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Abstract
Complexmodels are of increasing interest to social scientists. Researchers interested in prediction generally

favor flexible, robust approaches, while those interested in causation are often interested in modeling

nuanced treatment structures and confounding relationships. Unfortunately, estimators of complex models

often scale poorly, especially if they seek to maintain interpretability. In this paper, we present an example

of such a conundrum and show how optimization can alleviate the worst of these concerns. Specifically, we

introduce bigKRLS, which offers a variety of statistical and computational improvements to the Hainmueller

and Hazlett (2013) Kernel-Regularized Least Squares (KRLS) approach. As part of our improvements, we

decrease the estimator’s single-core runtime by 50% and reduce the estimator’s peak memory usage by

an order of magnitude. We also improve uncertainty estimates for the model’s average marginal effect

estimates—which we test both in simulation and in practice—and introduce new visual and statistical tools

designed to assist with inference under the model. We further demonstrate the value of our improvements

through an analysis of the 2016 presidential election, an analysis that would have been impractical or even

infeasible for many users with existing software.

Keywords: nonparametric estimation, observational studies, properties of estimators

1 Introduction

Statistical performance and interpretability are desirable attributes for any modeling approach,

particularly in social science research. As ongoing political commentary reminds us, both

academic and broader communities care about whether predictions are accurate, robust, and

interpretable. In some applications, prediction may be a goal in and of itself, whether or not the

model in question illuminates underlying causal mechanisms. However, even in these settings,

interpretability is a helpful trait, allowing researchers to check assumptions and guard against

overfitting.

Unfortunately—but unsurprisingly—modeling strategies that excel at these criteria often

exhibit severe scalability constraints. For a concrete example, consider the Hainmueller and

Hazlett (2013) Kernel-Regularized Least Squares (KRLS) approach. KRLS offers a desirable

balance of interpretability, flexibility, and theoretical guarantees, primarily through the pointwise

marginal effects estimates and their correspondingaverages.However, pointwisemarginal effects

are costly to estimate in both time and memory, whether via KRLS or through related techniques

Authors’ note: Authors, who have contributed equally to this project, are listed alphabetically. This project has benefited

immensely from feedback at the Stanford University Statistics Seminar, April 18, 2017; useR! 2016, hosted by Stanford

University; American Political Science Association 2016; the International Methods Colloquium, hosted by Justin Esarey

on November 11, 2016; the Stevens Institute of Technology on February 27, 2017; and the Bay Area R Users Group

Official Meetups, hosted by Treasure Data (May 2016), Santa Clara University (October 2016), and GRAIL (June 2017).

Thanks in particular to Susan Holmes, Joseph Rickert, Stefan Wager, Stephen Jessee, Christopher Wlezien, Trevor Hastie,

Christian Fong, Luke Sonnet, ChadHazlett, Kristyn Karl, Jacob Berman, Jonathan Katz, Gaurav Sood, MaraamDwidar, and

anonymous reviewers for additional comments (mistakes, of course, are ours). Pete Mohanty thanks Stanford University’s

Vice Provost for Undergraduate Education for research leave. For replication materials, see Mohanty and Shaffer (2018).
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such as Bayesian additive regression trees (Chipman et al. 2010) or LASSOplus (Ratkovic and

Tingley 2017). As a result, optimization (both in memory and speed) is important to make KRLS a

practical choice in many applied settings.

In this paper, we present a series of improvements designed to improve KRLS’s statistical

performance, speed, andmemoryusage,whichwe implement in thebigKRLSpackage. Compared

with the original KRLS library,1 our algorithm decreases runtime by approximately 75%2 and

reduces peakmemory usage by approximately an order ofmagnitude. These improvements allow

users to straightforwardly fitmodels via KRLS to larger datasets (N> 3,500) onpersonalmachines,

which was not possible using existing implementations. We also develop an updated significance

test for the average marginal effect (AME) estimates—which we justify both theoretically

and in simulation—and a new inferential statistic designed to help identify the presence of

heterogeneous effects.

After describing our methodological contributions, we illustrate the practical utility of bigKRLS

throughanextendedexaminationof the so-called “communities in crisis” explanation for the2016

presidential election. Our estimates—which are robust both to our significance correction and

to a series of cross-validations—straightforwardly address hypotheses advanced by postelection

commentary. Due to sample size constraints, themodel we estimatewould have been impractical

to fit on a personal computer using the original KRLS algorithm, but runs smoothly with bigKRLS,

highlighting the importance of optimization work for applied political science tasks.

2 Data Science as Interpretability versus Complexity

2.1 Desirable estimator properties
When selecting an estimator, there are an array of properties that we might value. For example,

we might want our estimator to be unbiased or efficient, or we might want it to minimize some

particular loss function (e.g., mean squared error). In theoretical settings, we generally assume

that our model of interest captures the “true” data-generating process; however, in applied

settings, we are usually—and, often, rightly—skeptical of such assumptions. As a result, we also

want estimators to be robust against violations of potentially problematic modeling assumptions

(e.g., incorrect functional form or omitted variables). For this reason, we sometimes place a

premium on predictive accuracy against held-out test data.

Besides these traits, however, we also favor models whose results are easily interpreted.

Compared with the traits described above, “interpretability” does not possess a particularly

precise definition. However, we can colloquially view a model as more “interpretable” to the

extent that its estimates allow researchers to answer useful questions with minimal additional

effort. A model like linear regression, for example, directly estimates coefficients that offer

informationabout themarginal effect of somecovariatesXonadependent variabley. By contrast,

prediction-oriented models like random forests (Breiman 2001) offer more limited options. If a

researcher wishes to learn about the data-generating process using a random forest, her choices

are either to inspect relatively uninformative summary statistics such as variable importance or

to generate first difference estimates for particular values of interest through perturbations of the

input data.

Many attributes of a model can influence its interpretability. For example, models that offer

simple, familiar estimates such as average treatment effect estimates alongside more nuanced

counterparts canmake their contentsmoreaccessible, serving readerswithdifferentbackgrounds

and levels of experience. Similarly, modeling strategies that reduce the number of nonzero effect

estimates or the complexity of their functional form tend to ease interpretation. Regularization

1 In this manuscript, “KRLS” refers to the method of estimation whereas “KRLS” refers to the R package described in a

companion piece by Ferwerda, Hainmueller, and Hazlett (2017).

2 Assuming parallelization is used. Single-core runtime is also approximately 50% faster with bigKRLS.
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constraints—that are explicitly designed allow researchers to ignore some parameters by

shrinking their values to or near zero (Hastie, Tibshirani, and Wainwright 2015)—offer a direct

example of this kind of strategy.3

Importantly, we do not mean to suggest that these are the only traits that contribute to model

interpretability, or that interpretability (however defined) is the only standard by which a model

ought to be judged. Depending on the application, researchers might be willing to employ a less

interpretable model in exchange for improved predictive performance or model fit. In general,

however, we argue that all of these traits represent important modeling goals, which need to be

balanced in context.

2.2 The complexity frontier
Unfortunately, estimators that excel at both interpretability and prediction in the face of

challenging data-generating processes are often highly complex. Here, we use “complexity” in

the algorithmic sense, referring to the CPU and memory resources needed to estimate a model

given the size of the inputs (Papadimitriou 2003). Algorithmic complexity is usually represented

usingordernotation: so, anO (N ) algorithm isonewhose complexity grows linearlywithN , andan

O (log(N )) algorithm is one whose complexity grows logarithmically with N .4 For example, linear

regression with N observations and P covariates has complexity approximately O (P 2N ) (since

calculating X′X dominates other calculations involved in generating β̂OLS ).
5 Since N is usually

much larger than P , estimating a linear model via Ordinary Least Squares (OLS) has complexity

which is approximately linear with respect to N .

Compared with other approaches, under appropriate assumptions linear regression directly

calculates causally interpretable effects, but is sensitive to model specification choices and

possesses poor predictive performance. On the other end of the spectrum, decision trees do not

calculate causally interpretable effect estimates, but are highly flexible, make few assumptions

about the data-generating process, and often possess excellent out-of-sample performance.

In exchange for these desirable properties, however, decision trees are substantially more

complex than ordinary linear regression. In rough terms, a single decision tree has complexity

O (N log(N )2) + O (PN log(N )).6 Generally, decision trees perform better when used in an

ensemble approach such as a random forest (Breiman 2001), leading users to generate hundreds

or thousands of such trees for any given application.

Models that attempt to optimize all of these traits simultaneously quickly encounter what

we might call the computational complexity frontier. Flexibility with respect to functional form,

sparsity constraints, and related modeling strategies all impose a substantial computational

burden, rendering them impractical for particularly large datasets. Importantly, in many

applications, interpretability also factors into this tradeoff. Again, regularization strategies

3 Arguably, we might view Bayesian posterior probabilities as a good example of an “interpretable” procedure. In a direct

sense, many regularization strategies can be justified as a particular prior structure (Wahba 1983; Tibshirani 1996). More

broadly, as Gill (1999), Jackman (2009), and others argue, the frequentist null hypothesis testing paradigm is notoriously

difficult to properly interpret. By contrast, researchers can straightforwardly calculate probabilities of interest such as

P (β > 0�X ) under the Bayesian paradigmwithout reference to counterfactuals.

That said, many researchers find Bayesian priors confusing or arbitrary. To a certain extent, this disagreement is a

question of whether one locates the primary interpretive dilemma at the beginning or the end of the analysis. Bayesian

versions of kernel-regularized regression are relevant to this discussion but beyond the scope of this paper. See, for

example, Zhang, Dai, and Jordan (2011) for further discussion.

4 Since order notation is designed to describe the limiting complexity of a given algorithm as the size of the inputs grows

arbitrarily large, constants and lower-order terms are usually omitted from order-notation statements. However, if a high

level of precision is necessary to compare a pair of algorithms (as in Section 4.1), constant terms can be included in the

complexity statement.

5 Assuming N is substantially larger than P and a Cholesky decomposition of X′X is used to calculate β̂ = (X′X)−1X′y rather
than inverting X′X directly.

6 With fairly pessimistic assumptions regarding tree growth rates (Witten, Frank, and Hall 2011, p. 199–200).
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(e.g., LASSO) and cross-validated parameter selection approaches offer canonical examples of

this relationship.7

3 Complexity and Interpretability with KRLS

Kernel regularization techniques have a long history in the computer science and statistics

literatures (Rifkin, Yeo, and Poggio 2003; Yu, Xu, and Gong 2009).8 Hainmueller and Hazlett (2013)

demonstrate that this approach is useful for inference as well as prediction, primarily through the

derivative estimators they derive. However, the approach they present also offers a stark example

of the tradeoffs between statistical performance, interpretability, and complexity we describe in

the previous sentence (see Table 1). To build intuition, we briefly discuss key features of the KRLS

approach in this section.9

3.1 An overview of KRLS
Begin by considering the following model:

yi = c1k (Xi , X1) + c2k (Xi , X2) + · · · + cN k (Xi , XN ) + εi ,

where c represents a vector of coefficients and k represents a kernel function that quantifies the

pairwise similarity between two vectors of data. Defining K as a matrix of such similarity values,

we can express the model for the full sample as:

y = Kc + ε.

Viewed from this perspective, this model treats the dependent variable as a linear and additive

combination of the pairwise similarity between a given observation and each other observation in

the dataset, as calculated using the predictor matrix X. These similarity values are then weighted

by a set of so-called “choice coefficients” c, which serve to weight observations based on their

influence on the conditional expectation function.

In principle, any similarity kernel function k can be used to estimate the model, but we focus

here on the Gaussian kernel:10

k (Xi , Xj ) = e−��Xi−Xj ��
2/σ2
,

where ��Xi − Xj �� denotes Euclidean distance and σ2 denotes a researcher-specified bandwidth

parameter. In practice, Hainmueller and Hazlett (2013) recommend setting σ2 = P (the number

of predictor variables), which we adopt throughout this paper.

Since this model involves estimating one parameter for each observation, to rule out

degenerate solutions we replace c with c∗, where c∗ is defined using a Tikhonov regularization

7 The complexity frontier phenomenon has become increasingly relevant for applied political science work. For example,

as Imai, Lo, and Olmsted (2016) document, workhorse political science ideal point models take days to run on standard

datasets (e.g. Congressional roll-call votes), limiting researchers’ ability to estimate these models in data-intensive

settings. Imai, Lo, and Olmsted address this issue by proposing an expectation–maximization estimator, which produces

similar results to standard approaches two to three fewer orders of magnitude more quickly.

8 For an interesting example involving facial expression recognitionduring televiseddebates, see Eleftheriadis, Rudovic, and

Pantic (2015).

9 See Hainmueller and Hazlett (2013) for additional details.

10 See Hainmueller and Hazlett (2013) for a comparison of various kernel functions, and additional theoretical justification

for this choice. Broadly, we view the choice of kernel as a preprocessing decision, which researchers can adjust based

on their particular problem domain. Other kernels besides the Gaussian kernel are certainly justified in some settings;

however, simulation results in Supplementary Appendix D.2 and inHainmueller andHazlett (2013) suggest that this option

represents a reasonable default choice.
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Table 1. Overview of the KRLS estimation procedure.

Major Steps Runtime Memory

(1) Standardize XN ∗P , y — —

(2) Calculate kernel KN×N O (N 2) O (N 2)

(3) Eigendecompose KE = Ev O (N 3)i O (N 2)

(4) Select regularizer λ O (N 3)ii —

(5) Estimate weights ĉ∗ = f (λ, y, E, v) O (N 3) —

(6) Fit values ŷ = Kĉ∗ — —

(7) Estimate marginal effects, O (PN 3) O (N 2)

Δ̂N∗P = [δ̂1 δ̂2 . . . δ̂P]

Letting i , j index observations such that i , j = 1, 2 . . .N ultimately captures all pairs and letting p =
1, 2, . . . P index the explanatory x variables. Note steps 4–6 are followed by uncertainty estimates, for which
closed-form estimates also exist along with proofs of a number of desirable properties such as consistency

(Hainmueller and Hazlett 2013).

i Using worst-case results for a divide-and-conquer algorithm, which we employ here (Demmel 1997, p. 220–

221). For runtime improvements via eigentruncation, see Section 4.2.1.

ii Using Golden Section Search given y, E, and v. Note that this value also depends on a tolerance parameter,

which is set by the user.

strategy:

c∗ = argmin
c∈�P

[(y − Kc)′(y − Kc) + λc′Kc].

Here λ is a regularization parameter, selected to minimize leave-one-out loss. As we document

in Section 4.3, λ is computationally demanding to select; however, once λ is selected this

approach yields a closed-form expression ĉ∗KRLS = (K + λI )−1y, which can be calculated

straightforwardly. Under appropriate functional form and error structure assumptions, both

ĉ∗KRLS and ŷ
∗
KRLS areunbiasedandconsistentestimatorsof theirpopulationequivalentsc

∗ andy∗,
with closed-formexpressions for both theestimators and their variances (Hainmueller andHazlett

2013).11 In simulations, bothwe andHainmueller andHazlett (2013) show that KRLS is competitive

with respect to out-of-sample predictive performance compared with related approaches (see

Supplementary Appendix D.2 for details).

3.2 Opening the black box
In contrastwith other flexiblemodeling approaches, the kernel and regularized coefficients offer a

natural way to express the effects of variables contained in the model (see Figure 1). In particular,

since ŷ∗ has a closed-form expression, for continuous predictors we can estimate the marginal

effect of a given predictor at any observed point Xj ,p by taking the derivative
12 of the predicted

values with respect to the point of interest:

�δy∗
δXj ,p

=
−2
σ2

N∑

i

ĉ∗i Ki ,j (Xi ,p − Xj ,p ).

Since the regularization constraints imposed on the estimated coefficient vector ĉ∗ serve to shrink
its values, many of the pairwise comparisons embedded in this expression have little or no effect

11 In principle, if K = I the KRLS coefficient estimates converge with those obtained via a ridge regression approach in which
we regress y on K (up to a scaling factor). This relationship can be confirmed in R using glmnet(. . . , alpha = 0). However,
the (multidimensional) Chebyshev inequality impliesp(K = I) = 0 at this or similar bandwidths. For observable kernels
(K � I), the relationship between the KRLS coefficients and the ridge coefficients is not constant across iterations.

12 In the discrete variable case, we estimate first differences rather than derivatives, yielding a different estimator; however,

the interpretation of this quantity remains similar. For details, see Section 3.3.
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Figure 1. “Actual” marginal effects.

on the final estimatedderivative value. These shrinkage constraints therefore simplify and smooth

the estimated derivatives, consistent with the logic of regularization. Because the distribution of

the regularized coefficients is in general unknown, constructing reliable measures of uncertainty

aroundeachpointwisemarginal effect is challenging. As a result, these estimates are best used for

exploration rather than inference. However, for researchers who are mindful of these limitations,

these estimates offer a useful summary of the observed effect structure.

Because these pointwise marginal effects can be expressed in closed form, we can

straightforwardly produce summaries of their content. Defining Δ̂ as an N × P matrix of partial

derivatives, we can define the AME of each variable as Δ̂AME = [ 1N
∑

j
δ̂y∗
δXp,j

�p ∈ {1, 2, . . . P }],

or the column means of Δ̂. Hypotheses about Δ̂AME can be evaluated with standard hypothesis

testing tools, and offer a highly interpretable summary of the overall effect of each variable.

Unfortunately, the flexibility, statistical performance, and interpretability of this approach

come at a cost. This pairwise model is difficult to estimate with KRLS, even without estimating

the marginals. In bigKRLS—our implementation of KRLS for this model—the algorithm’s peak

memory requirements are O (N 2). Assuming derivatives are estimated, the original KRLS

implementation has peak memory requirements of O (PN 2); as a result, this figure offers a

substantial improvement over the original estimation routine, but remains difficult to scale.13

From a runtime standpoint, KRLS’s requirements are similarly onerous, with total runtime

complexity O (N 3). For comparison, decision trees have runtime complexity O (N log(N )2) +

O (PN log(N )).

4 Algorithmic and Statistical Optimization Using bigKRLS

4.1 Overview
The improvements we present in this paper can be divided into two rough categories. First,

from an algorithmic standpoint we reimplement all major functions using the bigmemory, Rcpp,

and parallel packages in R, allowing researchers to easily parallelize model estimation. We

also develop new algorithms for kernel regularization and first differences. Second, to improve

inference, we propose a degrees-of-freedom correction for the model’s AME estimates and a

new measure of effect heterogeneity contained in the model. We justify our degrees-of-freedom

correction both theoretically and in simulation, and find that it performs well in the settings we

examine. The correction improves coverage most notably for complex data-generating processes

and smaller samples.

Put together, ouralgorithmic changes reducepeakmemoryconsumption fromO ((P+21)N 2) to

O (5N 2) in our implementation. Crucially, unlike KRLS, the memory footprint of bigKRLS does not

dependonP , the number of explanatory variables.14 RuntimeusingbigKRLS and theoriginalKRLS

implementation is roughly comparablewhenN and P are small and all predictors are continuous.

13 Even when P is small, bigKRLS’s peak memory usage is lower since it is O (5N 2) compared with O ((P + 10)N 2) plus an

additionalO (11N 2) term if any of the predictors are binary for KRLS. In addition to changes discussed in Section 3.2, our

algorithm also differs from the original implementation in that it constructs the simple distancematrices “just in time” for

estimation and removes large matrices the moment they are no longer needed.

14 If derivatives are not estimated, the two algorithms have a fairly similar memory footprint outside of the λ selection
routine (see Section 4.2.2 for details). However, as we argue in Section 3.2, inmost social science applications themodel’s

derivative estimates are its most attractive quality.
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Figure 2.Published sample sizes. Source: American Journal of Political Science and American Political Science

Review, January 2015 through January 2017 (own calculation).

However, in most applied settings, bigKRLS is substantially faster. In simulation results for a

dataset consistingof 10binaryand10continuouspredictors, for example,we report approximately

50%decreasedwall-clock timewhen running on a single core.WhenbigKRLS is set to usemultiple

processors (not an option with KRLS), a task that takes KRLS just over two hours can be done by

bigKRLS in twenty minutes (Figure 3).

How important are these improvements? For illustration purposes, we surveyed all empirical

articles published in the American Journal of Political Science (AJPS) and the American Political

Science Review (APSR) from January 2015 to January 2017, and recorded sample sizes for each

dataset used in those articles (N = 279).15 In the time frame we surveyed, approximately 43% of

datasetswere too large for theoriginalKRLS implementation. By contrast,with similar dimensions

Figure 3. Runtime comparisons (worst case).

15 For replication materials, see Mohanty and Shaffer (2018).
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bigKRLS can handle datasets up to approximately N = 14,000 on a personal machine before

reaching the 8 GB cutoff, opening an additional 20% of published datasets for estimation.16

These improvements, we argue, are substantial. Statisticalmodels are only useful to the extent

that they can be employed in practice. While high-complexity methods like KRLS are unlikely to

be usable in truly “big” data settings, our improvements allow a noticeably greater proportion of

applied researchers to use the modeling approach we present.

4.2 Algorithmic improvements

4.2.1 A leaner first differences estimator
For binary explanatory variables, KRLS estimates first differences.17 The original algorithm for this

procedure functions as follows. Suppose Xb is a column that contains a binary variable. Construct

two copies of X, denoted as X{0} and X{1}, which aremodified such that all observations in the bth

column of the copies are equal to 0 and 1, respectively. Combine the original matrix and the two

modified copies into a newmatrix X′new = [X � X{0} � X{1}]
′, and construct a new similarity kernel.

This step is temporary, but has a memory footprint of 9N 2 (!). Finally, save the two submatrices

of the kernel corresponding to the respective counterfactual comparisons between X{0}, X{1}, and

the observed data X.

Our leaner implementation can also be expressed in terms of potential outcomes (Keele 2015).

The goal is to minimize the computational burden of obtaining the vector of differences for the

scenario in which everyone was counterfactually assigned to one group versus the other. Let K{1}

and K{0} be the counterfactual kernels.
18 The first differences are:

δb = y{1} − y{0} = K{1}c∗ − K{0}c∗ = (K{1} − K{0})c∗.

As with the AMEs of continuous variables, the mean ¯̂δb is used as the point estimate that appears

in the regression table. The variance of that mean first difference is:

σ̂2
δb

= h′(KnewΣ̂ c)K
′
newh,

whereh is a vector of constants,19 Knew is a partitionedmatrixwith the counterfactual kernels, and

Σ̂ c is the variance–covariance matrix of the coefficients (Hainmueller and Hazlett 2013). Though

highly interpretable, first difference calculations are computationally daunting because the peak

memory footprint isO (6N 2):O (2N 2) for Knew and anotherO (4N
2) for σ̂2

δb
. The following insight

allowed us to derive a more computationally friendly algorithm.

Consider the similarity score Ki ,j . We canmanipulate this quantity as follows:

Ki ,j = e−��xi−xj ��
2/σ2

= e−[(xi ,1−xj ,1)
2+(xi ,2−xj ,2)2+· · ·+(xi ,b−xj ,b )2+...]

= e−(xi ,b−xj ,b )
2/σ2

e−[(xi ,1−xj ,1)
2+(xi ,2−xj ,2)2+...]

= e−(xi ,b−xj ,b )
2/σ2

K∗i ,j .

16 Real numbers require 8 bytes of storage each in most scientific computing languages including C, C++, and R. Assuming 8

GB available memory, at least one binary predictor, and P = 67 (as in the 2016 election model in Section 5), the original
KRLS implementation will have insufficient memory if N > 3,500. If only 4 GB are available (R’s default for many Windows
laptops), thecutoffs forKRLSandbigKRLSwouldbeN = 2,500andN = 10,000, respectively, similarly suggestingbi gKRLS
can estimate 20%more publishable datasets.

17 A nearly identical procedure is used for out-of-sample prediction.

18 How closely the first differences resemble an experiment depends on the entropy of K{1} and K{0} (Hazlett 2016).

19 The first N entries of h are 1
N and the next N are − 1

N .
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Figure 4. Reexpressed kernel for first differences estimation.

These manipulations allow us to reexpress the quantity of interest in terms of K∗i ,j , the observed
similarity on dimensions other than b , andφ = exp(− 1

σ2
Xb
σ2 ), the (only nonzero) pairwise distance

on the binary dimension, where σ2
Xb
is the variance of the binary variable. This process facilitates

reexpression wholly in terms of the observed kernel and the constant φ, as shown in Figure 4. As

a result, our algorithm avoids constructing the costly temporary matrix required in the original

implementation.

Building on this observation, we took the following steps to make the variance–covariance

calculation more tractable.

(1) Though (KnewΣ̂ c)K
′
new is 2N × 2N it is possible to focus the calculations on four N × N

submatrices:

(KnewΣ̂ c)K
′
new =

[
K{1}K{0}

]
Σ̂ c

⎡⎢⎢⎢⎢⎢⎣
K′
{1}

K′
{0}

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
K{1}Σ̂ cK

′
{1}

K{1}Σ̂ cK
′
{1}

K{1}Σ̂ cK
′
{0}

K{0}Σ̂ cK
′
{0}

⎤⎥⎥⎥⎥⎥⎦
.

Each (sub)matrix in the final term functions as a weight on the observed variances and

covariances in the various counterfactual scenarios. Partitioning the matrix in this manner

allows us to avoid constructing the full 2N × 2N matrix directly.

(2) Though h is simply an auxiliary vector that facilitates averaging, h′(KnewΣ̂ c)K
′
newh

presents different opportunities for factoring than (KnewΣ̂ c)K
′
new. Our algorithm factors

out individual elements of Σ̂ c as far as possible. Alongwith an expanded version of Figure 4

that expresses all possible products of two counterfactual similarity scores, we reduce the

computational complexity by an order of magnitude by avoiding an intractable inner loop.

Other factorizations may exist that further optimize either speed or memory—but not both.

Our first differences algorithm, for example, can be reexpressed as a triple loopwith no additional

memory overhead; however, that formulation sacrifices vectorization speedupswhich our current

setup exploits. In the implementationwepresent,we create twoN ×N temporarymatrices,which

isbothan improvementover six andnoworse thananyotherpartof thealgorithm.Consistentwith

our experience with bi gKRLS , speed tests show that our algorithm is no slower than a purely

linear algebra approach.

To illustrate why this advance is important, consider dyadic data. Because of the pairwise

structure of the kernel, KRLS is tailor-made for international relations, where often data in country

dyads are encountered. However, such analyses often require at least 150 binary variables for

nation states. In Section 5, we use 50 binary variables for US states, which is similarly prohibitive

onmanymachines with KRLS. With bigKRLS, this is no longer an issue.
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Table 2. Alternatives for the spectral decomposition’s cumulative effect on runtime.

R Package Full Decomposition Eigentruncation Estimating Fewer

KRLS 422.935 129.074

bigKRLS 348.948 102.271 51.082

As an empirical benchmark, we isolate the portions of the algorithm that depend on the eigenvectors and

eigenvalues (i.e., the eigendecomposition, λ search, and estimating the coefficients and their variance–
covariance matrix but not the kernel or marginal effects). We report the runtime of this portion on the 2016

election data presented in Section 5 (N = 3106, P = 68) in seconds on a 2017MacBookPro (2.3 GHz Intel Core
i5 with 16 GB of RAM). For the eigentruncation case, ε = 0.01 and, in the final column, NQ = 50.

4.2.2 Lowering the cost of kernel regularization
For KRLS, the regularization parameterλ represents the degree of skepticism toward idiosyncratic

features of the data-generating process. In bigKRLS we introduce a leaner version of the Golden

Search algorithm as described by Rifkin and Lippert (2007) and adopted by Hainmueller and

Hazlett (2013). bi gKRLS ’s approach to selecting λ offers a lower memory footprint and speed

gains at the sample sizes where bi gKRLS has the most to offer to political science researchers.

The Golden Search strategy is as follows. Though λ cannot be obtained analytically, it can be

selected (to arbitrary precision) through an iterative procedure that depends primarily on the

eigendecomposition of the kernel.20 λ is selected to minimize the sum of squared leave-one-out

errors, LOOE =
∑
( ĉ
∗

G−1i ,i
)2. G = K + λI is the “ridge” version of the kernel. The key computational

challenge is G−1, which is used to calculate candidate coefficient values and LOOE at each step.

For computational ease, G−1 (or even G) is not obtained directly. Instead, the equivalent
expression QΛQ′ is substituted, where Q is a matrix containing the eigenvectors of K and Λ is a

diagonal matrix of eigenvalues. Expanding this expression yields

G−1i ,j =

NQ∑

k=1

Qi ,k ∗ Qj ,k

λ +Λk,k
,

where NQ is the number of eigenvalues actually used in this computation.

Existing implementations of this approach usually begin by calculating the cross product

Q(Λ + λI)Q′, and using its values to calculate candidate coefficient values. In our implementation,
we instead build this matrix in a column-by-column manner. This strategy has two advantages.

First, since the only purpose of constructing G−1 is to calculate ĉ∗, we can avoid placing the full
G−1 matrix in memory by simply accumulating each column of G−1 into the coefficient vector.
Second, since G−1 is symmetric we can simply skip calculating the elements of each column that
correspond to the upper triangle of the matrix. As shown in Table 2, this implementation offers a

noticeable performance boost over existing implementations.21

As implied by the preceding discussion, not all eigenvalues and vectors are necessary for

selecting λ. In most applied settings, the vast majority of the eigenvalues are very small, and

can be safely ignored during the calculations described above. bigKRLS facilitates two types

of eigentruncation: specifying that (1) only NQ eigenvectors and eigenvalues be calculated22

and/or (2) defining an ε such that only those eigenvectors and eigenvalues will be used where

20 Mercer’s theoremenables regularization as the kernel’s eigendecomposition takes a known formeven in high-dimensional

space, ultimately enabling λ to be found in a finite, unidimensional space (Beck and Ben-Tal 2006; Hastie, Tibshirani, and
Fiedman 2008; El Karoui 2010).

21 See Supplementary Appendix A for details. In practice, convergence for the applied problems we study in this paper takes

5–20 iterations. Without eigentruncation, atN = 5,000 each iteration takes 3.8 secondswith the new algorithm versus 16.1

seconds. At N = 10,000, each iteration takes ≈8minutes versus ≈13min.
22 This option is also available in the original KRLS implementation.
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the eigenvalue is at least 100ε% as large as the largest eigenvalue. Optimizing either of these

strategies ex ante is difficult; however, since runtime for this section of the algorithm depends

onNQ rather than the proportion of variance explained by the retained eigenvalues/vectors, even

a conservative decision rule will often produce substantial speed gains. As a default in bigKRLS

we set ε = 0.001, which produces virtually identical results to those generated using the full

decomposition in both simulated examples and our application in Section 5.

4.3 Inferential tools

4.3.1 Degrees of freedom for AMEs
One of KRLS’s key strengths is its ability to offer both nuanced effect estimates as well as

high-level summaries of each effect. The key high-level quantities produced by the model are

the AME estimates, for which Hainmueller and Hazlett (2013) derive closed-form expressions for

both the values of the AMEs and their variances. They then use these quantities to derive a

Student’s t -test withN − P degrees of freedom to assess statistical significance of each individual

AME estimate. This approach works well for simple data-generating processes but not for more

complex problems, as we show in simulation (introduced below and detailed in Supplementary

Appendix C). For many realistic cases this test yields overly narrow confidence intervals coupled

with misleadingly low p values.

To address this issue, we propose an uncertainty correction using the effective degrees of

freedom from the Tikhonov penalty used by KRLS. Since KRLS estimates N choice coefficients,

ĉ∗, each of which is a parameter with an L2 penalty, the effective degree of freedom for themodel

is

Neffective = N −
NQ∑

k=1

Λk ,k

Λk ,k + λ
,

where N is the original sample size, Λk ,k is the k th eigenvalue of K , and λ is the model’s

regularization parameter (Hastie, Tibshirani, and Wainwright 2015, 61–68).23 Provided NQ (the

number of eigenvalues and eigenvectors actually used) is large enough to select λ reliably,

NEf f ect iv e should yield essentially the same estimate as if NQ = N due to the eigenvalues’ skew

and constraints.24

To test the performance of this approach, we conducted a series of simulation studies (see

Supplementary Appendix C for details). Our experiments suggest that this correction is most

impactful when the true data-generating process is highly nonlinear and the sample size is

smaller, offering approximately a 10-point increase in empirical coverage in this scenario. When

the true data-generating process is simpler, the difference in coverage rates between corrected

and uncorrected approaches vanishes. However, since KRLS is most appealing for applied work

when researchers suspect that the true effect structure is more complex, we argue that this result

offers substantial justification for our correction.

4.3.2 Detecting effect heterogeneity
While useful, inspecting AMEestimates alone can conceal substantial effect heterogeneity. To help

bridge the gapbetweenhigh-level AMEs and themorenuancedpointwisederivative estimates,we

23 This quantity is often expressed in terms of squared singular values. However, since K is positive semidefinite the squared

singular values and eigenvalues are equivalent in this case. We express NEffective as a function of the eigenvalues to

remain consistent with the bigKRLS software architecture (which uses a decomposition of the symmetric kernel rather

than singular value decomposition) and related work (see, e.g., Rifkin and Lippert 2007). In their paper, Hainmueller and

Hazlett (2013) note this relationship, but do not use it as part of their degrees-of-freedom calculations.

24 Unlike XX′ and X′X, K does not have exactly P nonzero eigenvalues (but K’s eigenvalues are real, positive values that sum
to N ). For detail on the kernel’s spectrum, see El Karoui (2010). For the application to this algorithm, see Section 4.2.2.
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introduce two statistics, which we term R 2
K and R

2
AME :

R 2
AME = cor (y , ŷAME )

2,

R 2
K = cor (y , ŷ )2,

with ŷ = K ĉ and ŷAME = XΔ̂′AME , where Δ̂AME denotes the vector of AMEs. Phrased differently,

R 2
K denotes the pseudo-R

2 calculatedwith the kernel and allN coefficient estimates, while R 2
AME

denotes the pseudo-R 2 calculated using predictions from X and its estimated partial derivatives

alone. Intuitively, these quantities will be similar when y can be well approximated by a linear

combination of the columns of X. When y is a more idiosyncratic function better modeled by the

pairwise similarity of the observations, R 2
K will outperform the AMEs, often dramatically. Note

that, since R 2
AME is not based on values selected to optimize any particular loss function, its

performance can be unstable. Unlike R 2
K , which tends to be relatively consistent in and out of

sample, R 2
AME is often “pessimistic” in the sense that it can be noticeably smaller on training than

test data.

5 Application: The Trump Effect in “Communities in Crisis”

As an example application of bigKRLS, we analyze county-level results from the 2016 presidential

election, with a focus on the so-called “communities in crisis” hypothesis (described in detail in

the following section). This application highlights two key strengths of bigKRLS: scalability, and

ability togracefully handlebinarypredictors. Becausewe include stateas apredictor, our resulting

model contains more than 50 binary variables. Peak memory requirements in the original KRLS

implementation scale with the number of predictors while with bigKRLS they do not, resulting

in more than an order of magnitude decrease in memory consumption with the move to our

implementation.

5.1 Overview
In both popular and academic discussions (e.g. Guo 2016; Monnat 2016; Siegel 2016), a number of

commentators argued that Donald Trump’s success in the 2016 election was partly attributable

to his appeal in “communities in crisis.” As shown by Case and Deaton (2015), suicides, drug

overdoses, and other so-called “deaths of despair” rose sharply among non-Hispanic Whites over

the decades preceding the election, leading to a decrease in overall life expectancy within this

population. Combined with declining economic opportunities, commentators argued, declining

public health outcomes fostered a sense of dissatisfactionwith traditional elites in afflicted areas.

As a result, members of these communities may have been unusually inclined to vote for Trump

relative to “establishment” Republican candidates.

To investigate this hypothesis, we use bigKRLS to model county-level voting patterns in the

2016 presidential election. Our dependent variable in this model is ΔGOP , defined as the

difference between two-party vote shares for Donald Trump in 2016 and Mitt Romney in 2012

(%Trump−%Romney). We focus on county-level data for data availability reasons. Because of
privacy considerations, county-level data is the most granular unit publicly available in relevant

officialUSdata sources like theCensusBureauand theCenters forDiseaseControl andPrevention.

Our key independent variables are county-level age-adjusted all-purpose mortality rate

(per 1,000 individuals) and difference in three-year mortality rates for the periods preceding

the 2016 and 2012 elections. These variables are intended to capture the “communities in

crisis” hypothesis, with a particular focus on highlighting communities in which public health

crises emerged between election cycles. We also include standard racial, macroeconomic, and

education variables, along with geolocation information for each county and state-level dummy

variables (described in Supplementary Appendix B). As we note at the outset of this section,
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Table 3. Average marginal effect estimates.

Estimate SE t puc pc

Mortality 0.176 0.035 4.983 <0.001 <0.001

ΔMortality −0.021 0.056 −0.379 0.705 0.725

Urban–rural continuum 0.052 0.016 3.336 <0.001 0.002

Age 0.318 0.089 3.573 0.001 0.001

Median household income −0.242 0.041 −5.849 <0.001 <0.001

Unemployment 0.227 0.027 8.322 <0.001 <0.001

Poverty 0.123 0.044 2.766 0.006 0.010

No high school diploma 0.030 0.007 4.457 <0.001 <0.001

High school graduate 0.140 0.006 24.792 <0.001 <0.001

Some college 0.112 0.008 13.434 <0.000 <0.001

College graduate −0.139 0.004 −35.830 <0.001 <0.001

White 0.022 0.002 9.574 <0.001 <0.001

Latino −0.019 0.004 −5.131 <0.001 <0.001

Black −0.032 0.003 −10.623 <0.001 <0.001

Asian −0.165 0.017 −9.643 <0.001 <0.001

Estimates for latitude, longitude, and state omitted for brevity. The dependent variable is the change in GOP

vote share in the presidential election, 2012–2016, measured in percentage points. puc denotes uncorrected
p values generated using a t -test with N − P degrees of freedom; pc denotes corrected p values with
Neffective = 2,892. N = 3,106, R2

K = 0.83, and R2
AME

= 0.31. For definitions, see Section 4.3.

including state-level dummies would have been impractical without the improvements we

introduce in this paper, highlighting the utility of our approach.25

5.2 Average effect estimates
Average marginal effect estimates for this model are given in Table 3. Unsurprisingly, the model

fits the data. For our application, R 2
K = 0.83, suggesting a reasonable level of in-sample fit.26

Nearly all predictors easily reach conventional levels of statistical significance,with intuitive signs.

On average, Trump performed better in Whiter, older, poorer, and lower-education localities.

As hypothesized, Trump also received a larger two-party vote share than Romney in higher-

mortality counties, though the effect size is not particularly large. Averaged across the country,

a one-standard-deviation (≈1.47) increase in age-adjusted mortality is estimated to produce
approximately a 0.25% increase in ΔGOP . These findings match the basic contours of the

“communities in crisis” hypothesis: relative to previous Republican candidates, Trumpperformed

particularly well in localities facing substantial hardships.ΔMortality is themain exception to this

finding pattern, anddoes not reach conventional levels of statistical significance. Likely, this result

is due to a lack of variability; since our study only covers a six-year period, large changes in

mortality rates are rare.

As described in Section 4.3, uncorrected p values for KRLS AMEs are suspect for more

complex data-generating processes. In Table 3, we give both the corrected and the uncorrected

p values for this model, calculated using the effective degrees-of-freedom correction given

previously (Neffective = 2,825). Since the sample size and effects detected by this analysis are both

reasonably large, implementing the degrees-of-freedom correction we propose does not change

any conclusions regarding statistical significance. At least in this case, our sample size appears to

25 Since the complexity of the original R implementations depended on both the number of predictor variables and the

presence of binary variables, at N > 3,000 the original KRLS implementation is impractical to estimate with the predictor
variables we include.

26 See Supplementary Appendix D.2 for model fit comparison between KRLS and other approaches.
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be sufficiently large relative to the complexity of the data-generating process to limit the impact

of our correction.

5.3 Spatial first differences
While useful, inspecting the AME estimates can conceal substantial effect heterogeneity. In this

case, the R 2
AME is only 0.31 but R

2
K = 0.83 on the full sample. As we discuss in Supplementary

Appendix D.1, the out-of-sample difference between these values is likely smaller than their in-

sample difference. However, as a binary indicator of effect heterogeneity, the gap between these

quantities is suggestive.

Since KRLS offers closed-form estimates for the variance of the predicted values produced

by the model, a simple way to explore effect heterogeneity is to estimate perturbation-based

first differences, in which we “perturb” the variable of interest and examine the perturbation’s

predicted impact (and the variance of that impact) on the dependent variable. In this section, we

take precisely this approach. For each county, we calculate ŷt est − ŷ, where ŷt est represents the
predicted value for the counterfactual scenario in which we perturb the mortality variable—our

key variable of interest—by some fixed constant τ . We operationalize τ as the difference between

the 95th and 5th percentiles of the mortality variable (≈3.2 standard deviations).
Besides its interpretive benefits, this approach also offers an important theoretical payoff.

Both ŷt est and ŷ are distributed multivariate normal with known variance–covariance matrices

(Hainmueller and Hazlett 2013). As a result, themarginal distribution of each predicted difference

is distributed univariate Gaussian, with variance equal to the sum of the corresponding diagonal

elements of the variance–covariance matrices for each set of predicted values. In Supplementary

AppendixE.1,weuse these facts toderiveapointwisehypothesis test,whichdistinguisheswhether

these first differences differ significantly from zero.

Figure 5 plots the estimates generated using this procedure. Nationwide, after applying a

Benjamini–Hochberg correction approximately 12% of estimates are distinguishable from zero,

withmost significant county-level estimates clustered in theWest, MountainWest, andMidwest.27

Notably, though the counterfactual scenario we simulated involves a large change in mortality

rate, most individual estimates are still insignificant, echoing the small AME size we note in

the previous section. However, even with this small average effect size, the magnitude of

our county-level estimates remains highly variable. Our estimates are largest in the West and

Mountain West, but we also estimate noticeable (and significant) effects in key swing states

like Pennsylvania, Ohio, and Michigan. In these latter states, the mortality increase we model

produces a predicted change of ∼1–2 percentage points in ΔGOP , which is substantial given

the small margins by which the presidential election was decided in these states.28 These

results are consistent with Monnat (2016)’s findings, which suggest Trump’s overperformance in

high-mortality counties was regionally contingent.

Strikingly, in some regions of the country, the predicted relationship between mortality and

ΔGOP presidential vote share was actually negative. This effect is particularly pronounced

(and statistically significant) in parts of Kentucky andWest Virginia, but is also noticeable in some

neighboring Ohio and Illinois counties. One policy-driven explanation for this finding relates to

state-level Medicaid expansion decisions following the passage of the Affordable Care Act. Under

the “communities in crisis” hypothesis, the primary causal mechanism is a local dissatisfaction

with political elites, and particularly with elite responses to poverty and poverty-related public

health crises. In states likeKentuckyandWest Virginia that chose to expandMedicaid following the

passage of the Affordable Care Act, high-mortality counties likely received a substantial portion of

new Medicaid spending, which may have buttressed their faith in “establishment” politicians.

27 See Supplementary Appendix E.1 for details.

28 See Supplementary Appendix E.2 for a more detailed effect size plot.
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Figure 5.Mortality first differences.

Figure 6.Marginal effect of age-adjustedmortality onΔGOP presidential vote share, 2012–16, by proportion
of White population in each county.

Though not conclusive evidence, we argue that these results are at least suggestive. While the

model we estimate clearly cannot distinguish the Medicaid expansion’s effect on voter preference

from unmeasured local predispositions, our results suggest that policy context matters. Far-

reaching policy programs like the Affordable Care Act’s Medicaid expansion provisions might

plausibly condition voter receptiveness to the anti-elitemessage offered by the Trump campaign.

Thus, KRLS’s flexibility points to mechanisms worthy of future inquiry.

5.4 Interpreting pointwise marginal effects
In addition to geographic heterogeneity, the “communities in crisis” hypothesis implies that

mortality’s effect should be conditioned by two other factors. First, in line with most postelection

commentary, Trump’s appeal should be strongest inWhite “communities in crisis.” In otherwords,

we should expect the effect of increasing mortality rates to be strongest in communities with

larger White populations. Figure 6 weakly supports this hypothesis; however, plotting pointwise

marginal effects in thismanner suggests that the size of this relationship is small at best, with both

majority–minority andmajority-White counties displaying roughly similar effect sizes.
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Figure 7.Marginal effect of age-adjusted mortality onΔGOP presidential vote share, 2012–16, by mortality.

Second, we should also expect the marginal effect of mortality to be increasing. Marginal

increases in mortality, in other words, should have a relatively small effect in low-mortality

counties, and a much larger one in high-mortality locations (as mortality rates approach “crisis”

status). However, as shown in Figure 7, the estimated marginal effect of mortality actually peaks

inmid-mortality counties and declines asmortality increases. Based on these results, true “crisis”

communities (those with the highest mortality rates) appear to have been less responsive to

mortality differences than their moderate-mortality counterparts, suggesting that the mortality

effect is largely concentrated within the latter group of localities.

We hasten to emphasize that the discussion of pointwise marginal effects in this section

necessarily possesses an exploratory quality. Unlike the first difference estimates we present in

the previous section, pointwise hypothesis tests for these quantities are difficult to construct.

Developing appropriate pointwise uncertainty estimators represents a fruitful direction for future

research.

6 Conclusion

In recent years, researchers have become increasingly interested in methods and models that

combine canonical statistical properties with flexibility, robustness, and predictiveness. Some

modeling approaches in this area also emphasize interpretability, which we argue should be

viewed as a coequal goal with the other traits mentioned above. The Hainmueller and Hazlett

(2013)KRLSparadigmbalancesmanyof theseconcernsandhas thecapacity tocontribute tosocial

science research at a number of stages. Inevitably, KRLS offers no free lunch. By attempting to

couple a flexible statistical model with interpretable effect estimates, KRLS encounters a steep

scalability curve. We introduce bigKRLS not with the hopes of eliminating the computational

burden of N × N calculations but rather in an effort to push the frontier (in terms of both N and

P ) for a variety of important political problems. For most applications, our improvements reduce

runtimeby about 75%and reducememory usageby anorder ofmagnitude.Our proposed p-value

correction for themodel’s AME further improves on themodel’s statistical properties, particularly

for complex data-generating processes estimated using smaller samples.

There are a number of exciting areas for future work. Optimizing kernel regularization to scale

to truly “big data” applicationswithout compromising inference or interpretability is an open area

of research. Though kernels are theoretically well suited to high dimensions (Diaconis, Goel, and

Holmes 2008; El Karoui 2010), large numbers of x variables still create practical problems, both
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computational and interpretative. Statistically, recent theoretical advances in selective inference

(Taylor and Tibshirani 2015), risk estimation for tuning parameters (Tibshirani and Rosset 2016),

and subsampling (Boutsidis, Mahoney, and Drineas 2009; Gu, Jeon, and Lin 2013; Homrighausen

andMcDonald 2016) offer paths forward in high-dimensional space. In themeantime, our analysis

suggests that KRLS can produce interpretable and theoretically useful estimates on a perennial

topic of interest: the behavior of American voters.

Supplementarymaterial

For supplementary material accompanying this paper, please visit

https://doi.org/10.1017/pan.2018.33.
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