ
θi

log
(

θi

δ + 1
)
, δ > 0,

{bδ,ρ}i =

{
1

1−ρ
1
θρ

i
, δ = 0,

1+(θi/δ)ρ−(θi/δ+1)ρ

(θi/δ)(1−ρ)ρ
1

(δ+θi)ρ , δ > 0,

and

Σα,δ(i, j) =

⎧⎨
⎩

1
α2kn

1
θi∨θj

, δ = 0,

1
α2kn

(θi∧θj)
2

δθiθj
v
(

θi∧θj

δ

)
, δ > 0,

with

v(θ) =
1
θ
− 2 log(θ + 1)

θ2
+

1
θ(θ + 1)

.

To further simplify the calculation for the maximum likelihood estimator of α, δ, and
ρ, let

Ti = Hn(θi) − θi−1

θi
Hn(θi−1), (9)

where θ0 = 0 is introduced for convenience. Note that the Ti are asymptotically independent
with the joint density function at t = (t1, . . . , ts) being

1√
(2π)s|Σ̃α,δ|

exp
[
− 1

2
(
t − m

)

Σ̃−1

α,δ

(
t − m

)]
, (10)

where

mi =
1
α

(
{gδ}i − θi−1

θi
{gδ}i−1

)
+

λ√
kn

(
{bδ,ρ}i − θi−1

θi
{bδ,ρ}i−1

)

and Σ̃α,δ is a diagonal matrix, in which

Σ̃α,δ(i, i) =

⎧⎪⎨
⎪⎩

1
α2kn

(
1
θi

− θi−1

θ2
i

)
, δ = 0,

1
α2knδ

(
v
(

θi

δ

)
−
(

θi−1
θi

)2

v
(

θi−1
δ

))
, δ > 0.

The log-likelihood corresponding to the density Eq. (10) is

C + s log(α) +
1
2

s∑
i=1

log(wi) − 1
2
α2kn

s∑
i=1

wi(ti − mi)2, (11)
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where C is a constant independent of α, δ, and ρ. For δ > 0,

wi = δ

/(
v

(
θi

δ

)
−
(

θi−1

θi

)2

v

(
θi−1

δ

))
.

For δ = 0,

wi = 1
/(

1
θi

− θi−1

θ2
i

)
.

For fixed α and δ, the only part of the log-likelihood Eq. (11) that needs to be optimized
is the weighted sum of squares

s∑
i=1

wi(ti − mi)2, (12)

and it is minimized over the values of ρ and λ. Note the value of λ depends on the choice
of kn through Eq. (4). When kn is fixed, λ is viewed as an independent nuisance parameter
and appears in mi via

λ√
kn

(
{bδ,ρ}i − θi

θi−1
{bδ,ρ}i−1

)
,

which we denote by λ{fδ,ρ}i/
√

kn, where

{fδ,ρ}i =

{
1

1−ρ
1
θρ

i
− θi−1

θi

1
1−ρ

1
θρ

i−1
, δ = 0,

1+(θi/δ)ρ−(θi/δ+1)ρ

(θi/δ)(1−ρ)ρ
1

(δ+θi)ρ − θi−1
θi

1+(θi−1/δ)ρ−(θi−1/δ+1)ρ

(θi−1/δ)(1−ρ)ρ
1

(δ+θi−1)ρ , δ > 0.

Minimizing Eq. (12) over λ and ρ results in

ρ̂α,δ = arg min
ρ≤0

s∑
i=1

wi

(
ti − 1

α

(
{gδ}i − θi−1

θi
{gδ}i−1

)
− λ̂α,δ,ρ√

kn

{fδ,ρ}i

)2

,

where

λ̂α,δ,ρ =
√

kn

∑s
i=1 wi

(
ti −

(
{gδ}i − θi−1

θi
{gδ}i−1

)
/α
)
{fδ,ρ}i∑s

i=1 wi{fδ,ρ}2
i

. (13)

Note that this estimation approach, in which λ is viewed as a nuisance parameter, adjusts
for the choice of kn automatically. If a different kn is selected, the estimate of λ will adapt
to reflect this change.

Once we have found the optimal values of ρ and λ, we optimize the resulting expression
in Eq. (11) by examining its values on a selected grid of (α, δ). Alternatively, an itera-
tive procedure can be used, where in each step one of α, δ, ρ is updated given values of
the other two parameters until convergence of the log-likelihood function. Details on the
implementation of the optimization algorithm are described in Section 4.1.

4. SIMULATION STUDIES

In this section, we test our procedure on simulated data. In each of the following simulations,
we generate 200 independent samples of size n from a regular-varying distribution function
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with tail index α. Given a kn, we remove the largest �δkn� observations from each of the
original samples and apply the proposed method to the samples after the removal.

For comparison, we also apply the method in Beirlant et al. [2] to the same samples.
In Beirlant et al. [2], α and the threshold T over which the observations are discarded
are estimated with the MLE based on the truncated Pareto distribution. The odds ratio
of the truncated observations under the un-truncated Pareto distribution is estimated by
solving an equation involving the estimates of α and T . Finally, the number of truncated
observations is calculated given the odds ratio and the observed sample size.

For each combination of distribution and parameters, we start from θ1 = 5/kn and
let θi = θi−1 + 1/kn for 1 < i ≤ s. We consider a sequence of different endpoints θskn to
examine the influence of the range of order statistics included in the estimation. For each
value of θs, we solve for the estimates of α and δ based on the asymptotic density of
(Hn(θ1), . . . , Hn(θs)) following the procedure described in Section 3.

Simulations from both Pareto and non-Pareto distributions show that the proposed
method provides reliable estimates of the tail index and performs particularly well in esti-
mating the number of missing extremes. The advantages of the proposed method become
more apparent in dealing with non-Pareto samples.

4.1. Pareto Distribution

First we examine Pareto samples with n = 500 and α = 0.5. Let kn = 50 and δ = 1 so that
δkn = 50 top extreme observations are removed from the original data.

We apply the estimation procedure introduced in Section 3 to the Pareto data. A series
of different values of θs are selected and for each fixed θs the estimation is based on the
largest θskn values in the data. First we calculate the Hill estimates (Hn(θ1), . . . , Hn(θs)),
whose joint distribution is given by Eq. (8). To simplify the maximum likelihood estimation,
we further transform the calculated {Hn(θi)} to the series {Ti} via Eq. (9), which has
joint distribution Eq. (10). The unknown parameters in the log-likelihood are α, δ, ρ and
a nuisance parameter λ. The parameters are estimated following a two-step procedure; for
each pair of fixed α and δ, the optimization of the log-likelihood can be further reduced
to the optimization of the weighted sum of squares Eq. (12). For each value of ρ, the
solution of the optimal λ has an explicit form Eq. (13) involving ρ, so that the weighted
sum of squares becomes a function of ρ only and can be optimized readily with existing
optimization algorithms for continuous functions. As the first step of the optimization, we
find the optimal ρ with the function optimize() in R 3.4.0. In the second step, we search
for the optimal values of α and δ on a selected grid of values. While the precision of the
estimation depends on the fineness of the selected grid, upon experimenting with different
sizes of the grid, we observe the optimization is generally robust and did not appear to
be trapped in local maxima. For demonstrative purpose, in all examples of Section 4, the
fineness of the grid of α is on the scale of 0.01 and the fineness of the grid of δ is on the
scale of 0.001.

Figures 6 and 7 show the averaged estimates of α and δkn as well as the estimated
mean squared errors (MSE) with different θskn. Estimates by the proposed method are
plotted in solid lines while those by the method in Beirlant et al. [2] are in dashed lines.
The proposed method overestimates the tail index α, especially when the number of upper
order statistics included in the estimation is small. This is not unexpected, as the method
does not assume the data are from a Pareto distribution and thus does not benefit from the
extra information that the bias term in the likelihood should be zero. However, the proposed
method estimates the number of missing extreme values accurately, and the estimation is
robust to different numbers of upper order statistics included.
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Figure 6. Estimated number of missing extremes and
√

MSE for Pareto samples. n = 500,
α = 0.5, kn = 50, δ = 1.

Figure 7. Estimated tail index and
√

MSE for Pareto samples. n = 500, α = 0.5, kn = 50,
δ = 1.

Figure 8. Averages of estimated number of missing extremes and tail index for 200 Pareto
samples. n = 500, α = 0.5, kn = 50, δ = 0.

We also examine the efficacy of the estimation procedure for 200 independent Pareto
samples without any extreme values missing (δ = 0). Figure 8 shows that both methods
give accurate estimates of the tail index and are able to estimate the number of missing
extremes to be close to zero.

4.2. Non-Pareto Examples

Next we examine the scenarios when the data are not from a Pareto distribution.
Observations used here are generated from Cauchy and Student’s t-distributions. The

https://doi.org/10.1017/S0269964818000542 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964818000542


EXTREME VALUE ANALYSIS WITHOUT THE LARGEST VALUES: WHAT CAN BE DONE? 211

following results show that the proposed method continues to perform well in estimating the
number of missing extremes, even for distributions whose tail indices are more challenging
to estimate when the top extremes are unobserved.

4.2.1. Cauchy Distribution Figures 9 and 10 show averaged estimates for 200 indepen-
dent Cauchy samples with the largest 100 observations removed from each sample.

Figure 11 shows the estimates for 200 independent Cauchy samples without any
extremes missing. Both methods produce accurate results for the zero number of missing
extremes and the tail index.

Figure 9. Averages of estimated number of missing extremes and
√

MSE for 200 Cauchy
samples. n = 2000, α = 1, kn = 100, δ = 1.

Figure 10. Averages of estimated tail index and
√

MSE for 200 Cauchy samples.
n = 2000, α = 1, kn = 100, δ = 1.

Figure 11. Averages of estimated number of missing extremes and tail index for 200
Cauchy samples. n = 2000, α = 1, kn = 100, δ = 0.

https://doi.org/10.1017/S0269964818000542 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964818000542


212 J. Zou, R. A. Davis and G. Samorodnitsky

4.2.2. Student’s t2.5 Distribution Figures 12 and 13 show the estimates for 200 inde-
pendent samples from the Student’s t-distribution with degrees of freedom df = 2.5. The
tail index α = df . In each sample there are n = 10, 000 observations originally. Let kn = 200
and δ = 1 so that the largest 200 observations have been removed from each of the original
samples.

Figure 12. Averages of estimated number of missing extremes and
√

MSE for 200
Student’s t2.5 samples. n = 10, 000, α = 2.5, kn = 200, δ = 1.

Figure 13. Averages of estimated tail index and
√

MSE for 200 Student’s t2.5 samples.
n = 10, 000, α = 2.5, kn = 200, δ = 1.

4.3. Robustness to Model Parameters

To examine the robustness of the proposed method to different model parameters, we applied
the proposed estimation procedure to data generated from Pareto and Cauchy distributions
with different parameter values and compared the accuracy of the estimation for these
different settings.

Figure 14 shows the estimation of the tail index α and the parameter δ for removing
top extremes with data generated from the Pareto distribution with different values of α
for δ = 1 and n = 500 fixed. Each boxplot summarizes the major quantiles (1%, 25%, 50%,
75%, 99%) of the estimation results from 100 independent samples under the designated
parameter setting. The x-axis indicates the values of α in the model from which the data
are generated. In obtaining the estimation results, we use a fixed range θskn = 180 as the
top extremes included in the estimation procedure. Results did not appreciably change for
different choices of θskn that are in a reasonable range. In practice, it is suggested to perform
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Figure 14. Boxplots of α̂ (left) and δ̂ (right) estimated using the proposed method
with 100 independent samples of size n = 500 from the Pareto distribution with
α = 0.2, 0.4, 0.6, 0.8, 1, respectively. kn = 50 and δ = 1 for all Pareto samples in removing
the top extremes.

Figure 15. Boxplots of α̂ (left) and δ̂ (right) estimated using the proposed method with
100 independent samples of size n = 500 from the Pareto distribution with kn = 50, α = 0.5,
and δ = 0.2, 0.4, 0.6, 0.8, 1, respectively, in removing the top extremes.

the estimation procedure over a series of values of θskn to determine a reasonable value for
the estimation.

Similarly, Figure 15 shows the estimation of the tail index α and the parameter δ with
data generated from the Pareto distribution with n = 500, α = 0.5 fixed and different values
of δ. The x-axis of each plot indicates the values of δ in removing top extremes from the
Pareto samples.

As an example of non-Pareto distributions, Figure 16 summarizes the estimation of the
tail index α and the parameter δ for removing top extremes with data generated from the
Cauchy distribution with n = 2000, α = 1, and different values of δ. The selected range of
top extremes to include in the estimation is θskn = 320.

In both Pareto and non-Pareto cases, the proposed estimation procedure produces
results that are reasonably robust to changing model parameters.

In addition, Figure 17 shows the estimation results with independent samples of size
n = 4, 000 from the Cauchy distribution with different values of δ. The selected range of
top extremes for the estimation θskn = 440. The comparison of Figure 16 and 17 indicates
the proposed method produces robust results despite different sample sizes.
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Figure 16. Boxplots of α̂ (left) and δ̂ (right) estimated using the proposed method with
100 independent samples of size n = 2000 from the Cauchy distribution with kn = 100,
α = 1, and δ = 0.2, 0.4, 0.6, 0.8, 1, respectively, in removing the top extremes.

Figure 17. Boxplots of α̂ (left) and δ̂ (right) estimated using the proposed method with
100 independent samples of size n = 4, 000 from the Cauchy distribution with kn = 200,
α = 1 and δ = 0.2, 0.4, 0.6, 0.8, 1, respectively, in removing the top extremes.

4.4. Light-tailed Example

Simulations in the above sections focused on heavy-tailed samples. One might ask if the Hill
curve of a light-tailed sample would exhibit similar patterns as the Hill plot of a heavy-tailed
sample with missing extremes and whether the proposed method is capable of identifying
the different cases.

Here we demonstrate that the proposed method can indeed differentiate between the
light- and heavy-tailed cases with an example of light-tailed data without any missing
values. The left panel of Figure 18 is the Hill plot based on a sample of 500 from the
standard exponential distribution. Although the curve is generally increasing, it is not as
smooth as in the case of heavy-tailed data with missing extremes. In the right panel of
Figure 18, the Hill plot is overlaid with mean curves of Gaussian processes estimated using
different parts of the observed Hill curve based on the method in Section 3. The estimates
of missing extremes range from 0 to 3.6, which reflect the truth that there are no extreme
values missing from the data. The true value of γ = 0 and the proposed method is also able
to estimate γ with relatively small values.

In summary, we have applied our estimation procedure to both Pareto and non-Pareto
heavy-tailed distributions. We have considered both the standard scenario when all the
extremes are present, and the scenario when some of the extremes are missing. Our method
is competitive in all cases, and it appears to work better in the non-Pareto cases due to its
self-adjusting mechanism of reducing the bias. The simulation results show that our method
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Figure 18. Left: Hill plot for a standard exponential sample of size n = 500, γ = 0. Right:
Hill plot overlaid with estimated mean curves of Gaussian processes using kn = 20. Selec-
tion 1: γ̂ = 0.33, δ̂kn = 2.26. 2: γ̂ = 0.30, δ̂kn = 1.14. 3: γ̂ = 0.31, δ̂kn = 1.58. 4: γ̂ = 0.33,
δ̂kn = 1.92.

is able to simultaneously estimate the tail index and the number of the missing extremes
with a reasonable accuracy.

5. APPLICATIONS

We now apply the proposed method to real data. In practice, the number of missing extreme
values and the reason for their absence are usually unknown. The consistency of an estima-
tion procedure can be tested by artificially removing a number of additional extremes from
the observed data. Consistency requires that, in a certain range, such additional removal
should not have a major effect on the estimated tail index. Further, the estimated number
of the originally missing upper order statistics should stay, approximately, the same after
accounting for the artificially removed observations. Here we examine a massive Google+
social network dataset and a moderate-sized earthquake fatality dataset, and in both cases
the proposed procedure provides reasonable results.

5.1. Google+

We first apply our method to the data from the Google+ social network introduced in
Section 1. The data contain one of the largest weakly connected components of a snap-
shot of the network taken on October 19, 2012. A weakly connected component of the
network is created by treating the network as undirected and finding all nodes that
can be reached from a randomly selected initial node. There are 76,438,791 nodes and
1,442,504,499 edges in this component. The quantities of interest are the in- and out-degrees
of nodes in the network, which often exhibit heavy-tailed properties (see, e.g., Chapter 8 of
Newman [18]).

We use, for estimation purposes, the largest 5,000 values of the in-degree observations as
the data set. We choose kn = 200. Next, we repeat the estimation procedure after artificially
removing 400 largest of the 5000 values. In the estimation, we start from θ1 = 1/kn and
let θi = θi−1 + 1/kn for 1 < i ≤ s. As in the simulation studies, we consider a sequence of
different endpoints θskn and obtain estimates corresponding to different values of θskn. For
comparison, we also apply the estimation procedure of Beirlant et al. [2] to the dataset.

Figures 19 and 20 show, respectively, the estimates of the number of missing extremes
and the tail index of the in-degree, before and after the artificial removal. It can be seen by
comparing the plots on the left and right panels of Figure 19 that the estimates given the
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Figure 19. Estimated number of missing extremes. Left: with the original 5,000 observa-
tions. Right: top 400 values removed.

Figure 20. Estimated tail index. Left: with the original 5,000 observations. Right: top
400 values removed.

proposed method, which are around 150 before and 550 after the artificial removal, reflect
reasonably well the additional removal of 400 top values. The tail index is mostly estimated
to be in the range of 0.5–0.6 and the estimates are reasonably consistent before and after
the artificial removal (Figure 20).

5.2. Earthquakes

While power-law distributions are widely used to model natural disasters such as earth-
quakes, forest fires, and floods, some studies (Burroughs and Tebbens [5–7], Clark [8],
Beirlant et al. [2,3]) have observed evidence of truncation in the data available for such
events. Causes for the truncation are complex. Possible explanations include physical limi-
tations on the magnitude of the events (Clark [8]), spatial and temporal sampling limitations
and changes in the mechanisms of the events (Burroughs and Tebbens [5–7]). In addition,
improved detection and rescue techniques might have led to reduction in disaster-related
fatalities occurred in recent years.

We apply our method to the dataset of earthquake fatalities (http://earthquake.usgs.gov
/earthquakes/world/world deaths.php) published by the U.S. Geological Survey, which was
also used for demonstration in Beirlant et al. [2]. The dataset is of moderate sample size. It
contains information of 125 earthquakes causing 1,000 or more deaths from 1900 to 2014.
In the estimation procedure, we choose kn = 10. Initially, the procedure is applied to the
original data set. Then we repeat the procedure after artificially removing the 10 largest
of the 125 values. In the estimation, we start from θ1 = 1/kn and let θi = θi−1 + 1/kn for
1 < i ≤ s. We consider a sequence of different endpoints θskn and estimate the number of
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Figure 21. Estimated number of missing extremes. Left: with the original 125 observa-
tions. Right: with top 10 values removed.

Figure 22. Estimated tail index. Left: with the original 125 observations. Right: with top
10 values removed.

missing extremes and the tail index with different values of θskn. Since the top k order
statistics in the data after removing the top 10 extreme values are the top k + 10 in the
original data without the 10 largest observations, in comparing results before and after the
removal, the range of θskn for the data after the removal is shifted to the left by 10.

Figures 21 and 22 show the estimates of the number of missing extremes and the tail
index of the fatalities. The number of missing extremes is estimated to be around 15–
20 for the original data. After removing the top 10 earthquakes with the most fatalities,
the estimates are now around 25–30, which reflect reasonably well the additional removal
(see the left and right panels of Figure 21). The estimates of the tail index are reason-
ably consistent and remain to be in the range of 0.25–0.3 after the additional removal
(Figure 22).

SUPPLEMENTARY MATERIAL

The supplementary material for this article can be found at https://doi.org/10.1017/
S0269964818000542.
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APPENDIX A. PROOF OF THEOREM 2.1

Define

Sj =

j∑
i=1

Ei (A.1)

where Ei are iid standard exponential random variables. Then by Corollary 1.6.9 of Reiss [19] (see
also Kaufmann and Reiss [15]),

(X(1), . . . , X(n))
d
=

(
U

(
Sn+1

S1

)
, . . . , U

(
Sn+1

Sn

))
.
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With the second-order condition Eq. (3), we have from (4.1) to (4.4) of Drees et al. [12] that for
all j = 1, . . . , �θkn�,

∣∣∣∣ log
U(Sn+1/S�δkn�+j)

U(Sn+1/S�δkn�+�θkn�+1)
− 1

α
log

(
S�δkn�+�θkn�+1

S�δkn�+j

)

− A

(
n

δkn + θkn

)
(1 + θ/δ)ρ − 1

ρ

∣∣∣∣ = o

(
A

(
n

δkn + θkn

))
a.s.

uniformly in (θ, δ) ∈ [m, M ] × [0, M ] for any 0 < m < M . It follows that

Hk,n(θ; δ) =
1

�θkn�
�θkn�∑
j=1

log U(Sn+1/S�δkn�+j) − log U(Sn+1/S�δkn�+�θkn�+1)

=
1

α

1

�θkn�
�θkn�∑
j=1

log

(
S�δkn�+�θkn�+1

S�δkn�+j

)

+
1

�θkn�A

(
n

δkn + θkn

)
ρ−1

�θkn�∑
j=1

[(
θkn + δkn + 1

δkn + j

)ρ

− 1

]
+ o

(
A

(
n

kn

))
a.s..

Since the E∗j := j log(Sj+1/Sj) are iid standard exponential random variables (Reiss [19]), observe
that

1

�θkn�
�θkn�∑
j=1

log

(
S�δkn�+�θkn�+1

S�δkn�+j

)
=

1

�θkn�
�δkn�+�θkn�∑
j=�δkn�+1

(
1 − �δkn�

j

)
E∗j

=
1

�θkn�
�δkn�+�θkn�∑
j=�δkn�+1

(
1 − �δkn�

j

)
(E∗j − 1) + 1 − �δkn�

�θkn�
�δkn�+�θkn�∑
j=�δkn�+1

1

j

= I + 1 − δ

θ
log

(
θ

δ
+ 1

)
+ o(1/

√
kn)

uniformly in (θ, δ) ∈ [m, M ] × [0, M ], where I =
∑�δkn�+�θkn�

j=�δkn�+1
(1 − �δkn�/j)(E∗j − 1)/�θkn�. Using

the Komlós–Major–Tusnády approximation (Komlós et al. [16,17]), there exists a standard
Brownian motion W̃ such that

I =
1

�θkn�
∫ �δkn�+�θkn�

�δkn�+1

(
1 − �δkn�

�y�
)

dW̃ (y) + o(1/
√

kn), a.s.

Consider the time change x = y/kn and let W (x) = W̃ (xkn)/
√

kn, then

I =
1

θ
√

kn

∫ δ+θ

δ

(
1 − δ

x

)
dW (x) + o(1/

√
kn), a.s.

Summarizing,

Hk,n(θ; δ) =
1

α

(
1 − δ

θ
log

(
θ

δ
+ 1

))
+

1

α

1

θ
√

kn

∫ δ+θ

δ

(
1 − δ

x

)
dW (x) + o(1/

√
kn) + II, a.s.,

where

II =
1

�θkn�A

(
n

δkn + θkn

)
1

ρ

�θkn�∑
j=1

[(
θkn + δkn + 1

δkn + j

)ρ

− 1

]
.
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The Riemann sum

1

�θkn�
�θkn�∑
j=1

[(
δkn + θkn + 1

δkn + j

)ρ

− 1

]
→
∫ 1

0

(
δ/θ + 1

δ/θ + x

)ρ

dx − 1

=

{
1+(θ/δ)ρ−(θ/δ+1)ρ

(θ/δ)(1−ρ)
, δ > 0,

ρ
1−ρ , δ = 0.

The error between the Riemann sum and the limit can be bounded by

1

�θkn�
[
1 −

(
δ/θ + 1

δ/θ

)ρ]
≤ 1

�θkn� .

Since A is regular varying with index ρ,

II = A

(
n

kn

)
1

(δ + θ)ρ
1 + (θ/δ)ρ − (θ/δ + 1)ρ

(θ/δ)(1 − ρ)ρ
+ o

(
A

(
n

kn

))
,

where A(n/kn) ∼ O(1/
√

kn) for λ > 0 in Eq. (4) and A(n/kn) ∼ o(1/
√

kn) for λ = 0. Therefore
Part (a) follows.

To show Part (b), we have from Eq. (3) and the fact that A is regular-varying with index ρ,

√
knA

(
n

δkn + θkn

)
→ λ

(δ + θ)ρ
(A.2)

and thus √
knII → λbδ,ρ(θ) (A.3)

and √
kn

(
Hk,n(·; δ) − α−1gδ(·)

)
− λbδ,ρ(·) d→ α−1Gδ(·).

The covariance function

Cov
(
Gδ(θ1), Gδ(θ2)

)
=

1

θ1θ2
Var

[∫ δ+θ1∧θ2

δ

(
1 − δ

x

)
dW (x)

]

=
1

θ1θ2

∫ δ+θ1∧θ2

δ

(
1 − δ

x

)2

dx

=

⎧⎨
⎩

1
θ1θ2

[
θ1 ∧ θ2 − 2δ log

(
1 + θ1∧θ2

δ

)
+

δ(θ1∧θ2)
δ+(θ1∧θ2)

]
, δ > 0

1
θ1∨θ2

, δ = 0.

The covariance function of the two-parameter process G̃(θ, δ) can be shown similarly.
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