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Adhesive contact between a thin elastic sheet and a substrate arises in a range of biological,
physical and technological applications. By considering the dynamics of this process
that naturally couples fluid flow, long-wavelength elastic deformations and microscopic
adhesion, we analyse a sixth-order thin-film equation for the short-time dynamics of
the onset of adhesion and the long-time dynamics of a steadily propagating adhesion
front. Numerical solutions corroborate scaling laws and asymptotic analyses for the
characteristic waiting time for adhesive contact and for the speed of the adhesion front.
A similarity analysis of the governing partial differential equation further allows us to
determine the shape of a fluid-filled blister ahead of the adhesion front. Finally, our
analysis reveals a near-singular behaviour at the moving elastohydrodynamic contact line
with an effective boundary condition that might be useful in other related problems.
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1. Introduction

Adhesion of thin elastic films to substrates occurs in a range of problems in physical
chemistry (Bell 1978), biology (Bongrand 1988; Dirks 2014; Butler et al. 2019), geophysics
(Michaut 2011; Kavanagh, Engwell & Martin 2018) and engineering situations such as soft
robotics (Salem et al. 2020) and wafer bonding (Bengtsson, Ljungberg & Vedde 1996;
Tong & Gösele 1999; Han, Yu & Wang 2000; Pocius & Dillard 2002; Turner, Thouless
& Spearing 2004; Rieutord, Bataillou & Moriceau 2005; Moriceau et al. 2011; Navarro
et al. 2013; Radisson, Fournel & Charlaix 2015). Experimental and theoretical studies of
adhesion focus on the microscale physical chemistry of bond formation (Bell 1978; Bell,
Dembo & Bongrand 1984), on the mesoscale mechanics of elastic deformation of the
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film and on the squeeze flow in the gap (Cantat & Misbah 1999; Hosoi & Mahadevan
2004; Flitton & King 2004; Leong & Chiam 2010; Michaut 2011; Mani, Gopinath &
Mahadevan 2012; Pihler-Puzović et al. 2012; Longley, Mahadevan & Chaudhury 2013;
Lister, Peng & Neufeld 2013; Hewitt, Balmforth & De Bruyn 2015; Ball & Neufeld 2018;
Juel, Pihler-Puzović & Heil 2018; Peng & Lister 2020; Wang & Detournay 2021), all
of which are possibly affected by the presence of pre-wetted films, gravity or thermal
fluctuations (Carlson 2018; Pedersen et al. 2019).

In the neighbourhood of the contact line between the elastic film and the substrate, the
short-range adhesive interactions can lead to a high pressure that deforms the film and
thence a squeeze flow, that in return affects the dynamics of adhesion. Theoretical models
of soft adhesion usually focus only on the elastic and adhesive aspects of the process,
typically neglecting the hydrodynamics (Springman & Bassani 2008, 2009; Rieutord,
Rauer & Moriceau 2014). An early notable exception is the experimental and theoretical
study of Rieutord et al. (2005) that used energetic arguments to determine the steady
bonding speed of a silicon wafer as it comes into contact with a substrate, while also
providing a scaling law for the local self-similar shape of the contact zone.

Here, we build on these previous works by completely characterizing the transient
elastohydrodynamics of a soft adherent sheet. This problem has some similarities to
the well studied problem of capillary interfaces seen in moving liquid–vapour contact
lines and the dewetting of liquid films influenced by surface tension, which have a
rich associated literature (de Gennes 1985; Eggers 2005; Bonn et al. 2009; Snoeijer
& Eggers 2010; Snoeijer & Andreotti 2013). For example, in both the capillary and
elastohydrodynamic cases, there is a near-singular behaviour at the contact line that is
regularized by short-range effects which takes different forms: e.g. the presence of a
pre-wetted layer between the elastic sheet and the substrate (Lister et al. 2013; Hewitt
et al. 2015; Peng & Lister 2020), a vapour front (Hewitt et al. 2015; Ball & Neufeld
2018; Wang & Detournay 2018), elastic fracture (Lister, Skinner & Large 2019), etc. In the
elastohydrodynamic case treated here, we model the microscale physics of adhesion using
a van der Waals interaction potential driving the adhesion process between the elastic sheet
and the substrate. As we will see, this allows us to characterize the multi-scale dynamics
of the onset of adhesion, the steady motion of the moving contact zone and eventually to
describe the dynamic shape of the propagating bulge ahead of the contact zone.

2. Mathematical model

2.1. Thin-film elastohydrodynamics
We begin with a description of the dynamics of a long and very wide elastic sheet of
length �, thickness b � �, separated from a solid substrate by a viscous thin film of
density ρ, viscosity μ and thickness h = h(x, t), where the sheet is initially flat with
h(x, t = 0) ≡ h∞ and h∞ � � (figure 1a). The elastic sheet is attracted to a substrate by
an intermolecular adhesion potentialΦ defined between two flat surfaces and consisting of
a van der Waals attraction and a strong short-range repulsion given by (Israelachvili 2011)

Φ(h) = A
6π

(
1

2h2 − σ 6

8h8

)
, (2.1)

with A the Hamaker constant, positive because we consider adhesion, and σ the
equilibrium height at which the attractive and the repulsive parts of the resulting disjoining
pressure balance each other. Evaluating the energy at this height yields the work of
adhesion W = Φ(σ) = A/16πσ 2. We note that altering the form of the Lennard-Jones
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Figure 1. (a) Sketch showing the situation we study (not to scale): an elastic sheet is separated from a solid
substrate by a thin viscous film of height h = h(x, t), initially with uniform height h∞. The disjoining pressure
−Φh, originating from an intermolecular interaction potential, brings the sheet towards the substrate at an
equilibrium distance h0 close to σ (left). This leads to the formation of an adhesion front of length R(t) that
grows in time. The fluid-filled blister ahead of the adhesion front moves with a constant speed c = dR/dt.
As the adhesion front grows it displaces the viscous fluid into the blister, making its horizontal extent L(t)
and height H(t) grow in time. The dotted rectangle denotes the adhesion front, the small inner region where
viscous, elastic and adhesive forces are all comparable in magnitude. (b) Results from a numerical simulation
of (2.5) with σ̂ = 0.12 at different times. The sheet is brought into contact with the substrate first at x̂ = 0
because of the initial profile ĥ(x̂, t̂ = 0) = 1 − 0.1(1 − tanh2(x̂/5)) that induces a perturbation. After a short
transient phase associated with the formation of a contact zone characterized by the waiting time T̂ , see § 3.1
and (3.1), the adhesion front propagates in time, displacing the fluid into a growing and translating blister.

potential in (2.1) does not change the physical picture as long as the balance leads to a
stable static equilibrium, and is discussed further in § 4.2.

The adhesive interactions cause the elastic sheet to deform; the balance of transverse
forces for long-wavelength deformations of the sheet yields the equation (Landau &
Lifshitz 1986)

p = Bhxxxx −Φh, (2.2)

where (·)x ≡ ∂(·)/∂x. Here, p is the local pressure along the sheet, −Φh is the disjoining
pressure and Bhxxxx is the contribution from elasticity for a plate with a bending stiffness
B = Eb3/12(1 − ν2) (with E its Young’s modulus and ν its Poisson’s ratio). Equation (2.2)
is only valid under the assumptions that slopes are small, i.e. h2

x � 1, and that the
deformations of the sheet remain comparable to its thickness, allowing us to neglect
geometrical nonlinearities in the shape of the sheet. We further note that we have also
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neglected stretching effects that are expected to be negligible for cylindrical deformations
of elastic sheets that are unconstrained and free at one end; experimental results in
elastohydrodynamics with unconstrained sheets show that the theory neglecting stretching
is reasonable (Berhanu et al. 2019; Pedersen et al. 2019).

When the sheet evolves in response to the attractive adhesive interaction which brings it
in proximity to the substrate, the interstitial fluid is squeezed out. If the aspect ratio of the
gap is small, i.e. ε = h∞/� � 1, and the Reynolds number of the flow based on the speed
of the adhesion front c (discussed next in § 3.2) is small, i.e. Re = ερh∞c/μ � 1, then the
flow in the interstitial gap can be described via lubrication theory and yields the equation
(Batchelor 1967; Oron, Davis & Bankoff 1997) ht − (h3px/12μ)x = 0, which, using (2.2),
reads

ht −
(

h3

12μ

(
Bhxxxx + A

6π

(
1
h3 − σ 6

h9

))
x

)
x
= 0, (2.3)

where we have assumed the no-slip boundary condition for the fluid along the two solid
surfaces.

2.2. Scaling and boundary conditions
To scale the variables and reduce the parameters in the system we define the following
quantities:

ĥ = h
h∞

, x̂ = x
x∞
, x∞ = h∞

(
6πB

A

)1/4

, t̂ = t
τμ
, τμ = 12μh3∞B1/2

(A/6π)3/2
.

(2.4a–e)

Here, the length scale x∞ arises from the balance between the attractive part of the
disjoining pressure and the bending pressure at the far-field height h∞. Then the problem
is characterized by the single dimensionless number σ̂ ≡ σ/h∞, the ratio between the
equilibrium height σ and the far-field height h∞, and (2.3) can be rewritten as

ĥt̂ −
(

ĥ3
(

ĥx̂x̂x̂x̂ +
(

1

ĥ3
− σ̂ 6

ĥ9

))
x̂

)
x̂
= 0. (2.5)

In the rest of the paper, we will present results in the text in both dimensional and scaled
form, but all figures will be based solely on scaled quantities. While the characteristic
longitudinal scale is expected to be x∞, near the effective contact line, i.e. the zone where
the sheet deforms substantially from its flat state owing to fluid pressure, we expect the
adhesive equilibrium height σ to be relevant. As we will see later, this leads to another
natural lateral scale lc = σ̂x∞ = σ(6πB/A)1/4, so that the extent of the adhesion front
scales as σ(B/A)1/4. As σ̂ → 0, the zone becomes very narrow with an accompanying
singular behaviour in the dynamics of the contact line. We note, however, that the slope
of the sheet at the apparent contact line scales as hx ∼ σ/lc ∼ (A/B)1/4 � 1, and is
thus consistent with the long-wavelength approximation used to derive the governing
equation (2.3) and (2.5).

In order to complete the problem associated with (2.5), we need to prescribe a total
of six boundary conditions. We assume symmetry at the centre of the sheet x̂ = 0,
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so that
ĥx̂(x̂ = 0, t̂) = ĥx̂x̂x̂(x̂ = 0, t̂) = p̂x̂(x̂ = 0, t̂) = 0, (2.6)

and that the right (and left) ends of the sheet are flat and consistent with the initial
conditions, so that as x̂ → ∞

ĥx̂(x̂ → ∞, t̂) = ĥx̂(x̂ → ∞, t̂ = 0), ĥx̂x̂(x̂ → ∞, t̂) = ĥx̂x̂(x̂ → ∞, t̂ = 0), (2.7a)

p̂(x̂ → ∞, t̂) = Φ̂ ĥ(ĥ(x̂ → ∞, t̂ = 0)). (2.7b)

The mathematical model (2.5)–(2.7) provides a compact formulation of the
elastohydrodynamics coupling the microscopic physics of adhesion to elastic film
deformations and interstitial fluid flow.

2.3. Numerical implementation
To characterize the adhesion dynamics we solve numerically (2.5) with boundary
conditions (2.6) and (2.7). We use a finite element method with linear elements for ĥ, ĥx̂x̂
and ĥx̂x̂x̂x̂ coupled with a first-order and implicit time integration scheme. The domain size
(sheet length) is made large enough so that it does not affect the numerical results, i.e. we
ensure that the boundary of the domain remains far enough away from the peeling front, at
least 100 dimensionless units, so as to not affect its dynamics. The adhesion front is well
resolved with 
x̂ � l̂c/50 there, and we use an adaptive mesh refinement method to limit
the number of degrees of freedom in the other regions. We mainly focus on an initially flat
sheet, starting with an initial condition ĥ(x̂, t̂ = 0) = 1 − 0.1(1 − tanh(x̂/β)2) in order to
induce a perturbation as a small dip that triggers adhesion at x̂ = 0. We verified that the
results of the simulations are independent of the size of the perturbation β once adhesion
has been triggered, and unless otherwise noted we used β = 2. We also considered two
additional initial and far-field profiles, a linear one and a quadratic one, which we discuss
further in § 4.3.

3. Analysis

In figure 1(b) we show that, following the onset of adhesion at short times, a fluid-filled
blister forms and then propagates steadily as the adhesive front R(t) moves and the blister
grows simultaneously. We now turn to discuss these different phenomena in turn.

3.1. Waiting time estimate
When the disjoining pressure −Φh brings the sheet closer to the substrate non-uniformly,
the resulting pressure gradients cause fluid to be squeezed longitudinally, bringing the
sheet even closer to the substrate until it locally reaches a height consistent with the
equilibrium height σ . We define this as the time for the onset of adhesive contact
τw. Carlson & Mahadevan (2016) showed that if there were no repulsive part to the
intermolecular potential, i.e. in the limit σ̂ → 0, the flat state is linearly unstable to
long-wavelength perturbations, and further that contact would occur as a finite-time
singularity with h(x = 0, t) ∼ h∞(1 − t/τw)

1/3, with τw ∼ τμ the viscous time scale
defined in (2.4a–e). In the present situation, a linear stability analysis of (2.5) with
a perturbation ĥ(x̂, t̂) = 1 + ε̂ exp(ik̂x̂ + ω̂t̂), |ε̂| � 1, yields the dispersion relation
ω̂ = −k̂2(k̂4 − 3 + 9σ̂ 6), and we expect the repulsive part of the disjoining pressure to
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Figure 2. (a) Evolution of the height of the elastic sheet at x̂ = 0 obtained by solving (2.5) with an initial
perturbation ĥ(x̂, t̂ = 0) = 1 − 0.1(1 − tanh(x̂/β)2), with β = 5, and for three values of σ̂ . For t̂ < T̂ = 2.03
the different curves cannot be distinguished. The solid line represents the scaling ĥ(x̂ = 0, t̂) ∼ (1 − t̂/T̂)1/3

expected for σ̂ � 1, with a fitted prefactor. (b) Waiting time for onset of adhesion for two values of the size β
of the initial perturbation. The markers represent numerical simulations (squares: β = 2; circles: β = 5), and
the solid lines represent constant values of T̂ . We extract the waiting time from the numerical simulations by
defining it as the time it takes for ĥ(x̂ = 0, t̂) to go from the initial condition down to 1.1σ̂ .

only play a role very close to the substrate, with the adhesion time following the scaling
law τw ∼ τμ independently of σ̂ :

τw = T̂
12μh3∞B1/2

(A/6π)3/2
, (3.1)

where the dimensionless adhesion time T̂ is a constant. In figure 2, we show that our
numerical simulations follow this scaling relation. While the value of T̂ depends on the
initial perturbation to the flat sheet, for t̂ � T̂ , the evolution of the system is independent of
initial conditions. It may be useful to compare (3.1) with the capillary time for the rupture
of a thin liquid film. In this situation, the rupture time scales as μh5∞γLV/A2 (Zhang &
Lister 1999; Carlson et al. 2013), where γLV is the liquid–vapour surface tension, and
shows a stronger dependence on both the Hamaker constant A and the far-field height
h∞, reflecting the intuition that elastohydrodynamic touchdown is slowed down by the
effectively larger ‘stiffness’ (at short length scales) of an elastic sheet relative to a capillary
interface.

3.2. Scale and speed of the adhesion front
After first contact, once h(x = 0, t) � σ , the adhesion front grows longitudinally and a
localized fluid-filled blister starts to move rightwards (a symmetric one grows leftwards as
well). Defining the apparent contact line as the point of maximum curvature, i.e. R(t) =
arg maxx(hxx(x, t)), in figure 3(a) we show our numerical simulations that are consistent
with R(t) moving at a constant speed c = dR/dt. To characterize the speed of the contact
line, we first consider the integrated viscous dissipation rate. In figure 3(b), we show
that the viscous power per unit width

∫ +∞
0

∫ h
0 μu2

y dy dx = ∫ +∞
0 h3(x, t)p2

x(x, t) dx/12μ
becomes time independent at long times, where u(x, y) is the Poiseuille velocity profile
(Batchelor 1967; Oron et al. 1997) used to derive (2.3). At a scaling level, the viscous
dissipation scales as μ(c/σ)2Ω , where Ω ∼ σ lc. Balancing the driving adhesive power
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Figure 3. Data from a numerical simulation of (2.5) with σ̂ = 0.12. (a) Growth of the adhesion front
R̂(t̂). For t̂ > T̂ , R̂(t̂) becomes linear. The inset shows the behaviour for t̂ ≈ T̂ , highlighting the fact that
the constant speed (dashed line) is quickly reached. (b) The instantaneous viscous dissipation power,∫ +∞

0 ĥ3(x̂, t̂)p̂2
x̂(x̂, t̂) dx̂, shows a sharp increase at the onset of adhesion and then evolves towards a constant

value.

per unit width cA/σ 2 with the viscous power μc2lc/σ then yields c ∼ A5/4/μσ 2B1/4.
We note that this last scaling is the same as the one given by Rieutord et al. (2005)
and Navarro et al. (2013), but with σ replaced by a molecular mean free path used as
an arbitrary cutoff length, unlike in our case, where it is the equilibrium height arising
naturally from the intermolecular potential Φ. Following the brief discussion in § 2.2, if
we use the relevant height scale in the adhesion front σ and the relevant length scale lc,
this leads to the following dimensionless quantities:

h̃ = h
σ
, η̃ = η

lc
, lc = σ

(
B

A/6π

)1/4

, t̃ = t
σ̂ 3τμ

, (3.2a–d)

it follows that the speed of the adhesion front is

c = C̃
(A/6π)5/4

12μσ 2B1/4 , ĉ = C̃σ̂−2, (3.3a,b)

where the dimensionless constant C̃ is yet to be determined.
Figure 4(a) shows that our simulations indeed follow (3.3a,b). To go beyond this scaling

analysis and predict the value of the constant C̃, we look for a travelling wave solution
as in related problems (Lister et al. 2013; Wang & Detournay 2021). Letting h(x, t) =
f (η) with η = x − ct transforms the governing partial differential equation (2.3) into an
ordinary differential equation, which we make dimensionless (3.2a–d) and integrate once
by introducing the constant h0 = σ h̃0 such that h → h0 as η → −∞. We note that h0
is not necessarily equal to σ , even though we expect the two values to be close, since
the pressure gradient vanishes for any constant height profile. This leads to the nonlinear
ordinary differential equation

C̃( f̃ − h̃0)+ f̃ 3
(

f̃ ′′′′ + 1

f̃ 3
− 1

f̃ 9

)′
= 0, (3.4)

with (.)′ = d(.)/dη̃. This fifth-order nonlinear ordinary differential equation with two
unknown parameters, h̃0 and C̃, is subject to a pair of constraints. The first is that as
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Figure 4. (a) Speed ĉ of the adhesion front for different initial conditions and far-field profiles (discussed
in § 4.3), with σ̂ = 0.12, 0.09, 0.06, 0.03, 0.01 and obtained by solving (2.5). The dashed line represents
(3.3a,b), with the prefactor 0.281 obtained by solving (3.4). (b) Same data normalized according to (3.2a–d),
highlighting the better agreement between numerical simulations and theory as σ̂ decreases.

η̃ → −∞, f̃ → h̃0. The second is that, when η̃ → +∞, (3.4) simplifies to C̃f̃ + f̃ 3 f̃ ′′′′′ = 0
and we expect a self-similar solution of the form f̃ (η̃) ∼ (243/280)1/3C̃1/3η̃5/3.

Using these conditions, we solve numerically (3.4) using the bvp4c routine implemented
in MATLAB (see Appendix A for details) and find that C̃ = 0.281, h̃0 = 1.017. The
maximum curvature of the profile is κ̃max = 0.551 and is discussed further in § 6. Figure 4
shows that the value of C̃ is qualitatively consistent with our simulations; although
there are deviations of up to 40 %. This disagreement likely comes from the finite ratio
between the size of the adhesion front and the domain size leading to a lack of scale
separation; indeed, as σ̂ becomes smaller, we see a tendency towards the asymptotic state
consistent with the self-similar dynamics. In figure 5(a,b), we show the comparison of
the height profile from the numerical simulation of the reduced equation (3.4) and the
profile obtained from the full partial differential equation (2.5) with σ̂ = 0.12. While the
overall agreement is good, it may seem surprising that h0 differs from σ , even if by only
2 %. To understand this, we note that the dispersion relation discussed in § 3.1 shows that
a profile with constant height h0 is linearly stable if h0/σ < 31/6 � 1.20. As a point of
comparison with the much better studied case of dewetting of liquid films, we note that
there too the height ahead of the moving contact line differs slightly from the equilibrium
height (Eggers 2005).

3.3. Shape, size and dynamics of fluid-filled blister
Having determined the waiting time τw, the speed c of the apparent contact line and the
shape of the adhesion front, we now turn to a description of the blister developing ahead
of the adhesion front. We characterize the blister in terms of its maximum height H(t)
and width L(t). We expect that once the blister has grown sufficiently with H(t) � h∞, its
shape becomes independent of the local adhesion, even as it slowly spreads while gathering
fluid. To describe the shape of the blister, we adapt the analysis of related problems by
Peng et al. (2015) and Wang & Detournay (2021). In a moving frame with η = x − ct, the
height profile of the blister hb(η) can be obtained by integrating (2.2) and considering a
spatially invariant pressure profile p � Bhηηηη, neglecting the van der Waals interaction.
Using clamped boundary conditions, i.e. h = 0, hη = 0 at the apparent contact line defined
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Figure 5. (a) Comparisons of the height profile between the asymptotic results (lines) and a numerical
simulation of (2.5) with σ̂ = 0.12 at time t̂ − T̂ = 27.34 (crosses). Markers are spaced to facilitate readability
and do not correspond to the numerical grid. Other panels show details of each region in a travelling reference
frame η, rescaled differently in each region according to the non-dimensionalizations discussed in the text.
(b) Adhesion region. The line is the numerical solution of (3.4). (c) Blister. The line is (3.5), where Ĥ and L̂
have been extracted from the numerical profile. (d) Peeling front. The line is the numerical solution of (3.9).

as η = 0 and at the peeling front η = L(t) then gives

hb(η, t) = 16
H(t)
L4(t)

η2 (L(t)− η)2 . (3.5)

To determine the height H(t) and width L(t) of the blister we impose fluid mass
conservation and a shape continuity condition at the peeling front. Assuming that most
of the displaced fluid accumulates in the blister and that the volume of the remaining fluid
between the sheet and the substrate after adhesion is negligible, i.e. σ/h0 � σ̂ � 1, we
can write ∫ L(t)

0
hb(η, t) dη =

∫ ct

0
h(x, 0) dx. (3.6)

For an initially flat sheet,
∫ ct

0 h(x, 0)dx = cth∞. Then using (3.5), we find that (3.6)
simplifies to 16H(t)L(t)/30 = cth∞.

At η = L(t), the solution within the blister must be consistent with the dynamics of the
peeling front that is observed numerically in figure 5(a,d). We assume that the speed c of
the adhesion (healing) front is the same as that of the peeling front, i.e. that the blister
moves much faster than its lateral growth rate dL/dt. At the peeling front, the far-field
height h∞ and the peeling length Lp = (Bh3∞/12μc)1/5 conspire to yield a local curvature
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Figure 6. Characterization of the blister with σ̂ = 0.12, showing the time evolution of (a) its maximal height Ĥ
and (b) its lateral extent L̂. Solid lines represent numerical solutions of (2.5) and dotted lines are the predictions
(3.8). Numerically, we define Ĥ as the maximal height of the sheet and L̂ as the distance between the two local
minima of ĥ surrounding the point of maximal height. The time is shifted by the adhesion time because the
analysis of the blister is only relevant once a blister is actually formed.

that scales as κ ∼ h∞/L2
p, which then gives (up to a prefactor)

c = Bh
1
2∞

12μ

( κ

1.35

)5/2
. (3.7)

Here, the prefactor 1.35 comes from the matching procedure between the blister and the
peeling front first carried out by Lister et al. (2013), and which we briefly discuss next in
§ 3.4.

Since the adhesion speed is determined by the behaviour in the adhesion zone outside
of the blister, and is given by (3.3a,b), we interpret (3.7) as an expression that determines
the curvature as a function of the speed. Using the blister profile (3.5) yields the curvature
at the peeling front κ = hbηη(η = L(t)) = 32H(t)/L2(t). Substituting this value in (3.7)
gives a second relation between H(t) and L(t). Together with (3.6) these relations yield

H(t) = 0.53
(

12μ
B

)2/15

h3/5
∞ c4/5t2/3, Ĥ(t̂) = 0.53ĉ4/5 t̂2/3 (3.8a)

L(t) = 3.54
(

B
12μ

)2/15

h2/5
∞ c1/5t1/3, L̂(t̂) = 3.54ĉ1/5 t̂1/3. (3.8b)

We note that the assumption that the healing and peeling fronts move at the same speed
translates to the condition dL/dt � c, and is consistent with (3.8b) that predicts dL/dt →
0 at long times while c remains constant. Figure 6 shows that the height H(t) and lateral
extent L(t) obtained from numerical simulations are indeed close to (3.8), and figure 5(c)
shows that the quartic profile (3.5) describes the blister well, validating the hypothesis of
spatially invariant bending pressure within it (Flitton & King 2004; Lister et al. 2013).

3.4. Peeling front mechanics
In the region ahead of the blister, the peeling front, following the analysis of Lister et al.
(2013) for a similar problem, we neglect van der Waals forces ahead of the blister and look
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for a travelling wave solution h(x, t) = ψ(η) to (2.3). This leads to the ordinary differential
equation cψ ′ + (B/12μ)ψ3ψ ′′′′′ = 0. Ahead of the blister, the scale of the height is h∞
and we therefore introduce the non-dimensionalization ψ� = ψ/h∞ = ψ̂ and η� = η/Lp,
with Lp = (Bh3∞/12μc)1/5 a peeling length scale. This simplifies the above equation to

ψ�+ψ�3ψ�′′′′′ = 1 (3.9)

for the height profile ahead of the blister and is supplemented with the boundary conditions
discussed by Lister et al. (2013), namely, imposing a constant curvature as η� → −∞,
towards the blister, and a flat profile ψ� → 1 as η� → +∞. In figure 5(d), we show the
results obtained by solving the (3.9) using the bvp4c routine implemented in MATLAB
and the numerical solution of the complete partial differential equation (2.5) and see good
agreement between the two.

4. Consistency and robustness of different regimes/regions in elastohydrodynamic
adhesion

The analysis presented in § 3 describes the whole shape of the elastic sheet. It shows
different regions where the relative balances between adhesion, elasticity and fluid-driven
pressure are a function of the scale separation implied by the lubrication dynamics of the
squeeze flows in the narrow gap between the sheet and the substrate. We now consider the
robustness of our results to variations in the details of the balances.

4.1. Nature of the matching between the adhesion front and the blister
The solution in the adhesion front described in § 3.2 and that of the blister described in
§ 3.3 need to be consistent, and so must match in the intermediate region connecting them.
We find that in the adhesion front, as η̃ → +∞ (going towards the blister), the curvature
κ̃ → 0 since the height profile evolves as η̃5/3. In contrast, our analysis of the solution
in the blister predicts that, as η → 0 (going towards the adhesion front), the curvature
is given by (3.7), i.e. κ = 1.35(12μc/Bh∞)2/5. In dimensionless units, the curvature in
the blister zone is then κ̃ = 1.35(σ/h∞)1/5 = 1.35σ̂ 1/5, and is therefore consistent with
the curvature in the adhesion front when 1.35σ̂ 1/5 → 0. This very restrictive criterion
explains why the value of the prefactor in the adhesion speed in (3.3a,b) differs from the
one observed numerically for values of σ̂ that are reasonable to allow for precise numerical
simulations of (2.5). Indeed, we have presented results for σ̂ ∈ [0.12, 0.01], corresponding
to 1.35σ̂ 1/5 ∈ [0.88, 0.54], respectively. In Appendix B, we provide a brief discussion of
the matching conditions connecting the adhesion front and the blister.

4.2. Role of intermolecular potential
While we have chosen the Lennard-Jones potential (2.1) for this study, this is but one
choice of many potentials for intermolecular interactions. The physical picture we have
described here is robust to alterations of the functional form of the potential, as long as
it is a combination of a long-range adhesion and a short-range repulsion. None of the
scaling analyses we have discussed depend on the functional form of the repulsion; only
the prefactors of the quantities characterizing the adhesion front depend on it. We have
verified (results not presented here) that performing simulations of (2.5) with the same
attractive potential as in (2.1) but replacing the repulsive part by σ 3/5h5 leads to the same
behaviour, albeit with different prefactors for the adhesion speed, height at the tail and
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maximum curvature. These prefactors can be obtained in the limit σ̂ → 0 by adapting the
boundary value problem (3.4) appropriately. For example, going from a repulsion potential
that scales as 1/h8 to a weaker one evolving as 1/h5 decreases the adhesion speed C̃ from
0.281 to 0.212, decreases the maximum curvature κ̃max from 0.551 to 0.478 and increases
the height at the adhesion tail h̃0 from 1.017 to 1.026, but all our scaling results remain
robust to this change.

4.3. Role of far-field conditions
The analysis of § 3.2 to characterize the adhesion front is independent of the far-field
conditions and especially the height as long as 1.35σ̂ 1/5 � 1. Simulations of (2.5) with an
initial condition for the height as a linear or parabolic profile, ĥ(x̂, t̂ = 0) = 0.9 + x̂/10 and
ĥ(x̂, t̂ = 0) = 0.9 + x̂2/25, respectively, indeed show a front that continues to propagate
with a constant speed, with a value close to the one predicted (figure 4). However, the
analysis of § 3.3 and § 3.4 for the blister shape, size and the dynamics of the peeling
region needs to be adapted slightly. In particular, the relation (3.7) between the speed
and curvature will be modified by the change in the far-field profile, and the assumption
dL/dt � c may not always hold anymore; we leave these studies for the future.

4.4. Role of substrate roughness
Our model of adhesion assumes a perfectly smooth substrate and sheet, and neglects the
effects of surface roughness. At the scales involved in such instances as the adhesive
bonding of silicone wafers, substrate roughness can lead to contact at asperities (Rieutord
et al. 2006; Moriceau et al. 2011) or can even induce capillary condensation due to
the Kelvin effect (de Boer & de Boer 2007; Fournel et al. 2015). These effects are
challenging to model in our lubrication model, which relies on a long-wavelength analysis.
Nevertheless, the scaling result (3.3a,b) for the adhesion speed and the profile f̃ (η̃) ∼ η̃5/3

discussed in § 3.2 are consistent with experimental results (Rieutord et al. 2005; Navarro
et al. 2013), with the qualification that roughness leads to a modified value of the work of
adhesion W = A/16πσ 2.

5. Effective contact line dynamics

The question of the singular nature of the deformations of the sheet in the adhesion
front is similar to but different from that seen in dewetting fluid films. To characterize
this, following (3.2a–d), the slope of the sheet scales as hx ∼ σ/lc ∼ (A/B)1/4 ∼
σ 1/2(W/B)1/4 and the curvature scales as hxx ∼ σ/l2c ∼ (A/B)1/2σ−1 ∼ (W/B)1/2. We
see that the curvature of the sheet diverges in the contact zone as σ̂ → 0, but is suppressed
over a region of size lc ∼ σ(B/A)1/4 ∼ σ 1/2(B/W)1/4 determined by the balance elastic
bending and the attractive part of the disjoining pressure. This scaling is consistent with
the analysis of § 3.2 predicting the maximum curvature to be κmax = 0.551(A/6πBσ)1/2.
Figure 7 shows good agreement between the numerical simulations and this prediction,
and highlights the near-singular nature of the curvature.

In the limit of contact, σ̂ = σ/h∞ → 0 while keeping a fixed value of the work of
adhesion W = A/16πσ 2, the slope hx and adhesion speed c converge to zero while the
curvature hxx scales as (W/B)1/2. This is in agreement with the boundary conditions
for an adherent sheet, where the following applies at the stationary elastic contact line
(Obreimoff 1930; Landau & Lifshitz 1986; Majidi & Adams 2009): h(R) = 0, hx(R) = 0,
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Figure 7. Characterization of the elastohydrodynamic contact zone. The maximum curvature in the contact
zone, κ̂max, is shown for different values of σ̂ and different initial profiles, illustrating the singular nature of
the curvature as σ̂ → 0. Results are shown by extracting the maximum curvature of the different simulations
of (2.5) at R̂ = 100. The prefactor 0.551 is obtained by solving the boundary value problem (3.4) and matches
well with numerical results. Inset: spatial profile of the curvature with σ̂ = 0.12.

hxx(R) = (2W/B)1/2. However, in the dynamic case treated in this study, this condition is
replaced by a condition on the speed of the apparent contact line (3.3a,b). These results
might be contrasted with the analogous problem of describing static and dynamic contact
lines in interfacial hydrodynamics where a static contact line has a constant contact angle,
whereas a dynamic contact line has a contact angle that is a function of its speed (de
Gennes 1985; Bonn et al. 2009; Snoeijer & Andreotti 2013).

6. Conclusions

Our theoretical study of the viscously limited elastohydrodynamics of adherent sheets
captures a range of different processes of dynamical adhesion, from the short-time onset
of adhesion to the long-time dynamics associated with a steadily propagating adhesion
front. A simple mathematical model provides a compact formulation that naturally couples
the microscopic physics at the apparent elastic contact line and the macroscopic physics
associated with elastic deformation and fluid flow, complementing earlier analyses of the
problem. Numerical simulations reveal different regions of the sheet: an adherent zone
x < R(t) at constant height h0 � σ , an inner contact zone where viscous flow, elastic
bending and microscale adhesion are all equally important and an outer region with h � σ

where the sheet is described by viscous flow and elastic bending. An asymptotic similarity
analysis of the governing partial differential equation allows us to describe the full shape
of the sheet and the speed of the adhesion front. In addition, we have derived the effective
boundary conditions for the dynamic apparent elastic contact line, which highlights its
singular nature and distinguishes it from analogous contact line conditions for a static
sheet.

Just as high resolution total internal reflection fluorescence microscopy allowed for a
more detailed view of the dynamics of liquid contact lines (Snoeijer & Andreotti 2013),
we hope that our theoretical study might engender further experimental investigation of
the nature of the elastohydrodynamic contact line that arises in a wide range of problems
where elastic interfaces adhere to solid substrates in fluid environments, and for which the
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actual physical mechanisms that regularize the contact line singularity in experiments can
be hard to discriminate (Berhanu et al. 2019).
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Appendix A. Solution in the adhesion front

The fifth-order differential equation (3.4) for the function f̃ and the two unknowns C̃ and h̃0
is well posed when subject to the boundary conditions discussed below, i.e. these boundary
conditions correspond to seven constraints.

As η̃ → −∞, f̃ → h̃0; by letting f̃ (η̃) = h̃0(1 + g̃(η̃)) and substituting into (2.3)
to perform a linear stability analysis of the flat state, we find that g̃ satisfies a
linear differential equation whose solutions are linear combinations of the family of
functions η̃ → exp(ωkη̃), where the (ωk)k=1...5 are the roots of the polynomial equation
ω5 + (9h̃−10

0 − 3h̃−4
0 )ω + C̃h̃−3

0 = 0. We observe numerically that, for all positive h̃0 and
C̃, this equation always has exactly three solutions whose real parts are negative. The
coefficients in g̃ associated with the latter must vanish; this shows that the asymptotic
behaviour of f̃ as η̃ → −∞ sets three constraints.

As η̃ → +∞, the height of the sheet grows and we expect that f̃ (η̃) � h̃0 and
that the contribution of the van der Waals potential becomes negligible. For large
enough η̃, (3.4) then becomes approximately f̃ 3 f̃ ′′′′′ + C̃f̃ = 0. In the neighbourhood
of the adhesion front, we expect to observe a self-similar, scale-invariant behaviour
if there is a proper scale separation between the adhesion front and the rest of the
sheet. The only power-law solution to f̃ 3 f̃ ′′′′′ + C̃f̃ = 0 is F̃(η̃) = (243/280)1/3C̃1/3η̃5/3,
previously discussed by Rieutord et al. (2005). Hence, we seek a solution to (3.4)
whose asymptotic behaviour as η̃ → +∞ is f̃ (η̃) ∼ F̃(η̃). Letting f̃ (η̃) = H̃(η̃)+ G̃(η̃)
and neglecting second- and higher-order terms in G̃ gives the following differential
equation: η̃5G̃′′′′′ − (560/243)G̃ = 0. The solutions are linear combinations of the family
of functions η̃ → η̃ξk , where the (ξk)k=1...5 are the five roots of the polynomial equation
(3ξ − 2)(81ξ4 − 756ξ3 + 2331ξ2 − 2496ξ + 280) = 0. Three of these solutions have a
real part Re(ξk) > 5/3 so that the associated coefficients must vanish. This shows that the
asymptotic behaviour of f̃ as η̃ → +∞ sets three constraints.

We thus see that the asymptotic behaviour of f̃ at ±∞ corresponds to six constraints.
In addition, since we are looking for a travelling wave solution, the problem should be
invariant by translation: this implies a seventh constraint and shows that solving (3.4) for
f̃ , C̃ and h̃0 with f̃ → h̃0 as η̃ → −∞ and f̃ (η̃) ∼ F̃(η̃) as η̃ → +∞ is a well-posed
problem. We solve (3.4) numerically using the boundary value problem solver bvp4c
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implemented in MATLAB, with the seven boundary conditions f̃ (−η̃∞) = h̃0, f̃ ′(−η̃∞) =
f̃ ′′(−η̃∞) = 0, and f̃ (n)(η̃∞) = F̃(n)(η̃∞) for n = 0 . . . 3. We start with a small value of
η̃∞ to facilitate convergence and iteratively increase the domain size, using solutions on
smaller domains to construct an initial guess. We do so until the solution converges and
does not depend significantly on the domain size. The solution is shown in figure 5(b), and
we find that C̃ = 0.281 and h̃0 = 1.017.

Appendix B. Matching between the adhesion front and the blister

We consider here the intermediate matching region between the adhesion front (§ 3.2)
and the blister (§ 3.3). The scales of this region are found by estimating when the
decreasing curvature of the far-field shape of the adhesion front given by f̃ ′′(η̃) ∼
(10/9)(234/280)1/3C̃1/3η̃−1/3 as η̃ → ∞ becomes comparable to the curvature of the
blister, κ̃ = 1.35σ̂ 1/5 in dimensionless units of the adhesion front. This yields the natural
scales η̃0 = C̃/κ̃3 ∼ σ̂−3/5 and f̃0 = C̃2/κ̃5 ∼ σ̂−1. Denoting by f̄ the height and by η̄ the
longitudinal coordinate non-dimensionalized by these scales, and balancing the viscous
and bending forces, we are led to an equation similar to that in the zippering region (§ 3.4)
along with the asymptotic conditions that together read as

1 + f̄ 2 f̄ ′′′′′ = 0, (B1a)

f̄ ∼
(

243
280

)1/3

η̄5/3 as η̄ → 0, f̄ ∼ η̄2

2
as η̄ → ∞. (B1b)

We note that (B1b) sets the asymptotic behaviour of f̄ and therefore corresponds to a
sufficient number of conditions to completely determine the solution. While the reduced
(B1) can be solved numerically, our results obtained from the solution of the full governing
partial differential equation (2.5) for finite values of σ̂ ∈ [0.01 − 0.12] do not reveal the
structure of this intermediate region. In particular, our simulations do not exhibit a clear
region with constant curvature. Therefore, we do not present results that compare these
different approaches here.
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