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Abstract
We compare quantitatively six simulation strategies for mortality projection with the Poisson
Lee–Carter model. We test these strategies on New Zealand mortality data and discuss the simulated
results of the mortality index, death rates, and life expectancy.
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1. Introduction

Governments providing pensions and insurers selling annuities encounter the so-called longevity risk,
which is the risk of paying more than anticipated due to unexpected mortality improvement. To
assess the probable extent of future mortality decline, an extensive amount of research has been
conducted in the past 20 years in the area of mortality projection. In the literature, most of the work
is related to the Lee & Carter (1992) method and its various extensions (e.g. Lee, 2000). Because of
analytical intractability of these models, simulation methods represent a practically viable means to
measure the variability of mortality changes and so the longevity risk, and have been adopted in
many applications (e.g. Kogure & Kurachi, 2010).

Initially, Lee & Carter (1992) focused only on the error term of the random walk with drift for the
mortality index (though they also provided suggestions on how to include the errors of parameter
estimation). Li et al. (2004) further incorporated the estimation error of the drift term. Brouhns et al.
(2002b) took a different approach and generated samples of the parameters from the multivariate
normal distribution. On the other hand, Brouhns et al. (2005) considered bootstrapping the number
of deaths from the Poisson distribution. Koissi et al. (2006) also examined bootstrapping the residuals
to produce pseudo data samples. Renshaw & Haberman (2008) then provided a comparative study of
the last three simulation methods, which tested different model structures, parameter constraints,
scale parameters, and distribution assumptions. They suggested that using the multivariate normal
distribution to generate samples of the parameters would lead to widely differing prediction intervals
under different constraints. They also found that using variable scale parameters and the negative
binomial distribution would result in wider prediction intervals when bootstrapping the number of
deaths. Moreover, Czado et al. (2005) applied Bayesian modelling and Markov chain Monte Carlo
(MCMC) simulation to mortality projection.
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Under the current regulatory environment that has become more risk based, it is of practical interest
to find a probability distribution to depict how actual outcomes may differ from expected.
This distribution can be used to compute such risk metrics as standard deviation, variance, and
value-at-risk in pricing, hedging, reserving, and capital management. For example, QIS5 Technical
Specifications for Solvency II states that “the nature of the risks underlying the insurance contracts
could be described by the probability distribution of the future cash flows arising from the
contracts”, and that all of process error, parameter error, and model error should be considered.
Prudential Standard GPS 320 by Australian Prudential Regulation Authority (2013) also stipulates
that the minimum value of insurance liabilities must be the greater of the “75% level of sufficiency”
and the “central estimate plus one half of a standard deviation above the mean”. As such, it is
important for practitioners to choose suitable simulation methods to generate random samples of
future outcomes, from which different probability inferences can be drawn. In particular, uncertainty
in parameter estimation needs to be sufficiently allowed for when the portfolio size is small.

In this paper, we carry out a quantitative comparison of all these simulation methods, using
population data from New Zealand. Particularly, we apply the Poisson Lee–Carter (LC) model
proposed by Brouhns et al. (2002a). We construct prediction intervals for projected death rates and
life expectancy, and pay particular attention to selecting an appropriate data fitting period.

The paper is organised as follows. Section 2 provides an overview of the six simulation strategies.
Section 3 presents the results of applying these simulation techniques to the mortality data of New
Zealand. Section 4 sets forth our concluding remarks.

2. Simulation Strategies

The Poisson LC model proposed by Brouhns et al. (2002a) is defined as follows

Dx;t � Poisson ex;t mx;t
� �

; lnmx;t ¼ ax + bxkt (1)

in whichDx,t is the number of deaths at age x in year t, ex,t the corresponding (known) exposure,mx,t

the central death rate, ax the general mortality schedule, and bx measures the sensitivity of the log
death rate to changes in the mortality index kt. The mortality index is usually modelled as a random
walk with drift, i.e., kt ¼ μ + kt�1 + εt where μ is the drift term and εt the error term with mean zero
and variance σ2. This model offers a natural way to model the number of deaths and avoids the
assumption of homoscedastic errors in the original LC method. The maximum likelihood parameter
estimates are calculated from an iterative updating scheme (based on Newton’s method), subject to
two constraints

P
bx ¼ 1 and

P
kt ¼ 0. In the next section, we will check the resulting residuals for

the goodness-of-fit and take the most recently observed data as the starting point of projection.

After equation (1) is fitted to the data, the following six simulation strategies are tested:

(I) Lee & Carter (1992) focused on εt and used ±2σ to approximate the 95% prediction intervals.
Here, assuming εt � N 0; σ2

� �
, we simulate n samples of future kt via kt ¼ μ̂ + kt� 1 + εt and

then obtain values of future death rates using the estimated parameters.

(II) Li et al. (2004) assumed εt � N 0; σ2
� �

and simulated n samples of future kt with
kt ¼ μ̂ + se μ̂ð Þη + kt� 1 + εt, where se μ̂ð Þ was the standard error in estimating μ and
η � N 0; 1ð Þ. Note that εt and η were treated as independent. They then obtained values of
future death rates using the estimated parameters.
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(III) Brouhns et al. (2002b) adopted a parametric Monte Carlo simulation approach. They first
generated a sample of the model parameters ða jð Þ

x ; b jð Þ
x ; k jð Þ

t Þ from the asymptotic multivariate
normal distribution, in which the mean was approximately taken as the maximum likelihood
parameter estimates and the covariance matrix was given by the inverse of the Fisher information
matrix. The Cholesky decomposition process was used to produce multivariate random samples.
Then they fitted a new time series model to the sampled mortality index ðk jð Þ

t Þ and projected it to
the future, allowing for the error term of the time series model. Finally, they produced values of
future death rates ðm jð Þ

x;tÞ using the sampled parameters and the projected mortality index. The
whole process was repeated to generate n scenarios, i.e., j = 1, 2, …, n. Renshaw & Haberman
(2008) also considered incorporating the scale parameter ϕ into the covariance matrix.

(IV) Brouhns et al. (2005) implemented a semi-parametric bootstrapping approach. They first
bootstrapped a pseudo sample of the number of deaths ðd jð Þ

x;tÞ from the Poisson distribution with
mean dx,t, the observed number of deaths. They applied equation (1) to this pseudo sample and
computed the model parameters ða jð Þ

x ; b jð Þ
x ; k jð Þ

t Þ. Then they fitted a new time series model to the
mortality index ðk jð Þ

t Þ of the pseudo sample and projected it to the future, taking into account
the error term of the time series model. Correspondingly, they generated values of future death
rates ðm jð Þ

x;tÞ with the computed parameters and the projected mortality index of the pseudo
sample. The entire process was repeated many times to produce n scenarios, i.e., j = 1, 2, …, n.
Wang & Lu (2005) also took a similar approach (with the binomial distribution) to calculate
the standard error of the parameter estimates. On the other hand, Renshaw & Haberman
(2008) sampled from the fitted Poisson distribution (with mean d̂x;t) instead.

(V) Koissi et al. (2006) suggested the use of residual bootstrapping. First, they resampled, with
replacement, the deviance residuals ðr jð Þ

x;tÞ based on the fitted Poisson distribution. Then they
used the inverse formula to turn these resampled residuals into a pseudo sample of the number
of deaths ðd jð Þ

x;tÞ, and applied equation (1) to this pseudo sample and computed the model
parameters ða jð Þ

x ; b jð Þ
x ; k jð Þ

t Þ. They fitted a new random walk with drift to the mortality index
ðk jð Þ

t Þ of the pseudo sample and projected it to the future, allowing for the error term εt. Finally,
they generated values of future death rates ðm jð Þ

x;tÞ with the computed parameters and the
projected mortality index of the pseudo sample. The whole process was repeated to give n
scenarios, i.e., j = 1, 2, …, n. Here, we follow the inverse formula used by Renshaw &
Haberman (2008), as it complies with the principle in Efron & Tibshirani (1993), such that it
gives a pseudo sample of the number of deaths (instead of the fitted number of deaths).

(VI) Czado et al. (2005) applied Bayesian modelling and MCMC simulation (the Gibbs sampler and
Metropolis–Hastings algorithm) to project mortality. The major step of Bayesian analysis is to find
the posterior distribution of the unknown parameters and quantities given the data. In principle, the
posterior density function can be derived from f θ jDð Þ / f D jθð Þf θð Þ where θ denotes the unknown
parameters and quantities and Dmeans the data. As this problem is mathematically intractable, one
can perform MCMC simulation to generate samples from the posterior distribution. Similar to
Czado et al. (2005) and also Kogure et al. (2009), we choose the prior distributions below:

ax � N 0; σ2a
� �

bx � N 1
number of age groups; σ

2
b

� �

μ � N μ0; σ
2
μ

� �

εt � N 0; σ2
� �

σ�2 � Gamma α; βð Þ
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In effect, (I) considers only the random error of projecting the mortality index, while (II) also allows
for the fact that different data samples would give rise to different estimates of the drift term. On the
other hand, (III) to (V) incorporate both the error of estimating the model parameters due to
sampling fluctuation and the random error of projecting the mortality index. For (VI), Bayesian
analysis automatically includes all these errors via the prior distributions. Roughly speaking,
(I) caters for process error only, while (II) to (VI) take both process error and parameter error (or
parameter uncertainty) into account. In terms of programming and computation, (I) and (II) are
fairly straightforward and do not require much computation time, whereas (III) to (VI) are generally
much more demanding and time-consuming. In our analysis below, the former takes 15 minutes or
so to run, but the latter ones can take quite a few hours to even a couple of days.

We run at least 5,000 iterations (i.e. n = 5,000) for each strategy, from which we can obtain the
sample means, sample standard deviations, and 95% prediction intervals for projected death rates
and life expectancy. To perform simulations, we utilise the software R for (I) to (V) and WinBUGS
(Spiegelhalter et al., 2003) for (VI). Note that some practitioners may find the MCMC simulation
process in (VI) too tedious to implement, as it involves complex scientific programming. The
specialised software WinBUGS provides an alternative, in which the programming language is
relatively easy to use (e.g. Li, 2014). For demonstration purposes, we adopt WinBUGS to carry out
MCMC simulation. The simulation process, however, can still take up to a couple of days to run.
If greater flexibility is required, one may develop MCMC algorithms from scratch, but this calls for
significant expertise in building the models and writing the codes. Note also that vague priors are
further tested, such as multiplying σ2a and σ2b by 10. The sample means are basically not affected, and
the resulting changes in the sample variances are immaterial.

3. Simulation Results

The number of deaths and exposed to risk data of New Zealand for 1948–2008, by sex and single
year of age, are collected from the Human Mortality Database (2012). As noted in Li (2010, 2013),
the linearity of the mortality index in the LC structure is an important property for projecting
the overall mortality decline and makes the projection a sensible and straightforward exercise.
Moreover, the fundamental drivers of mortality improvement have changed significantly for the
recent decades, and it is often preferable to include only the most recent and relevant data periods.
Figure 1 shows the mortality indices computed from applying equation (1) to the whole set of data,
in which there is a prominent change in the slope in around 1985 for both sexes. This change is
found to be broadly in line with the emergence of old-age improvement during that period of time.
As such, following Li (2010), we select the starting year 1985 for all the projections below. In that
paper, the selection was based on the change in the slope, the stability of bx’s, and the R2 values of
testing the linearity of the kt series. In addition, as the death rates from age 90 onwards are rather
volatile due to small exposures, we exclude these data from our analysis and adopt the Coale & Guo
(1989) method to “close out” the life table when computing life expectancy.

There are two main reasons behind the use of New Zealand data for testing the simulation methods.
First, its population size is much smaller than those of the United Kingdom and the United States, the
data of which are often used in mortality projection studies. The smaller sample size means higher
uncertainty in parameter estimation, which makes it important to incorporate parameter error into
the simulation process. Second, data of insurance portfolios and pension plans are generally much
less than population data, and the experience of a relatively small country is more comparable to
those of the largest portfolios and plans.
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The estimated parameters based on the fitting period 1985–2008 are plotted in Figure 2. The
ax estimates display the typical shape of the mortality schedule. For the bx estimates, there are
three peaks at early childhood, around age 20, and age 60, which refer to the highest sensitivity to
the general trend of mortality decline. Moreover, as expected, the kt series are reasonably linear, and
this feature helps justify the use of the random walk with drift. The corresponding standardised
deviance residuals are then shown in Figure 3. Overall, these residuals are randomly distributed
against age, calendar year, and cohort year. The absence of significant unusual patterns in the
residuals indicates that the Poisson LC model (equation (1)) can be deemed as being able to capture
the main characteristics of the data. The randomness of the residuals also provides a strong basis for
using the residual bootstrapping method (V).

Provided with the parameter estimates, we apply the six simulation methods (I) to (VI) to generate
samples of future death rates and life expectancy and construct 95% prediction intervals. As men-
tioned earlier, we further divide each of (III) and (IV) into two cases: (IIIa) without the scale para-
meter versus (IIIb) with the scale parameter; (IVa) using the observed number of deaths as the
Poisson parameter versus (IVb) using the fitted Poisson distribution. The scale parameter is a
measure of over-dispersion and its incorporation would lead to higher variability if it is larger than 1.
Moreover, for (III) to (V), we do not fit a new time series model (e.g. ARIMA models) but simply
a new random walk with drift in each iteration, since the mortality index samples are largely
linear. It should also be noted that all the parameters and future values are sampled coherently
under (VI).

Tables 1 and 2 list the projected values (central estimates calculated from the maximum likelihood
estimates of the parameters and the projected mortality index), sample means, sample standard
deviations, and 95% prediction intervals for future mortality index, (period) life expectancy at birth,
and death rates at different ages in 2030 and 2050. Figure 4 plots the sample means and 95%
prediction intervals for future values in 2050. We have made a number of observations as below:

(1) The sample means agree closely with the projected values based on maximum likelihood.

(2) The widths of the 95% prediction intervals are on average around 3.9 times the standard
deviations. This ratio is the same as that of a normal distribution.

(3) Compared with all the other methods, (I) clearly leads to smaller variances and narrower
prediction intervals. This result is a direct consequence of allowing for only the random error
term of the random walk with drift. For life expectancy, the magnitude of the differences appears
to increase over time in the projections.
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Figure 1. Mortality indices for the data period 1948–2008.
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(4) For the mortality index and life expectancy, it can be seen that (II) gives rise to the largest
variances and widest prediction intervals. For the death rates, (II) produces larger variances and
wider prediction intervals at older ages but the results are opposite at younger ages, when
compared with the other methods (except (I)).

(5) The results of (IIIa) and (IIIb) are very close. Because the scale parameters for females and
males are only 1.09 and 1.11, there is effectively not much difference between the two
variations.

(6) There does not appear to be any material difference between using the observed number of
deaths and the fitted number of deaths as the Poisson parameter. The figures produced by (IVa)
and (IVb) are very similar.

(7) Overall, the results of (III) to (V) are highly comparable. This agreement seems to further suggest
that the Poisson LC model (equation (1)) provides a satisfactory fit to the data. Brouhns et al.
(2005) made a similar comment when they compared (IIIa) and (IVa).
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Figure 2. Parameter estimates for the data period 1985–2008.
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Figure 3. Standardised deviance residuals for the data period 1985–2008. Note: The empty cells
refer to positive residuals and the marked ones refer to negative residuals.
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Table 1. Projected values, sample means, sample standard deviations, and 95% prediction intervals for future
mortality index, life expectancy at birth, and death rates in 2030 and 2050 (females).

k2030 = − 70.15 k2050 = − 112.91

Method
Sample
mean Sample s.d.

95% prediction
interval

Sample
mean Sample s.d.

95% prediction
interval

(I) − 70.33 14.62 (−98.69, − 42.05) − 113.17 20.25 (−153.60, − 73.72)
(II) − 70.02 20.40 (−109.82, − 29.14) − 112.67 33.87 (−176.18, − 46.01)
(IIIa) − 70.44 15.80 (−101.54, − 39.47) − 113.32 21.73 (−155.35, − 70.15)
(IIIb) − 70.27 15.77 (−101.81, − 40.45) − 112.84 21.92 (−156.69, − 71.14)
(IVa) − 69.95 15.81 (−101.17, − 38.30) − 112.43 22.07 (−155.38, − 69.22)
(IVb) − 69.58 15.91 (−100.61, − 38.13) − 112.72 22.16 (−156.63, − 70.18)
(V) − 69.69 15.68 (−100.29, − 38.77) − 112.12 21.63 (−153.91, − 69.80)
(VI) − 69.43 14.42 (−97.70, − 41.20) − 111.70 23.30 (−158.80, − 64.68)

Life expectancy in 2030 = 86.76 Life expectancy in 2050 = 89.59

Method
Sample
mean Sample s.d.

95% prediction
interval

Sample
mean Sample s.d.

95% prediction
interval

(I) 86.72 1.11 (84.44, 88.73) 89.53 1.18 (87.02, 91.65)
(II) 86.65 1.56 (83.25, 89.41) 89.36 2.03 (84.79, 92.58)
(IIIa) 86.73 1.29 (84.14, 89.25) 89.60 1.62 (86.62, 93.16)
(IIIb) 86.72 1.30 (84.26, 89.34) 89.56 1.64 (86.65, 93.20)
(IVa) 86.71 1.28 (84.12, 89.21) 89.56 1.61 (86.54, 92.98)
(IVb) 86.68 1.31 (84.09, 89.30) 89.56 1.63 (86.65, 93.14)
(V) 86.72 1.29 (84.16, 89.25) 89.58 1.61 (86.63, 93.00)
(VI) 86.92 1.21 (84.42, 89.49) 89.88 1.74 (86.26, 93.58)

m20,2030 = 0.00037 m20,2050 = 0.00024

Method
Sample
mean Sample s.d.

95% prediction
interval

Sample
mean Sample s.d.

95% prediction
interval

(I) 0.00038 0.00006 (0.00028, 0.00049) 0.00025 0.00005 (0.00016, 0.00036)
(II) 0.00038 0.00008 (0.00025, 0.00056) 0.00026 0.00009 (0.00013, 0.00047)
(IIIa) 0.00039 0.00012 (0.00019, 0.00064) 0.00027 0.00012 (0.00009, 0.00056)
(IIIb) 0.00039 0.00012 (0.00019, 0.00066) 0.00027 0.00013 (0.00009, 0.00058)
(IVa) 0.00039 0.00012 (0.00018, 0.00064) 0.00027 0.00013 (0.00008, 0.00057)
(IVb) 0.00039 0.00012 (0.00019, 0.00063) 0.00027 0.00012 (0.00009, 0.00055)
(V) 0.00039 0.00012 (0.00019, 0.00064) 0.00027 0.00012 (0.00009, 0.00056)
(VI) 0.00037 0.00009 (0.00022, 0.00056) 0.00025 0.00009 (0.00011, 0.00047)

m40,2030 = 0.00068 m40,2050 = 0.00047

Method
Sample
mean Sample s.d.

95% prediction
interval

Sample
mean Sample s.d.

95% prediction
interval

(I) 0.00068 0.00009 (0.00053, 0.00086) 0.00047 0.00008 (0.00033, 0.00066)
(II) 0.00069 0.00012 (0.00048, 0.00096) 0.00049 0.00015 (0.00027, 0.00083)
(IIIa) 0.00069 0.00015 (0.00041, 0.00099) 0.00049 0.00016 (0.00023, 0.00083)
(IIIb) 0.00069 0.00015 (0.00040, 0.00100) 0.00049 0.00016 (0.00022, 0.00085)
(IVa) 0.00069 0.00015 (0.00041, 0.00100) 0.00050 0.00017 (0.00022, 0.00085)
(IVb) 0.00069 0.00015 (0.00042, 0.00099) 0.00049 0.00016 (0.00023, 0.00084)
(V) 0.00069 0.00015 (0.00042, 0.00098) 0.00049 0.00016 (0.00023, 0.00083)
(VI) 0.00065 0.00013 (0.00042, 0.00091) 0.00045 0.00014 (0.00021, 0.00074)

Jackie Li

288

https://doi.org/10.1017/S1748499514000153 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499514000153


(8) The figures computed from (VI) are quite close to those from (III) to (V). For the mortality
index, death rates at older ages, and life expectancy, (VI) tends to give larger variances and
wider prediction intervals than (III) to (V) later in 2050, but the situation is reversed earlier in
2030. On the other hand, for the death rates at younger ages, (VI) tends to produce smaller
variances and narrower prediction intervals in both periods.

(9) Figure 5 displays the sampled distributions of life expectancy at birth in 2050. It can be seen
that the shapes of the distributions are very similar for (III) to (V), which agree with the
observations above.

(10) It is interesting to observe in Figure 5 that there is a small extent of skewness in the sampled
distributions of life expectancy. While the distributions generated by (I) and (II) are negatively
skewed, those by (III) to (VI) are slightly positively skewed. We realise that the former case
actually becomes more negatively skewed over time during the projection period, whereas the
latter changes from being negatively skewed to positively skewed gradually. Li et al. (2004) and
Li (2013) demonstrated the same effects as the former case when they adopted (II). This
negative skewness in life expectancy appears to be driven by the fact that changes in the
mortality index are the only source of uncertainty allowed for and that these changes follow the
normal distribution, which means that the projected death rates are then lognormally
distributed and have positive skewness. On the other hand, for (III) to (VI), there is also
uncertainty of the other parameters, and the aggregate effects on skewness are mixed and less
clear-cut.

Table 1. Continued

m60,2030 = 0.00266 m60,2050 = 0.00153

Method
Sample
mean Sample s.d.

95% prediction
interval

Sample
mean Sample s.d.

95% prediction
interval

(I) 0.00270 0.00052 (0.00184, 0.00384) 0.00157 0.00042 (0.00090, 0.00254)
(II) 0.00276 0.00075 (0.00159, 0.00454) 0.00169 0.00078 (0.00067, 0.00364)
(IIIa) 0.00272 0.00060 (0.00169, 0.00404) 0.00159 0.00050 (0.00081, 0.00273)
(IIIb) 0.00273 0.00060 (0.00167, 0.00398) 0.00161 0.00051 (0.00080, 0.00276)
(IVa) 0.00272 0.00060 (0.00167, 0.00406) 0.00160 0.00051 (0.00080, 0.00275)
(IVb) 0.00274 0.00061 (0.00170, 0.00406) 0.00160 0.00050 (0.00081, 0.00272)
(V) 0.00273 0.00060 (0.00168, 0.00406) 0.00160 0.00050 (0.00081, 0.00275)
(VI) 0.00270 0.00056 (0.00172, 0.00393) 0.00160 0.00054 (0.00076, 0.00288)

m80,2030 = 0.02310 m80,2050 = 0.01409

Method
Sample
mean Sample s.d.

95% prediction
interval

Sample
mean Sample s.d.

95% prediction
interval

(I) 0.02338 0.00398 (0.01661, 0.03196) 0.01444 0.00342 (0.00880, 0.02216)
(II) 0.02378 0.00569 (0.01460, 0.03710) 0.01526 0.00622 (0.00678, 0.03053)
(IIIa) 0.02346 0.00443 (0.01586, 0.03314) 0.01454 0.00382 (0.00846, 0.02339)
(IIIb) 0.02344 0.00441 (0.01589, 0.03279) 0.01456 0.00386 (0.00823, 0.02293)
(IVa) 0.02346 0.00443 (0.01576, 0.03326) 0.01457 0.00389 (0.00817, 0.02341)
(IVb) 0.02360 0.00449 (0.01584, 0.03367) 0.01456 0.00389 (0.00824, 0.02322)
(V) 0.02342 0.00441 (0.01577, 0.03319) 0.01451 0.00387 (0.00836, 0.02330)
(VI) 0.02296 0.00406 (0.01603, 0.03209) 0.01420 0.00413 (0.00738, 0.02383)
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Table 2. Projected values, sample means, sample standard deviations, and 95% prediction intervals for future
mortality index, life expectancy at birth, and death rates in 2030 and 2050 (males).

k2030 = − 83.58 k2050 = − 133.36

Method
Sample
mean Sample s.d.

95% prediction
interval

Sample
mean Sample s.d.

95% prediction
interval

(I) − 83.45 10.60 (−103.99, − 62.68) − 133.29 14.50 (−161.69, − 104.07)
(II) − 83.70 14.58 (−111.93, − 55.25) − 133.55 24.29 (−182.11, − 84.96)
(IIIa) − 83.36 11.45 (−106.38, − 61.11) − 133.21 15.77 (−167.79, − 102.68)
(IIIb) − 83.37 11.49 (−106.36, − 61.20) − 133.02 15.90 (−164.52, − 102.14)
(IVa) − 83.12 11.86 (−106.12, − 59.66) − 133.00 16.59 (−164.86, − 100.49)
(IVb) − 83.51 11.78 (−107.15, − 61.11) − 133.39 16.46 (−166.18, − 101.02)
(V) − 83.16 11.81 (−106.35, − 59.57) − 132.76 16.33 (−164.44, − 100.56)
(VI) − 83.26 10.65 (−103.40, − 60.89) − 132.90 16.90 (−166.20, − 100.50)

Life expectancy in 2030 = 83.57 Life expectancy in 2050 = 86.98

Method
Sample
mean Sample s.d.

95% prediction
interval

Sample
mean Sample s.d.

95% prediction
interval

(I) 83.53 0.86 (81.75, 85.12) 86.94 0.83 (85.12, 88.44)
(II) 83.52 1.19 (81.04, 85.66) 86.87 1.42 (83.68, 89.31)
(IIIa) 83.53 0.97 (81.61, 85.36) 87.00 1.13 (84.92, 89.38)
(IIIb) 83.53 0.97 (81.62, 85.42) 87.00 1.13 (84.88, 89.42)
(IVa) 83.52 1.01 (81.48, 85.47) 87.00 1.17 (84.79, 89.43)
(IVb) 83.54 0.99 (81.58, 85.45) 87.01 1.14 (84.84, 89.41)
(V) 83.53 1.00 (81.48, 85.43) 87.00 1.16 (84.88, 89.47)
(VI) 83.72 0.95 (81.74, 85.47) 87.28 1.25 (84.99, 90.02)

m20,2030 = 0.00052 m20,2050 = 0.00027

Method
Sample
mean Sample s.d.

95% prediction
interval

Sample
mean Sample s.d.

95% prediction
interval

(I) 0.00053 0.00008 (0.00040, 0.00069) 0.00028 0.00005 (0.00019, 0.00040)
(II) 0.00053 0.00010 (0.00036, 0.00076) 0.00028 0.00009 (0.00014, 0.00051)
(IIIa) 0.00054 0.00011 (0.00033, 0.00078) 0.00028 0.00009 (0.00014, 0.00049)
(IIIb) 0.00054 0.00012 (0.00033, 0.00079) 0.00029 0.00009 (0.00014, 0.00049)
(IVa) 0.00054 0.00011 (0.00033, 0.00078) 0.00028 0.00009 (0.00014, 0.00048)
(IVb) 0.00054 0.00011 (0.00033, 0.00077) 0.00028 0.00009 (0.00014, 0.00048)
(V) 0.00054 0.00012 (0.00034, 0.00078) 0.00029 0.00009 (0.00014, 0.00049)
(VI) 0.00055 0.00011 (0.00035, 0.00078) 0.00030 0.00009 (0.00015, 0.00052)

m40,2030 = 0.00072 m40,2050 = 0.00057

Method
Sample
mean Sample s.d.

95% prediction
interval

Sample
mean Sample s.d.

95% prediction
interval

(I) 0.00072 0.00004 (0.00066, 0.00080) 0.00057 0.00004 (0.00050, 0.00066)
(II) 0.00072 0.00005 (0.00063, 0.00083) 0.00057 0.00007 (0.00045, 0.00072)
(IIIa) 0.00073 0.00011 (0.00053, 0.00095) 0.00059 0.00013 (0.00035, 0.00088)
(IIIb) 0.00073 0.00012 (0.00052, 0.00098) 0.00059 0.00015 (0.00035, 0.00091)
(IVa) 0.00073 0.00011 (0.00053, 0.00094) 0.00058 0.00013 (0.00035, 0.00087)
(IVb) 0.00073 0.00011 (0.00053, 0.00095) 0.00058 0.00014 (0.00035, 0.00088)
(V) 0.00073 0.00011 (0.00053, 0.00096) 0.00059 0.00014 (0.00035, 0.00089)
(VI) 0.00066 0.00009 (0.00049, 0.00086) 0.00050 0.00011 (0.00031, 0.00074)
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It should be noted that (I) incorporates only the random error of projecting the mortality index
and ignores the existence of parameter error, which unavoidably lead to an understatement of
variability in mortality movements. In contrast, all the other methods also take parameter error into
account, but through different ways: (II) focuses on the estimation error of the drift term of
the random walk process, while (III) to (VI) allow for the estimation error of the original model
parameters. Undoubtedly, (III) to (VI) offer a more precise and sophisticated mechanism for
integrating different sources of errors. Nevertheless, (II) has two potential advantages over the
others. First, its computation time is much shorter and the programming required is less demanding.
Second, as old-age improvement has become more important, and since (II) generates future death
rates at old ages and mortality index with greater variability, this method tends to give a higher
estimate of variability for such aggregate measures as life expectancy and present value of an annuity
at retirement ages. It means that the resulting allowance for uncertainty would be more conservative,
which may be preferred by certain pension and annuity providers. In summary, the optimal choice
depends on the requirements of the analysis and the experience and preference of the user. Ideally,
if time permits and resources are available, a practitioner could test different simulation methods
and compare the results, so as to gain a better understanding of the underlying uncertainty of
mortality changes.

Finally, there are three more things to note. First, as discussed above, the difference between (IIIa)
and (IIIb) is minimal because the estimated scale parameter is close to 1. (It was calculated to be

Table 2. Continued

m60,2030 = 0.00349 m60,2050 = 0.00165

Method
Sample
mean Sample s.d.

95% prediction
interval

Sample
mean Sample s.d.

95% prediction
interval

(I) 0.00354 0.00057 (0.00257, 0.00477) 0.00169 0.00037 (0.00108, 0.00256)
(II) 0.00357 0.00079 (0.00228, 0.00533) 0.00176 0.00067 (0.00080, 0.00342)
(IIIa) 0.00355 0.00065 (0.00240, 0.00497) 0.00171 0.00044 (0.00098, 0.00271)
(IIIb) 0.00355 0.00066 (0.00240, 0.00498) 0.00171 0.00045 (0.00099, 0.00273)
(IVa) 0.00357 0.00068 (0.00239, 0.00505) 0.00172 0.00047 (0.00096, 0.00275)
(IVb) 0.00355 0.00067 (0.00235, 0.00495) 0.00171 0.00046 (0.00097, 0.00274)
(V) 0.00355 0.00068 (0.00237, 0.00506) 0.00171 0.00046 (0.00097, 0.00280)
(VI) 0.00352 0.00061 (0.00246, 0.00488) 0.00170 0.00046 (0.00094, 0.00274)

m80,2030 = 0.03530 m80,2050 =0.02116

Method
Sample
mean Sample s.d.

95% prediction
interval

Sample
mean Sample s.d.

95% prediction
interval

(I) 0.03555 0.00388 (0.02862, 0.04375) 0.02142 0.00320 (0.01582, 0.02860)
(II) 0.03565 0.00538 (0.02638, 0.04722) 0.02180 0.00555 (0.01283, 0.03480)
(IIIa) 0.03567 0.00440 (0.02761, 0.04485) 0.02155 0.00374 (0.01494, 0.02946)
(IIIb) 0.03562 0.00448 (0.02734, 0.04471) 0.02155 0.00380 (0.01483, 0.02978)
(IVa) 0.03567 0.00458 (0.02731, 0.04529) 0.02151 0.00393 (0.01462, 0.02995)
(IVb) 0.03556 0.00453 (0.02732, 0.04482) 0.02146 0.00387 (0.01471, 0.02967)
(V) 0.03560 0.00458 (0.02738, 0.04559) 0.02152 0.00390 (0.01466, 0.03005)
(VI) 0.03520 0.00433 (0.02735, 0.04466) 0.02120 0.00410 (0.01418, 0.02972)
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1.386 for UK male pensioner data in Renshaw & Haberman, 2008). This may not be the case for
other countries or populations. Second, we suggest earlier that the close agreement of the figures
from (III) to (V) may be an indication of the good fit of the Poisson LC model (equation (1)) to the
data. We suspect that for the situation where the model fit is unsatisfactory (e.g. there are unusual
patterns in the residuals), the results produced by different simulation methods may differ con-
siderably. In those cases, the differences may be reduced if some modifications are made to the model
to first improve the data fitting. Third, though in this paper, the projection is performed for 42 years
based on only 24 years of data, this work is for demonstration purposes only. In practical appli-
cations, the convention is that the maximum length of the projection period is taken approximately
the same as the length of the fitting period (e.g. Booth et al., 2002).

Figure 4. (a) 2.5th percentiles, sample means, and 97.5th percentiles for future mortality index, life
expectancy at birth, and death rates in 2050 (females).
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4. Concluding Remarks

In this paper, we provide a quantitative comparison of six simulation strategies for mortality
projection using the Poisson LC model. These strategies include considering the error term of the
mortality index only, including the parameter error of the drift term, simulating the parameters from
the multivariate normal distribution, bootstrapping the number of deaths from the Poisson
distribution, bootstrapping the deviance residuals of the fitted model, and Bayesian MCMC
simulation. We apply these different methods to New Zealand mortality data and find that (a) the
first method produces the lowest variability estimates; (b) the second method largely gives the highest
variability estimates; and (c) the last four methods lead to similar results. We recognise that the

Figure 4. (b) 2.5th percentiles, sample means, and 97.5th percentiles for future mortality index,
life expectancy at birth, and death rates in 2050 (males).
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Figure 5. (a) Sampled distributions of life expectancy at birth in 2050 (females).
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Figure 5. (b) Sampled distributions of life expectancy at birth in 2050 (males).
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second method involves much less programming and computation demand than the last four
methods and that the final choice depends on the specific requirements and preference of the user.
We also emphasise the importance of having a satisfactory model fit before carrying out any
simulation of future values.

For future research, we are exploring the possibility to further incorporate the model error.
One option is to make use of the Bayesian framework to consider two or more models at the same time
and set a prior probability for each model, as suggested in Cairns (2000). It would also be informative to
conduct a similar quantitative study for other mortality model structures and data sets. Moreover,
D’Amato et al. (2011) recently proposed the use of stratified sampling for handling heterogeneity
between clusters within a population. It would be interesting to see how this approach could improve the
residual bootstrapping process in the cases where there exists dependence between the residuals for
certain sub-groups of the population under study. Other work considering the dependence structure in
the residuals includes Debón et al. (2008, 2010) and D’Amato et al. (2012).
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