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Abstract. The critical dimension is an invariant that measures the growth rate of the sums
of Radon–Nikodym derivatives for non-singular dynamical systems. We show that for
Bratteli–Vershik systems with multiple edges, the critical dimension can be computed by
a formula analogous to the Shannon–McMillan–Breiman theorem. This extends earlier
results of Dooley and Mortiss on computing the critical dimensions for product and Markov
odometers on infinite product spaces.

1. Introduction
In this paper, we prove that for Bratteli–Vershik systems with multiple edges, the critical
dimension can be computed by a formula analogous to the Shannon–McMillan–Breiman
theorem and coincides with the average coordinate entropy.

Throughout the paper, let (X, B, µ, T ) be a non-singular measurable dynamical system.
That is, the transformation T is invertible and bi-measurable, andµ ◦ T andµ are mutually
absolutely continuous (µ ◦ T ∼ µ). We assume that the system is ergodic in the sense that
every T -invariant measurable set or its complement has measure zero. We also assume
that the system is conservative, that is, the union of the collection of the wandering sets has
measure zero.

Dooley and Hamachi [3] proved that every ergodic non-singular system is orbit
equivalent to a Bratteli–Vershik system with a Markov odometer; moreover, considered
as a G-measure in the sense of [3], the system may be taken to be uniquely ergodic.
Bratteli–Vershik systems with Markov odometers as defined in [3] are none other than
Bratteli–Vershik systems satisfying conditions (M1) and (M2) given in §3 of this paper.

For measure-preserving systems, where µ ◦ T = µ, entropy has proved to be an
effective invariant under metric isomorphisms. Ornstein [13] proved that entropy is
a complete invariant for Bernoulli systems. For non-singular systems, however, it is
generally believed that no form of entropy can exist, and a new invariant is needed to
classify them.
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To address this problem, Mortiss [12] introduced the notion of critical dimension for
analyzing ergodic, conservative, non-singular dynamical systems. The critical dimension
measures the asymptotic growth rate of the sums of Radon–Nikodym derivatives. The
critical dimension, when it exists, is an invariant under metric isomorphism [5]. Hence, the
critical dimension can play a role in distinguishing the behavior of non-singular dynamical
systems.

Although it is not entropy, the critical dimension for fundamental Bratteli–Vershik
systems is shown to possess some characteristics of entropy. The critical dimension, when
it exists, can be calculated for product odometers and Markov odometers on infinite product
spaces. It satisfies a version of the Shannon–McMillan–Breiman theorem and coincides
with the average coordinate (AC) entropy introduced by Mortiss [10, 11].

Now the natural question is to extend these results to Bratteli–Vershik systems. This
paper is a step in that direction. We prove that for Bratteli–Vershik systems with multiple
edges and a uniform bound on the number of edges with the same source, the critical
dimension can be computed by a formula analogous to the Shannon–McMillan–Breiman
theorem and coincides with the AC entropy. Our proof in this paper is self contained. Note
that Bratteli–Vershik systems with multiple edges include infinite product spaces equipped
with Markov odometers as a special case. The condition that there is a bound on the
number of edges with a given source was needed even in the product case, where it is a
uniform bound on the number of coordinates.

It is of interest to know the extent to which the critical dimension characterizes non-
singular dynamical systems. Dooley [2] defines the notion of Hurewicz maps, which
induce Hurewicz equivalence of non-singular systems. In this paper, we prove that the
critical dimension is preserved under Hurewicz equivalence.

This paper is organized as follows. In §2 we define the critical dimension for ergodic,
conservative, non-singular dynamical systems and list some of its properties. We define
the notion of Hurewicz maps between non-singular systems and show that the critical
dimension is preserved under Hurewicz equivalence. In §3 we define Bratteli–Vershik
systems. We then explain assumptions on Bratteli–Vershik systems considered in this
paper. In §4 we define the average coordinate (AC) entropy. We state a generalized law
of large numbers and use it to obtain a convergence formula involving the AC entropy. In
§5 we prove that for Bratteli–Vershik systems with multiple edges, the critical dimension
can be calculated by a formula analogous to the Shannon–McMillan–Breiman theorem and
coincides with the AC entropy.

2. Critical dimension and Hurewicz equivalence
The following definitions are taken from [4, 5]. Let (X, B, µ, T ) be an ergodic,
conservative, non-singular measurable dynamical system with µ(X)= 1. For x in X ,
let ωi (x) denote the i th Radon–Nikodym derivative of the system, that is, the L1-
function mod µ satisfying µ(T i A)=

∫
A ωi (x) dµ(x) for all A ∈ B. We write ωi (x)=

(dµ ◦ T i/dµ)(x).

Definition 2.1. Let α′ > 0 and set

Xα′ =

{
x ∈ X : lim inf

n→∞

∑n−1
i=0 ωi (x)

nα′
> 0

}
.
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Notice that Xα′ is an invariant set. The supremum over the set of α′ for which
µ(Xα′)= 1 is called the lower critical dimension α of (X, B, µ, T ).

Definition 2.2. Let β ′ > 0 and set

Xβ ′ =

{
x ∈ X : lim sup

n→∞

∑n−1
i=0 ωi (x)

nβ ′
= 0

}
.

Notice that Xβ ′ is an invariant set. The infimum over the set of β ′ for which µ(Xβ ′)= 1 is
called the upper critical dimension β of (X, B, µ, T ).

Note† that for µ-almost every x ∈ X , we have

α = lim inf
n

log
n−1∑
i=0

ωi (x)/log n

and

β = lim sup
n

log
n−1∑
i=0

ωi (x)/log n.

When α = β, we say that the system has critical dimension α. By a result of Maharam [9],
it can be shown that the inequalities 0≤ α ≤ β ≤ 1 hold. The critical dimension, when it
exists, is an invariant under metric isomorphism [5].

A standard notion of equivalence of non-singular dynamical systems is that of orbit
equivalence. Two non-singular systems (X, B, µ, T ) and (Y, C, ν, S) are orbit equivalent
if there exists an invertible bi-measurable map 8 : X→ Y such that ν ◦8∼ µ and a
cocycle σ : Z× X→ Z satisfying Sn8x =8T σ(n,x)x for µ-almost every x ∈ X .

An ergodic non-singular system that is neither atomic nor measure preserving is of
type III. Type III systems are divided into type IIIλ, λ ∈ [0, 1], systems by the Krieger–
Araki–Woods ratio set. Krieger [8] proved that there is a unique orbit equivalence class
within type IIIλ systems, where λ ∈ (0, 1]. For each λ ∈ [0, 1] and ε ∈ [0, 1], a type IIIλ
system with critical dimension ε exists [11]. Hence, the critical dimension can be regarded
as a refinement of orbit equivalence.

It is of interest to define the notion of equivalence that preserves the critical dimension.
We would want such equivalence to be finer than orbit equivalence but coarser than metric
equivalence. Such a notion is induced by a natural class of maps satisfying the following
lemma. Let ωX

i denote the i th Radon–Nikodym derivative of the system (X, B, µ, T ).

LEMMA 2.3. [2] Suppose that for µ-almost every x ∈ X,

0< lim inf
n→∞

∑n−1
i=0 ω

X
i (x)∑n−1

i=0 ω
X
σ(i,x)(x)

≤ lim sup
n→∞

∑n−1
i=0 ω

X
i (x)∑n−1

i=0 ω
X
σ(i,x)(x)

<∞.

Then the upper and lower critical dimensions of (X, B, µ, T ) and (Y, C, ν, S) agree.

Definition 2.4. Call the orbit equivalence 8 a Hurewicz map if it satisfies inequalities in
Lemma 2.3. The class of Hurewicz maps induces the Hurewicz equivalence of non-singular
dynamical systems.

† Here, and in what follows, we shall take logarithms to base 2. This is natural in the case of products of two-point
spaces. Changing to a different base leaves the critical dimension unchanged.
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Example. A Hurewicz map that is not a metric isomorphism. Let

X = Y =
∞∏

i=1

Z2 =

∞∏
i=1

{0, 1},

B be the usual Borel σ -algebra on X and Y , and T be the odometer on X (S on Y ,
respectively). Let ν1 and ν2 be distinct measures on {0, 1} satisfying ν1(0)ν1(1) 6= 0 and
ν2(0)ν2(1) 6= 0. Define product measures µ1 on X and µ2 on Y by

µ1 = ν1 ⊗ ν2 ⊗ ν1 ⊗ ν2 ⊗ · · ·

and
µ2 = ν2 ⊗ ν1 ⊗ ν2 ⊗ ν1 ⊗ · · · .

Let the permutation p : N→ N be given by p(2n)= 2n − 1 and p(2n − 1)= 2n for
n ∈ N, and construct the orbit equivalence 8 : X→ Y by 8((xi ))= (x p(i)).

The map 8 induces an orbit equivalence between (X, B, µ1, T ) and (Y, B, µ2, S):
indeed, 8 is invertible and bi-measurable; moreover, it satisfies µ2 ◦8= µ1, and the
existence of a cocycle σ satisfying Sn8x =8T σ(n,x)x for µ1-almost every x ∈ X is easy
to see.

We show that 8 is a Hurewicz map. Rewriting the denominator of the quotient in
Lemma 2.3 in terms of µ2, we get∑n−1

i=0 ω
X
i (x)∑n−1

i=0 ω
X
σ(i,x)(x)

=

∑n−1
i=0 ((dµ1 ◦ T i )/dµ1)(x)∑n−1

i=0 ((dµ1 ◦ T σ(i,x))/dµ1)(x)
=

∑n−1
i=0 ((dµ1 ◦ T i )/dµ1)(x)∑n−1

i=0 ((dµ2 ◦ Si )/dµ2)(8x)
.

(1)
Proposition 2.1 of [11] implies that

h AC (µ1)= h AC (µ2)=
1
2 (h(ν1)+ h(ν2)),

where h(ν1) is the entropy of the partition {{0}, {1}} of (Z2, B(Z2), ν1) (h(ν2) and
(Z2, B(Z2), ν2), respectively). Write h AC (µ1)= h AC (µ2)= α. Now (1) can be written as

(1/nα)
∑n−1

i=0 ((dµ1 ◦ T i )/dµ1)(x)

(1/nα)
∑n−1

i=0 ((dµ2 ◦ Si )/dµ2)(8x)
.

By [5, Theorems 3.2 and 3.4], both the numerator and the denominator converge to a finite
non-zero limit almost everywhere (as α is the critical dimension). Hence, the quotient also
converges to a non-zero finite limit as n→∞. It follows that 8 is a Hurewicz map.

To see that 8 is not a metric isomorphism, take x = (0, 0, . . .) ∈ X , for example.
The set of paths in X whose first two entries are 0 has non-zero measure. Clearly,
T8x = (1, 0, . . .) but 8T x = (0, 1, . . .).

We can show that certain Bratteli–Vershik systems are not Hurewicz equivalent. Indeed,
it will follow from Theorems 5.1 and 5.5 that Bratteli–Vershik systems with different upper
and lower AC entropies are not Hurewicz equivalent. (See for example [11].)

Proof for Lemma 2.3. The proof uses techniques in [12]. Only the proof for the lower
critical dimension will be presented; the proof for the upper critical dimension is similar.
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Let ωY
i denote the i th Radon–Nikodym derivative of (Y, C, ν, S). Note that for µ-almost

every x ∈ X ,
dν ◦8

dµ
(T σ(i,x)x)ωX

σ(i,x)(x)= ω
Y
i (8x)

dν ◦8

dµ
(x)

holds. Take a set A ⊂ X such that µ(A) > 0 and on which dν ◦8/dµ is bounded above
and below. For x ∈ A, we have

n−1∑
i=0

χA(T
σ(i,x)x)ωX

σ(i,x)(x)≤ K
n−1∑
i=0

χ8A(S
i8x)ωY

i (8x)

for some K > 0. By the Hurewicz ergodic theorem, for 0< ε < µ(A), there exists
N (x) > 0 such that for n > N (x),

(µ(A)− ε)
n−1∑
i=0

ωX
σ(i,x)(x) <

n−1∑
i=0

χA(T
σ(i,x)x)ωX

σ(i,x)(x)

≤ K
n−1∑
i=0

ωY
i (8x).

Denote by m(x) and M(x) the lim inf and lim sup of

n−1∑
i=0

ωX
i (x)

/ n−1∑
i=0

ωX
σ(i,x)(x) as n→∞,

respectively. By the assumption, the inequalities 0< m(x)≤ M(x) <∞ hold for
µ-almost every x ∈ X . We have that

(µ(A)− ε)m(x) lim inf
n→∞

∑n−1
i=0 ω

X
σ(i,x)(x)

nα′
≤ (µ(A)− ε) lim inf

n→∞

∑n−1
i=0 ω

X
i (x)

nα′

≤ (µ(A)− ε)M(x) lim inf
n→∞

∑n−1
i=0 ω

X
σ(i,x)(x)

nα′

≤ M(x)K lim inf
n→∞

∑n−1
i=0 ω

Y
i (8x)

nα′

for µ-almost every x ∈ X . From here, it is easy to obtain the desired result. 2

3. Bratteli–Vershik systems
In this section, we give definitions of the components of Bratteli–Vershik systems
(X, B, µ, T ). Much of the following is taken from Herman et al [7] and [3]; we reproduce
it here to establish notation. Also, we explain assumptions imposed on the systems.

A vertex set V =
⋃

i≥0 V i is a disjoint union of finite sets of vertices and an edge
set E =

⋃
i≥1 E i a disjoint union of finite sets of edges. The set V 0 is taken to be a

singleton. The sets V and E are related by source and range maps s, r : E→ V satisfying
the following: s(E i )⊂ V i−1 and r(E i )⊂ V i ; s−1(v) 6= ∅ for any v ∈ V and r−1(v) 6= ∅

for any v ∈ V \V 0. The pair (V, E) together with maps s and r is called a Bratteli–Vershik
diagram.

Throughout this paper, we assume that Bratteli–Vershik diagrams satisfy the following
conditions (BV1) and (BV2).
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(BV1) For each i ≥ 1, every vertex in V i−1 is connected to every vertex in V i by at least
one edge.

(BV2) There exists N > 0 such that |s−1(v)| ≤ N for any v ∈ V .
Diagrams satisfying condition (BV1) will be said to have multiple edges; any diagram

can be telescoped to a diagram satisfying this condition. Condition (BV2) states that there
is a uniform bound on the number of edges with a given vertex. This condition is used
critically in the proof of the lower bound below. It was also needed in the case of a
product space (the number of coordinates is uniformly bounded). We believe that even
in the product case, if the number of coordinates can grow unboundedly, the formulas in
Lemma 5.4 below may no longer hold.

If E is equipped with a partial order ≥ so that two edges e and e′ are comparable if
and only if r(e)= r(e′), then (V, E) is called an ordered Bratteli–Vershik diagram. In this
case, for each i ≥ 1 and v ∈ V i , the set E i (v)= r−1(v) is totally ordered. Denote by ei

′(v)

and ei
′′(v) the minimal edge and the maximal edge in E i (v), respectively. We may omit i

or v when they are clear from the context.
For m < n in N, define Pn

m to be the set of paths from V m to V n ,

Pn
m =

{
(em+1, . . . , en) :

ei ∈ E i for i = m + 1, . . . , n, and
r(ei )= s(ei+1) for i = m + 1, . . . , n − 1

}
.

For each v ∈ V n , define

Pn
m(v)= {(em+1, . . . , en) ∈ Pn

m : r(en)= v}.

Let s(n)= |Pn
0 |. Let X = X (V, E) be the associated set of infinite paths,

X = {(xi )i≥1 : xi ∈ E i and r(xi )= s(xi+1) for all i ≥ 1}.

Based on [3], we assume that for each i ≥ 1, there are two distinct vertices v′i and v′′i in
V i such that every minimal edge in E i+1 starts from v′i and every maximal edge in E i+1

starts from v′′i . Then the ordered Bratteli–Vershik diagram (V, E) is essentially simple
in the sense of [7]. Denote by xmax and xmin the unique maximal path and the unique
minimal path in X , respectively. Note that for each i ≥ 1, the inequalities 2≤ |V i

| ≤ N ,
22
≤ |E i

| ≤ N 2, and 2i
≤ s(i)≤ N i hold.

For each (e1, . . . , en) ∈ Pn
0 , define a cylinder set of length n by

[e1, . . . , en]
n
1 = {(xi )i≥1 ∈ X : xi = ei for i = 1, . . . , n}.

Cylinder sets of length n generate cylinder sets of the form

[em, . . . , en]
n
m = {(xi )i≥1 ∈ X : xi = ei for i = m, . . . , n}.

The σ -algebra B is generated by the cylinder sets. Let Pn denote the partition of X by
cylinder sets of length n.

The Vershik transformation T : X→ X is defined as follows. For xmax ∈ X , let
T xmax = xmin. For x ∈ X but x 6= xmax, at least one edge in x is not maximal. Let
xi be the non-maximal edge with the smallest coordinate i . Denote by ei the edge in
E i (r(xi )) next largest to xi and by (e1, . . . , ei−1) the unique minimal path in P i−1

0 (s(ei )).
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Let T x = (e1, . . . , ei−1, ei , xi+1, . . .). It is easy to show that the Vershik transformation
is invertible on X and bi-measurable with respect to B.

A matrix P i
= (P i

v,e), where (v, e) ∈ V i−1
× E i , is stochastic if it satisfies the

following conditions (i) and (ii):
(i) P i

v,e > 0 if and only if s(e)= v;

(ii)
∑e∈E i

s(e)=v P i
v,e = 1 for each v ∈ V i−1.

Non-zero entries P i
v,e are called weights on edges e ∈ E i . Given a sequence of stochastic

transition matrices P i , define a Markov measure µ on cylinder sets by

µ([e1, . . . , en]
n
1)= P1

s(e1),e1
· · · Pn

s(en),en
. (2)

Define the push-forward measure νn on V n by

νn(v)= µ({(xi )i≥1 ∈ X : r(xn)= v}) for each v ∈ V n .

We assume that the measure µ satisfies the following conditions (M1) and (M2).
(M1) For µ-almost every x ∈ X , there exist an integer n ≥ 1 and a block e1e2 · · · en such

that xn < en and µ([e1, e2, . . . , en, xn+1]
n+1
1 ) > 0.

(M2) For µ-almost every x ∈ X , there exist an integer m ≥ 1 and a block f1 f2 · · · fm such
that fm < xm and µ([ f1, f2, . . . , fm, xm+1]

m+1
1 ) > 0.

Then n = sup{i ≥ 1 : (T x)i 6= xi }<∞ for µ-almost every x ∈ X . The system is non-
singular; in fact,

dµ ◦ T

dµ
(x)=

P1
s(e1),e1

· · · Pn
s(en),en

P1
s(x1),x1

· · · Pn
s(xn),xn

,

where ei = (T x)i for i = 1, . . . , n. The measure µ is ergodic, conservative, and non-
atomic (see Aaronson [1]).

4. Average coordinate entropy and the law of large numbers
We define the average coordinate entropy. We state Rosenblatt-Roth’s law of large numbers
for Markov measures on product spaces. We use it to obtain a convergence formula
involving the average coordinate entropy. In the following argument, order is irrelevant
and hence is not considered.

Let (X, B, µ, T ) be a Bratteli–Vershik system defined in §3. Let H(Pn) denote the
entropy of µ by the partition Pn .

Definition 4.1. The lower average coordinate entropy of (X, B, µ, T ) is defined by

h AC (µ)= lim inf
n→∞

H(Pn)

log s(n)
.

Definition 4.2. The upper average coordinate entropy of (X, B, µ, T ) is defined by

h AC (µ)= lim sup
n→∞

H(Pn)

log s(n)
.

When the upper and lower average coordinate entropies coincide with each other, the
common value is called the average coordinate entropy of the system.
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Before giving the Rosenblatt-Roth result, we discuss when a Bratteli–Vershik diagram
is an infinite product space. A Bratteli–Vershik diagram Y = Y (VY , EY ) is a product space
if for all i ≥ 1, every vertex in V i−1

Y is connected to every vertex in V i
Y by exactly one edge.

In this case, each edge e ∈ E i
Y is indexed by the pair (s(e), r(e)), and its weight is written

by P i
s(e),r(e). Write V i

Y = Zl(i) = {0, 1, . . . , l(i)− 1}. Then each path y ∈ Y is realized

as a sequence (yi )i≥0 of coordinates yi ∈ Zl(i). Transition matrices P i are realized as
l(i − 1)× l(i) stochastic matrices with (yi−1, yi )th entry P i

yi−1,yi
. See [3] for details.

Suppose that a matrix P = (Pi, j ) is stochastic. Then

τ(P)=
1
2

max
i, j

∑
k

|Pi,k − Pj,k | = 1−min
i, j

∑
k

{Pi,k, Pj,k}

is known as the ergodic coefficient of P . It is easy to see that given a sequence of transition
matrices P i , the sequence of ergodic coefficients τ(P i ) is bounded above by some ρ < 1
if and only if all entries P i

j,k are bounded below by some η > 0 [6].

THEOREM 4.3. [14] Let ν be a Markov measure on the product space Y . Suppose that the
transition matrices P i satisfy τ(P i ) < ρ < 1 for all i ≥ 1. For each i , let fi (y)= fi (yi )

be a function that depends only on the i th coordinate of y ∈ Y . Suppose that the variances

E( fi
2) of the fi satisfy

∑
∞

i=1 E( fi
2)

2
/ i2 <∞. Then

lim
n→∞

1
n

( n∑
i=1

fi (y)−
n∑

i=1

E( fi )

)
= 0 for ν-almost every y ∈ Y .

We also use a result of Wen [15] on the convergence of the functions −log P i+1
yi ,yi+1

. Let
ν be a Markov measure on the product space Y . For y ∈ Y , define

H i
ν(y)= H(P i+1

yi ,0
, . . . , P i+1

yi ,l(i+1)−1)=−

l(i+1)−1∑
k=0

P i+1
yi ,k

log P i+1
yi ,k
.

THEOREM 4.4. [15] For a non-homogeneous Markov information measure with alphabet
{0, 1, . . . , s − 1} and transition matrices P i

= (P i
j,k) with P i

j,k > 0,

lim
n→∞

1
n

n−1∑
i=0

(log P i+1
yi ,yi+1

+ H i
ν(y))= 0 for ν-almost every y ∈ Y .

It should be noted that Theorem 4.4 does not require that the entries of the transition
matrices should be bounded below by some η > 0.

We extend the definition of H i
ν to the setting of Markov measures µ on Bratteli–Vershik

diagrams X = X (VX , EX ). For x ∈ X , define

H i
µ(x) = H({P i+1

s(e),e : e ∈ E i+1
X and s(e)= r(xi )})

= −

e∈E i+1
X∑

s(e)=r(xi )

P i+1
s(e),e log P i+1

s(e),e.

Clearly, H(Pn)=
∑n−1

i=0 E(H i
µ) is the usual entropy of µ by the partition Pn . It is easy

to extend the result of Theorem 4.4 to apply to Markov measures on Bratteli–Vershik
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diagrams providing that for all i ≥ 1, the number of edges in E i
X having a common source

in V i−1
X is bounded above by some N > 0. It is in this form that we use Theorem 4.4 later.

We use Theorem 4.3 to obtain the convergence of the H i
µ. To this end, given a Bratteli–

Vershik diagram X = X (VX , EX ) with a Markov measure µ, we construct a product space
Y = Y (VY , EY ) (without putting an order) with a Markov measure ν as follows. Let
Y have the same set of vertices at any level as X does: V i

Y = V i
X for all i ≥ 0. We may use

the same letter to denote the corresponding vertices in V i
X and V i

Y . Every vertex in V i
Y is

connected to every vertex in V i+1
Y by exactly one edge. The measure ν on Y is induced by

µ by letting the weight of each edge e ∈ EY be the sum of the weights of the edges in EX

with source s(e) ∈ VX and range r(e) ∈ VX .
Assume that the transition matrices P i of Y satisfy τ(P i ) < ρ < 1 for all i ≥ 1. Recall

that each path y in a product space Y is realized as a sequence (yi )i≥0 of coordinates
yi ∈ V i

Y . Let

fi (y)=−
e∈E i+1

X∑
s(e)=yi∈V i

X

P i+1
s(e),e log P i+1

s(e),e.

Notice that fi (y) depends only on the i th coordinate of y. It is easy to show that the

variances E( fi
2) of the fi satisfy

∑
∞

i=1 E( fi
2)

2
/ i2 <∞. By Theorem 4.3,

lim
n→∞

1
n

( n∑
i=1

fi (y)−
n∑

i=1

E( fi )

)
= 0 for ν-almost every y ∈ Y .

Note that H i
µ(x)= fi (y), where

x = (xi )i≥1 ∈ X, y = (s(xi ))i≥1 ∈ Y.

Also,
E(H i

µ)= E( fi ) and E(H i
µ

2
)= E( fi

2)

hold. By the construction of ν, we have that

lim
n→∞

1
n

( n∑
i=1

H i
µ(x)−

n∑
i=1

E(H i
µ)

)
= 0 for µ-almost every x ∈ X .

5. Computation of the critical dimensions
Our goal is to prove the following theorem.

THEOREM 5.1. Suppose that there exists some η > 0 such that the sum of the weights of
the edges having the common source and range is bounded below by η. The lower critical
dimension α is given by

α = lim inf
n→∞

−

∑n
i=1 log P i

s(xi ),xi

log s(n)
= h AC (µ) for µ-almost every x ∈ X .

To prove Theorem 5.1, we need some definitions and lemmas. Given a Bratteli–Vershik
system (X, B, µ, T ), define quantities n p, r i

p, and Ip as follows; using the Borel–Cantelli
lemma, these quantities can be shown to exist for µ-almost every x ∈ X . Take n p(x)= n p

be the index for the pth edge of x for which xn p 6∈ Emax (and∞ if no such place exists).
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Let r i
p(x)= r i

p be the i th non-negative integer k for which

(T k x) j ∈ Emax, 1≤ j ≤ n p − 1,

r((T k x)n p )= r(xn p ) and (T k x)n p 6∈ Emax,

(T k x) j = x j , n p + 1≤ j.

Then r i
p + 1 is the odometer power that changes the n pth edge in the forward orbit of x for

the i th time. Note that

r i+1
p (x)= r i

p(x)+ |P
n p−1
0 (s((T r i

p+1x)n p ))|

and that, for a fixed p ∈ N, there are

q(p)= |{e ∈ En p (r(xn p )) : xn p ≤ e < e′′}|

entries in the sequence r i
p(x).

Define Ip(x)= Ip to be the first integer k for which (T k x) j ∈ Emax, 1≤ j ≤ n p.
Observe that

Ip(x)= rq(p)
p (x)+ |P

n p−1
0 (s((T rq(p)

p +1x)n p ))|

and
Ip(x)= r1

p+1(x)

and that, by the connectivity assumption (BV1), s(n p − 2)≤ Ip(x)≤ s(n p) holds†.

LEMMA 5.2. The following limits hold.

(i) lim
i→∞
−

log νi (r(xi ))

i
= 0 for µ-almost every x ∈ X.

(ii) lim
i→∞
−

log P i
s(xi ),xi

i
= 0 for µ-almost every x ∈ X.

Proof. Given ε > 0, define Ai = {x ∈ X : −log νi (r(xi ))/ i ≥ ε}. Then µ(Ai )≤ N · 2−εi

and
∑
µ(Ai )≤ N ·

∑
2−εi , which is a summable series. The Borel–Cantelli lemma

implies that for µ-almost every x ∈ X , we have that −log νi (r(xi ))/ i < ε for all but a
finite number of i . The proof for (ii) is similar. 2

LEMMA 5.3. The lower critical dimension α satisfies the following.

(i) α ≤ lim inf
p→∞

−

∑n p
i=1 log P i

s(xi ),xi

log s(n p − 2)
for µ-almost every x ∈ X.

(ii) α ≥ lim inf
p→∞

−

∑nk(p−1)
i=1 log P i

s(xi ),xi

log s(n p)
for µ-almost every x ∈ X.

Here nk(p−1) is the largest integer j < n p−1 for which x j 6∈ Emax and

e∈E j (r(x j ))∑
x j<e≤e′′

µ([e] jj )/ν
j (r(x j ))≥ 1/( j + 1)2‡.

† This is the crucial point where we use (BV1). In fact, the inequalities s(n p − 2)≤ Ip(x)≤ s(n p) are weaker
than (BV1) and sufficient to ensure that Theorems 5.1 and 5.5 hold. The inequalities can be further weakened to
s(n p − k)≤ Ip(x)≤ s(n p) for some fixed k > 0, for example, with the theorems still holding.
‡ Here, and in what follows, 1/( j + 1)2 can be replaced with any summable sequence {a j } for which
log a j /j→ 0 as j→∞.
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Proof. Fix j > 0. For µ-almost every x ∈ X ,

I j∑
i=r1

j+1

ωi (x) =
q( j)∑
k=1

rk
j+|P

n j−1

0 (s((T
rk

j+1
x)n j

))|∑
i=rk

j+1

ωi (x)

=

e∈En j (r(xn j ))∑
xn j<e≤e′′

µ([e]
n j
n j )

µ([x]
n j
1 )

≤
νn j (r(xn j ))

µ([x]
n j
1 )

≤
1

µ([x]
n j
1 )
. (3)

Thus, for any α′ > 0,∑Ip
i=0 ωi (x)

(Ip + 1)α′
=

1

(Ip + 1)α′

( r1
1∑

i=0

ωi (x)+
p∑

j=1

I j∑
i=r1

j+1

ωi (x)

)

≤
1

(Ip + 1)α′

( r1
1∑

i=0

ωi (x)+
p∑

j=1

1

µ([x]
n j
1 )

)

≤
1

(Ip + 1)α′

( r1
1∑

i=0

ωi (x)+
p∑

j=1

1

µ([x]
n p
1 )

)

≤
1

s(n p − 2)α′

( r1
1∑

i=0

ωi (x)+
p

µ([x]
n p
1 )

)
. (4)

Rewrite part of the right-hand side of (4) as follows:

1

s(n p − 2)α′
p

µ([x]
n p
1 )
= 2

log s(n p−2)
(
−α′−

log µ([x]
n p
1 )

log s(n p−2) +
log p

log s(n p−2)

)
.

If α′ > lim infp→∞(−log µ([x]
n p
1 )+ log p)/log s(n p − 2), then taking lim inf as

p→∞ in (4) we obtain that

lim inf
p→∞

∑Ip
i=0 ωi (x)

(Ip + 1)α′
= 0.

So, α′ is strictly greater than the lower critical dimension α. Thus, α satisfies

α ≤ lim inf
p→∞

(
−

log µ([x]
n p
1 )

log s(n p − 2)
+

log p

log s(n p − 2)

)
for µ-almost every x ∈ X .

Since 2n p−2
≤ s(n p − 2) and p ≤ n p, we have that

α ≤ lim inf
p→∞

−
log µ([x]

n p
1 )

log s(n p − 2)
for µ-almost every x ∈ X .

This proves Lemma 5.3(i).
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To prove Lemma 5.3(ii), suppose that Ip−1(x)+ 1≤ n ≤ Ip(x)≤ s(n p). Then, for any
α′ > 0, ∑n−1

i=0 ωi (x)

nα′
≥

∑Ip−1
i=0 ωi (x)

s(n p)α
′

. (5)

As nk(p−1) = n p′ for some p′ < p − 1, it follows from (3) that

∑Ip−1
i=0 ωi (x)

s(n p)α
′
≥

∑Ip′

i=r1
p′
+1
ωi (x)

s(n p)α
′

=
1

s(n p)α
′

(e∈E
n p′ (r(xn p′

))∑
xn p′

<e≤e′′

µ([e]
n p′
n p′
)

µ([x]
n p′

1 )

)

= 2
log s(n p)

(
−α′−

log µ([x]
n p′
1 )

log s(n p )
+

log
(∑e∈E

n p′ (r(xn p′
))

xn p′
<e≤e′′

µ([e]
n p′
n p′

)

)
log s(n p )

)
. (6)

If

α′ < lim inf
p→∞

(
−log µ([x]

n p′

1 )+ log
(e∈E

n p′ (r(xn p′
))∑

xn p′
<e≤e′′

µ([e]
n p′
n p′
)

))/
log s(n p),

then taking lim inf as p→∞ in (6), we obtain that

lim inf
p→∞

∑Ip−1
i=0 ωi (x)

s(n p)α
′
=∞.

From (5), we see that α′ is strictly less than the lower critical dimension α. Thus, α satisfies

α ≥ lim inf
p→∞

(
−

log µ([x]
n p′

1 )

log s(n p)
+

log(
∑e∈E

n p′ (r(xn p′
))

xn p′
<e≤e′′ µ([e]

n p′
n p′
))

log s(n p)

)
. (7)

We claim that

lim
p→∞

log(
∑e∈E

n p′ (r(xn p′
))

xn p′
<e≤e′′ µ([e]

n p′
n p′
))

log s(n p)
= 0.

From the assumption on n p′ = nk(p−1),

1

(n p′ + 1)2
≤

∑e∈E
n p′ (r(xn p′

))

xn p′
<e≤e′′ µ([e]

n p′
n p′
)

ν
n p′ (r(xn p′

))
≤ 1.

Taking the logarithm and then dividing every term by log s(n p), we obtain that

−
2 log(n p′ + 1)

log s(n p)
≤

log(
∑e∈E

n p′ (r(xn p′
))

xn p′
<e≤e′′ µ([e]

n p′
n p′
))

log s(n p)
−

log νn p′ (r(xn p′
))

log s(n p)
≤ 0.
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Since n p′ = nk(p−1) < n p and 2n p ≤ s(n p), we see that log(n p′ + 1)/log s(n p) tends to 0
as p→∞. This, combined with Lemma 5.2(i), completes the proof for the claim.

From inequality (7), the lower critical dimension α satisfies

α ≥ lim inf
p→∞

−
log µ([x]

n p′

1 )

log s(n p)
for µ-almost every x ∈ X .

This completes the proof for Lemma 5.3(ii). 2

By Lemma 5.3, the lower critical dimension α satisfies

lim inf
p→∞

−

∑nk(p−1)
i=1 log P i

s(xi ),xi

log s(n p)
≤ α ≤ lim inf

p→∞
−

∑n p
i=1 log P i

s(xi ),xi

log s(n p − 2)

for µ-almost every x ∈ X .

LEMMA 5.4. In the setting of Lemma 5.3, on a set of positive measure,

lim inf
p→∞

−

∑nk(p−1)
i=1 log P i

s(xi ),xi

log s(n p)
= α = lim inf

p→∞
−

∑n p
i=1 log P i

s(xi ),xi

log s(n p − 2)
.

Proof. Define the probability measure νi
v on E i (v) for i ≥ 1 and v ∈ V i as follows:

νi
v(e)=

µ([e]ii )

νi (v)
, e ∈ E i (v).

We will say that the measure νi
v on E i (v) is e-bad (e′ ≤ e < e′′) if

νi
v

( ⋃
e< f≤e′′

f

)
<

1

(i + 1)2
.

Otherwise, we will say that νi
v is e-good. If νi

v(e
′′)≥ 1/(i + 1)2, we say that νi

v is all good.
Consider the set

X = {(xn)n≥1 ∈ X : e′ ≤ xn ≤ tv(n) when r(xn)= v, n ≥ 1},

where tv(i) is e′′ if νi
v is all good, otherwise tv(i) is the smallest edge e ∈ E i (v), e′ ≤ e <

e′′, for which νi
v is e-bad (this may be e′). Now µ(X) > 0.

Given ε > 0, let Bn be the event defined by x ∈ Bn if and only if x ∈ X , xn 6∈ Emax, and

−

∑n
i=k(n)+1 log P i

s(xi ),xi

n
≥ ε,

where k(n) is the largest integer j < n for which x j 6∈ Emax and ν j
r(x j )

is x j -good.
This last condition implies that if x ∈ Bn , then it belongs to the cylinder set

Cn,x = [tr(xk(n)+1)(k(n)+ 1), . . . , tr(xn−1)(n − 1), xn]
n
k(n)+1

with µ(Cn,x )≤ 2−εn . Recall that 2≤ |V n
| and the number of edges in En sharing a

common source does not exceed N > 0 for all n ≥ 1. Hence, there are at most N (N 2
−

2)(n − 1) of these cylinder sets that cover Bn , and thusµ(Bn)≤ N (N 2
− 2)(n − 1) · 2−εn ,

which is a summable sequence. It follows from the Borel–Cantelli lemma that for almost
every x in X , either xn ∈ Emax or−

∑n
i=k(n)+1 log P i

s(xi ),xi
/n < ε for all but a finite number

of n. By the essential simplicity of X and non-singularity of µ, we have our result. 2
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Proof for Theorem 5.1. To prove the first equality, all that is left to verify is the claim

lim
p→∞

−

∑n p
i=n p−1+1 log P i

s(xi ),xi

log s(n p)
= 0

on the set X of positive measure since, if this limit holds, then

α = lim inf
p→∞

−

∑n p
i=1 log P i

s(xi ),xi

log s(n p)
= lim inf

n→∞
−

∑n
i=1 log P i

s(xi ),xi

log s(n)

on a set of positive measure by Lemma 5.4, and the result follows from ergodicity.
Given ε > 0, let Du,v be the set defined by x ∈ Du,v if and only if x ∈ X , xi ∈ Emax for

i = u, u + 1, . . . , u + v, and

−

∑u+v
i=u log P i

s(xi ),xi

u + v
≥ ε.

Then µ(Du,v)≤ 2−ε(u+v) and

µ(Du)= µ

( ∞⋃
v=1

Du,v

)
≤ 2−εu 2−ε

1− 2−ε
.

Thus, the sequence µ(Du) is summable. This, combined with Lemma 5.2(ii), completes
the proof for the claim.

To prove the second equality, notice that by the triangle inequality we have that

1
log s(n)

∣∣∣∣− n∑
i=1

log P i
s(xi ),xi

− H(Pn)

∣∣∣∣
≤

1
log s(n)

∣∣∣∣− n∑
i=1

log P i
s(xi ),xi

−

n−1∑
i=0

H i
µ(x)

∣∣∣∣+ 1
log s(n)

∣∣∣∣n−1∑
i=0

H i
µ(x)− H(Pn)

∣∣∣∣.
The first term converges by Theorem 4.4, and the second by Theorem 4.3. 2

Entirely similar methods give a result for the upper critical dimension.

THEOREM 5.5. Suppose that there exists some η > 0 such that the sum of the weights of
the edges having the common source and range is bounded below by η. The upper critical
dimension β is given by

β = lim sup
n→∞

−

∑n
i=1 log P i

s(xi ),xi

log s(n)
= h AC (µ) for µ-almost every x ∈ X .
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