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The effects of incident shock strength on the mixing transition in the Richtmyer–
Meshkov instability (RMI) are experimentally investigated using simultaneous
density–velocity measurements. This effort uses a shock with an incident Mach
number of 1.9, in concert with previous work at Mach 1.55 (Mohaghar et al.,
J. Fluid Mech., vol. 831, 2017 pp. 779–825) where each case is followed by a
reshock wave. Single- and multi-mode interfaces are used to quantify the effect
of initial conditions on the evolution of the RMI. The interface between light and
heavy gases (N2/CO2, Atwood number, A ≈ 0.22; amplitude to wavelength ratio
of 0.088) is created in an inclined shock tube at 80◦ relative to the horizontal,
resulting in a predominantly single-mode perturbation. To investigate the effects of
initial perturbations on the mixing transition, a multi-mode inclined interface is also
created via shear and buoyancy superposed on the dominant inclined perturbation.
The evolution of mixing is investigated via the density fields by computing mixed
mass and mixed-mass thickness, along with mixing width, mixedness and the density
self-correlation (DSC). It is shown that the amount of mixing is dependent on
both initial conditions and incident shock Mach number. Evolution of the density
self-correlation is discussed and the relative importance of different DSC terms is
shown through fields and spanwise-averaged profiles. The localized distribution of
vorticity and the development of roll-up features in the flow are studied through the
evolution of interface wrinkling and length of the interface edge, which indicate that
the vorticity concentration shows a strong dependence on the Mach number. The
contribution of different terms in the Favre-averaged Reynolds stress is shown, and
while the mean density-velocity fluctuation correlation term, 〈ρ〉〈u′iu

′

j〉, is dominant, a
high dependency on the initial condition and reshock is observed for the turbulent
mass-flux term. Mixing transition is analysed through two criteria: the Reynolds
number (Dimotakis, J. Fluid Mech., vol. 409, 2000, pp. 69–98) for mixing transition
and Zhou (Phys. Plasmas, vol. 14 (8), 2007, 082701 for minimum state) and the
time-dependent length scales (Robey et al., Phys. Plasmas, vol. 10 (3), 2003, 614622;
Zhou et al., Phys. Rev. E, vol. 67 (5), 2003, 056305). The Reynolds number threshold
is surpassed in all cases after reshock. In addition, the Reynolds number is around
the threshold range for the multi-mode, high Mach number case (M ∼ 1.9) before
reshock. However, the time-dependent length-scale threshold is surpassed by all cases
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only at the latest time after reshock, while all cases at early times after reshock
and the high Mach number case at the latest time before reshock fall around the
threshold. The scaling analysis of the turbulent kinetic energy spectra after reshock at
the latest time, at which mixing transition analysis suggests that an inertial range has
formed, indicates power scaling of −1.8 ± 0.05 for the low Mach number case and
−2.1 ± 0.1 for the higher Mach number case. This could possibly be related to the
high anisotropy observed in this flow resulting from strong, large-scale streamwise
fluctuations produced by large-scale shear.

Key words: shock waves, transition to turbulence, turbulent mixing

1. Introduction
Richtmyer–Meshkov instability (RMI) ensues when a shock wave travels from a

lighter (density, ρ1) fluid to a more dense (density, ρ2) fluid (or vice versa), with
a misalignment between the shock (∇P) and the interface (equivalently ∇ρ). With
an almost instantaneous deposition of vorticity along the interface due to baroclinic
production from this mismatch (∼∇P×∇ρ), the interface is unstable and any small
perturbations grow in time. This growth is found to be linear in time using linear
analysis at the early stages, but grows nonlinearly as the perturbation amplitudes
grow to the order of their wavelengths (Brouillette 2002). This nonlinearly growing
instability, if not dominated by the action of viscosity (high Reynolds number, Re
condition), will lead to transition to turbulence and subsequent mixing of the two
fluids. This latter turbulent behaviour of RMI at high Re occurs when the initial
deposition of the vorticity is significantly large due to sufficient shock strength
(large ∇P or equivalently Mach number, M), density mismatch of the fluid (∇ρ, or
equivalently Atwood number, A = (ρ2 − ρ1)/(ρ2 + ρ1)) or misalignment of the two
gradients.

Understanding this nonlinear growth transition to turbulence and the ensuing
turbulent mixing of the two gases is important for many engineering applications.
For example, in an attempt to ignite a fusion reaction using inertial confinement
fusion (ICF) (Lindl et al. 2014), a deuterium-filled fuel capsule is imploded using
high energy lasers, driving the fuel to fusion-sustaining temperatures and pressures
(Lindl et al. 2014). The shock resulting from ablation of the fuel surface, which
contains unavoidable small defects (perturbations), passes through material interfaces,
leading to the occurrence of RMI. Its growth and subsequent turbulent mixing leads
to the quenching of fuel and reduces the efficiency of the ignition (Zhou 2017a,b).
On larger application scales, understanding RMI also aids in clearing of important
scientific and engineering bottlenecks in designing scramjets (Marble, Hendricks &
Zukoski 1989) and understanding supernovae (Arnett 2000).

The first theoretical formulation of the RMI was performed by Richtmyer (1960),
where he extended the analysis of Taylor (1950) on gravity-driven Rayleigh–Taylor
instability (RTI) to develop a linear growth model for RMI perturbation growth
at early times. RMI was formulated as an equivalent of RTI, but with impulsive
acceleration in lieu of gravity. These formulations of linear growth by Richtmyer
(1960) were verified experimentally on a shock tube by Meshkov (1969), where the
gases were separated by a thin membrane (1 µm) of nitrocellulose producing a nearly
sinusoidal initial perturbation. Other early experiments that investigated the linear and
nonlinear growth of the RMI can first be classified into two regimes – membrane and
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membraneless interfaces. While the membranes provide the versatility and repeatability
in creation of the initial interface, it was shown by Vetter & Sturtevant (1995) that
the effect of membrane fragments in the flow is significant at the early stages of
RMI growth. The late nonlinear growth stages, however, were found to be relatively
insensitive to the presence of the membrane, with the growth rates agreeing well
with the theoretical predictions (Erez et al. 2000). Most of the recent works on RMI
in gases have moved towards membraneless interfaces using thin and diffuse gaseous
interfaces, curtains and spherical inhomogeneities (Ranjan, Oakley & Bonazza 2011).

A second important consideration in studying RMI is the influence of modal
content of the initial interface on the growth and mixing of the RMI. The growth
of mixing width for a predominantly single-mode interface has been found to be
different compared to a multi-mode interface. While imparting modal content on
the interface is relatively easy using solid membranes to separate the gases, this is
more complicated with membraneless experiments. Lateral oscillations have been
used to generate standing waves on an interface (Jacobs & Sheeley 1996; Jones &
Jacobs 1997). Removable splitter plates have also been used (Bonazza & Sturtevant
1996). Thin gas curtains with prescribed corrugations have been used (Balakumar
et al. 2008), and transverse shear has been imparted to perturb the interface (Weber
et al. 2012; Mohaghar et al. 2017). In the case of multi-mode interfaces, most are
characterized as stochastic in nature as they are non-repeatable and non-uniform from
experiment to experiment.

Evolution of the aforementioned interfaces has been observed in various ways
as knowledge of RMI and technology evolved. The earliest of the studies on
RMI have been on the growth of the perturbations and the interface growth using
line-of-sight-averaged methods such as schlieren and X-ray photography. But with
the advent of planar optical diagnostic techniques such as quantitative planar laser
induced fluorescence (PLIF) and particle image velocimetry (PIV), recent studies
have also investigated transition to turbulence and the subsequent turbulent mixing.
Several works such as Orlicz et al. (2015) have attempted to compare their results
to the criterion of Dimotakis (2005) on mixing transition in RMI. This transition is
typically achieved using a sufficiently strong shock (M) (Vetter & Sturtevant 1995;
Orlicz et al. 2009; Lombardini, Pullin & Meiron 2012; Orlicz, Balasubramanian &
Prestridge 2013; Reese et al. 2018), large Atwood number (A) (Balakumar et al. 2008;
Motl et al. 2009), modal content of initial interface perturbation (Weber et al. 2012,
2014) or by using the reflected shock to perturb the RMI a second time (Balakumar
et al. 2012; Mohaghar et al. 2017). For example, Weber et al. (2012) observed a
transition to turbulence, and a broad range of scales even before reshock using an
interface with a continuous broadband spectrum perturbation consisting of structures
with small separation of length scales. Alternatively, works such as Balakumar et al.
(2012) have shown late time nonlinear growth of RMI, but transition to turbulence
only after reshock. Note that the vorticity deposition from reshock will occur on a
more corrugated interface and in the opposite sense (heavy to light gas) of the initial
vorticity deposition. As pointed by Zhou (2007), it should be noted that the mixing
transition only reflects the beginning of the formation of the inertial range. The
‘minimum state’ must be achieved in order to have a sufficiently long inertial range
that separates the energy-containing scale from the dissipation range. Thus, a higher
Reynolds number of 1.6×105 is required. An important goal of investigating turbulent
mixing flows such as RMI is to estimate the dynamically significant quantities
and aid models for computational tools (particularly Favre-averaged quantities for
Reynolds-averaged Navier–Stokes (RANS) closure (Livescu & Ristorcelli 2008)). For
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example, Tomkins et al. (2013) investigated the terms in the evolution equation of
the density self-correlation in a high-A RMI from a near-sinusoidal curtain that is
twice shocked (incident and reshock) to the turbulent mixing regime. Previous works
on the current facility by Mohaghar et al. (2017) have also observed the effect of
initial condition modal content on evolution of velocity–density correlations.

On the computational front, RANS (Schwarzkopf et al. 2016; Morgan, Schilling
& Hartland 2018) and large eddy simulation (LES) (Hill, Pantano & Pullin 2006;
Thornber et al. 2012) have been employed to investigate RMI in a similar sense.
Schilling & Latini (2010), Morán-López & Schilling (2013, 2014) have also used
weighted essentially non-oscillatory (WENO) flux reconstruction in simulations to
study the variable density physics and associated evolution of turbulent kinetic energy
in RMI. Latini, Schilling & Don (2007) and Schilling, Latini & Don (2007) have
also shown the necessity for higher-order WENO simulations to accurately capture
the instabilities inside the roll-ups in the RMI. There have also been combined
computational–experimental works evaluating the computational tools (Leinov et al.
2009; McFarland, Greenough & Ranjan 2011; Morgan et al. 2012; McFarland,
Greenough & Ranjan 2014a; McFarland et al. 2015).

In the current work, the evolution, transition and turbulent mixing of a strongly
shocked RMI are investigated in a late transitional/early turbulent regime. For RMI
to be sufficiently strong to transition to a fully turbulent regime before dissipating,
a strong deposition of baroclinic vorticity is required (high M or A) coupled with
a long development length (≡ time) in the shock tube facility. To the best of the
authors’ knowledge, barring the recent work of Reese et al. (2018) (M = 2.2), the
RMI investigation using simultaneous PLIF/PIV has typically been in the M < 1.6
regime. Further, the effect of incident shock Mach number on RMI was investigated
with 1.2 < M < 1.5 in the previous experimental works which employed an initial
condition of a varicose perturbed heavy gas curtain (Orlicz et al. 2009, 2013, 2015).
The current work is an extension of the previous efforts to study the effect of Mach
number on the modal content, RMI evolution and late time behaviour of a strongly
shocked density interface. We leverage the presence of a well-defined dominant mode
(i.e. inclined interface) and a superposed multi-mode perturbation. Additionally, this
work investigates turbulence statistics in the post-reshock regime. The following
sections are organized into: first, an overview of the experimental set-up, then a
thorough qualitative and quantitative investigation of the evolution of RMI, followed
by analysis of large ensembles of highly resolved, simultaneous velocity–density
measurements used to compute several turbulence statistics.

2. Experimental set-up
2.1. Facility

All of the experiments in the current study were performed on the inclined shock
tube at the Shock Tube and Advanced Mixing Laboratory (STAM Lab). The shock
tube is 9 m in total length, and can be inclined at any angle from a horizontal
configuration all the way to vertical with respect to the ground. This enables
sustaining of a stably stratified gas interface which is always perpendicular to the
local gravitational acceleration, and inclined to the incident shock, allowing control
of the shock–density-gradient misalignment. More details on the construction and
instrumentation of the shock tube facility can be found in previous works (McFarland
et al. 2014b; Reilly et al. 2015; Mohaghar et al. 2017). Only details relevant to the
current work are presented here.
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Of particular relevance to the current set of experiments is the mechanism of shock
generation, which allows control of the Mach number. While the driver side of the
shock tube has a circular cross-section, the driven side has a square cross-section
with area 11.43× 11.43 cm2, and is separated from the driver by a diaphragm which
is hydraulically clamped between the two sections. An X-shaped knife edge is located
below the diaphragm such that the diaphragm bulges against it when under sufficient
pressure. Rapid pressurization of the driver section (via a fast-acting boost valve)
leads to dynamic rupture of the diaphragm at a specific, repeatable burst pressure.
Due to the sudden release of pressure, a shock front is formed which coalesces to a
planar shock before impinging on the interface. Although Mach number can also be
controlled by changing the gas in the driver and driven sections, in the current work
it is controlled by using a different diaphragm with higher rupture pressure. A pair
of pressure transducers located just above the test section and spaced 10 cm apart is
used to measure the shock speed and to trigger the data acquisition systems. Further,
the shock speed and rupture pressure are used to qualify the data, where, if a large
variation is detected, the data are excluded from the ensemble.

Finally, because the interface is accelerated by the impinging shock, it travels down
the tube. Thus, overlapping windows on either side of the shock tube between the
interface location and the end wall provide optical access to investigate the entire
RMI evolution as the interface translates down the shock tube. A dynamic pressure
transducer at the end wall indicates the time of shock reflection from the end wall
(reshock), and a pair of transducers on the side wall measures the reshock speed.

For the current work, a nitrogen stream is passed through an acetone bubbler, which
is heated to control saturation temperature, and then diluted with pure nitrogen; this
composes the light gas, and carbon dioxide is used as the heavy gas. This results in
an effective Atwood number (A = (ρ2 − ρ1)/(ρ2 + ρ1) = 0.22, where ρ2 and ρ1 are
heavy and light gas densities). A separate stream of nitrogen was used as driving gas
to pressurize and rupture the diaphragm. The acetone bubbling in the lighter gas is
used as a fluorescence marker to measure the concentration of the light gas, and thus
the densities.

2.2. Diagnostics
To investigate the shock induced mixing between the two gases, a two-camera system
was used to perform simultaneous PIV and PLIF measurements over an overlapping
field of view. The PIV system consisted of a TSI PowerView 29 MP CCD camera
viewing the light sheet normally and a dual-head Nd:YAG laser producing 532 nm
light. The PLIF system consisted of an identical TSI PowerView 29 MP CCD camera
viewing the same plane as the PIV camera, but at a slight angle in order to maintain
the same pixel resolution. Thus, a Scheimpflug mount is used to adjust the plane of
focus to coincide with the light sheet. A frequency quadrupled dual-head Nd:YAG
Litron laser producing 266 nm UV light is used to excite the acetone in the light
gas side. The laser beams are combined using beam-combining optics, passed through
a spherical lens to produce a beam waist at the imaging location, then through a
sheet-generating cylindrical lens and directed into the shock tube through a quartz
window at the bottom of the shock tube. The sheet is aligned normal to the plane
of the propagating shock and slices the inclined interface, with a measured width of
approximately 0.7 mm at the beam waist. By using a 532 nm band-pass filter on the
PIV camera and a 532 nm notch-filter (OD4) on the PLIF camera, the PIV and PLIF
signals from the field of view are imaged separately.

The detailed evolution of the velocity and density fields as the interface translates
with time is captured from an ensemble of experiments at the various interface
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Label Experimental time Non-dimensional time Single-mode Multi-mode
ensemble ensemble

S1.18, M1.18 2 ms 1.18 10 20
S2.27, M2.27 3.75 ms 2.27 20 34
S3.05, M3.05 4.6 ms 3.05 30 32
S4.35, M4.35 6 ms 4.35 32 34

TABLE 1. Summary of experiments.

locations by controlling the delay between shock detection and the PIV–PLIF
acquisition. A calibration image is taken with both cameras each time the cameras
are moved so as to register the PIV and PLIF measurements to each other.

The PIV processing is performed using TSI Insight 4G software, recursively
decreasing the window size from 64× 64 px2 to a final window size of 24× 24 px2.
This gives a final in-plane vector spacing of 358 µm in each linear dimension. The
PLIF processing is performed in house, where each raw PLIF image is corrected for
laser intensity variations, striations and for Beer’s law attenuation. This correction
is based on Weber et al. (2012, 2014), and the details can be found in Mohaghar
et al. (2017). The resolution of PLIF images is 68 µm pixel−1. Finally, in order to
measure density–velocity cross-statistics, PLIF images and PIV data are registered
(Mohaghar et al. 2017). Figure 1 shows an example of registered PIV vectors with
the corresponding PLIF field for both single- and multi-mode cases at the latest time
after reshock for M ∼ 1.9, indicating the fidelity of the measurements made.

2.3. Experimental runs
The current experiments measure the evolution of the N2/CO2 interface inclined at
80◦ with respect to the horizontal (10◦ mismatch between shock and interface). Two
sets of measurements with an incident shock strength of Mach 1.9 are performed as
part of the current experiments: an initial sweep of experimental times is done using
only PLIF measurements to characterize the instability growth and the facility for
both the single- (S) and multi-mode (M) interface conditions, which is followed by
more detailed (and large ensemble) measurement sets using simultaneous PIV and
PLIF at two times corresponding to the evolution from incident shock (t= 2 ms and
3.75 ms) and two times corresponding to post reshock (t = 4.6 ms and 6 ms). Here
t corresponds to experimental time relative to initial shock–interface interaction. The
method of non-dimensionalized time calculation was explained in Mohaghar et al.
(2017). Non-dimensional time after incident shock is τi = kḣ0t, and after reshock
is computed using τr = kḣ′0t′ where ḣ′0 and t′ are initial mixing-width growth rate
and experimental time after reshock, respectively. In the current work, in order to
have a continuous non-dimensional time (τ ), τr (non-dimensional time after reshock)
is added to the latest τi (non-dimensional time after incident shock). The latest
non-dimensional time after incident shock (τi) is approximately 2.4 for both low and
high Mach numbers. Therefore, τ = τi before reshock, and τ = τr + 2.4 after reshock.
Table 1 summarizes the list of experimental times and ensemble sizes used for the
current work for single- and multi-mode initial conditions. The observations from the
time swept evolution experiments and those from the more detailed experiments are
discussed in §§ 3 and 4.
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(a) (b)

0 0.1 0.2 0.3 0.4 0.5 0.6
≈

0.7 0.8 0.9 1.0

FIGURE 1. (Colour online) Simultaneous PLIF/PIV field showing velocity vectors over
pseudocolour concentration (ξ ) fields at the latest time after reshock (τ = 4.35) at M∼ 1.9,
indicating several vortical structures in the flow, fidelity of measurements and accuracy of
registry process. Only 1/5 of calculated vectors shown for clarity. (a) Single-mode at latest
time after reshock. (b) Multi-mode at latest time after reshock.

2.4. Initial condition creation
In order to create a consistent, slightly diffuse (less than 1 cm) interface, the light
and heavy gases are injected from opposite sides of the driven section in a controlled
manner at low mass flow rates – light gas through a port on the side wall just
downstream of the diaphragm, and heavy gas from a port on the bottom end wall.
Bleed slots on either side wall of the shock tube (aligned parallel to the ground)
enable a stable free surface to be sustained between the light and heavy gases being
injected. The inclined interface can be viewed as a half-wavelength of a sawtooth
wave, and is henceforth referred to as the single-mode interface (S). Additionally,
via a controlled cross-flow of the light and heavy gases, just below and above the
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¬/2
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N2 + CO2 N2 + CO2

N2 + CO2N2 + CO2 CO2 CO2

CO2

Shock

wave Shock

wave

˙

(a) (b)

(c) (d)

FIGURE 2. (Colour online) Single- and multi-mode initial condition creation: (a,b) sample
corrected single- and multi-mode initial condition images where nitrogen is light and
carbon dioxide is dark. (c,d) Simplified schematic showing the general method of interface
creation by outflowing the mixture of gases at the interface, shown as red arrows, and
flowing pure nitrogen and carbon dioxide below and above the interface respectively (blue
arrows) to create shear and buoyancy effects. In the schematic, the angle of the interface
is slightly exaggerated for clarity. In both depictions gravity acts normal to the interface.
The actual inlets and outlets consist of small perforations to prevent disturbance of the
shock. (a) Sample single-mode initial condition. (b) Sample multi-mode initial condition.
(c) Schematic of single-mode initial condition creation. (d) Schematic of multi-mode initial
condition creation.

interface, respectively, gentle shear between the two gases can be sustained along with
buoyancy effects, leading to additional small-scale perturbations superposed on the
predominantly single-mode interface due to Kelvin–Helmholtz and Rayleigh–Taylor
instabilities. This interface is henceforth referred to as the multi-mode interface (M).
The effects of these perturbations on RMI evolution are studied in this paper at
M ∼ 1.9 and compared with results at similar non-dimensional times at M ∼ 1.55
(Mohaghar et al. 2017). Figure 2 shows an example single-mode interface (where
the cross-flow is turned off) and the multi-mode interface (where shear and buoyancy
perturbs the interface). In both cases, the main feature is the inclination by 10◦
with the incident shock, with the smaller perturbations superposed in the latter case.
The initial condition characterization – the statistical description, the range of scales
involved and the modal energy content of the density fluctuations in the multi-mode
interface – was previously discussed by Mohaghar et al. (2017).

3. Analysis of flow development
To understand the unique morphology of the RMI resulting from a particular set

of parameters, the evolutions of the concentration fields are analysed to identify the
interface mechanics through its development. This evolution for single and multi-mode
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cases at high Mach (M ∼ 1.9) is shown in figures 3 and 4. In the single-mode case
(figure 3), the compression of the interface by the incident shock can be observed
in the range 0 < t < 0.1 ms, which results in intensification of the scalar gradient
across the interface. Few other developments are noticeable at the earliest times.
A subtle, nearly sinusoidal waveform can be observed at t= 0.9 ms at a wavelength
approximately equal to the width of the tube. After this time, the overall growth
of the interface amplitude and further intensification resulting from its stretching
are noticeable. Additional features with shorter wavelengths develop, some of which
eventually grow to significant amplitudes. More importantly, the complex topology
of the interface is evident with two well-developed roll-up features in the range
3.7 ms < t < 3.9 ms, the late times before reshock. This forms the initial condition
for reshock.

The main difference between the two Mach numbers (the current work at M∼ 1.9
and Mohaghar et al. (2017)) at M ∼ 1.55 before reshock, is the interface features at
late times that are especially apparent in the single-mode case. While both the low
and high Mach interfaces are fairly smooth and organized, the high Mach number
case contains additional small perturbations and a complete roll-up feature which is
visually evident in the single-mode case. These features are largely due to the tendency
of vorticity along the surface to concentrate and roll up via the Kelvin–Helmholtz
instability. These differences will also be discussed quantitatively in § 3.5.

At t= 4 ms the shock has been reflected off the bottom wall of the tube (reshock)
and is travelling upwards, appearing as a sharp gradient in the PLIF image. The
shock has been shaped by the interface and is beginning to replanarize at this
time. The interface is compressed by reshock (as with the initial shock), and some
small-amplitude, short-wavelength features can clearly be observed immediately after
its traversal. As the long-wavelength perturbation undergoes a phase inversion, the
additional features are also observed to invert, although their signature is much
more subtle. Between images at 3.9 and 4.8 ms, the interface inverts, and the
uppermost extent of heavy fluid before reshock becomes the lowest extent of light
fluid. Additionally the two prominent roll-up features, where the heavy fluid penetrates
into the light fluid before reshock, are inverted and are observed as two regions of
light fluid penetrating into heavy fluid after reshock. After 4.8 ms these features
become indistinguishable, and the interface begins to look increasingly chaotic. As
the phase inversion at the long wavelength continues, a breakdown of scales and
consequent increase in mixed material is observed.

A similar sequence showing the RMI evolution resulting from the multi-mode
initial condition is presented in figure 4. Before reshock, the multi-mode case shows
additional small-scale features throughout the evolution that were previously not
seen with the single-mode interface. These observations are anticipated, owing to
the greater modal content in the initial condition, and are similar to those observed
in the low Mach number case (Mohaghar et al. 2017). Also, due to a larger modal
content in the features present in the multi-mode case at late times before reshock,
the interface seems to have fewer large-scale features immediately after reshock. This
phenomenon is due to increased interaction of features which have different-signed
vorticity, leading to a greater breakdown of coherent medium-sized features.

3.1. Mixing width, mixed-mass thickness and mixed mass
With a qualitative understanding of the evolution of the single- and multi-mode
interfaces, the quantitative aspects of the same using mixing width, mixed-mass
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FIGURE 3. Concentration (ξ ) field evolution of single-mode initial condition at M ∼ 1.9
with experimental times shown. Reshock arrives at the interface at t≈ 4 ms (τ ≈ 2.4).
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FIGURE 4. Concentration (ξ ) field evolution of multi-mode initial condition at M ∼ 1.9
with experimental times shown. Reshock arrives at the interface at t≈ 4 ms (τ ≈ 2.4).
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FIGURE 5. (Colour online) Comparison of overall mixing width (amplitude h) of the
interface after incident shock and after reshock for single and multi-mode initial conditions
at both M∼ 1.55 and M∼ 1.9. Error bars indicate the statistical error at times that larger
ensembles of simultaneous PLIF/PIV data were collected. Data without error bars are from
single experiments.

thickness and mixed mass are discussed here. Mixing width (h) is defined as the
5–95 % extent (in the shock propagation direction) of spanwise-averaged nitrogen
volume fraction (Olson & Jacobs 2009; Weber et al. 2012), and is a measure of the
amplitude, or largest length scale, of the instability. The growth of the mixing width
is dependent on the velocity jump of the interface (proportional to the Mach number
of the initial shock/reshock).

Figure 5 shows the evolution of the mixing width from the current experiments at
M∼1.9, alongside the M∼1.55 experiments of Mohaghar et al. (2017) for both initial
condition configurations. The dependence of the mixing width growth on the Mach
number is evident, as explained before, with the slope of the M ∼ 1.9 mixing width
consistently higher than the M∼ 1.55 cases before and after reshock. The single- and
multi-mode interfaces, however, show identical growth behaviour in the mixing width.
This independence of the smaller modal content is anticipated as the growth in h is
predominantly driven by the largest mode of the initial perturbation (inclined interface
in both the interfaces). The error bars indicate the statistical error which was computed
based on standard deviation from the total number of experiments at each time where
a large ensemble of simultaneous PLIF/PIV data were collected.

At any time, the mixing width only denotes the extent of the instability, and
not the modal content or the scalar mixing. An additional length scale, termed the
‘mixed-mass thickness (δ)’, is defined in order to highlight the mixing dynamics
below the large scale in the flow and to emphasize the effect of the initial condition.
This definition considers the average streamwise thickness of the mixed material in
the range 4YN2YCO2 > 0.84. This value is chosen based on the mass fraction range
from 30 to 70 % light gas in order to consider highly mixed material. Here, YN2 and
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FIGURE 6. (Colour online) Evolution of integral mixed-mass thickness (δ) in non-
dimensional time, τ for all cases.

YCO2 are the mole fractions of light and heavy gases at each spanwise location, and
δ is calculated as

δ =

∫ ∫
4YN2YCO2 dx dy∫

dy
. (3.1)

Figure 6 shows the evolution of δ, but with non-dimensionalized time instead.
It must be noted that the multi-mode interface starts with a higher initial δ than
the single-mode interface. As expected from the observations in figure 4, the δ of
the multi-mode interface consistently grows faster than the single-mode case before
reshock at both Mach numbers. Further, the M ∼ 1.9 case has a slightly higher
mixed-mass thickness than the M ∼ 1.55 case, owing to the stronger growth and
mixing in the former. After reshock, this quantity is not sensitive to the additional
modal content of the multi-mode interface, largely due to the interface compression
from reshock, as all the cases continue to evolve similarly to each other. Mixed-mass
thickness is also used in § 4 for the investigation of mixing transition, as this is
considered by the authors to be a more accurate indicator of the mixing dynamics in
the flow than the mixing width.

Mixed mass, which is a measure of how much mixed product exists in the flow,
further quantifies the actual mixing of the gases at each evolution time investigated.
The calculation of mixed mass assumes that material is distributed uniformly at
sub-pixel scales. An important feature of this quantity is that it is monotonically
increasing, and unlike mixing width and mixed-mass thickness, does not decrease
with passage of reshock (Zhou, Cabot & Thornber 2016; Zhou 2017b). Also, the
mixed-mass calculation does not include the entrained, but unmixed, fluid. The mixed
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FIGURE 7. (Colour online) Evolution of integral mixed mass (M) in non-dimensional
time, τ for all cases.

mass (M) is calculated as

M=
∫

4ρYN2YCO2 dV. (3.2)

Mixed mass is shown at various non-dimensional times in figure 7. A linear trend
is observed for all cases before reshock, and, similar to mixed-mass thickness, the
multi-mode case has a higher growth rate of mixed mass compared to the single-mode
case. The single- and multi-mode cases at high Mach have slightly higher mixed mass
compared to low Mach number cases before reshock at the same non-dimensional
times. Post-reshock, however, unlike the trends in mixed-mass thickness, mixed mass
is noticeably higher for the M∼ 1.9 case, due to the larger density jump, particularly
with reshock. The ratio of the density after reshock to the one before reshock on
average in the high Mach number case is 2.3 whereas this ratio is 1.8 in the low
Mach number case. Also, the ratio of density in the high Mach number case to the
low Mach number case is close to 1.3 and 1.6 before and after reshock, respectively.
These higher values of density magnitude and higher increase in density magnitude
due to reshock in the high Mach case lead to higher values and growth rate in mixed
mass especially after reshock for the M∼ 1.9 case. This observation (of similar mixed-
mass thickness but higher mixed mass in the post-reshock M∼ 1.9 cases) implies that
the rate of entrainment is similar between the two Mach numbers, while the rate of
molecular mixing is higher in the high Mach number case. This mixing paradigm will
be further explored in the following section.
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3.2. Mixedness
To compute the fraction of entrained material that is molecularly mixed, the mixedness,
θ is calculated as

θ =

∫
X(1− X) dx∫
X (1− X) dx

, (3.3)

where heavy fluid has a mole fraction of

X =
ρ − ρ1

ρ2 − ρ1
. (3.4)

The evolution of this average mixedness in the mixed region at various non-
dimensional times is shown in figure 8. The average mixedness initially decreases
after the initial shock passage due to the stretching of the interface and the high
rate of entrainment as the two fluids undergo penetration within each other. Before
reshock, the difference in mixedness between single-mode and multi-mode interfaces
is more pronounced at higher Mach number. Further, due to a higher amount of
entrained (but unmixed) fluid, the mixedness is observed to be lower for the high
Mach number case than the low Mach number case, despite a higher amount of mixed
material in the former. Similar behaviour was observed by Orlicz et al. (2013) in the
gas curtain experiment at early times after incident shock. Weber et al. (2014) also
observed similar behaviour for a higher Mach number at early times in a comparable
metric to mixedness.

Contrarily, after reshock, higher mixedness is observed in the higher Mach number
case; which is consistent with the aforementioned observations that the overall
growth (mixing width) and mixed-mass thickness were similar between the two Mach
numbers, but that the amount of mixed mass was higher in the high Mach number
case after reshock. Mixedness is similar between the single- and multi-mode cases
after reshock, as was also seen with δ in figure 6.

There has been much discussion of how the entrainment (due to pure fluid entering
the mixing zone on either end) and molecular mixing rates might balance as the
interface approaches a nonlinear state. Asymptotic values at late times have been
proposed. In the current work, the interface at late times after reshock is beginning
to display nonlinear behaviour and the value of mixedness is fairly constant. The
late time value of mixedness for low Mach number is 0.76 ± 0.04 and for high
Mach number is 0.82 ± 0.04. Zhou et al. (2016) found an asymptotic value (∼0.8)
for similar Atwood and Mach numbers, and Tritschler et al. (2014) found a similar
asymptote value of 0.85 for M = 1.5 and higher Atwood number, which are in
reasonable agreement with the current work. Orlicz et al. (2013) observed that the
average asymptotic value increases with increasing Mach number, consistent with the
findings of the current work. However, the final value was found to be 0.94 − 0.97
for the different Mach numbers which can be due to the gas curtain experiments
having two interfaces unlike the current interface.

To investigate the effect of initial condition, it is useful to examine the profile of
the spanwise average of mixedness at various streamwise locations along the mixing
region. Figure 9 shows this at two times before and two times after reshock for the
M ∼ 1.9 cases investigated in the current work. While the overall trend is similar
between the two interfaces, the multi-mode case shows much higher mixedness before
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FIGURE 8. (Colour online) Evolution of integral mixedness (θ ) in non-dimensional time,
τ for all cases.
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FIGURE 9. (Colour online) Effect of initial condition on temporal evolution of mixedness
(θ ) profiles in the streamwise direction before and after reshock at M ∼ 1.9 for the
(a) single-mode (S) and (b) multi-mode (M) cases. X is distance from centre of mass.

reshock. Additionally, the spike side (x<0, upward) is more mixed after reshock while
entrainment is outpacing molecular mixing on the bubble side (x> 0, downward).

The effect of Mach number on the mixedness can be seen in figure 10. Before
reshock, although the overall trend is similar, mixedness in the higher Mach number
case is slightly lower than the lower Mach number case as was seen in the integral
measurement in figure 9. After reshock there is a significantly higher amount of
entrained and mixed fluid in the spike region (x < 0) of the high Mach number
case for both single- and multi-mode conditions. This trend is reversed, however, in
the M ∼ 1.55 case where the bubble region (x > 0) shows higher θ . This behaviour
is due to higher penetration of the spike into the core of the flow and subsequent
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FIGURE 10. (Colour online) Effect of Mach number on temporal evolution of mixedness
profiles in the streamwise direction before and after reshock at for (a) single-mode (S)
and (b) multi-mode (M) cases. X is distance from centre of mass.

breakdown of scales in the higher Mach number case, where the core of the flow is
more mixed. Regarding the effect of Mach number on mixedness for different initial
conditions, the spatial distribution of the mixedness is not changed by the additional
perturbations of the multi-mode initial condition, but the magnitude is still noticeably
larger before reshock and slightly larger after reshock for the multi-mode case. This
suggests that the effects of Mach number and initial condition on this measurement
could be independent of each other.

3.3. Density self-correlation
The density-specific volume correlation, also referred to as the density self-correlation
(DSC), is the correlation between density fluctuations and specific volume fluctuations
(b = −〈ρ ′(1/ρ)′〉). This is an important statistic in the closure of many turbulence
models, and is typically termed the b parameter in Besnard et al. (1992), or the BHR
model. The parameter has been thoroughly investigated in previous studies such as
Balakumar et al. (2012) and Mohaghar et al. (2017). These works can be referred
to for a more thorough analysis of DSC and the effect of the averaging choice in
computing the same. Particularly in spatially inhomogeneous flows, specific volume
fluctuations computed via spatially averaged quantities show apparent increase in
the DSC values, when compared with the fluctuations with respect to the ensemble
average. Furthermore, the information about the spatial variance of density is already
contained within mixedness (Livescu & Ristorcelli 2008), and the two variables
embody similar information about the flow. Figure 11 highlights this similarity
between trends of the profiles of mixedness and the DSC, when fluctuations are
computed from spanwise-averaged quantities. It shows that for both single- and
multi-mode cases after incident shock, the DSC increases as the interface stretches,
causing sharpening in the gradient of density. After reshock, the flow evolves to a
more homogeneously mixed state, which is indicated by the decrease in DSC with
time after reshock.

Similar to previous work (Mohaghar et al. 2017), the DSC is also calculated from
the ensemble-averaging method of calculating fluctuations. In this method, the DSC
represents the mixing which is occurring in the flow, whereas mixedness indicates the
portion of entrained fluid which has already mixed. This method results in a DSC
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FIGURE 11. (Colour online) Temporal evolution of density self-correlation profile
(DSC, b) along the streamwise direction before and after reshock with fluctuations
computed from spanwise-averaging method at M ∼ 1.9 for the (a) single-mode (S) case
and (b) multi-mode (M) case. X is distance from centre of mass.
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FIGURE 12. (Colour online) Effect of initial condition on temporal evolution of the
density self-correlation profile (DSC, b) along the streamwise direction before and after
reshock where fluctuations are computed from the ensemble-averaging method at M∼ 1.9
for the (a) single-mode (S) case and (b) multi-mode (M) case. X is distance from centre
of mass.

field, which can then be spanwise averaged to yield a profile. Figures 12 and 13 show
the profiles and ensemble-averaged fields, respectively, of the DSC, with this method.
The similarity between the single-mode and multi-mode cases is evident. A double
peak at τ = 2.27 (late time before reshock) can be seen in the single-mode case and
corresponds to the more organized structures in the spatial field. A slightly larger tail
is also seen at τ = 4.3 (late time after reshock) in the single-mode case due to a
secondary spike that commonly occurs at the centre of the field. As a result of the
variability in the multi-mode case, this tail is slightly smaller. Although the intensity
observed in the fields is similar before and after reshock, the peak of the DSC profile
increases after reshock because the active mixing region on the bubble side is oriented
parallel to the spanwise direction.

Figure 13 shows the DSC fields from which the profiles in figure 12 are calculated.
The value of this visualization method is emphasized, by first noting that although the
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spanwise average of the DSC is nearly identical between the single-mode and multi-
mode cases, the fields show striking differences in structures spatially. The variability
of the multi-mode case results in larger areas of more diffuse fluctuation intensity,
while the consistency of the single-mode case yields small, concentrated regions where
fluctuations display greater variance in the ensemble. This is true before and after
reshock.

For a clearer comparison between Mach numbers, figure 14 shows just one time
before reshock and one time after reshock of the M∼1.55 and M∼1.9 cases. There is
a significantly greater DSC for the high Mach number case before and after reshock,
and there is a reversal in the side of the flow that contains the most mixing. This
observation and trend reversal were also seen in the mixedness profiles after reshock
in figure 8. Furthermore, the difference between the single- and multi-mode cases
is not very striking for the M ∼ 1.9 case. The low Mach number case is also very
similar after reshock. Before reshock, however, there is a significant difference where
the single-mode interface has three peaks which are much more distinct. Overall, the
increase in Mach number increases the mixing before and after reshock, and smears
regions of intense mixing before reshock.

In addition to the DSC itself, analysis of each term of the DSC budget can yield
insights into the mechanisms that are affecting the local rate of change of the variable
(Tomkins et al. 2013). The following is one form of the evolution equation (Besnard
et al. 1992), which shows this relationship and numerically identifies each term of
interest.

∂b
∂t
+ Ũjb,j[1] = 2ajb,j[2] − 2aj(1+ b)

ρ,j

ρ
[3] + ρ

(
〈u′jρ

′(1/ρ)′〉
ρ

)
,j

[4]

+ 2ρ〈(1/ρ)′∇ · u′〉[5]. (3.5)

The numbers in square brackets ([1 − 5]) refer to various terms in the equation.
Of particular interest are terms 2 through 4, since term-1 is advection and term-5
is negligible compared to the others. The individual terms were first measured
experimentally by Tomkins et al. (2013), where the fluctuations were calculated from
the spanwise-averaging method to compare with simulations. Contrarily, figure 15
shows the spanwise-averaged profiles of the field calculated from ensemble-averaged
means for each term of interest [2− 4] at the latest time after reshock. The ensemble
fields themselves are shown subsequently in figure 16. Comparing the two initial
conditions, the single-mode case shows sharper profiles indicating greater gradients
in certain areas of the flow, while the multi-mode case has smaller maxima and is
more evenly distributed. Otherwise, the morphology of the profiles is similar between
the two cases. Both cases have a peak in the sum of terms which closely represents
the overall rate of change and additional local peaks throughout the mixing region.
Terms 2 (convection) and 4 (transport) undergo changes in sign. The more relevant
observation being that transport term changes from positive, to negative, and back to
positive, generally, with small undulations. This is more obvious in the multi-mode
case. This implies that the transport term increases the DSC near the edges of the
mixed region and transports it from its centre. Term three shows that production is
higher interior to the mixing region with a bias towards the bubble side (x> 0).

Figure 16 provides further details on the mechanics of the DSC. While the
main observable differences in spanwise-averaged profiles between the single and
multi-mode cases were in magnitude, the fields of DSC terms provide further
illumination of physical behaviour of the flow. The fields in figure 16 highlight
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FIGURE 13. (Colour online) Fields of density self-correlation before (a,b) and after
reshock (c,d) at M ∼ 1.9 for the (a,c) single-mode (S) case and (b,d) multi-mode (M)
case.

a difference in the shape of the spatial distribution more obviously. Also, the DSC
term fields are observed to have slightly more intense regions and more variation in
sign than was observable in the spanwise-averaged plots in which these features lead
to lower values.
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FIGURE 14. (Colour online) Effect of Mach number on temporal evolution of density
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from ensemble-averaging method for the (a) single-mode (S) case and (b) multi-mode (M)
case. X is distance from centre of mass.

-10 -5 0 5

T2 (convection)
T3 (production)
T4 (transport)
T2 + T3 + T4

Te
rm

s o
f b

 e
qu

at
io

n 
bu

dg
et

10

S4.35 M4.35

X (cm)
-10 -5 0 5 10

X (cm)

40

30

20

10

0

-10

-20

-30

40

30

20

10

0

-10

-20

-30

(a) (b)

FIGURE 15. (Colour online) Comparison of the relative magnitudes of term 2 (convection),
term 3 (production) and term 4 (transport) in the DSC evolution equation at the latest time
after reshock (τ = 4.35) for both (a) single-mode and (b) multi-mode cases at M ∼ 1.9.

Between the single- and multi-mode cases, the consistently different morphology
of the multi-mode interface is observable in all of the fields of these terms. All of
the terms are slightly stronger in the single-mode case due to the higher level of
consistency (low variance) of the interface shape, placing fluctuations in concentrated
areas along the interface, while the multi-mode case terms are more diffuse due to
higher variability/nonlinearity of the interface.

Regarding the relative contribution of each term to the total budget, term 2
(convection), which is characterized by turbulent mass flux, a, is of much lower
magnitude than the production and transport terms. This term is observed to decrease
the DSC on the light gas side, but to increase it on the heavy gas side of the mixing
region.

It is observed that production term 3, primarily affects the interior of the mixing
region. This term is mostly positive in both cases; however, the single-mode case
is larger and displays small pockets of negative production, which are likely to be
damped out due to the more random interface of the multi-mode case. The transport
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FIGURE 16. (Colour online) Comparison between fields of different terms in the DSC
evolution equation at the latest time after reshock (τ = 4.35) for both (a) single-mode and
(b) multi-mode cases at M ∼ 1.9.

term (term 4) is similar in magnitude to production, but the configuration of the two
terms (3 and 4) is complementary; while the DSC is produced in the interior of the
mixing region, it is transported out (negative values of term 4) of the centre of the
mixing region to the edges. This finding should be considered in light of current
discussion of the asymptotic value of mixedness, suggesting a connection between the
mixing dynamics in the interior of the mixing region and the influx of pure fluid at
the edges which propagates a balance between entrained and molecularly mixed fluid
at late times.

3.4. Methods of velocity field decomposition
In general, fluctuations should be calculated from averages over homogeneous
dimensions (average fluctuating quantities are invariant with that dimension). In
many turbulent flows there may be multiple spatial dimensions, and possibly the
temporal dimension, which provide this necessary homogeneity. Furthermore, in flows
where there is dimensional dependence of a fluctuating quantity, averaging should
not be performed over dimensions in which this inhomogeneity occurs. The RMI
is temporally evolving, which precludes temporal averaging. Furthermore, in most
RMI flows there is significant spatial inhomogeneity throughout the flow even after
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FIGURE 17. (Colour online) Decomposition of a sample velocity field at the latest time
after reshock: (a) velocity relative to the bulk flow, its ensemble average and its fluctuating
component and (b) velocity relative to the bulk flow, its boxcar average and the difference
between these two. The results are averaged in the spanwise direction for clarity.

transition to turbulence. This spatial inhomogeneity can be due to the dependence
on initial conditions, continued influx of pure fluid with a velocity preference at
the edges of the mixing region, and conditional dependence (correlation) of velocity
and density fluctuations. This spatial inhomogeneity can be seen, for example, in
figure 13 for late times before and late times after reshock, where the fields of
density self-correlation are clearly not homogeneous.

The comparison between ensemble and spanwise averaging, and the large difference
between them were discussed in the previous work (Mohaghar et al. 2017). Ensemble
averaging in this work is identified by brackets (〈•〉) whereas spatial averaging is
indicated by an overbar (•). In addition, a moving boxcar averaging method is used
in the recent work by Reese et al. (2018), where the spatial filter window size was
chosen as 1/20 of the average mixing height. To compare these two methods of
averaging, relative velocity fluctuations (u′rel) calculated using the boxcar averaging
method are compared with velocity fluctuations from ensemble averaging (u′) at the
latest time after reshock for a velocity field sample and are shown in figure 17. The
velocity fluctuation for the ensemble-averaging method is defined as follows:

ub = (ui)x,y (3.6)
urel = ui − ub (3.7)

u′ = urel − 〈urel〉, (3.8)

while for the boxcar averaging method, it is calculated as

u′rel = urel − (urel)boxcar, (3.9)

where the boxcar average is taken over the filter window.
The comparison between ensemble and boxcar averaging (figure 17) shows that

fluctuations from the boxcar averaging method indicate fine-scale features in each
realization, based on local spatial variance rather than fluctuations from the ensemble
dataset. Also, this method is very sensitive to the filter size. Therefore, in this
work, consistent with the previous work (Mohaghar et al. 2017), fluctuations are
calculated from ensemble averages, with the exception of calculations used to
exemplify differences in the averaging methods.
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3.5. Analysis of vortex sheet roll-ups in the single mode case
In this section, the effect of different shock strengths on the distribution of vortex
roll-up features along the interface is investigated. This is an important topic, but has
received limited attention thus far (Zabusky 1999). The latest time before reshock for
the single-mode interface at both Mach numbers was chosen to analyse the vorticity
concentration and roll-up features. This case was chosen because the vortex roll-up
features are repeatable and distinguishable.

In order to extract the location of the interface between the two gases, the
gradient-based Canny edge detection method is applied to concentration fields. This
method computes an approximate pixel by pixel gradient, and is thresholded locally or
globally to distinguish steep gradients. This can be accomplished for the current work
using a simple threshold (Canny 1986). This method has been used widely in the
combustion field for flame edge detection (Malm et al. 2000; Sweeney & Hochgreb
2009; Slabaugh, Pratt & Lucht 2015; Reisenhofer, Kiefer & King 2016; Fries et al.
2019). Because there is a sharp gradient between the two fluids in the case shown,
this method gives an accurate interface location. Additionally, to increase the accuracy
of the measurement and reduce error, corrected PLIF images are pre-processed with
a 3 × 3 Gaussian filtering to reduce the effect of noise in the interface region. The
vorticity fields are obtained by taking the discrete curl of two-dimensional velocity
fields (Reilly et al. 2015; Mohaghar et al. 2017). Finally, to characterize and compare
localized vorticity and roll-up locations, vorticity concentration fields are registered
with the interface locations identified using edge detection. The results are shown in
figure 18.

The interface crosses any streamwise line (vertical in figure 18) multiple times at
any roll-up location. Therefore, roll-up locations are identified by calculating the total
length of interface crossings (Ncrossings ∗ dx) at each streamwise line. This is ensemble
averaged and shown along the spanwise direction in figure 18(c). Furthermore, to
analyse regions of vorticity localized within the roll-ups, the vorticity fields are
averaged in the streamwise direction (X) similarly, and shown in figure 18(d). It is
observed that there is a strong correlation between the peaks of the interface crossings
and vorticity concentration, which indicates that regions of vorticity concentration
coincide with roll-up locations.

Comparison between high and low Mach numbers suggests that there are 3 large
and 3 small roll-ups and peaks in vorticity concentration in the high Mach number
case whereas there are 1 large and 2 small roll-ups and vorticity peaks in the low
Mach number case. Finally, the total interface length is computed and averaged over
the ensemble. The ratios of this quantity to ensemble average of mixing width for
each case are also calculated, which are 39.72/8.56= 4.64 for high Mach (M ∼ 1.9)
compared to 24.12/8.26= 2.92 for M ∼ 1.55. Overall, comparison of the number of
roll-ups and arc-length to mixing-width ratio indicates that the high Mach number
results in greater vorticity deposition which leads to more roll-ups (higher secondary
perturbation wavenumber) and consequently more stretching of the interface.

4. Mixing transition analysis
4.1. Turbulent mass flux, Reynolds stress and anisotropy analysis

The turbulent mass-flux velocity, a(x, y)i = 〈ρ ′u′i〉/〈ρ〉 is closely related to the b
parameter (density self-correlation), since b appears in the production of turbulent
mass flux. Additionally, turbulent mass flux appears in the primary production term
of turbulent kinetic energy (Livescu & Ristorcelli 2008; Tomkins et al. 2013). It
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FIGURE 18. (Colour online) The figure shows concentration fields (left) and interface
edges superimposed over vorticity fields (right) for the single-mode case at the latest time
before reshock for (a) M∼ 1.55 and (b) M∼ 1.9, respectively. Also shown are streamwise
averages of (c) vorticity profiles and (d) interface crossings (from canny edge detection)
for these two cases.

also appears in the second term of the Reynolds stress decomposition. The averaging
performed over the ensemble yields one field of turbulent mass flux for each case
at each time. Then, to obtain a profile, these fields are averaged in the spanwise
direction similar to the presentation of b fields and profiles. Since the streamwise
component of velocity fluctuation is dominant in this flow, the streamwise mass-flux
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FIGURE 19. (Colour online) Effect of initial condition on temporal evolution of turbulent
mass-flux (ax) profiles along the streamwise direction before and after reshock at M∼ 1.9
for the (a) single-mode (S) case and (b) multi-mode (M) case.

velocity is shown here. The results for fields are shown for the high Mach number
case in figure 20 in addition to spanwise-averaged profiles (figure 19) to have a better
understanding of the physics of the flow.

The turbulent mass flux indicates intense penetration of the gases within each other
driven by turbulent fluctuations. Where lighter than average fluid moves with higher
than average velocity (causing negative density fluctuations coupled with a positive
streamwise velocity fluctuation), this leads to a negative turbulent mass flux. On
average, this phenomenon is seen throughout most of the flow. An interesting feature
that can be identified in the mass-flux fields before reshock is the location of roll-up
features, especially in the single-mode case where there are alternating positive and
negative turbulent mass-flux regions due to the cresting motion of the roll-ups. In the
location of a roll-up, the heavy gas tends to penetrate upward (negative direction)
and the light gas tends to push downward near the top of the roll-up. However, on
the crest and interior of the roll-up, heavy gas tends to move down and light gas
moves upward resulting in regions of positive mass-flux velocity. In the multi-mode
case, since the fluctuations are distributed over a larger portion of the flow, and there
is more mixed material, this behaviour in turbulent mass flux is less evident than
in the single-mode case. After reshock, similar to the density self-correlation fields,
density and velocity fluctuations are more concentrated in one part of the flow in the
single-mode case, compared to the more diffuse distribution of fluctuations along the
interface in the multi-mode case due to higher variability or nonlinearity of the initial
interface perturbation.

These interesting features are concealed in spanwise-averaged profiles, especially
before reshock, in this inhomogeneous flow. However, the relative magnitude of
turbulent mass flux between low and high Mach number cases can be observed in
the spanwise-averaged profiles in figure 21. The magnitude of turbulent mass flux
after reshock is almost three times higher than the low Mach number case. Moreover,
similar to density self-correlation profiles, the peak of turbulent mass flux is shifted
to the bubble side in the high Mach number case compared to the low Mach number
case where this occurs on the spike side. This indicates that active mixing and greater
production of turbulent kinetic energy is occurring on the bubble side for the high
Mach number case. This phenomenon occurs in the flow due to higher fluctuations
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FIGURE 20. (Colour online) Fields of turbulent mass flux (ax) before (a,b) and after
reshock (c,d) at M ∼ 1.9 for the (a,c) single-mode (S) case and (b,d) multi-mode (M)
case.

in the streamwise direction and therefore higher penetration of heavy gas to the core
of the flow on the spike side which creates more mixed material on that side in the
high Mach number case.

Another measure related to turbulence intensity and transport is the Favre-averaged
Reynolds stress. The components of the Reynolds stress, including the aforementioned
term containing mass flux, are given by:

Rij = 〈ρu′′i u′′j 〉 = 〈ρ〉〈u
′

iu
′

j〉 − 〈ρ〉〈ai〉〈aj〉 + 〈ρ
′u′iu

′

j〉, (4.1)
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FIGURE 21. (Colour online) Mach number comparison on the temporal evolution of
turbulent mass-flux (ax) profiles along the streamwise direction before and after reshock
at both M ∼ 1.55 and M ∼ 1.9 for the (a) single-mode (S) case and (b) multi-mode (M)
case.

where the double prime indicates Favre averaging (u′′i = ui − 〈ρui〉/〈ρ〉). The
streamwise profile of relative contribution of the three terms in the Reynolds stress
for R11 is shown in figure 22 for both single and multi-mode cases at M ∼ 1.9
before and after reshock. The first term, which is the mean density times the velocity
fluctuation correlation, is clearly the dominant contributor at each time for both
cases. A similar trend was observed for the components, R11, R12 and R22, of the
Reynolds stress tensor. The turbulent mass-flux term (T2) is at least 1000 times
smaller than the first term. The third term, which is the triple correlation term, is
approximately 10 times larger than the second term and 100 times smaller than the
first term. This finding indicates the importance of the contribution of the first term
to the Reynolds stress and its significance for modelling, which was also observed
by Balakumar et al. (2012) and Shankar & Lele (2014) at higher Atwood number.
In addition, the spanwise average of these terms highlights that the main differences
for different initial conditions before and after reshock occur in the second term
(turbulent mass-flux term). The ratio of the second term to the first term for the
multi-mode case before reshock is uniformly distributed, and slightly larger compared
to the single-mode case, which is due to uniform distribution of density–velocity
fluctuations along the interface in the multi-mode case whereas there are concentrated
fluctuations in the roll-up locations in the single-mode case due to coherent structures
and less mixing (figure 23a). The reshock effect on the mass-flux term is shown in
figure 23(b). After reshock, T2/R11 increases significantly, which is expected due to
higher velocity and density fluctuations. However, even if the ratio is almost 10–100
times larger than this ratio before reshock, the contribution of the mass-flux term is
still less than 0.01 of the first term’s contribution.

Another important parameter related to Reynolds stress is anisotropy. The
normalized anisotropy is defined as

βij =
Rij

Rkk
−

1
3
δij. (4.2)

Anisotropy has been discussed previously for the low Mach number case (Mohaghar
et al. 2017). The normalized anisotropy has a limited range: βkk =−1/3, βkk =+2/3
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FIGURE 22. (Colour online) Relative contribution of three terms in the Reynolds stress
equation before (a,b) and after reshock (c,d) for (a,c) single-mode and (b,d) multi-mode
cases at M ∼ 1.9.

and βkk = 0; corresponding to zero turbulent kinetic energy in the k-direction, all
turbulent kinetic energy in that direction and the isotropic turbulence limit, respectively.
Additionally, the magnitude of the anisotropy tensor, ‖β‖ = βijβij at each time is
important to understand the physical reason for the variations in scaling of the
turbulent kinetic energy spectra. Similar to the analysis of anisotropy in Mohaghar
et al. (2017), since only the streamwise and spanwise components of velocity are
available, the velocity fluctuations in the out-of-plane direction is assumed to be equal
to those of the spanwise direction.

The spanwise average of the normalized anisotropy tensor for the high Mach
number case for both initial conditions is plotted in figure 24. In addition, to
investigate the effect of Mach number on anisotropy, the spanwise average of the
magnitude of the anisotropy tensor for both Mach numbers is shown in figure 25.
After incident shock, at the latest time before reshock, the anisotropy magnitude in
the high Mach number case for the single-mode case is less than the low Mach
number case, specifically close to the centre of mass, which is due to transfer of
energy from streamwise to spanwise direction in the two large roll-up locations, but
this difference is not significant. However, in the multi-mode case before reshock,
and noticeably after reshock, the anisotropy is significantly higher in the high Mach
number case. This large difference is due to higher turbulent kinetic energy in the
flow, especially in the streamwise component, because of the stronger incident shock
and reshock. As a result of this higher energy in the shock direction, more time
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FIGURE 23. (Colour online) Effect of (a) initial condition and (b) reshock on the
contribution of the second component of Reynolds stress. (a) Contribution of mass flux
term for single- and multi-mode cases at latest time before reshock. (b) Contribution of
mass flux term for multi-mode cases before and after reshock.

is needed for the flow to transfer energy from the shock-direction component to
the spanwise and out-of-plane components to reduce anisotropy. High anisotropy is
particularly noticeable in the high Mach number case on the bubble side (light gas
side), since the flow is still strongly inhomogeneous and active mixing is occurring in
that region for both initial conditions. Overall, before reshock at high Mach, similar
to the low Mach number case, turbulent kinetic energy in the flow at some regions
near the centre of mass is transferred from the shock direction toward the spanwise
direction and there is localized isotropy in the flow. However, after reshock in the
higher Mach number case, there is a strong anisotropy in the flow and energy in the
streamwise direction is dominant. Even at late time after reshock, Tritschler et al.
(2014) observed that the anisotropy reached a small asymptotic value, but did not
reach zero.

4.2. Turbulent length scales, Reynolds number and energy spectra
Using simultaneous PLIF/PIV measurements, it is possible to compute different
length scales to study mixing transition. Taylor microscales and integral scales can
be calculated from velocity fluctuations (Pope 2000). The integral scale is calculated
from the longitudinal spatial covariance of velocity fluctuations using

Li =

∫
f (r) dr, (4.3)

where f (r) is the velocity autocorrelation function defined as

f (r)=
〈u′i(x)u

′

i(x+ r)〉
〈(u′i)2〉

. (4.4)

The Taylor microscale then can be calculated from the curvature of the autocorrelation
function (Champagne, Harris & Corrsin 1970; Ramaprabhu & Andrews 2004; Weber
et al. 2014; Mohaghar et al. 2017; Reese et al. 2018),

λT =

[
−

1
2

d2f (0)
dr2

]−1/2

. (4.5)
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FIGURE 24. (Colour online) Normalized anisotropy tensor components before (a,b) and
after (c,d) reshock for both (a,c) single-mode and (b,d) multi-mode cases at M ∼ 1.9.
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FIGURE 25. (Colour online) Effect of Mach number on the magnitude of the normalized
anisotropy tensor along the streamwise direction before and after reshock at both M∼ 1.55
and M ∼ 1.9 for the (a) single-mode (S) case and (b) multi-mode (M) case.

By fitting a quadratic function to the central three points of the autocorrelation of
streamwise and spanwise velocity fluctuations, Taylor microscales in the streamwise
(λT,u′) and spanwise (λT,v′) directions, respectively, can be computed. The combined
Taylor microscale from the autocorrelation function is obtained by λT,corr =√
λ2

T,u′ + λ
2
T,v′ . To increase the reliability of results, the Taylor microscale is also
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calculated using the variance and gradient of velocity fluctuations (Pope 2000),

λT,ui =

√
2〈u′2i 〉

〈(∂u′i/∂xi)2〉
. (4.6)

It was shown that the order of magnitude from the two methods is similar (Mohaghar
et al. 2017). The combined Taylor microscale from the gradient method is found by

λT,grad =

√
λ2

T,u′ + λ
2
T,v′ , similar to the combined Taylor microscale calculated from the

correlation function. Finally, the total Taylor microscale is measured by averaging the
results from the correlation and gradient methods, λT = (λT,grad + λT,corr)/2. The time
evolution of the integral scale and Taylor microscale for both single- and multi-mode
cases and at both Mach numbers are plotted in figure 26(a,b). The magnitude of
the integral scale is not affected by Mach number, and similar values are obtained
for both Mach numbers at each time. Although the trend in the Taylor microscale
is similar to that of M ∼ 1.55 of (Mohaghar et al. 2017), the magnitude of the
M ∼ 1.9 Taylor microscale is a factor of 1.25 ± 0.05 times that of the former at
similar non-dimensional times. This is due to stronger fluctuations in the current case.
Additionally, a Reynolds number scaling which is found to have the best agreement
with the velocity-based Taylor microscale in this particular flow is λT = 18δRe−1/2,
whereas Orlicz et al. (2015) found a scaling of λT = 10δRe−1/2 in their gas curtain
experiments. Finally, in order to get an overall picture of scale separation, the
different length scales computed in the current work (from the largest scale, mixing
width, computed in § 3.1 to the Taylor microscale) are plotted in figure 26 for the
multi-mode case at higher Mach.

To evaluate mixing transition and inertial range formation, the ratio of Liepmann–
Taylor (λL) to inner-viscous (λν) scales can be investigated, with the assumption
that the flow will have an established inertial range if λL/λν � 1 (Lombardini et al.
2012). To evaluate this criterion and to determine whether mixing transition may have
occurred in this particular flow (Dimotakis 2000), the ratio is calculated using

λL

λν
≈

5Re−1/2δ

50Re−3/4δ
≈

1
10

Re1/4. (4.7)

This criterion is equivalent to Re>104 which is suggested by Dimotakis (2000) for the
onset of mixing transition. Therefore to investigate the satisfaction of mixing transition
criteria (Dimotakis 2005) and the minimum state of Zhou (2007), the local Reynolds
number based on turbulent kinetic energy is calculated (Tomkins et al. 2013; Orlicz
et al. 2015) as

Re=
urmsδ

νmix
, (4.8)

where urms=

√
u′2i , νmix is the kinematic viscosity of the mixture (details of calculation

discussed in Mohaghar et al. (2017)), and mixed-mass thickness is chosen for
the length scale δ instead of mixing width (h). Mixed-mass thickness is a more
representative mixing length scale in this type of flow, analogous to the length scales
chosen in other canonical flows, which were outlined by Dimotakis (2005).

The kinematic viscosity before and after reshock are approximately 6.27 × 10−6

and 4.08 × 10−6 m2 s−1 at M ∼ 1.55, and 5.49 × 10−6 and 3.14 × 10−6 m2 s−1 at
M ∼ 1.9, respectively. The local Reynolds number for both single and multi-mode
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FIGURE 26. (Colour online) Temporal evolution of (a) integral scale (L1) at both Mach
and initial conditions, (b) Taylor micro-scale (λT) at both Mach and initial conditions and
(c) summary of length scales at M∼ 1.9 for multi-mode case. τ is non-dimensional time.

cases at both Mach numbers is plotted in figure 27. The dashed lines represent the
mixing transition criterion (Re = 1 − 2 × 104, Dimotakis (2000)) and the dotted line
indicates the minimum state criterion (Re≈ 1.6× 105, Zhou (2007)). Before reshock at
early times, the Reynolds numbers are below the transition criterion for all cases, but
the multi-mode case has a significantly higher Re than the single-mode case. At late
time, although Re increases for all cases, only the multi-mode case at higher Mach
exceeds both criterion for mixing transition. After reshock, due to an impulse jump in
turbulent kinetic energy, there is a rapid increase in Re for all cases. Both single- and
multi-mode cases have similar values for the two Mach numbers at early times after
reshock, though the M ∼ 1.9 Re increases at a faster rate due to the higher growth
rate of mixed-mass thickness. The Reynolds number criterion for mixing transition is
also satisfied at all times after reshock.

In addition to the Reynolds number criterion, the other important criterion to
consider for mixing transition is proposed by Robey et al. (2003) and Zhou, Robey
& Buckingham (2003), particularly for time-evolving flow like RMI flow. The new
time-dependent scale which is proposed for the upper bound of the inertial range is
λD= 5× (νt)1/2. Robey et al. (2003) and Zhou et al. (2003) suggested an extension to
the mixing transition work of Dimotakis (2000) when the Liepmann scale is strongly
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FIGURE 27. (Colour online) Reynolds number estimation with non-dimensional time (τ )
based on turbulent kinetic energy and mixed-mass thickness. Dashed lines indicate a
threshold for turbulent mixing (Dimotakis 2000) and the dotted line indicates the minimum
state criterion (Re≈ 1.6× 105, Zhou (2007)).

evolving with time. According to this criterion, the inertial range forms in the flow
when the viscous diffusion scale (time-dependent critical scale) is larger than the
inner-viscous scale (i.e. λD/λν > 1, where λν = 50Re−3/4δ). The inner-viscous scales
and the time-dependent scale at each time for both Mach numbers and both initial
conditions are plotted in figure 28. The ratio λD/λν is greater than one only at the
latest time after reshock, and is close to one at the latest time before reshock for
the higher Mach number cases and early time after reshock for both Mach numbers.
Therefore, unlike the Reynolds number criterion, the latest time after reshock is the
only time that mixing transition occurs in the flow based on this time-dependent
criterion.

The evolution and distribution of the turbulent kinetic energy spectra can also be
investigated to note any development of inertial ranges. Several computational and
experimental works observed the existence of a k−5/3 scaling over a small range of
wavenumbers for density and velocity fluctuation spectra at late times in the RMI flow,
when breakdown of scales occurs (Vorobieff, Rightley & Benjamin 1998; Vorobieff
et al. 2003; Hill et al. 2006; Schilling & Latini 2010; Weber et al. 2014). In the
recent work by Reese et al. (2018), k−5/3 scaling is observed at late times after the
incident shock for kinetic energy spectra computed from the relative velocity (termed
global velocity fluctuations in their work). However, the scaling of RMI flow is still
not well understood when the large scales in the flow still have not broken down
completely and the flow is strongly inhomogeneous and anisotropic. Thornber et al.
(2011) clearly showed that when the flow is still in early development after reshock,
the slope is steeper than −5/3 (−2 for the broadband case), but it can reach −5/3
or −3/2 for late time development in the flow.

Due to the high anisotropy observed in this flow, especially in the M∼1.9 case after
reshock (owing to strong, large-scale, streamwise fluctuations produced by large-scale
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FIGURE 28. (Colour online) Time-dependent transition criterion evaluation using the ratio
of diffusion to inner-viscous scales. (a) M ∼ 1.55. (b) M ∼ 1.9.
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FIGURE 29. (Colour online) Evolution of turbulent kinetic energy spectra before and after
reshock at M ∼ 1.9 for both (a) single-mode and (b) multi-mode cases.

shear), it is important to investigate the scaling of the energy spectra. Turbulent kinetic
energy spectra before and after reshock at M ∼ 1.9 for the two initial conditions are
shown in figure 29. The method of calculation of energy spectra has been explained in
previous works (Reilly et al. 2015; Mohaghar et al. 2017). From figure 29, it is clear
that the turbulent kinetic energy at early times after reshock is almost one decade
greater than at late times before reshock due to additional energy deposited by the
reshock. Schilling & Latini (2010) also observed approximately a decade increase in
energy after reshock in their computational work.

Additionally, to study the formation of different ranges in the energy spectra and
to identify any power law slopes, the slopes of the spectra are computed using
d(log(E(ky)))/d(log(ky)) (Kerstein 1991; Miller & Dimotakis 1996). Mixing transition
occurrence implies that an inertial range has formed after reshock. Therefore, it is
reasonable to investigate spectral scaling at the latest time in the flow. Slopes of the
energy spectra are shown in figure 30(a), and the energy spectra, compensated based
on the slopes found for both low and high Mach numbers at the latest time after
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FIGURE 30. (Colour online) Local slope of spectra (logarithmic derivative) and
compensated energy spectra at latest times after reshock for both initial conditions at
M ∼ 1.55 and M ∼ 1.9. (a) Spectral slope. (b) Compensated energy spectra.

reshock, are plotted in figure 30(b). Due to the high energy deposited by reshock,
which increases anisotropy, spectral slopes noticeably steeper than −5/3 are observed.
The computed slopes are close to −1.8 ± 0.05 for the low Mach (in the range
ky ≈ 300 − 3000) and −2.1 ± 0.1 for the high Mach number case (in the range
ky ≈ 300 − 2000) after reshock. The spectral slope is steeper in the higher Mach
number case due to higher anisotropy, which results from a larger deposition of
energy to the shock-direction component of the flow by the higher strength reshock.

5. Conclusion
Effects of incident shock strength and initial conditions on the nature of mixing

and transition to turbulence in shock-driven flows are investigated using simultaneous
density–velocity (PLIF/PIV) diagnostics. Measurements were performed at two times
before reshock, and for the first time in this regime at two times after reshock for both
single- and multi-mode initial conditions at M ∼ 1.9 and A∼ 0.22 and are compared
with the results at M ∼ 1.55 (Mohaghar et al. 2017).

Analysis of mixing width (amplitude), mixed-mass thickness and mixed mass is
performed to highlight the initial condition effect on the temporal development of this
flow at different scales. Results indicate that mixing width is not sensitive to the initial
conditions, since it is more indicative of large-scale features. However, mixed-mass
thickness and mixed mass do differentiate the single- and multi-mode cases as they
are more accurate measurements of the actual amount of mixing. Larger mixed-mass
thickness and higher amounts of mixed mass are observed before reshock in the multi-
mode case at both Mach numbers. After reshock, although mixed-mass thickness is
similar for all cases, mixed mass displays a higher growth rate at M∼ 1.9 than M∼
1.55 due to the higher density jump after reshock in the former. In addition, the ratio
of molecular mixing to entrained fluid is investigated using mixedness. Before reshock,
measurements show that mixedness is lower in the high Mach number case due to
larger amounts of entrained fluid. However, after reshock the trend is vice versa and
entrained fluid is more mixed molecularly in the high Mach number case.

The density self-correlation at both Mach numbers and initial conditions and
the different terms in its evolution equation at the latest time after reshock are
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measured. The spanwise-averaging method is compared with the ensemble-averaging
method of calculation and it was shown that there is a significant difference in
results when the flow is inhomogeneous. In addition, the DSC computed from
ensemble averaging, and fields of different terms in the evolution equation are shown
for the first time to illuminate important physics in the flow which are concealed
by spanwise-averaged profiles. Transport and production terms are observed to be
much larger than convection terms in the streamwise direction, and they indicate
complementary behaviour, which indicates that, while the DSC is being produced in
the core of the flow, it is being transported to the edges of the mixing region where
faster mixing is occurring.

Simultaneous PLIF/PIV measurements are used to analyse the effect of Mach
number on localized vorticity and roll-up locations at the latest non-dimensional time
before reshock in the single-mode case. The correlation between interface crossings
and vorticity is observed at the roll-up locations. A higher number of peaks in the
vorticity concentration and interface crossings profiles is observed in the higher Mach
number case. Also, the ratio of total interface length to mixing width is computed
and the magnitude for M∼ 1.9 is observed to be nearly twice that of M∼ 1.55 which
indicates a higher perturbation wavenumber, more interface curvature and greater
interface stretching in the high Mach number case.

The turbulent mass-flux fields are shown in addition to spanwise-averaged profiles
to further increase understanding of the turbulent mixing in the flow. Before reshock,
there is alternating positive and negative turbulent mass flux along the mixing layer
although the amount of negative mass flux is higher. After reshock, there is a
strong negative correlation between velocity and density fluctuations, which indicates
transportation of lower density fluid into higher density fluid by positive velocity
fluctuations and vice versa. In addition, in analysis of the contribution of each term
in the Favre-averaged Reynolds stress, the mass-flux term was observed to be the
most dependent term on the effects of initial condition and reshock.

The state of turbulence in the flow is investigated by analysing the length scales
and Reynolds number. According to the Reynolds number criterion suggested by
Dimotakis (2000) (Re≈ 10 000–20 000), it was observed that the incident shock does
not induce mixing transition before reshock, although the multi-mode case at M∼ 1.9
is observed to be in the threshold range. After reshock, there is a sharp increase
in the Reynolds number, and mixing transition occurs in the flow. However, this
flow is still not a fully developed turbulent flow, and does not meet the minimum
state criterion of Zhou (2007) to reproduce the spectral range corresponding to an
astrophysical event. Since Reynolds number criteria were derived based on turbulent
jets, and to facilitate further analysis, the time-dependent or diffusion length scale
(λD) criterion, which is suggested by Robey et al. (2003) and Zhou et al. (2003) for
mixing transition in time-dependent flows (λD/λν > 1), is also examined in this work.
According to the finding from this method, the only time where λD/λν > 1 is at the
latest time after reshock. The ratio is close to 1 at the latest time before reshock for
the high Mach number case and early times after reshock for both Mach numbers.

Turbulent kinetic energy spectra are measured, and showed a jump after reshock, as
expected, due to higher energy deposition by reshock to a range of scales. In addition,
since the results of mixing transition analysis suggest that an inertial range forms after
reshock, scaling of turbulent kinetic energy spectra at the latest time after reshock is
investigated. Power law scaling of −1.8 ± 0.05 for the low Mach number case and
−2.1± 0.1 for the higher Mach number case are observed which can be related to the
high energy, large-scale, streamwise fluctuations produced by large-scale shear which
causes high anisotropy in this flow, and indeed this is found to be the case in the
anisotropy analysis, especially in the high Mach number case.
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