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SUMMARY
For conventional designs of robots, manipulator motions
result in forces and moments on the base. These forces and
moments may cause undesirable translation and rotation of
the base. The objective of this paper is to systematically
analyze the fundamentals of reactionless robots. Based on
this analysis, a design of one distinct class of spatial robot
is proposed. The design is achieved through appropriate
choices of geometric and inertial parameters. Due to the
underlying conservation laws, the trajectory must satisfy
additional constraints. We illustrate the reactionless feature
of this robot through computer simulations. We are also
fabricating reactionless robots to illustrate the underlying
concepts.

KEYWORDS: Reactionless manipulators; Spatial robots;
Constraints.

1. INTRODUCTION
In the literature, a number of methods have been proposed
for static balancing of machines through passive means
using counterweights and springs. These methods have been
applied to linkages,1–3 serial and direct-drive manipulators4–7

and parallel mechanisms.8,9 The center of mass is an
important property of a machine. Force balancing of
machines is achieved by ensuring that the system center
of mass remains stationary during motion.1 In recent years,
Gokce and Agrawal10 revised this concept. Subsequently,
they fabricated a design where the center of mass of the
system was located appropriately through the addition of
parallelogram linkages.11

Research has been reported on dynamic balancing of
linkages, especially with four-bars.12–16 Counterweights or
idler-loops are used to minimize forces and moments
transmitted to the base. Also, dynamically balanced parallel
mechanisms have been designed which use reactionless four-
bar linkages in their legs17,18 or have counter rotations
with proper choice of geometric and inertia parameters.19,20

Moreover, there are some published works on the open
loop systems using trajectory planning to obtain reactionless
manipulators or minimize moments transmitted to the
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base.21,22 The issue of reactionless control of a space
robot keeping the base inertially fixed was proposed in
references [23,24]. Another research work was presented
in reference [25] to design the Hummingbird minipositioner
to be dynamically balanced. In this work, the authors fixed
the location of the center of mass of the machine to make
the system statically balanced using the appropriate relations
among the inertia parameters. Then using the fact that the
links and all other accessories are symmetric about some
reference plane, they concluded that there is only one nonzero
moment about the axis perpindicular to the plane. They
cancelled this moment by introducing counteracting torques
through the use of a toque adjustable motor. However, their
method took advantage of the symmetry in order to vanish
the moments transfered to the base. This is not applicable to a
general mechanism. Also, extra actuators reduce the system’s
manipulation capabilities.

In most research, dynamic balancing of the mechanisms
is attained by proper choice of geometric and inertial
parameters, appropriate trajectory planning and adding
counter rotations or counteracting torques with a proper
controller. A significant difference in this paper is that this
property is achieved through the use of a new class of
spatial manipulators using auxiliary parallelograms as well
as passive joint connection between manipulator and the
base.

The main contributions of this paper are:

(i) design and simulation study of a class of spatial mani-
pulators using auxiliary parallelograms. This design is
simpler in terms of links, complexity of the added masses,
and inertia to the system, than conventional designs using
counterweights;

(ii) attainment of zero moment transmission to the base along
specified axes through an appropriate choice of passive
joints.

The organization of the paper is as follows: Section 2
reviews the dynamic behavior of coupled bodies in open-
chain configuration and uses these dynamic equations to
find the necessary and sufficient conditions for the design of
reactionless machines. Based on the underlying mathematics,
a spatial open chain robot using auxiliary parallelograms is
outlined in Section 3. Detailed mathematical models and
simulation are presented for this design in Section 4.
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76 Reactionless manipulators

Fig. 1. An open chain of bodies.

2. THEORETICAL BACKGROUND AND
REACTIONLESS MANIPULATORS
We study robots in an open chain. The bodies are numbered
from 1 through n as shown in Fig. 1. We consider the body i

in the chain to be connected to body i − 1 at Oi and to i + 1
at Oi+1. The center of mass of the body i is labeled as Ci . At
the interconnection point Oi , the force and moment applied
on body i from i − 1 are respectively labeled as Fi and Mi .

The motion of the overall system is characterized by the
following two equations:

F1 + Mgn = MaC, (1)

d

dt
HC = M1 + rCO1 × F1, (2)

where HC is the net angular momentum vector around the
system center of mass C, M is the total mass of the system
defined as

∑n
i=1 mi and rCO1 is a vector from C to O1. The

expression for HC is

HC =
n∑

i=1

[
ICi

· ωi + rCCi
× mivCi

]
, (3)

where vCi
is the velocity of the center of mass of Ci .

We assume that the contact between the system and the
ground happens either at C or O1. These two points may be
the same in some cases. One can now make the following
observations for a single contact system:

If aC = 0, vCM is a constant. Since a machine at some initial
time is at rest, this constant must be zero. This condition also
implies that the center of mass of the machine is inertially
fixed.

Through counterbalancing, it is possible to design a
machine such that its center of mass is at O1 where it is
connected to the ground. Counter balancing of the chain
must start out from the last body. The center of mass of
body n must be placed on the joint axis connecting n and
n − 1. On carrying out this procedure successively to other
bodies in the chain, the center of mass of the whole system
will get placed on the joint axis between bodies 0 and 1. As
a result, the center of mass becomes inertially fixed during
entire motion.9,15

The second design for making the system center of mass
C inertially fixed is determined as follows: First, the system
center of mass is determined using auxiliary parallelograms
[11]. Next the machine is connected to the base at the center
of mass of the system such that it becomes an inertially fixed
point. Section 3 outlines an example of this class of spatial
manipulators which uses auxiliary parallelograms to locate
the center of mass. In both designs, F1 = −Mgn from Eq. (1)
and the force transmitted to the ground is a non-zero constant
equal to Mgn.

In this paper, the second design will be used because it
is simpler, in terms of number of links, complexity of added
masses and inertia to the system, when compared to the first
design using counterbalancing.

If the center of mass of the machine is inertially fixed, then
from Eq. (2),

M1 = d

dt
HC (4)

Now, two distinct cases are possible:

(I) Through proper choice of geometric and inertial
parameters, the machine is designed so that HC = 0.1,17

In this case, M1 = 0;
(II) If the connection between body 1 and O is through

passive single or multiple degree-of-freedom joints,
appropriate transmitted components of the moment
between the system and the ground are zero. For
example, if the connection at the center of mass between
the system and the ground is through ball and socket
joint, M1 = 0, i.e. there is no moment transfer between
them. In this case, d

dt
HC = 0. This will result in three

scalar constraints to be satisfied by motion of the system.
In this case, the ground reaction is a constant and the
ground moment is zero.

Similarly, if the connection at C was through a revolute
joint, then d

dt
HC · b = 0, where b is a unit vector along the

axis of the revolute joint. The ground reaction is a constant
and one component of the ground moment HC · b = 0. The
motion of the system is characterized by one scalar angular
momentum conservation equation.

In this paper, the emphasis is to attain zero moment
transmission along some specified axes through an appro-
priate choice of passive joints.

In the presence of external forces and moments on the
system, in order to have a reactionless system, we should
add appropriate thrusters to the system to keep the center of
mass of system fixed. The thrusters should be designed such
that it can be adjusted with the amount of external forces and
moments exerted on the system.

3. MANIPULATOR WITH AUXILARY
PARALLELOGRAMS
In this section, we illustrate the design with a class of spatial
manipulators with auxiliary parallelograms that locate the
center of mass, as shown in Fig. 2.11 The center of mass
is then used as the connection point for the system to the
inertial frame by a revolute joint. The center of mass of the
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Fig. 2. A spatial manipulator with auxiliary parallelograms.

Fig. 3. Modeling of spatial manipulator with auxiliary parallelograms.

manipulator is located using a set of auxiliary parallelograms,
as shown in Fig. 3. A set of scaled lengths $i are computed
from the description of the mechanism to construct the
parallelograms and locate the center of mass of the whole
system. Hence, the center of mass C becomes the inertially
fixed point.

In this design, we consider three links with three auxiliary
parallelograms which are connected to joint 1 at C as shown
in Fig. 2. Joints 1 and 2 are located at C. The axes of joints 2,
3 and 4 are parallel to each other and are along ẑ1. The axis
of joint 1 is along ẑ0 and is perpendicular to the axes of all
three joints. An inertial frame F0 is located at C consisting
of unit vectors x̂0, ŷ0, ẑ0. A coordinate frame Fi is at point Oi

with unit vectors x̂i , ŷi and ẑi . Link i is denoted by OiOi+1

for i = 1, 2, 3. Auxiliary links are defined as: l1a = 1a =
S5S2 = CS4, l2a = 2a = S1S5, l2a = 2a = S4S3 and l3a =
3a = S5C = S2S4. The joint 2 at C is passive and all other
joints are actuated. Therefore, the moment transmitted to the
ground along axis z1 vanishes, i.e. MC

z1 = 0. The angular
momentum of the whole system is derived about C in order
to obtain the moment transmitted to the ground.

3.1. Angular momentum of manipulator
The inertial angular momentum of the system about point C

expressed in frame F1 can be written as

HC = θ̇1

[
9∑

i=1

Iiz0 +
9∑

i=1

CCi × (ẑ0 × miCCi)

]

+ θ̇2

[
9∑

i=1

Ii ẑ1 +
9∑

i=1

CCi × (ẑ1 × miO1Ci)

]

+ θ̇3


 9∑

i=2,i �=4,5

Ii ẑ2 +
9∑

i=2,i �=4,5

CCi × (ẑ2 × miO2Ci)




+ θ̇4

[
I3ẑ3 +CC3 × (ẑ3 × m3O3Ci)

+
9∑

i=8

Ii ẑ3 +
9∑

i=8

CCi × (ẑ3 × miO3Ci)

]
(5)

where Ii is the inertia tensor of link i, OjCi is a position
vector from Oj to the center of mass Ci of link i, CCi is the
position vector from C to the center of mass Ci of link i and
mi is the mass of link i. We express this angular momentum
in frame F1. Note that the inertia tensor Fi Ii is taken to be
diagonal in the frame Fi with the expression

Fi Ii =




Ii1 0 0

0 Ii2 0

0 0 Ii3


, (6)

where Ii1, Ii2 and Ii3 are the mass moment of inertias
of link i along x̂i , ŷi and ẑi . This inertia tensor must
be converted to F1. Appendix 1 provides some of the
details used in the derivation. The scaled lengths $i = OiSi ,
i = 1, 2, 3 are shown in Fig. 3. In general, a position vector
CCi can be written as

CCi = αi x̂2 + βi x̂3 + γi x̂4 (7)
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where αi , βi , and γi are functions of geometry and inertia
parameters of the system. For details, please see reference
[11].

Using the above relationship, it can be shown that the
system angular momentum about the system center of mass
HC expressed in frame F1 is

HC = HC
x1

x̂1 + HC
y1

ŷ1 + HC
z1

ẑ1 (8)

where HC
x1

, HC
y1

, HC
z1

are

HC
x1

= θ̇1(A1s2c2 + A2s23c23 + A3s234c234 − A4s223

−A5s2234 − A6s23234) (9)

HC
y1

= θ̇1
[
(I11 + 2I 1a,1)s2

2 + (I12 + 2I 1a,2)c2
2

+ (I21 + I2a,1 + I 2a,1)s2
23 + (I22 + I2a,2 + I 2a,2)c2

23

+ (I31+ 2I3a,1)s2
234 + (I32 + 2I3a,2)c2

234 + m1(−l∗1c2

+ $2c2 + $2c23 + $3c234)2 + m2(−l1c2 + $1c2

− l∗2c23 + $2c23 + $3c234)2 + m3(l1c2 − $1c2

+ l2c23 − $2c23 + 2l∗3c234 − $3c234)2 + m1al
2
1∗ac

2
2

+m1a$2
3c

2
234 − 2m1al1∗a$3c2c234 + m2a(l2∗ac23

− $2c23 − $3c234)2 + m2a(l1c2 − s1c2 + l2∗ac23)2

+m3a(l1c2 − $1c2 + l3∗ac234 − $3c234)2

+m3a(l3∗a − $3)2c2
234

]
(10)

HC
z1

= (A7 + A8c3 + 2A5c34 + 2A6c4)θ̇2

+ (A9 + A4c3 + A5c34 + 2A6c4)θ̇3

+ (A10 + A6c4 + A5c34)θ̇4 (11)

where a symbol such as I2a,1 represents the moment of
inertia of auxiliary link 2a along x̂3, I 1a,2 is the moment
of inertia of auxiliary link 1a along ŷ2, symbols shown
in Fig. 3. Here, si , ci , sij , cij , sijk and cijk stand for
sin θi , cos θi , sin(θi + θj ), cos(θi + θj ), sin(θi + θj + θk) and
cos(θi + θj + θk), respectively. Also, the links are considered
to be slender such that the center of mass of a link i is located
at a distance l∗i from its joint axis, i = 1, 2, 3. Moreover,
the center of masses of auxiliary links ia is located at li∗a ,
i = 1, 2, and the center of mass of auxiliary link ia, i = 2, 3,
is located at li∗a .

All coefficients in the above equations are functions of
geometric and inertial parameters of the links and are given
in Appendix 2.

Using Eq. (4), one can derive the moment transmitted to
the base given by

MC
1 =

F0d

dt
HC = MC

x1
x̂1 + MC

y1
ŷ1 + MC

z1
ẑ1 (12)

where

MC
x1

=
(

d

dt
HC

x1
+ HC

z1
θ̇1

)
(13)

MC
y1

= d

dt
HC

y1
(14)

MC
z1

=
(

d

dt
HC

z1
− HC

x1
θ̇1

)
(15)

The moment MC
z1

is zero because of passive revolute joint
at C. If HC

x1
and HC

z1
can be made to be zero, both MC

x1

and MC
z1

will vanish. However, it is impractical to make
these terms identically zero. Hence, we adopt a two step
procedure: (i) Select the geometric and inertial parameters
such that HC

x1
= 0, (ii) Choose the motion of the joints such

that HC
z1

= 0. Therefore, the only moment transmitted to the
ground is MC

y1 exerted by the actuator at joint 1.

3.2. Design and planning of manipulator
It can be readily determined from Eq. (9) that the conditions
required to vanish HC

x1
are

A1 = A2 = A3 = A4 = A5 = A6 = 0 (16)

where Ai, i = 1, . . . , 6 are given in Appendix 2. We choose
the geometric and inertial parmeters of the links such that
Eqs. (16) are satisfied. Since there are many unknowns
and six equations to be set to zero, one uses approximate
solution by using these geometric and inertial parameters.
Upon solving these equations, it turns out that all equations
are not exactly equal to zero. However, we may decrease
these remaining terms by changing the geometric and inertia
parameters.

Next, upon susbtitution of Eq. (16) in Eq. (11), one obtains

A7θ̇2 + A9θ̇3 + A10θ̇4 = 0 (17)

Eq. (17) is a holonomic rate constraint equation on the motion
of the last three joints of the parallelogram system. If joints
3 and 4 are actively driven, the motion of joint 2 is given as

θ̇2 = −A9

A7
θ̇3 − A10

A7
θ̇4 (18)

or

θ2 = −A9

A7
θ3 − A10

A7
θ4 + C1, (19)

where C1 is a constant of integration. In summary, the
moment transmitted to the base has only one component
MC

y1.
In the presence of a payload, we can consider two cases:

(i) The mass of the payload is constant over the time, here,
we can add this mass to the mass of last link and then
design the reactionless system with new inertia parameters,
(ii) The mass of payload is not constant, we can design
the manipulator with auxiliary parallelograms such that the
auxiliary links are telescopic and adjustable to account for
the mass of the payload.
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Fig. 4. Moments MC
x1

, MC
z1

and MC
z0

for manipulator with auxilary parallelograms.

Fig. 5. End-effector trajectory in the inertial frame for manipulator with auxilary parallelograms.

4. NUMERICAL EXAMPLE
This section describes numerical example for model
presented in Section 3. The task is to drive the manipulators
from given positions and orientations of the end-effector
to a desired final one. Note that only those end-effector
orientations are allowed which can be obtained by rotation
of the plane. Even though any motion can be chosen for
the end-effector, we choose cycloidal motion for the joints.
The moment transmitted to the base are computed using the
procedure explained in Section 3.

The design of spatial 4-link manipulator satisfies the
holonomic Eq. (18). Hence, only three out of four joints can
be actively driven and the second joint is considered passive.
The motion of first joint is independent of the other three
joints. The actuated joints are assumed to have the following
cycloidal motion

θ1 = θ10 + (θ1f − θ10) ∗ s

θ3 = θ30 + (θ3f − θ30) ∗ s (20)

θ4 = θ40 + (θ4f − θ40) ∗ s

where θi0 and θif are the initial and final values for θi and s

is

s = 1

2π

[
2π

tf
t − sin

(
2πt

tf

)]
. (21)

tf is the final time for the motion. Using Eq. (19), θ2 is
written in terms of θ3 and θ4. All angles are in radians. The
boundary conditions are chosen such that the constants C1

in Eq. (19) vanish. The motion of end-effector with respect
to inertial frame can be written for the manipulator with
auxilary parallelograms as

xe = cos(θ1)[l1a cos(θ2) + l2a cos(θ2 + θ3)

+ l3a cos(θ2 + θ3 + θ4)]

ye = sin(θ1)[l1a cos(θ2) + l2a cos(θ2 + θ3) (22)

+ l3a cos(θ2 + θ3 + θ4)]

ze = l1a sin(θ2) + l2a sin(θ2 + θ3) + l3a sin(θ2 + θ3 + θ4)

Using the above motion, one can also compute the time
history of moments transmitted to the base using Eqs. (13),
(14), (15), respectively.

As an example, the initial and final joint angles in
Eqs. (20) are chosen as: θ10 = −π/2, θ1f = π/2, θ30 =
0, θ3f = 2π/3, θ40 = 0, θ4f = π/2 and the time period is
tf = 5s.

4.1. Manipulator with auxilary parallelograms
The details of the geometric and inertial parameters for
the manipulator with augmented parallelograms are: l1 =
0.2628, l2 = 0.3329, l3 = 0.1402, m1 = 0.247023, m2 =
0.53396, m3 = 0.512472, m2a = 0.113893, m3a = 0.0892,
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m1a = 0.0369, m2a = 0.359926, $1 = .2445594804, $2 =
.2087011776 and $3 = .02342699352. All lengths and
masses are expressed in MKS units. The time history of
moments transmitted to the base are derived by inserting
Eq. (22) into Eqs. (13), (14) and (15). The results are shown
in Fig. 4. As shown, the moments tansmitted to base in x̂1 and
ẑ1 directions are very small but not equal to zero because of
the approximate solution that we have used to satisfy Eq. (16)
in Section 3.2. it may be noted that it is possible to obtain
better result using different geometric and inertia parameters.

Figure 5 shows the time history of end-effector motion in
the inertial frame using Eqs. (22).

5. CONCLUSION
The paper provided a systematic study of necessary
and sufficient conditions for the design of classes of
reactionless spatial robots. Detailed design and simulation
were presented for spatial robots with open chains using
auxiliary parallelograms. It was shown that these designs
do not transmit any extra force to the base besides the
gravity force. Also, through appropriate choice of geometric
and inertial parameters and motion planning, the transmitted
moment to the base has only one component in the direction
of the actuated joint while the other two components of the
moment identically vanish. In conventional designs of robots,
manipulator motions result in forces and moments on the
base, while the proposed methodology yields designs which
will not cause undesirable reaction forces and moments to the
base. We believe that these robots will be specially valuable
in space robotics since manipulator motions will not create
disturbances on the base thereby keeping the position and
attitude of the base constant during motion.
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APPENDIX 1
The inertia tensor Ii in frame F1 is derived as follows:

Upon substitution of Eq. (6) and in the light of expression
for rotation matrix of frame Fi with respect to frame F1,
namely,

F1Ri =F1 [ x̂i ŷi ẑi] (23)

one obtains

F1 Ii =F1 [x̂i(x̂i)
T ]Ii1 +F1 [ŷi(ŷi)

T ]Ii2 + F1 [ẑi(ẑi)
T ]Ii3

i = 2, 3, 4 (24)

where x̂i , ŷi and ẑi in terms of unit vectors in frame F1 can
be written as

x̂0 = c1x̂1 + s1ẑ1

ŷ0 = s1x̂1 + c1ẑ1

ẑ0 = ŷ1

x̂2 = c2x̂1 + s2ŷ1

ŷ2 = −s2x̂1 + c2ŷ1

x̂3 = c23x̂1 + s23ŷ1 (25)

ŷ3 = −s23x̂1 + c23ŷ1

x̂4 = c234x̂1 + s234ŷ1

ŷ4 = −s234x̂1 + c234ŷ1

ẑi = ẑ1 i = 2, 3, 4

where si , ci , sij , cij , sijk and cijk stand for sin(θi), cos(θi),
sin(θi + θj ), cos(θi + θj ), sin(θi + θj + θk) and cos(θi +
θj + θk), respectively.

APPENDIX 2
The coefficients of Eqs. (9) and (11) are as follows:

A1 = I11 + 2I 2a,1 − I12 − 2I 2a,2 − A′
1 (26)

A2 = I21 + I2a,1 + 2I 2a,1 − I22 − I2a,2 − A′
2 (27)

A3 = I31 + 2I3a,1 − I 32 − 2I3a,2 − A′
3 (28)

A4 = m2a(l1 − $1)l2∗a + m3(l1 − $1)(l2 − $2)

+m2(l1 − $1)(l2∗ − $2) − m1(l1∗ − $1)$2 (29)

A5 = m3(l1 − $1)(l3∗ − $3) − m3a(l1 − $1)($3 − l3∗a)

−m2(l1 − $1)$3 − m1(l1∗ − $1)$3 − m1al1∗a$3

(30)

A6 = m3(l2 − $2)(l3∗ − $3) − m2(l2∗ − $2)$3

+m1$2$3 + m2a($2 − l2∗a)$3 (31)

A7 = A1 + Ic1,3 + 2I 1a,3 + A9 (32)

A8 = 2A4 (33)

A9 = A′
2 + A10 + I 2a,3 + Ic2,3 + I2a,3 (34)

A10 = A′
3 + Ic3,3 + 2I3a,3 (35)

where

A′
1 = m1($1 − l1∗)2 + m2(l1 − $1)2 + m3(l1 − $1)2

+m3a(l1 − $1)2 + 2m1al
−2
1∗a

+m2a(l1 − $1)2 (36)

A′
2 = m1$2

2 + m2($2 − l2∗)2 + m3(l2 − $2)2

+m2a($2 − l2∗a)2 + m2al
−2
2∗a (37)

A′
3 = m1$2

3 + m2$2
3 + m3($3 − l3∗)2 + m2a$2

3

+ 2m3a($3 − l3∗a)2 + m1a$2
3 (38)

Ici,2 = Ici,3 = mil
2

12
i = 1, 2, 3 (39)

Iia,2 = Iia,3 = mia$2
i

12
i = 1, 2, 3 (40)

I ia,2 = I ia,3 = mia(li − $i)2

12
i = 1, 2, 3 (41)
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