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The integration of Global Positioning Systems (GPS) with Inertial Navigation Systems
(INS) has been very actively studied and widely applied for many years. Some sensors and
artificial intelligence methods have been applied to handle GPS outages in GPS/INS
integrated navigation. However, the integrated system using the above method still results in
seriously degraded navigation solutions over long GPS outages. To deal with the problem,
this paper presents a GPS/INS/odometer integrated system using a fuzzy neural network
(FNN) for land vehicle navigation applications. Provided that the measurement type of GPS
and odometer is the same, the topology of a FNN used in a GPS/INS/odometer integrated
system is constructed. The information from GPS, odometer and IMU is input into a FNN
system for network training during signal availability, while the FNN model receives the
observations from IMU and odometer to generate odometer velocity correction to enhance
resolution accuracy over long GPS outages. An actual experiment was performed to validate
the new algorithm. The results indicate that the proposed method can improve the position,
velocity and attitude accuracy of the integrated system, especially the position parameters,
over long GPS outages.

KEY WORDS

1. GPS. 2. INS. 3. Odometer. 4. Loosely Coupled. 5. Fuzzy Neural Network.

Submitted: 21 November 2013. Accepted: 23 April 2014. First published online: 4 June 2014.

1. INTRODUCTION. Integration between the Global Positioning System
(GPS) and Inertial Navigation Systems (INS) can be used for providing navigation
information (position, velocity and attitude) (Chu et al., 2013). This has been
investigated for several years in different applications, such as military, agricultural
and so on. In the integrated navigation system, the GPS provides highly accurate
position and velocity information over long periods, while the INS provides accurate
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attitude information in the short term. When a GPS receiver is used to obtain position,
it needs to receive the satellite signal. In contrast, an INS is a self-contained device for
velocity and attitude data. It is clear that integrating GPS and INS can deliver an
enhanced performance over the individual systems (Nassar, 2003).
GPS information can be used to correct the INS error in GPS/INS integrated

navigation. When the integrated navigation systems enter a tunnel or canyon,
degraded navigation solutions are yielded in the absence of GPS since the INS
navigation precision degrades rapidly with time if no external aiding source is
available (Georgy et al., 2011). When the GPS signal is lost, another sensor with no
need of external aiding can be applied to integrate with INS. The speed of a vehicle
obtained from the odometer has the same property as GPS observation. In order to
enhance the performance of GPS/INS integration during GPS outages the odometer
observation is used as a measurement to update the state vector of a Kalman filter.
The odometer produces more frequent velocity measurement than the GPS and it
is also self-contained and hardly disturbed. The lever arm is an important effect in a
GPS/INS/odometer integrated system, so a compensation method considering the
influence of the scale factor error and the coordinate transformation errors of an
odometer was applied to the GPS/INS/odometer integrated system and improved
navigation precision (Seo et al., 2006). By changing the output signal which drives
the filter, the lever arm correction was performed and the odometer bias was
also estimated in real time (Hemerly and Schad, 2008). Because more sensors
joined in the integrated system, more filters were proposed. The performance of
the two-dimensional (2-D) navigation solution by integrating a GPS receiver,
a Micro-Electro-Mechanical System (MEMS) gyroscope and an odometer using a
Mixture Particle Filter (PF) once with the parallel cascade identification model and
once with the autoregressive stochastic model was tested in a land vehicle (Georgy
et al., 2010). Although the odometer can obtain the velocity during a GPS outage,
the precision of the odometer velocity is worse than GPS. At the same time, the
odometer can only derive the speed value in the direction of vehicle motion. In the
INS/odometer integrated system, the velocity in NED (north, east and down) frame
will be calculated by use of pitch and roll calculated from the INS system together with
the odometer data. It can be shown that the accuracies of the odometer and INS
restrain each other. So the INS/odometer integrated system cannot keep a high
accuracy navigation solution over long GPS outages.
A structure of neural network predictions was constructed to offer more precise

resolution when a GPS outage is encountered (Kaygisiz et al., 2004). An intelligent
position and attitude determination system aided by an artificial neural network
(ANN) with conventional Rauch-Tung-Striebel (RTS) smoother was proposed to
increase the overall accuracy of a GPS/INS integrated system in post-processing
mode by Chiang et al. (2009). The main work of Kaygisiz et al. (2007) in ANN applied
to a GPS/INS integrated system focused on the construction, implementation and
integration of an ANN using an optimum multilayer perceptron structure with
relevant number of layers and a suitable learning method. Considering that the
error in the past data of INS is dependent, a GPS/INS integration system aided by an
Input-Delay Neural Network was presented to predict the INS error and give reliable
error estimates of INS position and velocity observation (Noureldin et al., 2011).
A window-based weights updating scheme was given to accumulate navigation
knowledge, which can provide alternative weight updating algorithms for GPS/INS
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integration and can increase the position accuracy in GPS outages (Chiang, 2004).
The ANN method makes use of the inner relationship in a GPS/INS integrated
system. Without the other sensors, this method is ideal. At the same time, the
relationship used by ANN is not tight, because the GPS and INS are independent
systems, especially in loose coupled navigation, and the raw observation from INS and
GPS is different. The reliability of the method using an artificial neural network is
low over long GPS outages.
In the present study, a GPS/INS/odometer integrated system aided by fuzzy neural

network is proposed to obtain higher accuracy navigation information over long GPS
outages. The objective of this study is to improve the integrated navigation system
precision during long GPS outages. The topology of an FNN is constructed based on
the measurement type of the GPS and odometer being the same. The information
from GPS, odometer and IMU is input into the FNN system for network training
during signal availability, while the FNN model receives the observation from
IMU and odometer to generate the odometer velocity correction to enhance velocity
accuracy over long GPS outages. The paper is divided into 5 sections. Following
this introduction, the dynamic model and observation model in GPS/INS/odometer
integrated navigation is overviewed in Section 2. Section 3 describes the conventional
GPS/INS/odometer integrated system, including the structure and data stream.
Section 4 reveals the fuzzy neural network and the proposed integrated system. Results
are then presented and analysed in Section 5, followed by a summary of the main
conclusions.

2. GPS/ INS/ODOMETER INTEGRATED NAVIGATION MODEL
2.1. Dynamics Model. The system error dynamic model of integrated navigation

used in the Kalman filter is designed based on the INS error equations. The
insignificant terms are neglected in the process of linearization (Titterton, 2004). The
psi-angle error equations of INS are as follows (Han and Wang, 2012):

δṙ = −ωen × δr+ δv (1)
δv̇ = −(2ωie + ωen) × δv− δψ × f + δ (2)

δψ̇ = −(ωie + ωen) × δψ + ε (3)
where δr, δv and δψ are the position, velocity and orientation error vectors,
respectively. ωen is the rate of navigation frame with respect to earth, and ωie is the
rate of earth with respect to inertial frame. The system error dynamics of GPS/INS
integration is obtained by expanding the accelerometer bias error vector η and the
gyro drift error vector ε.
The accelerometer bias error vector η and the gyro drift error vector ε are

regarded as the random walk process vectors, which are modelled as follows (Wang
et al., 2003):

η̇ = uη (4)
ε̇ = uε (5)

where uη and uε are white Gaussian noise vectors.
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By combining Equations (1) to (5), the system dynamical model becomes:

δṙ = −ωen × δr+ δv
δv̇ = −(ωie + ωin) × δv− δψ × f + η
δψ̇ = −ωin × δψ + ε
η = uη
ε = uε

8>>>><
>>>>:

(6)

which can be generalized in matrix and vector form:

Ẋ = ΦX + u (7)
wherein X is the error state vector, Φ is the system transition matrix, and u is the
process noise vector.

2.2. GPS/INS Observation Model. The observation model in GPS/INS
integrated navigation is composed of the position and velocity difference vector
between the GPS solutions and the INS computation value:

Zr(t) =rGPS(t) − rINS(t)

=rGPS(t) − rINS(t− Δt) + vINS(t− Δt) · Δt+ 1
2
α(t) · Δt2

� � (8)

Zv(t) =vGPS(t) − vINS(t)
=vGPS(t) − (vINS(t− Δt) + α(k) · Δt) (9)

where Zr(t) is the position error measurement vector at t time, Zv(t) is the velocity
error measurement vector, rGPS(t) is the GPS position vector, rINS(t) is the INS
position vector, vGPS(t) is the GPS velocity vector, vINS(t) is the INS velocity vector,
α(t) is the acceleration vector determined by the INS alone, and Δt is the sample
time of IMU.
The generic measurement equation system of the Kalman filter can be written as:

Zk = Zr(t)
Zv(t)

� �
= Bk

XNav

XAcc

XGyo

2
4

3
5+ τr

τv

� �
(10)

where Bk is the observation matrix, and τ is the measurement noise vector, assumed to
be white Gaussian noise.

2.3. INS/odometer Observation Model.
2.3.1. Odometer Position and Velocity. An odometer can only measure

the overall velocity of the vehicle. Suppose the vehicle velocity output by odometer
is vO and its direction is the same as the front of the vehicle. The velocity of the vehicle
observed by odometer can be written in the navigation frame (Yan, 2006):

vnO = Cn
b 0 vO 0
� �T (11)

where Cb
n is the direction cosine matrix which defines the attitude of the body frame

with respect to the navigation frame. In INS/odometer integrated navigation, Cb
n can

be obtained by INS computation.
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The integration of velocity in the navigation frame is the position of the vehicle.
The differential equation of position is expressed as:

L̇O = vnON

RM + hO
(12)

λ̇O = vnOE

(RN + hO) cosLO
(13)

ḣO = −vnOD (14)
where LO, λO and hO are the longitude, latitude and height information calculated by
INS/odometer integration system respectively. RM and RN are meridian and traverse
radii of curvature in the earth ellipsoid. vnON, vOE

n and vOD
n are the velocity component

of north, east and down directions in the local level navigation frame.
Because the position and velocity information of the odometer are sampled

discretely, the computing method of the odometer position can be deduced based on
the differential equation of position:

LO(k) = LO(k − 1) + vnON · Δt
RM + h

(15)

λO(k) = λO(k − 1) + vnOE · Δt
(RN + h) cosLO(k − 1) (16)

hO(k) = hO(k − 1) − vnOD · Δt (17)
where (k−1) is the k−1 time of the odometer position, (k) is the k time of the
odometer position, and Δt is the sample interval of the odometer.

2.3.2. INS/odometer Observation Model. The INS/odometer observation model
is similar to the GPS/INS observation model. The position difference between the
odometer and INS which is transformed from geodetic coordinate system to
navigation frame, with the velocity difference, is the observation input of the
Kalman filter. Because the ability of the odometer to sensor the velocity in the down
direction is weak (Yan, 2006), so in the INS/odometer integrated system, the
observation input of the Kalman filter only includes the measurement in the north and
east directions:

ZO
k =

ΔrN
ΔrE
ΔvN
ΔvN

2
664

3
775 = BO

k

XNav

XAcc

XGyo

2
4

3
5+ νr

νv

� �
(18)

where Bk
O is the observation matrix of INS/odometer observation model.

2.4. Kalman Filter. The optimal estimates of the state vector from the Kalman
filter can be reached through a time update and a measurement update at a time
instant:

X̂k = X̂k,k−1 + Kk(Zk − BkX̂k,k−1) (19)
Kk = Pk,k−1BT

k (BkPk,k−1BT
k + Rk)−1 (20)

X̂k,k−1 = Φk,k−1X̂k−1 (21)
Pk,k−1 = ΦkPk−1Φ

T
k +Qk (22)
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Pk = (I − KkBk)Pk,k−1 (23)
In a closed loop integration scheme, a feedback loop is used for correcting the
systematic errors. In this way, the mechanization performs simple navigation
calculation under the assumption of small errors. In this case, the error states will be
reset to zero after every measurement update (Godha, 2006). Thus, the navigation
resolution is expressed by:

X̂k = Pk,k−1BT
k (BkPk,k−1BT

k + Rk)−1Zk (24)

3. GPS/INS/ODOMETER INTEGRATED NAVIGATION SYSTEM. In GPS/
INS integrated navigation, the INS error will be corrected using the difference
between GPS and INS solutions as the Kalman filter input. When the GPS
measurement is unavailable, such as in a tunnel, an INS mechanization algorithm
by itself will make the position and velocity diverge quickly. Based on GPS/INS
integrated navigation, the other sensors can be introduced to solve this problem.
Unlike GPS, the odometer is able to acquire the velocity information without an
auxiliary signal. When the vehicle travels in the tunnel, the GPS signal is lost but the
odometer can still make observations. A GPS/INS/odometer integrated navigation
system can thus realize indoor and outdoor positioning. Figure 1 shows a loosely
coupled GPS/INS/odometer integration structure with closed loop. It is important
to note that the odometer measurement is input to the integrated system during
GPS signal availability. Although the odometer velocity measurement accuracy is
worse than GPS measurement, the odometer measurement is still able to play the role
of gross error detector (Yan, 2006).

4. GPS/ INS/ODOMETER INTEGRATED SYSTEM USING FNN
4.1. Fuzzy Neural Network. In the study, a FNN scheme is proposed to learn

and compensate for the odometer observation error and to improve the odometer

IMU
INS

mechanization

GPS

Odometer

GPS
measurement

Odometer
measurement

KALMAN
filter

GPS outage

GPS outage

Closed loop

position

velocity

attitude

Figure 1. A loosely coupled GPS/INS/odometer integration architecture.
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observation accuracy during GPS outages. The T-S fuzzy system is a self-adaptive
fuzzy system (Hsiao et al., 2005). The T-S model not only updates by itself, but also
corrects the membership function of the fuzzy subset continually. This T-S fuzzy
system is described by fuzzy IF-THEN rules:

if x1 is Ai
1, x2 is A

i
2, . . ., xk is Ai

k then yi = pi0 + pi1x1 + · · · + pikxk (25)
where Aj

i( j=1,2, . . . k) is the fuzzy set of the fuzzy system, pj
i is the fuzzy system

parameters, yi is the output by fuzzy rule. In a fuzzy system, the input part is fuzzy;
otherwise, the output is definite.
Suppose the input is x=[x1,x2, . . . xk]. At first, the membership of the input is

computed according to the fuzzy rule:

uAi
j
= exp(−(xj − cij)2/bij) j = 1, 2, · · · , k; i = 1, 2, · · · , n (26)

where cj
i and bj

i are the centre and width of membership function respectively, k is the
number of input parameters, n is the number of fuzzy subsets. Gaussian membership
functions provide more continuous transition from one interval to another and hence
provide a smoother control surface from the fuzzy rules. At the same time, they are
able to provide a system with fewer degrees of freedom and hence more robustness.
Thus, Gaussian membership functions are suitable for problems which require
continuously differentiable curves and therefore smooth transitions, whereas the
others (such as triangular) do not posses these abilities (Hameed, 2011).
The fuzzy factor is computed by membership value using the continuous

multiplication:

ωi =
Yk
g=1

uAg
j
(xg) i = 1, 2, · · · , n (27)

Then the output y of the fuzzy model can be shown:

yi =
Xn
i=1

ωi pi0 + pi1x1 + · · · + pikxk
� �.Xn

i=1

ωi (28)

A fuzzy neural network is composed of three layers, which are the input
(pre-processing), hidden, and output (post-processing) layers. The hidden layers are
composed of the fuzzy layer and the fuzzy rule calculation layer. The input value
is fuzzy-processed to get the membership value by Equation (26) in the fuzzy layer.
The fuzzy factor will be computed in the fuzzy rule calculation layer by Equation (27).
The training algorithm of fuzzy neural network is as follows (Wang et al., 2012):

(1) Calculate error:

e = 1
2
(yd − yc)2 (29)

where yd is the exception output of neural network, yc is the real output of
neural network, e is the error between exception output and real output.

(2) Modify coefficient

pij(k) = pij(k − 1) − α
∂e
∂pij

(30)
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∂e
∂pij

= (yd − yc)ωi
.Xn

i=1

ωixj (31)

where α is the neural network training rate.
(3) Modify parameters

cij(k) = cij(k − 1) − α
∂e
∂cij

(32)

bij(k) = bij(k − 1) − α
∂e
∂bij

(33)

The topological structure of an FNN is designed from small processing units
(neurons) that are connected within the network using weighted chains. Generally
speaking, the basic model of the neural network includes three primary elements:
(a) weight chains, (b) a calculator for summing the input data that are weighted by
respective synapses of the neuron; and (c) an activation function for restricting the
amplitude of the neural network output and the last output (Chiang et al., 2009).

4.2. GPS/INS/Odometer Integrated System Using Fuzzy Neural Network. A
detailed block diagram of the proposed fuzzy neural network is shown in Figure 2.
In order to progress the implementation of the FNN, a number of parameters should
be set. These contain the training threshold contribution, the training momentum,
the training rate and the number of hidden layers to be used (Petropoulos et al., 2010).
An ANN with an optimal structure is expected to realize the closest accuracy to the

Figure 2. Three layer neural network of proposed integrated system.
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prediction model using the most suitable number of hidden neurons and hidden layers.
There are many ways to decide on the most suitable number of hidden neurons, such
as genetic algorithms (Kuo et al., 2001), which is applied in this paper.
A genetic algorithm (GA) process requires three most important aspects: (1) the

genetic representation of the solution domain, (2) the genetic operators of the solution
domain and (3) an objective function to evaluate the solution domain. Steps of
a general GA process are as follows:

(1) Initial: generate initial parent population and define the crossover and mutation
probability;

(2) Selection: evaluate the objective function and select chromosomes for
reproduction;

(3) Crossover and Mutation: create offspring using reproduction operators such as
crossover and mutation;

(4) Termination: repeat the generational process until a termination condition has
been reached.

The construction of objective function is key to the GA process. In the FNN of our
GPS/INS/odometer integrated system, the velocity difference between the odometer
and GPS is the output. Based on this, the objective function used in the GA to choose
the FNN parameters is constructed as:

φ(λ) = (δv′ON − δvON )2 + (δv′OE − δvOE)2 (34)
where λ are the FNN parameters (number of hidden neurons), δvON and δvOE are the
difference between GPS and odometer (odometer velocity correction) in north and
east directions, δv′ON and δv′OE are the difference velocity predicted by FNN. When
the function φ trends to zero, the most appropriate parameters will be chosen.
As is well known, one important component of the FNN is to acquire the training

data which are required to train the neurons to accurately estimate the system (Chiang
and Chang, 2010). In the FNN of our GPS/INS/odometer integrated system, the
training phase records the IMU observation and odometer observation in the NED
frame as the input. The output, velocity difference between the odometer and GPS,
is a 2-D vector with north velocity and east velocity as components. The odometer
is only able to sense the displacement in a plane, so it is difficult to record the three-
dimensional motion. In land navigation applications, the vehicle always remains on
the Earth’s surface, so the vehicle positions have no large changes in the vertical
direction (Han and Wang, 2010). It is reasonable to assume that the vehicle moves in
an approximately horizontal plane in most cases. Thus the ability of the odometer
to sense the velocity in the down direction is weak (Yan, 2006), so the output of the
FNN excludes it. The reason for using the velocity differences instead of the velocity
component itself as output is to simplify the learning and training process.
Figure 3 illustrates the FNN system configuration and training strategy. During the

training phase, the velocity difference between GPS and the odometer is selected as
the target for the network training during signal availability. Thus the navigation
knowledge can be learnt, stored and accumulated (Wang et al., 2006). On the other
hand, if the GPS signal is unavailable and the network is well trained, the proposed
FNN model receives the acceleration and rotation rates from INS and velocity from
the odometer to generate the velocity difference between GPS and the odometer
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(odometer velocity correction). Based on that, the estimate velocity can be computed
by summing the odometer velocity and FNN output during GPS outages. IMU data
participates in the INS computation and FNN process. The weight of IMU data in
FNN prediction is low so the possibility of causing divergence of the navigation
solutions is limited by double counting of INS computation and FNN prediction.
Figure 4 shows a loosely coupled GPS/INS/odometer integration structure with

closed loop using fuzzy neural network, which is proposed in this paper. The
observation input of the Kalman filter is changed to the odometer measurement
corrected by FNN in a GPS outage.

5. RESULTS AND DISCUSSION. Field tests were conducted to evaluate
the performance of the proposed method. The test system comprised two Leica GPS
receivers, one non-touch vehicle speed sensor (odometer) and one navigation grade
IMU. Raw IMU data, GPS data and odometer data were collected throughout
the test navigation. One of the Leica receivers was set up as a reference station and

IMU

Odometer

GP

GPS RUN FUN MODEL GPS OUTAGE

S

FNN
training

FNN
predicting

input
value

output
value

-

IMU

Odometer

prediction
value

Figure 3. FNN training architecture of proposed integrated system.

IMU
INS

mechanization

GPS

Odometer

GPS
measurement

Odometer
measurement

KALMAN
filter

GPS outage

GPS outage

Closed loop

position

velocity

attitude

FNN
model

Figure 4. A proposed loosely coupled GPS/INS/odometer integration architecture.
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the other one was used as a roving receiver with its antenna above the roof of the
test vehicle. 1 Hz GPS data, 10 Hz odometer data and 100Hz INS data were received
and stored in a book computer. The period of the test was about 30 minutes.
The GPS observation was processed using the GPS software GrafNav™ 8·0 in DGPS
mode and the solution was regarded as the position and velocity reference. The
attitude reference was generated by the DGPS/INS integrated system, which promises
much better accuracy than the proposed GPS/INS/odometer integrated system
using a single GPS receiver. The specifications of the IMU are given in Table 1. The
reference solution accuracy in these conditions is summarised in Table 2. The IMU
measurement was processed in the GPS/INS/odometer integrated system proposed in
the paper for further analysis. Over the whole trajectory, no natural GPS outage was
detected. After 1200 s, a simulated GPS outage was generated by removing the GPS
observation.
The GPS observations from 1 s to 1200 s were applied to train the FNN model.

Figure 5 depicts the training results of two parameters (odometer velocity correction
in north and east directions). FNN represents the modified odometer velocity by
FNN estimate correction in Figure 5. The velocity of FNN has indicated closer to
reference value mode than the velocity of odometer in north direction and east
directions.
Shown in Figure 5 are north and east velocity errors from odometer and FNN

compared to the reference. It is noticed that the error of FNN velocity is smaller
than odometer velocity. Training results show that the FNN model has good enough
performance to estimate the odometer observation error.
After 1200 s, we applied the proposed FNN model to predict the odometer

measurement error. Figure 6 provides the prediction results. As in the training phase,
the velocity of FNN is closer to the reference value than the velocity of odometer in
the north and east directions.
Figure 6 shows north and east velocity errors from the odometer and FNN

compared to the reference value. It can be seen that the error of FNN velocity is
smaller than the odometer velocity error. The proposed FNN schemes learn the error
behaviour of the odometer well during a simulated GPS outage.

Table 1. Navigation grade IMU technical data.

Parameters Gyro Accelerometer

Bias 1 deg/hr 50 μg
Scale factor 150 ppm 100 ppm
Random walk 0·1 deg/h/sqrt(Hz) 50 μg/sqrt(Hz)

Table 2. Reference solution accuracy.

Parameters Position (m) Velocity (m/s) Attitude (deg)

North (roll) 0·01 0·02 0·02
East (pitch) 0·01 0·02 0·02
Down (yaw) 0·02 0·02 0·04
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The comparison trajectory is shown in Figure 7. From point 1 to point 2, no natural
GPS outage was detected and the trajectory from point 2 to point 3 is during simulated
GPS outage. The red line represents the reference from DGPS results, the yellow
line represents the solution by the scheme of Figure 1 (scheme 1) and the blue line
represents the solution of scheme proposed in the paper (scheme 2). The results show
that scheme 1 exhibits low accuracy. The position error of scheme 1 gradually
increases over time. At point 3, the position of scheme 1 deviates seriously from
the highway. Scheme 2 mitigates the errors and improves the navigation result.
The trajectory of scheme 2 is still located on the highway in the whole experiment
process.
Position errors were computed with respect to the reference position to evaluate

the performance. Table 3 illustrates root mean square errors (RMS) and maximum
value of position error. Figure 8 shows the time series of position errors in the east
and north direction for schemes 1 and 2. Both sets of figures show that the proposed
GPS/INS/odometer integrated system provides the better navigation results when a
long GPS outage is encountered. The proposed scheme shows that with reliable
training, it can decrease a 112 m error to 35 m in terms of 2-D position. Scheme 2 still
provides accurate position information beyond a GPS signal absence of 10 minutes.
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Figure 5. The training results of FNN: (a) velocity in north; (b) velocity error in north; (c) velocity
in east; (d) velocity error in east.
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Figure 6. The prediction results of FNN: (a) velocity in north; (b) velocity error in north;
(c) velocity in east; (d) velocity error in east.
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Figure 7. Comparison of the different schemes’ trajectories.
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Compared to scheme 1, the proposed GPS/INS/odometer scheme improves all the
errors of position error in the north and east directions by 78% and 62% RMS,
respectively.
Table 4 shows the velocity improvement realized by the GPS/INS/odometer scheme

proposed in the paper. Figure 9 plots the integrated system velocity errors in north
and east directions respectively. The results show that the velocity of scheme 2 can
achieve an accuracy of 0·226 m/s and 0·423 m/s in the north and east coordinate
components, respectively. Compared to scheme 1, the proposed GPS/INS/odometer
scheme improves all the errors of velocity error in the north and east direction by 43%
and 20% RMS, respectively. The improvement of the velocity parameters is less than
the position parameters.
The roll, pitch and yaw errors of scheme 1 and scheme 2 are given in Table 5

and Figure 10. Compared to scheme 1, the proposed GPS/INS/odometer scheme
improves all the errors of roll angles, pitch angles, and yaw angles by 29%, 7%,

Table 3. Comparison of two schemes in terms of position error.

Scheme

RMS(m) MAX(m)

North East North East

1 76·355 82·396 144·707 158·143
2 16·319 31·030 28·461 59·515
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Figure 8. Position error comparison: (left) position error in north; (right) position error in east.

Table 4. Comparison of two schemes in terms of velocity error.

Scheme

RMS(m/s) MAX(m/s)

North East North East

1 0·396 0·527 2·120 4·876
2 0·226 0·423 2·060 3·603
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and 12% RMS, respectively. The improvement of the attitude parameters is the least
in all parameters (position, velocity and attitude). The aiding of the FNN method
barely improves the attitude solution. It is seen from the figures that integrated
systems aided by FNN achieve the proposed suppression of the errors in
conventional GPS/INS/odometer integrated navigation. The improvement of the
velocity and attitude parameters is less than the position parameters. In order to
obtain the high accuracy velocity observation from the odometer in the NED frame,
the IMU sensor in INS/odometer has a high-precision gyroscope and accelerometer
output, which is the most important influence to velocity and attitude precision. So the
improvement of the velocity and attitude parameters is minimal in the proposed
method.

6. CONCLUSIONS. This paper proposes a GPS/INS/odometer integrated
system with a fuzzy neural network to improve the accuracy of position, velocity
and attitude parameters during long GPS outages. In particular, a FNN system
is designed to predict the correction of odometer measurement in the loss of GPS
signals. Real measurements were used to demonstrate the performance of this
approach.
The GPS and odometer system are able to sense the same observation. The

relationship between the GPS and odometer observations is rather tight. Hence it is
reliable to use the odometer to predict the velocity error during long GPS outages.
The accuracy of velocity measurement by the odometer corrected by FNN
is improved.

Table 5. Comparison of two schemes in terms of attitude error.

Scheme

RMS (deg) MAX (deg)

Roll Pitch Yaw Roll Pitch Yaw

1 0·126 0·095 0·178 0·662 0·275 0·351
2 0·090 0·088 0·157 0·517 0·342 0·331
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Figure 9. Velocity error comparison: (left) velocity error in north; (right) velocity error in east.
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The results indicate that the proposed integrated system can provide benefits in the
accuracy of the navigation solution, compared to a conventional GPS/INS/odometer
integrated system. The position and velocity error has been reduced in the north
and east directions respectively, and the attitude error has been reduced in terms of
roll, pitch and yaw respectively. From the results, it is observed that the proposed
method decreases the two dimensions position error to 35 m when a ten minute long
GPS outage occurs. In order to guarantee the position accuracy in long GPS outages,
high-precision INS is required. For future work, the potential of the FNN for low
cost INS in GPS/INS/odometer tightly integrated navigation systems should be
investigated.
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Figure 10. The attitude error comparison: (a) attitude error in roll; (b) attitude error in pitch; (c)
attitude error in yaw.
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