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LONG-RANGE ORIENTATIONAL ORDER
OF RANDOM NEAR-LATTICE HARD
SPHERE AND HARD DISK PROCESSES
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Abstract

We show that a point process of hard spheres exhibits long-range orientational order.
This process is designed to be a random perturbation of a three-dimensional lattice that
satisfies a specific rigidity property; examples include the FCC and HCP lattices. We
also define two-dimensional near-lattice processes by local geometry-dependent hard
disk conditions. Earlier results about the existence of long-range orientational order
carry over, and we obtain the existence of infinite-volume measures on two-dimensional
point configurations that turn out to follow the orientation of a fixed triangular lattice
arbitrarily closely.
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1. Introduction

Random hard disk and hard sphere processes are among the most easily defined physi-
cally interesting point processes. Rigorous mathematical results about their behavior at high
intensity are limited to two-dimensional systems. It remains an open question whether a phase
transition with possibly orientational symmetry breaking occurs in either two or three dimen-
sions. If breaking of rotational symmetry in either of these models could be shown, it would
give rise to speculation whether such simple pair interaction could result in crystallization phe-
nomena. In order to simplify the models, we exclude cavities and other crystal defects from
the models, and study random hard disk and hard sphere processes that are locally crystals.
In our models, being locally crystal implies being a crystal on a long range. There is a lower
bound on orientational correlation that is uniform in the distance, and this bound can be made
arbitrarily large by taking very ‘tight’ boundary conditions. Theorem 2.1 is the first rigorous
result about hard sphere long-range orientational order to our knowledge.

In the previous work [7], we considered hard disk processes with disks of radius 1/2 that
have the structure of a triangular lattice and neighboring disks having an upper bound on their
distance. We showed the existence of natural ‘uniform’ measures on these permitted con-
figurations that exhibit uniform long-range orientational order. In the first half of this work
(Section 2) we show that the same arguments apply to some three-dimensional lattices. In the
second half (Section 3) we show that the result in the two-dimensional case can be formu-
lated independently of an underlying triangular lattice structure that was explicitly present in
the definition of the probability measures in [7]. Thus we show that being a crystal locally
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implies being a crystal on a greater scale in this particular model. We only require the local
geometry-dependent condition that every point has exactly six points in an annulus with radii
1 and 1 + α around them. In both sections we will have the parameter α, which gives the
maximal distance of neighboring points. This α needs to be sufficiently small that some local
conditions are fulfilled, but it is on the macroscopic order of about 1/2, so not particularly
small. Fluctuations from the orientation of a fixed lattice, however, can be made arbitrarily
small; in particular, they can be made many orders smaller than α.

Similar but not hard-core models were considered in [15] without defects and in [11], and
[2] with lattice defects. Models for dislocations were treated in [3] on the mesoscopic scale
and in [10] for the Ariza–Ortiz model. It is possible to introduce bounded, separated missing
regions as defects into our two-dimensional model using techniques similar to those in [11]. We
think it is possible for three dimensions but we have not carried it out. Further, the techniques
of Section 3 can possibly be carried out in three dimensions, but an analog of Lemma 3.1 is
required together with suitable boundary conditions, since in three dimensions several close-
packed lattices are possible analogs of the triangular lattice.

These simplified models with well-defined lattice structure and possible defects are moti-
vated by more natural hard sphere models defined with respect to a Poisson point process at
a given intensity z> 0. The set of Gibbs measures for these natural models is defined simi-
larly to our definition of Gz in Section 3. They are basically sequential limits of Poisson point
processes in bounded domains – as the domains tend to R

d – conditioned so that no pair of
points have distance smaller than one. In these natural models, instead of imposing complex
geometry-dependent interactions, only hard-core repulsion is required. As a consequence, even
at high intensity, all kinds of possible lattice defects emerge as soon as the domain gets large
enough. It is believed that in two or more dimensions there are multiple Gibbs measures in
Gz for sufficiently high intensity z. Their structure is believed to differ in the typical relative
orientation of nearby points. It is shown in [16] that in two dimensions any of these measures
in Gz are translation-invariant at any intensity z> 0, and in [17] a logarithmic lower bound is
given on the mean square translational displacement of particles. These results prevent Gibbs
measures from having long-range positional order. One strategy for showing that Gz is not
a singleton for sufficiently high d ≥ 2 and z> 0 is to search for a measure in Gz that is not
rotation-invariant. The existence of this is called the breaking of rotational symmetry (of the
energy function). Showing that such a measure is supported on a perturbed lattice structure
with long-range orientational order would be an even stronger result which is connected to
the widely studied crystallization problem, even though the crystallization problem is usually
studied for different interactions.

We would also like to mention the recent result [12] that at low intensity disagreement
percolation results imply the uniqueness of the Gibbs state, whereas at high intensity it is shown
in [1] that hard disks percolate with the percolation radius chosen sufficiently large, which was
generalized in [14] to arbitrary percolation radii. Percolation is necessary for crystallization,
but to our knowledge breaking of rotational symmetry cannot be concluded from it.

2. The three-dimensional enumerated model

In this section we show that the arguments of [7] can be applied to some three-dimensional
lattices to obtain results similar to those in [7] about long-range orientational order for random
perturbations of such lattices.
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2.1. Configuration space

We consider three-dimensional lattices with well-defined distance between nearest neigh-
bors (to be normalized to 1) that fulfill two conditions. Firstly, the nearest-neighbor edges of
the lattice have to define a tessellation of R3 by regular tetrahedra and octahedra. Secondly,
the lattice has to be translation-invariant in three linearly independent directions. We remark
that regular tetrahedra and octahedra can be replaced by any rigid polyhedron (a polyhedron
with all faces being triangles) that satisfies an analog of the rigidity estimates in Lemmas 2.1
and 2.2, and their volume has positive partial derivatives with respect to their edge lengths. We
note that by Cauchy’s theorem, the volume is uniquely defined for rigid polyhedra when the
edge lengths are given.

Examples of such lattices are the face-centered cubic lattice and the hexagonal close-
packed lattice. For definitions see [13]. Note that being translation-invariant does not mean
that the lattice has to be a Bravais lattice, i.e. of the form Zn1 +Zn2 +Zn3 for some vectors
ni ∈R

3. Bravais lattices are translation-invariant, but a union of Bravais lattices might still
be translation-invariant but no longer a Bravais lattice, for which the hexagonal close-packed
lattice serves as an example.

Let the set I ⊂R
3 denote one of the lattices that fulfill both criteria. We assume 0 ∈ I and

think of I as an index set which is going to be used to parametrize countable point configura-
tions in R

3. Let I have translational symmetry by the linearly independent vectors t1, t2, t3 ∈R
3

and define the set T =Zt1 +Zt2 +Zt3. Define the quotient space In := I/nT for n ∈N. We will
think of In as a specific set of representatives in the half-open parallelepiped Un spanned by
nt1, nt2, nt3, i.e. Un = n{xt1 + yt2 + zt3 | x, y, z ∈ [0, 1)}.

A parametrized point configuration in R
3 is a map ω : I →R

2, x �→ω(x) that determines the
point configuration {ω(x) | x ∈ I} ⊂R

3. For the set of all parametrized point configurations we
introduce the character �= {ω : I →R

2}. Note that a single point configuration {ω(x) | x ∈ I}
can be parametrized by many different ω ∈�.

Let α ∈ (0, 1] be an arbitrary but fixed real to be fixed later. An n-periodic parametrized
point configuration with edge length l ∈ (1, 1 + α) is a parametrized configuration ω which
satisfies the boundary conditions

ω(x + nti) =ω(x) + lnti for all x ∈ I and i ∈ {1, 2, 3}. (1)

The set of n-periodic parametrized configurations with edge length l is denoted by�per
n,l ⊂�.

From now on we will omit the word parametrized because in this section we are going to work
solely with point configurations which are parametrized by I. An n-periodic configuration
is uniquely determined by its values on In. Therefore we identify n-periodic configurations
ω ∈�per

n,l with functions ω : In →R
2.

The bond set E ⊂ I × I contains index-pairs with Euclidean distance one; this is E =
{(x, y) ∈ I × I | |x − y| = 1}. We set En = E/nT; we can think of En as a bond set En ⊂ In × In.
Let T denote the set of convex polyhedra, as in the definition of I, whose edges are in E
and provide a tessellation of R

3, which is the Delaunay pre-triangulation; see [13]. Define
Tn = T /nT . Each � ∈ T can be triangulated into tetrahedra (not necessarily uniquely); let us
fix such a T-periodic triangulation of T . The set of all (necessarily not all regular) tetrahe-
dra created in this way forms a tessellation of R

3 and is denoted by triang(T ). We define
triang(Tn) := triang(T )/nT .

2.2. Probability space

By definition of � and �per
n,l , we have �= (R3)I and can identify �per

n,l = (R3)In . Both

sets are endowed with the corresponding product σ -algebras F =⊗
x∈I B(R3) and Fn =
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⊗
x∈In

B(R3), where B(R3) denotes the Borel σ -algebra on each factor. The event of admissible
n-periodic configurations �n,l ⊂�

per
n,l is defined by the properties (�1)–(�4).

(�1) |ω(x) −ω(y)| ∈ (1, 1 + α) for all (x, y) ∈ E.

For ω ∈� we define the extension ω̂ : R3 →R
3 such that ω̂(x) =ω(x) if x ∈ I. On the

closure of a tetrahedron � ∈ triang(T ), the map ω̂ is defined to be the unique affine linear
extension of the mapping defined on the corners of that tetrahedron.

(�2) The map ω̂ : R3 →R
3 is injective (and thus bijective).

(�3) The map ω̂ is almost everywhere orientation-preserving, that is, det (∇ω̂(x))> 0 for
almost every x ∈R

3 with the Jacobian ∇ω̂ : R3 →R
3×3.

(�4) The image ω̂(�) of a polyhedron � ∈ T is a convex polyhedron.

The conditions (�3) and (�4) follow from conditions (�1) and (�2) up to the sign of the
determinant in (�3), as was also noted in [11, p. 4]. Since the proof is more analytic than
stochastic, we also omit the proof and require them as technical conditions. Define the set of
admissible n-periodic configurations with edge length l as

�n,l = {ω ∈�per
n,l |ω satisfies (�1)–(�4)}.

The set �n,l is open and consists of non-empty subsets of (R3)In . The scaled lattice ωl(x) = lx
for x ∈ I and 1< l< 1 + α is an element of �n,l. Any configuration ω ∈�n,l is determined
by a finite number of locations in R

3. Each property (�1)–(�4) is satisfied after sufficiently
small perturbation of these locations; therefore any ω ∈�n,l has a neighborhood that is fully
contained in �n,l, hence the openness of �n,l.

Clearly 0< δ0 ⊗ λIn\{0}(�n,l)<∞ with the Lebesgue measure λ on R
3 and the Dirac mea-

sure δ0 in 0 ∈R
3. The lower bound holds because �0

n,l is non-empty and open in (R3)In\{0}
(similarly to the case of �n,l above); the upper bound is a consequence of the parameter α in
(�1). Let the probability measure Pn,l be

Pn,l(A) = δ0 ⊗ λIn\{0}(�n,l ∩ A)

δ0 ⊗ λIn\{0}(�n,l)

for any Borel-measurable set A ∈Fn, so Pn,l is the uniform distribution on the set �n,l with
respect to the reference measure δ0 ⊗ λIn\{0}. The first factor in this product refers to the
component ω(0) of ω ∈�.

2.3. Result

We have the following finite-volume result.

Theorem 2.1. For α sufficiently small we have

lim
l↓1

sup
n∈N

sup
�∈triang(Tn)

EPn,l [|∇ω̂(�) − Id|2] = 0 (2)

with the constant value of the Jacobian ∇ω̂(�) on the tetrahedron � from the triangulation of
Tn and some norm | · | on R

3×3.

The choice of α has to be such that the volume of any tetrahedron and octahedron with side
lengths in [1, 1 + α] is uniquely minimized by the regular tetrahedron and octahedron with
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side length 1 respectively (see the proof of Theorem 2.1). The central argument is going to be
the following rigidity theorem from [5, Theorem 3.1].

Theorem 2.2. (Friesecke, James and Müller) Let U be a bounded Lipschitz domain in R
d,

d ≥ 2. There exists a constant C(U) with the following property. For each v ∈ W1,2(U,Rd)
there is an associated rotation R ∈ SO(d) such that

‖∇v − R‖L2(U) ≤ C(U)‖dist(∇v, SO(d))‖L2(U).

This is a generalization of Liouville’s theorem, which states that a map is necessarily a
rotation whose Jacobian is a rotation in every point of its domain. We are going to set v = ω̂|Un

and U = Un, which is a bounded Lipschitz domain. The function ω̂|Un is linear on each triangle
� ∈ Tn, and thus piecewise affine linear on Un. As a consequence ω̂|Un belongs to the class
W1,2(Un,R

3). The following remark, which also appears in [5] at the end of Section 3, is
essential for achieving uniformity in (2) in the parameter n.

Remark 2.1. The constant C(U) in Theorem 2.2 is invariant under scaling: C(γU) = C(U) for
all γ > 0. Indeed, setting vγ (γ x) = γ v(x) for x ∈ U, we have ∇vγ (γ x) = ∇v(x) and hence

‖∇vγ − R‖L2(γU) = γ d/2‖∇v − R‖L2(U)

and
‖dist(∇vγ , SO(d))‖L2(γU) = γ d/2‖dist(∇v, SO(d))‖L2(U).

This implies that for the domains Un (n ≥ 1), the corresponding constant C(Un) can be chosen
independently of n.

2.4. Proofs

We are going to show that the L2-distance of the Jacobian ∇ω̂ from the scaled identity
matrix on Un can be controlled by the difference of the areas of ω̂(Un) and Un. Because of
the periodic boundary conditions, λ(ω̂(Un)) does not depend on configurations ω with (�2),
so it provides a suitable uniform control on the set �n,l. Then we show that the expected
square distance of ∇ω̂ from the scaled identity matrix can be controlled by the expected square
deviation of the polyhedra edge lengths from one, with ‘one’ being associated with the lattice
constant of the unscaled lattice.

The following two lemmas from [13] provide the desired rigidity estimate on tetrahedra and
octahedra. They state that the distance from SO(3) of a piecewise affine linear map defined on
the polyhedron can be controlled by terms that measure how the map deforms the edge lengths
of the polyhedron. We conjecture that any convex, rigid polyhedron satisfies such rigidity esti-
mates via Dehn’s theorem and the inverse function theorem. However, in this paper, as our
main concern is not rigidity theory, we will only consider tetrahedra and octahedra for which
these estimates are already proven. Let |M| = √

tr(MtM) denote the Frobenius norm of a matrix
M ∈R

3×3 and |w| the Euclidean norm of w ∈R
3.

Lemma 2.1. (Lemma 3.2 of [13]) There is a positive constant C1 such that, for all linear maps
A : R3 →R

3 with det(A)> 0 and

w1 = (1, 0, 0), w2 =
(

1

2
,

√
3

2
, 0

)
,

w3 = w2 − w1, w4 =
(

1

2
,

√
3

6
,

√
6

3

)
,

w5 = w4 − w2, w6 = w4 − w1, l ≥ 1,
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the following inequality holds:

dist2(A, SO(3)) := inf
R∈SO(3)

|A − R|2 ≤ C1

6∑
i=1

(|Awi| − 1)2.

A similar theorem holds for octahedra. Let O denote an octahedron with vertices Pi, i ∈
{1, . . . , 6}, and edges PiPj for i �= j (mod 3).

Lemma 2.2. (Lemma 3.4 of [13]) There is a constant C2 > 0 such that

dist2(∇u, SO(3)) ≤ C2

∑
i �=j (mod 3)

(|u(PiPj)| − 1)2 almost everywhere in O,

for every u ∈ C0(O; R3) such that u is piecewise affine with respect to the triangulation
determined by cutting O along the diagonal P1P4, det (∇u)> 0 a.e. in O, and u(O) is convex.

Now we prove the estimate mentioned, which provides control over the L2-distance of ∇ω̂
from the scaled identity matrix in terms of the edge length deviations.

Lemma 2.3. For a polyhedron � ∈ T , let E(�) denote the set of edges of �. There is a constant
c> 0 such that, for all n ≥ 1 and 1< l< 1 + α, the inequality

‖∇ω̂− l Id‖2
L2(Un) ≤ c

∑
�∈Tn

∑
{x,y}∈E(�)

(|ω(x) −ω(y)| − 1)2 (3)

holds for all ω ∈�n,l, and hence

EPn,l [‖∇ω̂− l Id‖2
L2(Un)] ≤ c

∑
�∈Tn

∑
{x,y}∈E(�)

EPn,l [(|ω(x) −ω(y)| − 1)2], (4)

where the L2-norm is defined with respect to the scalar product on R
3×3 that induces the

Frobenius norm, and | · | denotes the Euclidean norm on R
3.

Note that the right-hand side of equation (3) is strictly positive because of the boundary
conditions (1) and because l> 1, whereas the left-hand side is zero for ω=ωl ∈�per

n,l . Since
the measure Pn,l is supported on the set �n,l, (4) follows from (3). Also, note that c does not
depend on n.

Proof. Let ω ∈�n,l and E(�) be the set of edges of a polyhedron � ∈ Tn. By Lemmas 2.1
and 2.2, we conclude that on every polyhedron � ∈ Tn we have

dist2(∇ω̂|�, SO(3)) ≤ max{C1,C2}
∑

{x,y}∈E(�)

(|ω(x) −ω(y)| − 1)2,

where we used (�1), (�3), and (�4) to apply Lemmas 2.1 and 2.2 and with the constants
C1,C2 from Lemmas 2.1 and 2.2. Orthogonality of functions which are non-zero only on
disjoint polyhedra gives

‖dist(∇ω̂, SO(3))‖2
L2(Un) ≤ C

∑
�∈Tn

∑
{x,y}∈E(�)

(|ω(x) −ω(y)| − 1)2,

with constant C = max{C1, C2} max{√2/12,
√

2/3}, where the second factor is the maximum
of the volumes of a regular tetrahedron and octahedron. Applying Theorem 2.2 about geometric
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rigidity, we find an R(ω) ∈ SO(3) such that

‖∇ω̂− R(ω)‖2
L2(Un) ≤ K‖dist(∇ω̂, SO(3))‖2

L2(Un),

with a constant K > 0 that does not depend on n by Remark 2.1. Due to the periodic boundary
conditions (1), the function ω̂− l Id is n-periodic in the directions t1, t2, t3, that is,

ω̂(x + nti) − l(x + nti) = ω̂(x) − lx for all x ∈R
3 and i ∈ {1, 2, 3}.

By the fundamental theorem of calculus, the gradient of a periodic function is orthogonal to
any constant function, and therefore

‖∇ω̂− l Id‖2
L2(Un) + ‖l Id − R(ω)‖2

L2(Un) = ‖∇ω̂− R(ω)‖2
L2(Un)

by Pythagoras. Since Pn,l is supported on the set �n,l, the lemma is established with
c = CK. �

With Lemma 2.3 we can now prove Theorem 2.1.

Proof of Theorem 2.1. A generalization of Heron’s formula for tetrahedra gives the volume
λ(�) of the tetrahedron � with edge lengths u, v, w, U, V , W (opposite edges denoted by the
same letter, lower-case and upper-case):

λ(�) =
√

( − a + b + c + d)(a − b + c + d)(a + b − c + d)(a + b + c − d)

192 uvw
, (5)

with

X = (w − U + v)(U + v + w), a = √
xYZ,

x = (U − v + w)(v − w + U), b =√
yZX,

Y = (u − V + w)(V + w + u), c = √
zXY,

y = (V − w + u)(w − u + V), d = √
xyz,

y = (V − w + u)(w − u + V),

Z = (v − W + u)(W + u + v),

z = (W − u + v)(u − v + W).

By first-order Taylor approximation of (5) at the regular tetrahedron �1, denoting the edge
lengths ai, i ∈ {1, . . . , 6}, we obtain

λ(�) − λ(�1) = 1

12
√

2

6∑
i=1

(ai − 1) + o

(
6∑

i=1

|ai − 1|
)

as ai → 1 for all i.

For the octahedron, we obtain 1/(6
√

2) for the volume derivative in one edge b1 at b1 = 1
and the remaining 11 edges fixed at bi = 1. This can be achieved by dividing the octahedron
into four tetrahedra that all have a common edge d that is a diagonal of the octahedron adjacent
to x. Using the formula (5) and some elementary geometry of a regular trapezoid to see that
d = √

x + 1, we obtain with the regular octahedron �1 of edge length 1:

λ(�) − λ(�1) = 1

6
√

2

12∑
i=1

(bi − 1) + o

(
12∑

i=1

|bi − 1|
)

as bi → 1 for all i.
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We only need that the partial derivatives of the volume at �1 and �1 are positive. By con-
tinuity, in a small neighborhood of the regular polyhedra, increasing one edge length increases
the volume. Therefore we can choose α > 0 from the definition of permitted configurations so
small that the polyhedra of the tessellation obtain minimal volume as the edge lengths go to 1.
We choose c1 > 12

√
2 and a corresponding α > 0 so small that the inequalities

6∑
i=1

(ai − 1) ≤ c1(λ(�) − λ(�1)),

12∑
i=1

(bi − 1) ≤ c1(λ(�) − λ(�1))

(6)

are satisfied whenever 1< ai < 1 + α and 1< bi < 1 + α. Let us fix such c1 > 0 and α > 0 and
assume that �per

n,l is defined by means of this α. Using (6) we can also estimate the squared
edge length deviations:

6∑
i=1

(ai − 1)2 ≤ c1 α (λ(�) − λ(�1)),

12∑
i=1

(bi − 1)2 ≤ c1 α (λ(�) − λ(�1)).

(7)

By equation (3) from Lemma 2.3 and (7), we get an upper bound on ‖∇ω̂− l Id‖2
L2(Un)

in
terms of the area differences. By summing up the contributions (7) of the polyhedra � ∈ Tn,
we conclude for all ω ∈�n,l that

‖∇ω̂− l Id‖2
L2(Un) ≤ c1 α c

∑
�∈Tn

(λ(ω̂(�)) − λ(�)). (8)

As a consequence of (�2) and the periodic boundary conditions (1), the right-hand side of (8)
does not depend on ω ∈�n,l. Hence, with ωl ∈�n,l we can compute∑

�∈Tn

(λ(ω̂(�)) − λ(�)) =
∑
�∈Tn

(λ(ω̂l(�)) − λ(�)) = |Un|(l3 − 1). (9)

Combining the equations (8) and (9) gives

‖∇ω̂− l Id‖2
L2(Un) ≤ c1 α c |Un| (l3 − 1). (10)

The reference measure δ0 ⊗ λIn\{0} and the set of permitted configurations�n,l are invariant
under the translations

ψb : �per
n,l →�

per
n,l (ω(x))x∈I �→ (ω(x + b) −ω(b))x∈I

for b ∈ T . As a consequence the matrix-valued random variables ∇(ω̂(�)) are identically dis-
tributed for �, �̃ ∈ triang(Tn) such that � = �̃ (mod T). Thus, for any � ∈ triang(T1), the
random variables ∇(ω̂(� + t))t∈T are identically distributed. Therefore

EPn,l [‖∇ω̂− l Id‖2
L2(Un)] =

∑
�∈triang(T1)

|Un(�)| EPn,l [|∇ω̂(�) − l Id|2],
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with the regions Un(�) of Un taken up by T-translates of �. As the proportions |Un(�)|/|Un|
are independent of n for any � ∈ triang(T1), this equation together with (10) implies

lim
l↓1

sup
n∈N

sup
�∈triang(Tn)

EPn,l [|∇ω̂(�) − l Id|2] = 0.

By means of the triangle inequality, we see that, for all � ∈ triang(Tn) and ω ∈�n,l,

|∇ω̂(�) − Id|2 ≤ |∇ω̂(�) − l Id|2 + c2
2(l − 1)2 + 2c2 |l − 1| |∇ω̂(�) − l Id|,

with c2 = |Id|> 0. For ω ∈�n,l, the term |∇ω̂(�) − l Id| is uniformly bounded for l ∈ (1, α)
and n ∈N, which proves the theorem. �

3. Two-dimensional model with local geometry-dependent interactions

In this section we extend the result of [7] about long-range orientational order in that we
get rid of the a priori enumeration of two-dimensional hard disk configurations by an under-
lying triangular lattice and merely impose local geometry-dependent conditions by means of
a Hamiltonian H. The conditions impose that hard disks have exactly six neighbors that are
not too far away. We show that long-range orientational order carries over to infinite-volume
Gibbsian point processes defined by H.

3.1 Definitions

Let us cite some definitions from [4]. We equip the plane R
2 with its Borel σ -algebra

B(R2) and we let λ denote the Lebesgue measure on (R2,B(R2)). The characters 
 and �
will always denote measurable regions in R

2 and the notation ��R
2 means that in addition

� is bounded. Consider the set X ⊂ 2(R2) of locally finite point configurations in R
2. That

means X ∈X is a subset X ⊂R
2, and for any��R

2, the intersection X� := pr�(X) := X ∩�
has finite cardinality |X�|<∞. The counting variables N�(X) := |X�| generate a σ -algebra
A := σ (N� : ��R

2) on X . The union of X, Y ∈X will be denoted by XY; this will be used
when defining the configuration X
Y
c that agrees with X on
 and with Y on the complement
of 
. In a sequence of set operations, unions XY are evaluated first in order to reduce brack-
ets. On the measurable space (X ,A), we consider the Poisson point process �z with intensity
z> 0. The measure �z is uniquely characterized by the properties that, for all ��R

2 under
�z, (i) N� is Poisson-distributed with parameter zλ(�), and (ii) conditional on N� = n, the n
points in� are independently and uniformly distributed on� for each integer n ≥ 1. Similarly,
configurations X
 = {X
 : X ∈X } in the set 
 carry the trace σ -algebra A


′ :=A|X
 and the
reference measure �z


, which is the law of X
 if X is distributed according to �z. We will
also need the pullback of A


′ to X defined by A
 := pr−1

 A


′ ⊂A. Finally we define the
shift group 
= {θr : r ∈R

2}, where θr : X →X is the translation by −r ∈R
2, consequently

N�(θrX) = N�+r(X) for all ��R
2.

We fix α > 0 small enough; the size of α will be specified later. We change the notation of
[7] from ε to α at this point to emphasize that α is fixed and not particularly small. Let


1+α := {x ∈R
2 : |x − y|< 1 + α for some y ∈
}

be the (1 + α)-enlargement of 
. For X ∈X we define the Hamiltonian H
,Y in 
 with
boundary condition Y ∈X by

H
,Y (X) :=

⎧⎪⎨⎪⎩
0 if |x − y|> 1 whenever x ∈ X
Y
1+α\
 and y ∈ X
Y
c for x �= y,

and for all x ∈ X
Y
1+α\
 : |X
Y
c ∩ A1,1+α(x)| = 6,

∞ otherwise.
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That is, H
,Y (X) ∈ {0,∞} takes the value 0 if and only if every point of X
1+α has distance
greater than one from points in X
Y
c and has exactly six X
Y
c -neighbors in the annulus
A1,1+α(x) = {y ∈R

2 : |y − x| ∈ (1, 1 + α)}; otherwise H is defined to be infinity. Note that the
only part of the boundary condition Y relevant for H
,Y (X) is in the region 
2(1+α) \
.

Definition 3.1. We define the partition function Zz

,Y by

Zz

,Y :=�z


{X
 : H
,Y (X
) = 0} =
∫

e−H
,Y (X)�z

(dX).

We call a boundary condition Y ∈X admissible for the region
�R
2 if 0< Zz


,Y . We write

X
,z∗ for the set of all these Y .
The set of admissible boundary conditions X
,z∗ is never empty as the l ∈ (1, 1 + α) scaling

of a triangular lattice with lattice constant one is always in X
,z∗ . We note that H
,Y (∅) = 0 for
Y
1+α = ∅ and also for specifically chosen
 and possibly non-empty Y . The partition function
Zz

,Y is zero if neither Y
1+α\
 = ∅ nor the boundary condition Y
1+α\
 can be extended to a

near-triangular lattice configuration in 
1+α .

Definition 3.2. For Y ∈X
,z∗ , we define the Gibbs distribution in the region 
�R
2 with

boundary condition Y by the formula

γ z

(F|Y) =

∫
X


1F(XY
c ) e−H
,Y (X)�z

(dX)/Zz


,Y ,

where F ∈A. Note that γ z

( · |Y) is a measure on the whole space (X ,A).

In the case of Y
α\
 �= ∅, the X
-marginal of the measure γ z

( · |Y) is uniform on the

configurations in X
 that extended Y
α\
 to a near-triangular lattice configuration in 
α .
Otherwise if Y
α\
 = ∅, then γ z


( · |Y) = δY
c . Note that (F, Y) ∈ (A,X ) �→ γ z

(F|Y) is a prob-

ability kernel from (X ,A
c ) to (X ,A), but the distribution γ z

( · |Y) has δY
c as its marginal

on (X
c,A′

c).

Definition 3.3. (Infinite-volume Gibbs measure) A probability measure P on (X ,A) is an
infinite-volume Gibbs measure for z> 0 if P(X
,z∗ ) = 1 and∫

f dP=
∫
X
,z∗

1

Zz

,Y

∫
X


f (XY
c) e−H
,Y (X)�z

(dX)P(dY)

for every 
�R
2 and every measurable f : X → [0,∞). We denote the set of infinite-volume

Gibbs measures by Gz.

Note that the right-hand side of the defining equality is equal to EP[γ z

(f | · )]. Therefore

a measure P is an infinite-volume Gibbs measure if and only if Pγ z

 = P for every 
�R

2,
where the product is understood as taking the average with P in the second variable of γ z


. We
can easily obtain a degenerate measure δ∅ ∈ Gz, but we will consider more interesting Gibbs
measures. In fact, as soon as P(∅) = 0 for a measure P ∈ Gz, we have that P is supported on
hard disk configurations with infinitely many disks.

The Hamiltonian H implements an example of a k-nearest-neighbor interaction, as
explained in [4, Chapter 4.2.1]. Therefore, by [4, Lemma 5.1], the kernels γ z


, γ z
� for


⊂��R
2 and Y ∈X
,z∗ satisfy the consistency conditions γ z


(X
,z∗ |Y) = 1 and γ z
�γ

z

 = γ z

�,
where the product is understood as the product of probability kernels.
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3.2 Results

We show the following generalization of [7, Theorem 4.1]. The wording of Theorem 3.1
up to some minor modification in the definition of H was suggested by Franz Merkl in a talk
at a conference (‘Trends in Mathematical Crystallization’) held at Warwick University in May
2016.

Theorem 3.1. Let 0<α be small enough (such that Lemma 3.1 and Theorem 3.2 hold true for
the choice of this α). Then, for every 2/(

√
3(1 + α)2)<ρ < 2/

√
3 (the density of centers in the

densest packing of disks with diameter 1), there is a measure Pρ ∈ ∩z>0Gz such that we have
the following.

(i) Density = ρ. For any 
�R
2, we have EPρ [N
] = ρλ(
).

(ii) Translational invariance. The measure Pρ is translation-invariant in any direction in R
2,

i.e. Pρ ◦ θ−1
r = Pρ for any r ∈R

2.

(iii) Long-range orientational order. Let x ∈ X be the point with the smallest distance from
the origin. It is a.s. unique. We have Pρ(NA1,1+α(x) = 6) = 1. Choose a random neigh-
bor y ∈ X of x (i.e. 1< |y − x|< 1 + α) uniformly distributed among all six neighbors.
Then, as ρ ↑ 2/

√
3, the law of y − x with respect to Pρ converges weakly to the uniform

distribution on the 6th roots of unity in C =̂ R
2.

Note that by translational invariance of Pρ , property (iii) holds when initially picking the
closest point x to any reference point x0 ∈R

2 instead of the origin. Hence the long-range ori-
entational order, as neighbors of x position themselves close to translates of the 6th roots of
unity. The choice of α will be made somewhat explicit in the proof of Lemma 3.1. The set of
Gibbs measures Gz is most likely independent of z> 0; however, we will not pursue the proof
of this statement as it leads to geometric considerations that are not the focus of our analysis.

3.3. Proofs

For a configuration X ∈X , we say that H(X) = 0 if, for all x, y ∈ X, we have |x − y|> 1
and |X ∩ A1,1+α(x)| = 6. This is the same as having H
,X(X) = 0 for any 
�R

2. For a con-
figuration ∅ �= X ∈X with H(X) = 0, we can define a simplicial complex K(X) consisting of
zero, one, and two cells defined as follows. The set of zero-cells K0(X) is X ⊂R

2. The set of
one-cells K1(X) are edges between zero-cells of distance between 1 and 1 + α, and the two-
cells are triangles with sides in K1(X). We will see in the following lemma that, by definition
of H and some geometric considerations, for α small enough, the graph defined by the one-
and two-skeleton of this complex is locally – and therefore also globally – isomorphic to the
triangular lattice I =Z+ τZ with τ = eiπ/3 with edge set E = {{i, j} ⊂ I : |i − j| = 1}. The set
of triangles surrounded by three edges in E is denoted by T ; these are two-cells if we regard I
as a simplicial complex.

The most important lemma linking the theorem above to [7, Theorem 4.1] is as follows.

Lemma 3.1. With the choice of a small enough α, for any configuration X ∈X with H(X) = 0
we have that the graph defined by the one- and two-skeletons of K(X) is isomorphic to the
triangular lattice I. In other words, there is a bijective map ω : I → X such that, for all i, j ∈ I,
|i − j| = 1 if and only if |ω(i) −ω(j)| ∈ (1, 1 + α).
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Later on, we will choose α sufficiently small that Lemma 3.1 and Theorem 3.1 both work
for that α. From the proof of the lemma it will be obvious that the choice of α does not need
to be particularly small for it (and any smaller choice) to work.

Proof. For i ∈ I we define its closest neighborhood N(i) ⊂ I by N(i) = {j ∈ I : |i − j| ≤ 1}.
Let X ∈X such that H(X) = 0. A map ω : N(i) → X is called a local isomorphism at i if, for
all j, k ∈ N(i), we have |j − k| = 1 if and only if |ω(j) −ω(k)| ∈ (1, 1 + α). By taking α > 0
small enough, we can ensure that for all i ∈ I and x ∈ X there is a local isomorphism ω at i
such that ω(i) = x. To see this, observe that as α→ 0, for every y ∈ A1,1+α(x) there are exactly
two points y1, y2 ∈ A1,1+α(x) \ {y} such that |yi − y| → 1; for other z ∈ A1,1+α(x) \ {y}, we have
lim infα→0 |z − y| ≥ √

3. Since we know that |X ∩ A1,1+α(y)| = 6, a simple geometric consid-
eration related to the kissing problem gives that y1, y2 ∈ A1,1+α(y), since if yi �∈ A1,1+α(y) for
i ∈ {1, 2}, for α small enough there was not enough space to place six points in A1,1+α(y)
having distance larger than 1 from each other and from yi. To be more precise, for all i ∈ I and
x ∈ X there will be twelve such local isomorphisms taking rotations and reflection into account.
We fix α sufficiently small that the local isomorphism property holds.

Let us construct a map ω : I → X as follows. We fix an arbitrary x0 ∈ X and define ω|N(0) to
be one of the six orientation-preserving local isomorphisms at 0 with ω(0) = x0. Fix a spanning
tree T of I. For each i ∈ I, there is a unique path on nearest neighbors in T connecting 0
to i. Since there are local isomorphisms at each pair of points of I and X, we can uniquely
extend ω to vertices of T by choosing the unique one of the six orientation-preserving local
isomorphisms that is consistent with T . That is to say, if, for a neighbor i of j in T , we have
already assigned a point ω(i), then we choose a local isomorphism at i with i �→ω(i). Let us
assign j to the point in X that is determined by this local isomorphism. Now there is only one
local isomorphism at j which is consistent with the local isomorphism chosen at i in the sense
that i has identical images under the two local isomorphisms. We use this local isomorphism
to proceed with the construction and map all neighbors of j in T into X.

It remains to show that the map ω : I → X is an isomorphism. To conclude that ω is an
isomorphism onto its image, we fix a loop γ starting and ending in i ∈ I composed of a path
in T and an edge between i and one of its neighbors in I to which it is not connected in T .
We need to show that the map induced along γ with the initial orientation-preserving local
isomorphism ω|N(i) at i maps to a loop in K(X) starting and ending in ω(i). To this end, we can
show a seemingly more general but equivalent statement. Take any loop γ = (i0, i1, i2, . . . , in)
at 0 ∈ I (i.e. i0 = in = 0) and x ∈ X, fix a local isomorphism at 0 with 0 �→ x, and show that the
map induced along γ maps γ to a loop ω(γ ) in X at x. Here ω is locally defined along the
curve γ .

We can deform the loop γ to the boundary of a two-cell that contains 0 by successively
‘removing’ two-cells that intersect γ and are inside it. By removing a two-cell, we mean one
of the following. Two subsequent edges (ik−1, ik), (ik, ik+1) of γ , can be exchanged for the
unique edge (ik−1, ik+1) if |ik−1 − ik+1| = 1, or we can exchange one edge (ik, ik+1) of γ for
two edges (ik, j) and (j, ik+1) in I. For every such transformation of γ , we obtain a modified
γ ′ and a map ω′ that is uniquely determined by the local isomorphism at ik and is the unique
extension of the local isomorphism at 0 along γ ′. Note that ω=ω′ on the domain that they
are both defined and ω(γ ) is closed if and only if ω′(γ ′) is. After removing finitely many two-
cells, we arrive at γ ′ = (0, i, j, 0) being the boundary of a two-cell that contains the origin.
Since ω′|

γ
′ should be the unique extension of the local isomorphism at 0 along γ , we see that

ω′(γ ′) is closed and therefore so is ω(γ ).
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We showed that for neighbors i, j in I, ω(i), ω(j) are also neighbors in X. To obtain the
converse statement and the injectivity of ω, we repeat the above procedure for the same map ω
but with exchanged roles of I and X. This concludes the proof that ω is an isomorphism onto
its image.

It remains to show that ω is surjective. Now take a curve γ̂ in K(X) from x0 to some y ∈
K(X). Note that K(X) is a connected graph, as for small enough α and x �= y we can always find
a neighbor z of x which is closer to y than x. The curve γ̂ corresponds to a curve γ in I from
0 to some i ∈ I. Applying the above procedure to the concatenation of the path from 0 to i in T
and the reverse of γ , we see that ω(i) = y. �

This lemma can also be proved with the formalism of Čech cohomology using the de Rham
isomorphism and can be generalized to configurations with point defects (missing points). The
usefulness of the Čech cohomology and de Rham’s theorem was pointed out to us by Franz
Merkl. We decided to give another proof using less formalism.

To construct Pρ , we use measures on periodic configurations. For l> 1 and n ∈N, let us
define measures Pn,l on n-periodic configurations as in [7]. A periodic, enumerated configu-
ration ω ∈�per

n,l is a map I →R
2 such that Theorem 3.2 holds true for this choice of α. Thus

ω(i + nj) =ω(i) + lnj for all i, j ∈ I. (11)

It suffices to define an n-periodic, enumerated configuration on a set of n2 representatives
In ⊂ I as equation (11) uniquely defines the configuration on the complement (In)c. The event
of admissible, n-periodic, enumerated configurations �n,l ⊂�

per
n,l is defined by the properties

(�1)–(�3).

(�1) |ω(i) −ω(j)| ∈ (1, 1 + α) for all {i, j} ∈ E.

For ω ∈� we define the extension ω̂ : R2 →R
2 such that ω̂(i) =ω(i) if i ∈ I, and on the

closure of any triangle � ∈ T , the map ω̂ is defined to be the unique affine linear extension of
the mapping defined on the corners of �.

(�2) The map ω̂ : R2 →R
2 is injective.

(�3) The map ω̂ is orientation-preserving, that is, det (∇ω̂(x))> 0 for all � ∈ T and x ∈ �
with the Jacobian ∇ω̂ : ∪ T →R

2×2.

Define the set of admissible, n-periodic, enumerated configurations as

�n,l = {ω ∈�per
n,l |ω satisfies (�1)–(�3)}.

Let the probability measure Pn,l be

Pn,l(A) = δ0 ⊗ λIn\{0}(�n,l ∩ A)

δ0 ⊗ λIn\{0}(�n,l)

for any Borel-measurable set A ∈Fn =⊗
i∈In

B(R2); thus Pn,l is the uniform distribution on
the set �n,l with respect to the reference measure δ0 ⊗ λIn\{0}. The first factor in this product
refers to the component ω(0). The parameter l in the definition of �n,l and Pn,l controls the
density of periodic configurations such that ρ = 2/(l2

√
3). We quote Theorem 4.1 from [7],

which will be the major ingredient of the proof of Theorem 3.1.
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Theorem 3.2. For any α > 0 small enough we have

lim
l↓1

sup
n∈N

sup
�∈T

EPn,l [|∇ω̂(�) − Id|2] = 0,

with the constant value of the Jacobian ∇ω̂(�) on the set � ∈ T .

We note that the theorem holds for any α ∈ (0,
√

3 − 1), but we omit the proof, which is just
a more careful consideration of arguments in the proof of [7, Theorem 4.1], and will refer to
small enough α. The main observation needed for this explicit range of α where the theorem
holds is that the area of triangles with side lengths in the range [1,

√
3) is uniquely minimized

by the regular triangle with side length 1. This observation is then utilized as in the similar
proof of Theorem 2.1 in the three-dimensional case. We note that Theorem 3.2 might work
with α ≥ √

3 − 1, but looking for the optimal upper bound is not the concern of this paper.
In the following we construct Pρ as a limit of translation-invariant versions of Pn,l and show

that this measure is a Gibbs measure in Gz for any z> 0. We follow ideas from [4] to construct
a limiting measure. Fix l> 1 and define the measures Gn on (X ,A) by specifying its marginal
(Gn)
n on (X
n,A
n

′):

(Gn)
n =
(

1

λ(
n)

∫

n

Im[Pn,l] ◦ θr dr

)

n

,

with the image measure Im[Pn,l] of Pn,l under the map Im: ω �→ {ω(x) : x ∈ I} and the
domain
n = l{x + yτ : x, y ∈ [ − n/2, n/2)}. The averaging over r ∈
n is necessary to obtain
a translation-invariant measure on the torus, since ω(0) = 0 holds Pn,l-a.s. The measure Gn

is then defined by having independent and identically distributed projections on the sets
{
n + inl}i∈I , which form a tiling of R

2. In order to have translation-invariant probability
measures on (X ,A), we consider the averaged measures

Ĝn = 1

λ(
n)

∫

n

Gn ◦ θr dr.

By definition and the periodicity of Gn, Ĝn are translation-invariant. We will show that the
sequence (Ĝn)n∈N is tight in the topology of local convergence on translation-invariant prob-
ability measures on X generated by P→ ∫

f dP for functions f that are A
-measurable for
some 
�R

2. We call such functions local, and denote the set of local functions by L.
The only difference to the definitions after [4, Lemma 5.1] are in the nature of the measures

(Gn)
n . In our case (Gn)
n are measures that inherit geometric constraints from the structure
of Pn,l that are defined on tori of different sizes. In [4], in contrast, the authors use measures
G

z

n,ω̄

that have fixed boundary condition ω̄ on the complement of 
n.

For a shift-invariant probability measure P on (X ,A) and 
�R
2, define the measure

P
 := P ◦ pr−1

 and the relative entropy with respect to �z


 as

I(P
 |�z

) :=

⎧⎨⎩
∫

f ln f d�z

 if P
 ��z


 with density f,

∞ otherwise.

The specific entropy of P with respect to �z is then defined by

I(P) := lim
n→∞

1

λ(�n)
I
(
P�n |�z

�n

)
,
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where �n �R
2 is a cofinite increasing sequence of sets. We refer to [8] and [9] for existence

and properties of the specific entropy. We will set z = 1 and compute entropies relative to�1
�n

.
By [9, Proposition 2.6], the sublevel sets of I are sequentially compact in the topology of
local convergence. Therefore we only need to show that the specific entropies of the measures
{Ĝn}n∈N are bounded by some constant. We start with a proposition that also appeared in [6,
Lemma 5.2] and provides a lower bound on the partition sum.

Proposition 3.1. For all α ∈ (0, 1] and l ∈ (1, 1 + α), there is an r = r(α, l) ∈ (0, 1/2) such that
for n ∈N we have

δ0 ⊗ λIn\{0}(�n,l) ≥ (πr2)|In|−1.

Proof. For r> 0, we define, like in (3.2) in [11], the set of configurations which are close to
the scaled, enumerated, standard configuration ωl(i) = li for i ∈ I:

Sn,l,r = {ω ∈�per
n,l | |ω(i) −ωl(i)|< r for all i ∈ I}.

For sufficiently small r> 0, depending on α and l, we conclude, like in the proof of [11,
Lemma 3.1], that Sn,l,r ⊂�n,l. To prove this inclusion, we have to show the properties (�1)–
(�3) for all ω ∈ Sn,l,r. For (i, j) ∈ E and ω ∈ Sn,l,r, let us compute

| |ω(i) −ω(j)| − l| = | |ω(i) −ω(j)| − |ωl(i) −ωl(j)| |
≤ |ω(i) −ωl(i)| + |ω(j) −ωl(j)|
< 2r.

If we choose 2r<max{l − 1, 1 + α − l}< 1, then ω satisfies (�1). Condition (�2) is a
consequence of the inequality 〈v,∇ω̂(x)v〉> 0 for all v ∈R \ {0}, and for all x ∈R

2 where ω̂
is differentiable. This inequality holds for small enough r since ∇ω̂ is close to the identity
uniformly on R

2. Hence ω̂ is a bijection onto its image. Here we applied a theorem from
analysis which states that a C1-map f from an open convex domain U ⊂R

n into R
n with

〈v,∇f (x)v〉> 0 for all v ∈R
n \ {0} and x ∈ U is a diffeomorphism onto its image. However,

∇ω̂(x) is only piecewise differentiable, but on the straight line L connecting x, y ∈R
2 with

x �= y there are only finitely many points z ∈R
2 ∩ L where the curve (ω̂(ty + (1 − t)x))t∈(0,1) is

not differentiable. Assume that 〈v,∇ω̂(x)v〉> 0 holds whenever ω̂ is differentiable in x. The
curve is piecewise linear, and on each of these pieces, the derivative of the curve forms an acute
angle with y − x, so the curve cannot be closed. Thus the condition (�2) is satisfied in the case
of a sufficiently small r. Furthermore, condition (�3) is satisfied by ωl, and therefore also by
ω if r is sufficiently small. Hence Sn,l,r ⊂�n,l for some r ∈ (0, 1/2), and we conclude that

δ0 ⊗ λIn\{0}(�n,l) ≥ δ0 ⊗ λIn\{0}(Sn,l,r) = (πr2)|In|−1,

where the last equality is obtained by integrating over each ω(i) with i �= 0 successively along
a fixed spanning tree of In which gives a factor πr2, and considering that ωl(0) = 0 and that the
measure δ0 ⊗ λIn\{0} fixes ω(0) = 0. �

Proposition 3.2. The set {I(Ĝn) : n ∈N} is bounded, thus the set {Ĝn : n ∈N} is sequentially
compact in the topology of local convergence. Therefore there is a sequence nk → ∞ and a
shift-invariant measure Pρ on (X ,A) such that

lim
k→∞

∫
f dĜnk =

∫
f dPρ for any f ∈L.
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Proof. As also noted in the proof of [4, Proposition 5.3], the definition of Ĝn implies that

Iz(Ĝn) = 1

λ(
n)
I
(
(Gn)
n |�1


n

)
.

The relative entropy I((Gn)
n |�1

n

) can be explicitly computed as follows. The measure

(Gn)
n is supported on configurations that have n2 points in 
n, and if 
n is folded into
a torus, then each point x has exactly six neighbors in the annulus A1,1+α(x) around it and
no points closer than distance one. These configurations Xn,l are images of enumerated con-
figurations Xn,l = (Im �n,l)
n . By Lemma 3.1, (Gn)
n is the uniform distribution on these
configurations with respect to �1


n
. The density of (Gn)
n with respect to �1


n
is given by

f = 1Xn,l/�
1

n

(Xn,l). To find the constant �1

n

(Xn,l) more explicitly, consider the expectation

�1

n

[g] = e−λ(
n)
∞∑

k=0

∫

k

n

1

k!g({x1, . . . , xk}) λk|
k
n
(dx1, . . . , dxk).

Consequently we have

�1

n

(Xn,l) = e−λ(
n)

n2
λ(
n) δ0 ⊗ λIn\{0}(�n,l).

This follows since a factor e−λ(
n)/(n2)! comes from the density of �1

n

conditioned on n2

points with respect to

λ(n2)
∣∣



(n2)
n

(dx1, . . . , dx2
n).

Then, conditioned on the position of x1, the volume of the permitted configurations by their
shift invariance on the torus is (n2 − 1)! δ0 ⊗ λIn\{0}(�n,l); furthermore, the first point can
be distributed uniformly in 
n. The relative entropy is I((Gn)
n |�1


n
) = − ln (�1


n
(Xn,l))

and the specific entropy can be bounded using Proposition 3.1 and λ(
n) = n2l2
√

3/2 for
sufficiently large n, we obtain

I((Gn)
n) = − ln (�1

n

(Xn,l))

λ(
n)

= 1 + n2

λ(
n)
− ln (λ(
n))

λ(
n)
− ln (δ0 ⊗ λIn\{0}(�n,l))

λ(
n)

≤ 1 + n2

λ(
n)
− ln (λ(
n))

λ(
n)
− |In − 1| ln (πr2)

λ(
n)

≤ 1 + 2 − 2 ln (πr2)

l2
√

3
. �

The next proposition shows that Pρ is an infinite-volume Gibbs measure. Note that Ĝn and

n depend on l> 1, which we fixed previously.

Proposition 3.3. The measure Pρ is an infinite-volume Gibbs measure Pρ ∈ ∩z>0Gz.

Proof. Fix 
�R
2, z> 0 and ρ < 2/

√
3 sufficiently large that 2/(

√
3(1 + α)2)<ρ, where

α is such that Lemma 3.1 holds with that α. Let l> 1 such that ρ = 2/(l2
√

3). For X ∈X , let
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X̃n be the periodic extension of X
n to X , i.e. X̃n = ∪i∈IX
n + lni. Let κ > 0 be so large that

κ \
 contains a connected ring of triangles from K2(X̃n) for Gn-almost all X for all n ∈N.
Consequently, for all n ∈N sufficiently large that 
κ ⊂
n, the number of points in 
 condi-
tioned on X
c , is Gn-a.s. determined by the configuration in 
κ \
. The measure (Gn)
n is
the uniform distribution of enumerable permitted configurations with n2 points on the torus.
By Lemma 3.1, the conditional distribution of X
 given X
c under Gn is therefore the uni-
form distribution on configurations X
 such that H
,X
c (X
) = 0. Uniform distribution makes
sense, as the number of points in 
 is almost surely constant with respect to the conditioned
measure. Therefore the factorized version of the conditional distribution of Gn given A
c is
given by γ
(· | ·), that is,

Gn(F) =
∫
X
γ
(F | Y)Gn(dY) (12)

for any F ∈A and n ∈N large enough for 
κ ⊂
n. Since z is fixed, we can omit it as a
superscript in γ z.

The rest of the proof is as the proof of [4, Proposition 5.5]. Define


◦
n := {r ∈R

2 : 
κ + r ⊂
n}
and the (subprobability) measures

Ḡn := 1

|
n|
∫

◦

n

Gn ◦ θ−1
r dr.

Then ∫
f dĜn −

∫
f dḠn → 0

by the same argument as in [9, Lemma 5.7], so Pρ can also be seen as an accumulation point
of the sequence (Ḡn). Let F ∈ ∪��R2A� be a local set; using (12), we obtain for r ∈
◦

n

Gn ◦ θ−1
r (F) =

∫
X
γ
(F | Y)Gn ◦ θ−1

r (dY).

Therefore averaging over r ∈
◦
n gives

Ḡn(F) =
∫
X
γ
(F | Y)Ḡn(dY). (13)

Since the integrand on the right is a local function of Y , we can set n = nk and let k → ∞,
which gives (13) for Pρ instead of Ḡn. Since local sets generate the σ -algebra A, (13) holds
for Pρ and F ∈A, which by monotone convergence shows that Pρ is an infinite-volume Gibbs
measure. �

Proof of Theorem 3.1. In Propositions 3.3 and 3.2 we showed the existence of a translation-
invariant measure Pρ ∈ ∩z>0Gz which is the local limit of the measures (Gnk )k≥1, so Pρ

satisfies property (ii). Property (i) holds as it can be expressed by a local function and
EGnk

[|X ∩ B|] = ρλ(B) for any k ≥ 1 by the periodic boundary conditions. Similarly, property
(iii) can be expressed by local functions depending on {x0, x1, . . . , x6} ∩
n, where x0 is the
closest random point to the origin and xi is the ith closest point to x0. For n large enough we
have

Gnk (|{x0, x1, . . . , x6} ∩
n| = 7) = 1
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for any k ≥ 1 and therefore

Pρ(|{x0, x1, . . . , x6} ∩
n| = 7) = 1.

By Theorem 3.2 we have

lim
ρ↑2/

√
3

sup
k≥1

EGnk

[
6∑

i=1

|∇ω̂(�i) − Id|2
]

= 0, (14)

where {�i}1≤i≤6 are the random six triangles in T such that one of their vertices is mapped
to x0 under ω. Let f : C6 →R be continuous, bounded, and permutation-invariant. We use the
natural identification of topological spaces C=̂R

2. Let yi = xi − x0. By continuity of f , there is
a constant c> 0 such that

|f (y1, . . . , y6) − f (eiπ/3, ei2π/3, . . . , ei2π )| ≤ c
6∑

i=1

|∇ω̂(�i) − Id|2 (15)

Gnk -a.s. for any k ≥ 1. Combining equations (14) and (15), we obtain that

lim
ρ↑2/

√
3
EPρ

[|f (y1, . . . , y6) − f
(
eiπ/3, ei2π/3, . . . , ei2π )|]= 0,

which concludes the proof of property (iii). �
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