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Bounding the Iwasawa invariants
of Selmer groups
Sören Kleine
Abstract. We study the growth of p-primary Selmer groups of abelian varieties with good ordinary
reduction at p in Zp-extensions of a fixed number field K. Proving that in many situations the
knowledge of the Selmer groups in a sufficiently large number of finite layers of a Zp-extension
over K suffices for bounding the over-all growth, we relate the Iwasawa invariants of Selmer groups
in different Zp-extensions of K. As applications, we bound the growth of Mordell–Weil ranks and
the growth of Tate-Shafarevich groups. Finally, we derive an analogous result on the growth of fine
Selmer groups.

1 Introduction

Let K be a number field, and let p be a fixed rational prime. Classical Iwasawa
theory studies the asymptotic growth of ideal class groups in Zp-extensions K∞ of
K by using the action of the Galois group Gal(K∞/K) on these ideal class groups,
which can be used to turn the projective limit of the ideal class groups into a so-
called Iwasawa module. In the 1960’s, mathematicians started to study other classes
of Iwasawa modules, the most prominent example being Selmer groups of abelian
varieties defined over K. Many results have been obtained concerning the growth of
Selmer groups over the intermediate fields of certain specific Zp-extensions like the
cyclotomic Zp-extension of K, i.e., the unique Zp-extension of K that is contained in
the union⋃n K(μpn) obtained by adjoining p-power roots of unity.

In this article, we will describe an approach for comparing the growth of p-primary
Selmer groups over distinct Zp-extensions of K that are close with respect to a certain
topology (basic idea: two Zp-extensions of K are close if they have large intersection;
details will be given in Section 4). The main ingredient is a method for bounding the
asymptotic growth of Selmer groups by using only information about a suitable finite
subextension of theZp-extension. This approach will also enable us to bound, in some
situations, the growth of Mordell–Weil- and (p-primary) Tate–Shafarevich groups in
the tower of a Zp-extension by using only a finite number of layers.

We will now make this more precise. Let K∞/K be a Zp-extension, and let A be
an abelian variety defined over K. In most of our results, we will assume that A has
(potentially) good ordinary reduction at the primes of K dividing p. We denote by
X(K∞) the Pontryagin dual of the p-primary subgroup of the Selmer group SelA(K∞).
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Iwasawa invariants of Selmer groups 1391

Then X(K∞) is a module over the completed group ring Zp�Gal(K∞/K)�. In Section
4, we will show that the Iwasawa μ- and λ-invariants of the Iwasawa modules X(K̃∞)
of Zp-extensions K̃∞ of K can be bounded explicitly in suitable neighbourhoods
of K∞ (with respect to the topology introduced in Section 4). In fact, the Iwasawa
invariants attached to Selmer groups of Zp-extensions K∞ of K are locally maximal
in the following sense.

Theorem 1.1 Let A be an abelian variety defined over K, and suppose that A has
potentially good and ordinary reduction at the primes of K dividing p. Let K∞/K be
a Zp-extension. We assume that A(K∞)[p∞] is finite and that X(K∞) is a torsion
Zp�Gal(K∞/K)�-module. Then the following statements hold for each Zp-extension
K̃∞ of K that is sufficiently close to K∞:
• X(K̃∞) is Zp�Gal(K̃∞/K)�-torsion;
• μ(X(K̃∞)) ≤ μ(X(K∞));
• λ(X(K̃∞)) ≤ λ(X(K∞)) whenever μ(X(K̃∞)) = μ(X(K∞)).

This theorem will be proved in Section 4 (see Theorem 4.11). Similar questions have
been studied for classical Iwasawa modules, i.e., projective limits of the ideal class
groups of the intermediate number fields in (multiple)Zp-extensions, in [6, 16, 17, 18].
It seems, however, that the analogous problem for Selmer groups has not yet been
discussed.

The approach used in [16, 17, 18] is quite different from the arguments given in [6].
The basic idea is to bound the size of an Iwasawa module of the form X = lim←�Xn by
studying a sufficiently large number of the layers Xn . It is of course usually very difficult
to actually quantify what “sufficiently large” means for some concrete example. For
this purpose, we use specific algebraic properties of our Iwasawa modules, which were
implicitly used for the first time by Fukuda in [5] in the setting of ideal class groups,
i.e., classical Iwasawa modules.

In order to adapt this method to Selmer groups, we will considerably generalise the
result of Fukuda in Section 3, where we prove some general algebraic facts. In Section
4, we prove Theorem 1.1. The main argument involves an application of a control
theorem for the Selmer groups, which holds under the assumption of (potentially)
good and ordinary reduction of A at p, and a thorough analysis of the finite kernels
and cokernels occurring in this situation. At the end of Section 4, we briefly point out
a weak generalisation of our results to Selmer groups over multiple Zp-extensions.

In Section 5, we discuss further applications. Recall that, for each number field F,
we have an exact sequence

0 �� A(F) ⊗Qp/Zp �� SelA(F) �� XA(F) �� 0 .(1.1)

Using these exact sequences, we derive consequences for Tate–Shafarevich and
Mordell–Weil groups. Conjecturally, the Tate–Shafarevich groups XA(F) are finite
for all number fields F. Assuming that this holds true for the finite layers of a Zp-
extension K∞/K, we can use the results from Section 4 in order to bound the growth
of Tate–Shafarevich and Mordell–Weil groups.
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If K is abelian over Q, A is an elliptic curve defined over Q and K∞/K denotes the
cyclotomicZp-extension, then results of Kato and Rohrlich (see [14, 26] and cf. also [7,
Section 1]) imply that the Mordell–Weil ranks rankZ(A(Kn)) are bounded as n →∞.
On the other hand, it is known that the ranks of the Mordell–Weil groups A(Kn)
are unbounded if K∞ is the anticyclotomic Zp-extension of an imaginary quadratic
number field K and if A = E denotes an elliptic curve defined over Q, which has
complex multiplication by K and good ordinary reduction at p, provided that the
Hasse–Weil L-series L(E , s) has an odd order zero at s = 1 (see [7, Theorem 1.8]).

We will show that in the situation of Theorem 1.1, rankZ(A(K̃∞)) ≤ λ(X(K∞)) for
each Zp-extension K̃∞ of K that is sufficiently close to K∞ and satisfies μ(X(K̃∞)) =
μ(X(K∞)) (see Lemma 5.7). In particular, this applies to the situation studied by
Kato and Rohrlich: let K∞ = K c yc

∞ denote the cyclotomic Zp-extension of an abelian
number field K, p odd, and suppose that A = E is an elliptic curve defined over Q ⊆ K
such that the extension K(E[p∞])/K is pro-p. Then [2, Theorem 3.4] implies that
μ(X(K∞)) = 0 (cf. also the end of Section 5.2); in particular, μ(X(K̃∞)) = μ(X(K∞))
for each sufficiently close K̃∞. Moreover, in this situation λ(X(K∞)) can be estimated
via analytical methods (cf. Section 5.1). Note that the analytical approach works only
for the cyclotomic Zp-extension of K, whereas Theorem 1.1 yields bounds for the
Mordell–Weil ranks in Zp-extensions of K different from the cyclotomic one.

Using the exact sequences (1.1), we can bound the asymptotical growth of Tate–
Shafarevich groups XA(Kn) depending on the growth of Mordell–Weil ranks, and
vice versa (for details, see Section 5.1). Several authors considered the problem of
finding lower bounds for rankZ(A(K∞)), via showing that the Mordell–Weil ranks
grow in the first few layers of a Zp-extension (cf., for example, [22]). We derive
from our main theorem a result (cf. Corollary 5.10) that says roughly the following:
under a strict finiteness assumption on the XA(Kn), if there exist an integer M and
sufficiently many consecutive layers Kn whose Mordell–Weil ranks are all equal to M,
then rankZ(A(Km)) ≤ M + C for all m ≫ 0 and some concrete constant C ∈N (this
phenomenon is probably well known, but we have not found an explicit statement in
the literature). We can establish explicit bounds (depending on the abelian variety A
and the Zp-extension K∞/K) for the number of consecutive layers that are necessary
for stabilisation (see Corollaries 5.10 and 4.7).

Finally, in Section 5.2, we study fine Selmer groups (for the definition, we refer
the reader to Section 2). Using the results from Sections 3 and 4, we describe two
situations in which we can prove an analog of Theorem 1.1 for the Pontryagin dual
Y(K∞) of the fine Selmer groups in a Zp-extension K∞ of K (see Theorem 5.15). This
has interesting applications: the fine Selmer groups tend to be much smaller than
the usual Selmer groups. There exist several deep conjectures about the growth of
fine Selmer groups in (multiple) Zp-extensions which are analogous to conjectures
about the size of classical Iwasawa modules X = lim←�Xn arising from ideal class groups
in (multiple) Zp-extensions (cf. [2]). Using the growth stabilisation results for the
fine Selmer groups, one can hope to be able to check these conjectures numerically
by considerating a finite number of layers Yn , n ∈N, in the same way as analogous
growth stabilisation results have been used extensively for checking numerically the
corresponding conjectures for classical Iwasawa modules X = lim←�Xn (cf., for example
[5] and several subsequent papers).
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2 Notation and Basic Definitions

Throughout the article, we fix a rational prime p and a number field K. For each abelian
group G, we denote by Gp = G[p∞] the p-primary subgroup of G, i.e., the subgroup
of elements of G of p-power order.

Let K∞/K be a Zd
p-extension, 1 ≤ d ∈N; we write K∞ = ⋃n Kn , where

Gal(Kn/K) ≅ (Z/pnZ)d for each n ∈N. The group ring Zp�Gal(K∞/K)� can
be identified with the ring Λd ∶= Zp�T1 , . . . , Td� of formal power series, mapping a
set (γ1 , . . . , γd) of topological generators of Gal(K∞/K) ≅ Zd

p to (T1 + 1, . . . , Td + 1).
We call Λd the Iwasawa algebra of the Zd

p-extension K∞/K. In this article, we will
focus on the case d = 1, i.e., Zp-extensions of K, but multiple Zp-extensions will show
up in a motivating example in Section 3, and also in a short outlook at the end of
Section 4. We will write Λ = Λ1 = Zp�T� for brevity.

Note that Λd is a local ring and a unique factorisation domain. We denote by
m = (p, T1 , . . . , Td) its maximal ideal. If M is any finitely generated Λd -module, then
[24, Proposition 5.1.7] implies that there exists a pseudo-isomorphism (i.e., a Λd -
module homomorphism whose kernel and cokernel are annihilated by two relatively
prime elements of the unique factorisation domain Λd ) φ ∶ M �→ EM , where EM is a
so-called elementary Λd -module. This means that it is of the form

EM = TF(M) ⊕
s
⊕
i=1

Λd/(h i)

for some torsion-free Λd -module TF(M) and suitable h1 , . . . , hs ∈ Λd . In the special
case d = 1, the torsion-free module TF(M) can be replaced by a finitely generated
free Λ-module (cf. [24, Theorem 5.1.10]). The element FM ∶= ∏s

i=1 h i ∈ Λd is called the
characteristic power series of M; it is determined uniquely by M up to multiplication
by units of Λd .

Suppose that M is compact with respect to the m-adic topology on the local ring
Λd , and that M is pro-p. Then we define the Pontryagin dual of M as

M∨ ∶= Homcont(M ,Qp/Zp),

where Homcont means the set of continuous Zp-module homomorphisms.
Let A denote a fixed abelian variety that is defined over K. For each n ∈N, we have

an injective Kummer map

κn ∶ A(Kn) ⊗Qp/Zp ↪ H1(Kn , A[p∞]).

If v denotes a prime of K and w is a prime of Kn above v, then we can also consider
the localised map

κn ,w ∶ A(Kn ,w) ⊗Qp/Zp ↪ H1(Kn ,w , A[p∞]),

where we denote by Kn ,w the completion of Kn at w. We define the (p-primary
subgroup of the) Selmer group of A over Kn :

SelA(Kn) ∶= ker(H1(Kn , A[p∞]) �→∏
w

H1(Kn ,w , A[p∞])/im(κn ,w)),
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where w runs over all primes of Kn . As in (1.1), the Selmer group on each level fits into
an exact sequence

0 �� A(Kn) ⊗Qp/Zp �� SelA(Kn) �� XA(Kn) �� 0 ,(2.1)

where we denote by XA(Kn) the p-primary subgroup of the Tate-Shafarevich group.
The latter group is by definition the kernel of the map

H1(Kn , A) �→∏
w

H1(Kn ,w , A),

where the product runs over all primes w of Kn . We define
X(K∞) ∶= lim←�

n
SelA(Kn)∨;

i.e., X(K∞) is the Pontryagin dual of SelA(K∞) ∶= lim�→n
SelA(Kn), where the injective

limit is taken with respect to the restriction maps. X ∶= X(K∞) is a finitely generated
Λd -module (see [2, Theorem 4.5]). Moreover, X is compact; this follows from the
fact that Xn = SelA(Kn)∨ is compact as being the projective limit of finite abelian p-
groups (cf. [21, Lemma 4.4]). Recall that X is pseudo-isomorphic to some elementary
Λd -module EX . The structure of the torsion submodule ⊕s

i=1 Λd/(h i) of EX can be
described in terms of the so-called Iwasawa invariants.

Suppose that d = 1. If FX = ∏s
i=1 h i ∈ Λ denotes the characteristic power series of

X, then FX is associated with a power of p times a so-called distinguished polynomial
fX(T) ∈ Zp[T]. We define μ(X) to be the largest power of p dividing FX in the unique
factorisation domain Λ, and we let λ(X) be the degree of fX(T) (for more details,
cf. for example [29, Chapter 13]). In this article, we will denote Zp-extensions of K
by K∞ = ⋃n Kn or K̃∞ = ⋃n K̃n , and we will study the Iwasawa modules X(K̃∞) for
distinct Zp-extensions of K.

Finally, we recall the definition of fine Selmer groups. For any number field F, the
(p-primary subgroup of the) fine Selmer group of A over F is defined as

SelA,0(F) = ker(H1(F , A[p∞]) �→⊕
v

H1(Fv , A[p∞]))

(one should compare this with the definition of the Selmer group SelA(Kn), as
given above). If K∞/K denotes a Zp-extension, then we let Y(K∞) = lim←� SelA,0(Kn)∨,
analogous to X(K∞) (again the projective limit is taken with respect to the corestriction
maps).

By definition, the fine and usual Selmer groups can be related via the following
exact sequence (cf. [2, equation (58), p. 828]): for each number field F, we have an
exact sequence

0 �� SelA,0(F) �� SelA(F) �� ⊕
v∣p
(A(Fv) ⊗Qp/Zp) ,(2.2)

where the sum runs over all primes of F dividing p. Here we note that
A(Fv) ⊗Qp/Zp = {0}

for each v ∤ p; see [7, Theorem 2.4].
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3 Fukuda Modules

In the current section, we will consider a special family of Iwasawa modules
X = lim←�Xn which are designed for tackling the following problem: given a sufficiently
large number of layers Xn , n ∈N, explicitly (e.g., via numerical computations), derive
information about the projective limit X = lim←�Xn . This idea will be made more
explicit below (see Theorem 3.5); in particular, it will of course be crucial to explicitly
determine the number N of layers of X that have to be known for obtaining any
information about X.

Definition 3.1 Let 1 ≤ d ∈N be arbitrary, and let R = Λd be the ring of formal
power series over Zp in d variables, as in Section 2. Recall that we denote by m =
(p, T1 , . . . , Td) the maximal ideal of the local ring R. Let X = lim←�Xn denote the
projective limit of R-modules Xn , n ∈N, each of which we assume to be an abelian
pro-p-group. Suppose that X is compact as an R-module (with respect to the m-
adic topology). For each n ∈N, let Yn ⊆ X denote the kernel of the projection map
prn ∶ X �→ Xn .

Let C1 , C2 , C3 ∈N be p-powers. Then X is called a Fukuda -R- module with
parameters (C1 , C2 , C3) if there exists a family of compact R-submodules (Zn)n of
X such that

∣coker(prn)∣ ≤ C1 , Zn+1 ⊆ m ⋅ Zn ,
[Yn ∶ (Yn ∩ Zn)] ≤ C2 and [Zn ∶ (Yn ∩ Zn)] ≤ C3

for each n ∈N. If C3 = 1 (which will happen in most of our cases), then we will
abbreviate the notation by saying that X is a (C1 , C2)-Fukuda module.

Remark 3.1 We note that whereas C1 is an intrinsic invariant of X, the constants C2
and C3 depend on the chosen family of R-modules (Zn)n . In practise, we usually want
to minimise vp(C2 ⋅ C3) by a good choice of the Zn ( cf. Theorem 3.5).

Example 3.2 A notion of Fukuda- Λd -modules with parameters (1, 1, 1) has been
introduced earlier in [16] for d = 1, and in [17], for arbitrary d ( cf. [17, Definition 3.8]),
in order to study the growth of ideal class groups in Zd

p-extensions of number fields.
In order to motivate the above definition, we will now describe this special case in
more detail, confining ourselves to the case d = 1.

Let K∞ be a Zp-extension of a number field K, K∞ = ⋃n Kn with Kn/K cyclic of
degree pn , n ∈N. We consider R = Λ1 = Zp�T� ≅ Zp�Gal(K∞/K)� and X = lim←�Xn ,
where Xn denotes the p-primary subgroup of the ideal class group of Kn , n ∈N.
Suppose that the following condition is satisfied:

Each prime of K that ramifies in K∞ is totally ramified in K∞/K .(3.1)

For each n ∈N, we let

νn+1,n(T) = 1 + (T + 1)pn
+ (T + 1)2pn

+⋯+ (T + 1)(p−1)pn
∈ m = (p, T) .

Then a classical result of Iwasawa (cf. [12, Theorem 6]) implies that

Yn+1 = νn+1,n(T) ⋅ Yn ⊆ m ⋅ Yn
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for each n ∈N, where Yn = ker(prn), as in Definition 3.1. Moreover, it follows by an
argument from class field theory that prn ∶ X �→ Xn is surjective for each n (here we
use that condition (3.1) is satisfied; in fact, it suffices that at least one prime of K is
totally ramified in K∞; cf. [29, Theorem 10.1]). In other words, letting Zn = Yn , we can
conclude that X = lim←�Xn is a Fukuda- Λ1-module with parameters (1, 1, 1).

More generally, let K∞/K be a Zd
p-extension, d ≥ 1, and write K∞ = ⋃n Kn with

Gal(Kn/K) ≅ (Z/pnZ)d , n ∈N. Let X = lim←�Xn be defined as above. We have shown
in [17, Section 3] that under appropriate assumptions on the ramification of primes
in K∞/K, generalising the condition (3.1) above, X is a Fukuda- Λd -module with
parameters (1, 1, 1).
Remark 3.3 In fact, the Fukuda modules defined in [16] and [17] have been treated
in more generality than in the above example. In the case d = 1, we did not assume
the validity of condition (3.1). This made it necessary to weaken the definition of
Fukuda modules in the following way: the sequence of R-modules (Z i)i satisfies the
conditions from Definition 3.1 only for all n ≥ e, where e = e(X) is a suitable integer
( e.g., the minimal number n such that the condition (3.1) from Example 3.2 holds
for the Zp-extension K∞/Kn). Using such a weakened definition, our results ( e.g.,
Theorem 3.5 ) have to be adjusted (typically one has to restrict to indices n ≥ e instead
of n ∈N). In this article, we will study a class of Fukuda modules different from
the standard Example 3.2. For this class, the definition as given in Definition 3.1 is
sufficient; therefore, we will not pursue this issue any further.

We want to explain why the notion of Fukuda modules can be helpful in solving
the problem stated at the beginning of the current section. Again, we motivate our
general result by considering the special case of the (1, 1)-Fukuda-modules described
in Example 3.2. In this case, we have the following theorem due to Fukuda (see [5,
Theorem 1]).

Theorem 3.4 (Fukuda) Using the same notation as in Example 3.2, let X = lim←�Xn be
attached to a Zp-extension K∞ of K , which satisfies condition (3.1), and suppose that
∣Xn+1∣ = ∣Xn ∣ for some n ∈N. Then ∣X∣ = ∣Xn ∣, i.e., ∣Xm ∣ = ∣Xn ∣ for each m ≥ n.

The proof of this theorem reduces to an application of Nakayama’s Lemma. More
precisely, if ∣Xn+1∣ = ∣Xn ∣, then Yn = Yn+1 ⊆ m ⋅ Yn . Since X = lim←�Xn is compact as a
Λ1-module, Yn = ker(prn) is also compact, and thus Yn ⊆ m ⋅ Yn implies that Yn = {0}
by Nakayama’s Lemma.

Fukuda proved also the following variant: if rankp(Xn+1) = rankp(Xn) for some
n ∈N, then rankp(X) = rankp(Xn) (here, rankp(B) = dimFp(B/pB) for any abelian
group B, whenever this is finite). In [16], we observed that more generally, if
X = lim←�Xn is attached to a Zp-extension K∞ of K satisfying (3.1), and if

∣Xn+1/(λ ⋅ Xn+1)∣ = ∣Xn/(λ ⋅ Xn)∣

for some λ ∈ Λ = Zp�T� and some n ∈N, then X/(λ ⋅ X) ≅ Xn/(λ ⋅ Xn). Note: this is
much more powerful than Fukuda’s original result, since it enables us to exploit the
Λ-module structure of X, instead of using only the group structure.
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In [17], we generalised the above result toZd
p-extensionsK/K, d ≥ 1; in this setting,

we studied the stabilisation of quotients of the form Xn/(( f1 , . . . , fd) ⋅ Xn), where
f1 , . . . , fd are elements in Λd = Zp�T1 , . . . , Td� ≅ Zp�Gal(K/K)�. We will prove an
analogous stabilisation property for quotients of arbitrary Fukuda modules in the
sense of Definition 3.1 in Corollary 3.8.

The generalisation of the notion of Fukuda modules given in Definition 3.1
(notably, the possibility of (C1 , C2 , C3) ≠ (1, 1, 1)) aims at considering different classes
of Fukuda modules that do not arise from ideal class groups, alluding, in particular, to
Selmer groups of abelian varieties over Zp-extensions (see Section 4). We will now
prove a generalisation of Fukuda’s result described above for the Fukuda modules
introduced in Definition 3.1.

Theorem 3.5 Let R be as in Definition 3.1, and let X = lim←�Xn be a Fukuda-R-module
with parameters (C1 , C2 , C3), and fix a corresponding sequence (Z i)i∈N of R-modules.

If there exist an integer M ∈N and at least vp(C1C2C3) + 2 different indices n i ∈N
such that ∣Xn i ∣ = M for each n i , then ∣X∣ is finite, and, in fact,

M ⋅ C−1
1 ≤ ∣X∣ ≤ M ⋅ C2 .

Remark 3.6 We do not need to assume that each Xn is finite; indeed, the theorem
shows that the finiteness of all Xn is a consequence of the hypotheses of the theorem.

Proof The inequality ∣X∣ ≥ M ⋅ C−1
1 just follows from the fact that ∣coker(prn)∣ ≤ C1

by using some n ∈N such that Xn has order M.
For the proof of the finiteness of X, we first note that Yj ⊆ Yi for each j ≥ i. Let

r = vp(C1C2C3), and let I be a finite set of at least r + 2 different indices n i as in the
statement of the theorem. Then ∣X/Yj ∣ ≤ ∣X j ∣ = ∣X i ∣ ≤ C1 ⋅ ∣X/Yi ∣ for each i , j ∈ I. In
particular,

[Yi ∶ Yj] ≤ C1(3.2)

for all i , j ∈ I with j ≥ i. Now consider the R-modules (Z i)i∈N; note that
Z j ⊆ m j−i ⋅ Z i ⊆ Z i for each j ≥ i. Let n and m denote the smallest, respectively, largest
index contained in I. Using the definition of the Fukuda parameters C1, C2 , and C3,
we can conclude that

∣Zn/Zm ∣ ≤ ∣Zn/(Zm ∩ Ym)∣ ≤ C3 ⋅ ∣(Zn ∩ Yn)/(Zm ∩ Ym)∣

≤ C3 ⋅ ∣Yn/(Zm ∩ Ym)∣ ≤ C2C3 ⋅ ∣Yn/Ym ∣
(3.2)
≤ C1C2C3 .

By the definition of r, it follows that Z j = Z i for some j > i, i , j ∈ I.
But Z i is compact by Definition 3.1. Therefore, Nakayama’s Lemma implies that

Z i = {0}, i.e., ∣Yi ∣ ≤ C2. In particular, ∣X∣ = ∣X/Yi ∣ ⋅ ∣Yi ∣ ≤ C2 ⋅M. ∎
We will now study quotients and submodules of Fukuda modules. More precisely,

let

0 �� A ι �� B
ψ �� C �� 0
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be an exact sequence of R-modules of the form A = lim←�An , B = lim←�Bn , and C = lim←�Cn
(C = lim←�Cn must not be confused with the Fukuda parameters C i(X), 1 ≤ i ≤ 3, of a
Fukuda-R-module X = lim←�n

Xn). We assume that we have exact sequences

0 �� An
ι �� Bn

ψ �� Cn �� 0

on each level n, and that these sequences commute with the natural projection maps
prn ∶ M �→ Mn and pr j, i ∶ M j �→ M i , j > i, for each M ∈ {A, B, C}.
Proposition 3.7 Let the notation be as above. We assume that there exists some
C1(A) ∈N such that ∣coker(pr(A)n )∣ ≤ C1(A) for each n ∈N, and that the map ψ is
defined on Z(B)n for every n. If B is a Fukuda-R-module with parameters (C1 , C2 , C3),
then C is a Fukuda-R-module with parameters (C1 , C1(A) ⋅ C2 , C3).
Proof By our assumptions, we have a commutative diagram

Y(A)n ��

��

Y(B)n ��

��

Y(C)n

��

����
��� � � � � � � � � � � � � � � � � �

�	�
�
�
�
�
�
�
�

����

0 �� A

pr(A)
n

��

�� B ��

pr(B)
n

��

C

pr(C)
n

��

�� 0

0 �� An

��

�� Bn �� Cn �� 0

coker(pr(A)n ).

The snake lemma yields an exact sequence

0 �� Y(A)n
ι �� Y(B)n

ψ �� Y(C)n �� Xn(3.3)

for each n ∈N, where Xn = coker(pr(A)n ) is a finite R-module of order at most C1(A).
We define Z(C)n ∶= ψ(Z(B)n ), n ∈N. It is then clear that

Z(C)n+1 ⊆ ψ(m ⋅ Z(B)n ) = m ⋅ Z(C)n

and

[Z(C)n ∶ (Z(C)n ∩ Y(C)n )] ≤ [Z(B)n ∶ (Z(B)n ∩ Y(B)n )]

for every n ∈N. Moreover, since ∣coker(ψ ∶ Y(B)n �→ Y(C)n )∣ ≤ C1(A) for each n ∈N
by (3.3), it follows that

∣Y(C)n /(Z(C)n ∩ Y(C)n )∣ ≤ C1(A) ⋅ ∣ψ(Y(B)n )/ψ(Z(B)n ∩ Y(B)n )∣ ≤ C2 ⋅ C1(A).

Finally, using the surjections ψ ∶ B↠ C and ψ ∶ Bn ↠ Cn , n ∈N, one can show that
∣coker(pr(C)n )∣ ≤ ∣coker(pr(B)n )∣ ≤ C1 for each n ∈N. ∎
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We apply this lemma to the quotients A/(I ⋅ A), where A = lim←�n
An is a Fukuda-R-

module and I ⊆ R denotes an ideal. Note that the canonical surjection

Φ ∶ A�→ lim←�An/(I ⋅ An)

has kernel I ⋅ A: the sequences (Yn)n and (Zn)n of submodules define the same
topology on A, and this topology is a refinement of the m-adic topology on A since
Zn ⊆ mn for every n. But I ⋅ A is compact with regard to the m-adic topology, and
therefore,

ker(Φ) = ⋂
n
(Yn + I ⋅ A) = I ⋅ A.

Corollary 3.8 Let A = lim←�An be a Fukuda-R-module with parameters (C1 , C2 , C3),
and let I ⊆ R be an ideal. We consider the R-module A/(I ⋅ A) = lim←�An/(I ⋅ An).
Suppose that I can be generated by s elements of R.

If there exist an integer M ∈N and at least

vp(C1Cs
1 C2C3) + 2 = vp(Cs+1

1 C2C3) + 2

different indices n i ∈N such that ∣An i /(I ⋅ An i )∣ = M for each i, then

M ⋅ C−1
1 ≤ ∣A/(I ⋅ A)∣ ≤ M ⋅ Cs

1 C2 .

Proof First note that the cokernel of prn ∶ I ⋅ A�→ I ⋅ An can be bounded by Cs
1 for

each n, since prn(I ⋅ A) = I ⋅ prn(A). Indeed, if g1 , . . . , gC1 is a set of representatives
covering all the cosets of the quotient An/(prn(A)) and if I = ( f1 , . . . , fs), then

{ f i ⋅ g j ∣ 1 ≤ i ≤ s, 1 ≤ j ≤ C1}

covers all the cosets of (I ⋅ An)/(I ⋅ prn(A)).
Moreover, since ψ(Zn) ∶= Zn/(I ⋅ Zn) can be defined for every n ∈N, Proposition

3.7 implies that C ∶= A/(I ⋅ A) is a Fukuda module with parameters (C1 , Cs
1 ⋅ C2 , C3).

The statement of the corollary then follows from Theorem 3.5. ∎
Now we study submodules of Fukuda modules. For simplicity, the following result

is formulated with respect to the ring R = Λ = Zp�T� (cf. Section 2).

Proposition 3.9 Let B = lim←�Bn be a (C1 , C2 , C3)-Fukuda- Λ-module, and let A ⊆ B
be a Λ-submodule. Suppose that

(i) Z(B)n+1 = fn+1,n ⋅ Z(B)n for some sequence ( fn+1,n)n of non-units of Λ;
(ii) B is finitely generated as a Λ-module, B/A is Λ-torsion;

(iii) for every n ∈N, fn+1,n and the characteristic power series of B/A do not share any
non-trivial common factor.

Then A ⊆ B is a Fukuda- Λ-module if and only if

∣coker(pr(A)n )∣ ≤ C1(A)

for some constant C1(A) and every n ∈N.
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Proof Suppose that ∣coker(pr(A)n )∣ is bounded. We define Z(A)0 ∶= Z(B)0 ∩ A and

Z(A)n ∶= fn ⋅ Z(A)0 , where fn ∶=
n−1
∏
i=0

f i+1, i , n ∈N.

Then

Z(A)n = fn ⋅ (Z(B)0 ∩ A) ⊆ fn ⋅ Z(B)0 ∩ A = Z(B)n ∩ A,

and [(Z(B)n ∩ A) ∶ Z(A)n ] is bounded as n →∞. Indeed, since fn and the characteristic
power series FB/A of B/A do not share any non-trivial common factor,

[( fn ⋅ Z(B)0 ∩ A) ∶ fn ⋅ (Z(B)0 ∩ A)] ≤ ∣ker( fn ∶ B/A�→ B/A)∣
is bounded by the order of the maximal finite Λ-submodule of B/A, n ∈N. Let D
denote a bound for [(Z(B)n ∩ A) ∶ Z(A)n ]. Then

[Y(A)n ∶ (Z(A)n ∩ Y(A)n )] ≤ D ⋅ [(Y(B)n ∩ A) ∶ (Z(B)n ∩ Y(B)n ∩ A)] ≤ D ⋅ C2(B)
and

[Z(A)n ∶ (Z(A)n ∩ Y(A)n )] ≤ D ⋅ [(Z(B)n ∩ A) ∶ (Z(B)n ∩ Y(B)n ∩ A)] ≤ D ⋅ C3(B)
for every n ∈N. This proves that A is a Fukuda- Λ-module. ∎
Remark 3.10
(i) Condition (ii) from Proposition 3.9 is satisfied if Bn is finite for all n ∈N. Indeed,

in this case, the exact sequence

0 �� Y(B)n �� B �� prn(B) �� 0

implies that the characteristic power series satisfy FY(B)
n
= FB , n ∈N. In particular,

all FZ(B)
n
= FY(B)

n
are equal, i.e. ,

Z(B)n /Z
(B)
n+1 = Z(B)n /( fn+1,n ⋅ Z(B)n )

(using (i)) is finite for every n ∈N. But this means that for every n ∈N, fn+1,n
does not share any non-trivial common factor with

FZ(B)
n
= FB = FA ⋅ FB/A.

Moreover, B is finitely generated and torsion over Λ, because B/( fn+1,n ⋅ B) is
finite for every n ∈N.

(ii) The Fukuda parameters of the submodules of a Fukuda-module B = lim←�Bn can
become arbitrarily large.

4 Bounding the Growth of Selmer Groups

Let us first fix some notation. Throughout this section, let A be a fixed abelian variety
defined over the number field K. We denote by Sp the (finite) set of primes of K
dividing the rational prime p, and we let Sbr be the (finite) set of primes of K where A
has bad reduction. In the main results, we will usually assume that Sp ∩ Sbr = ∅.
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If v denotes a prime of K and M denotes an abelian extension of K, then we will
write Mv for the completion of M with respect to any fixed prime dividing v.

If K∞/K is a Zp-extension, K∞ = ⋃n Kn , then we will write � = Gal(K∞/K) and
�n = �pn

= Gal(K∞/Kn), n ∈N. If M denotes any finitely generated Zp���-module,
then we will denote by M�n

the quotient of �n-coinvariants of M, i.e., the maximal
quotient of M on which �n acts trivially. We fix an isomorphism Zp��� ≅ Zp�T� by
identifying a topological generator γ of � with T + 1. Then

M�n
= M/(wn ,0(T) ⋅M),

where wn ,0(T) = (T + 1)pn − 1.
Let K∞ be a Zp-extension of K. Recall the definition of SelA(Kn) from Section 2.

We consider SelA(K∞) = lim�→ SelA(Kn), where the direct limit is taken with respect to
the restriction maps from Galois cohomology. Let X(K∞)n ∶= SelA(Kn)∨, n ∈N, be the
Pontryagin duals, and let

X(K∞) = SelA(K∞)∨ = lim←�
n

X(K∞)n .

We will see below a sufficient condition for X(K∞) to be a Fukuda- Λ-module in the
sense of Section 3. This property is deeply connected to the fact that a control theorem
holds for X(K∞).

Theorem 4.1 (Mazur’s Control Theorem) Suppose that A has potentially good and
ordinary reduction at each prime v ∈ Sp . Then the natural maps

(X(K∞))�n
�→ X(K∞)n = SelA(Kn)∨

have finite kernels and cokernels. The orders of these kernels and cokernels are bounded
as n →∞.

Proof This theorem was proved in [23]; see also [7, Chapter 4] and [9, Proposi-
tion 5.1]. ∎

Corollary 4.2 Under the assumptions of Theorem 4.1, X(K∞) = lim←�X(K∞)n is a
Fukuda- Λ-module with parameters (C1 , C2 , 1) for suitable p-powers C1 and C2.

Proof We let Zn = wn ,0(T) ⋅ X(K∞), n ∈N. Then Zn+1 = νn+1,n ⋅ Zn , where

νn+1,n = 1 + (T + 1)pn
+ (T + 1)2pn

+⋯+ (T + 1)(p−1)pn

is contained in the maximal ideal m = (p, T) of Λ, and (X(K∞))�n
≅ X(K∞)/Zn for

each n ∈N.
Let prn ∶ X(K∞) → X(K∞)n be the natural map. Since �n acts trivially on X(K∞)n ,

prn factors through (X(K∞))�n
, and therefore, ∣coker(prn)∣ equals the order of the

cokernel of the map from Theorem 4.1, because X(K∞) → (X(K∞))�n
is surjective.

Moreover, this also shows that Zn is contained in Yn = ker(prn). Finally, [Yn ∶ Zn]
corresponds to the order of the kernel of the maps from Theorem 4.1, and thus is also
bounded. ∎
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In [6], Greenberg introduced the following topology on the set E(K) of Zp-
extensions of K. The topology is generated by sets of the form

E(K∞, m) = {K̃∞ ∈ E(K) ∶ [(K̃∞ ∩ K∞) ∶ K] ≥ pm},

where K∞ ∈ E(K) and m ∈N. In other words, two Zp-extensions K∞ and K̃∞ of K
are “close” with respect to this topology if the intersection K∞ ∩ K̃∞ is large.

In the sequel, we fix the abelian variety A, and we compare the Selmer groups
X(K∞), X(K̃∞) of different Zp-extensions K∞ and K̃∞ of K that are close with respect
to Greenberg’s topology. For this purpose, it will be important to show that the
Selmer groups of sufficiently close Zp-extensions are Fukuda modules with the same
parameters. In order to achieve such a result, we will, however, have to restrict the
topology in order to take into account the ramification of primes in the different Zp-
extensions.
Remark 4.3 This is already necessary for the investigation of the classical Iwasawa
modules from Example 3.2. Let K∞/K be a Zp-extension. Recall that we assumed in
Example 3.2 that all the ramified primes are totally ramified in K∞/K. Suppose that
there exists some prime v of K dividing p that does not ramify in K∞. For arbitrarily
large m ∈N, there exist Zp-extensions K̃∞ ∈ E(K∞, m) of K such that v is ramified in
K̃∞, and therefore is not totally ramified in K̃∞/K (in fact, it does not start ramifying
before the layer K̃m+1). This means that the Iwasawa module attached to K̃∞/K is not
a Fukuda module in the sense of Definition 3.1; actually, Theorem 3.5, and therefore
also Theorem 1.1, may fail for K̃∞; see e.g. , [17, Remark 4.8].

In [16], we have therefore introduced the following finer topology on E(K). For
each M ∈ E(K), we denote by P(M) the set of primes of K that ramify in M. Then
P(M) is a subset of the set Sp of primes dividing p, and, in particular, is finite for each
M. Now suppose that K∞ ∈ E(K) and m ∈N. Then we let

U(K∞, m) ∶= {K̃∞ ∈ E(K∞, m) ∣ P(K̃∞) ⊆ P(K∞)}.

It has been shown in [16] that the topology on E(K) generated by the setsU(K∞, m)
is sufficient to handle the classical Iwasawa modules from Example 3.2.

In the following, we want to control the (C1 , C2 , C3)-parameters of Selmer groups
X(K̃∞) of Zp-extensions K̃∞ ∈U(K∞, m) of K, K∞/K fixed and m ∈N sufficiently
large. We will always assume that the abelian variety A has potentially good and
ordinary reduction at each prime v ∈ Sp . As we will see in the proof of the following
theorem, we are naturally led to consider the following refinement of the topologies
described above: for K∞ ∈ E(K) and m ∈N, let U(A, K∞, m) ⊆U(K∞, m) denote
the subset of Zp-extensions K̃∞ of K such that each prime of Sbr that is totally
split in K∞ does split completely also in K̃∞. In other words, letting Iv(K∞/K) and
Dv(K∞/K) denote the inertia and decomposition subgroups of the prime v of K in
Gal(K∞/K),U(A, K∞, m) equals the set

{K̃∞ ∈ E(K∞, m) ∣ rankZp(Iv(K̃∞/K)) ≤ rankZp(Iv(K∞/K)) ∀v ∈ Sp ,

rankZp(Dv(K̃∞/K)) ≤ rankZp(Dv(K∞/K)) ∀v ∈ Sbr}.

Note that Sp ∪ Sbr is finite.
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Remark 4.4 Let L/K be a Zk
p-extension. If there exists M ∈ E(K), M ⊆ L, such that

v ∈ Sp is contained in P(M), then the set of K̃∞ ∈ E(K) which are contained in L

and satisfy v ∈ P(K̃∞) is dense with respect to Greenberg’s topology. Therefore, if
P(K∞) ≠ Sp , already the setsU(K∞, m) are much smaller thanE(K∞, m). The same
holds true if some v ∈ Sp is completely split in K∞, and inert in some M ∈ E(K).

On the other hand, ifU(A, K∞, m) is strictly larger than the set {K∞}, then it is
in fact infinite. Indeed, if K∞ ≠ K̃∞ ∈U(A, K∞, m), then each Zp-extension of K in
E(K∞, m) ∩ (K∞ ⋅ K̃∞) will be contained inU(A, K∞, m).
Theorem 4.5 Suppose that B ∶= A(K∞)[p∞] is finite. Recall that we assume that A
has potentially good and ordinary reduction at the primes of K dividing p. Then there
exist integers m, C1 , C2 ∈N such that X(K̃∞) is a Fukuda- Λ1-module with bounded
parameters (C1 , C2 , 1) for each K̃∞ ∈U(A, K∞, m).
Proof This follows from a thorough analysis of the proof of Mazur’s Control Theo-
rem 4.1. We refer the reader to [7, Chapter 4] and to the article [9] for a very detailed
exposition; our proof will rely heavily on these sources.

Let pr(K̃∞)n ∶ X(K̃∞) → X(K̃∞)n be the natural maps, n ∈N. Then pr(K̃∞)n factors
through the coinvariant module (X(K̃∞))�n

. As in the proof of Corollary 4.2, we let
Z(K̃∞)n = wn ,0(T) ⋅ X(K̃∞). Then Z(K̃∞)n ⊆ Y(K̃∞)n , and the orders [Y(K̃∞)n ∶ Z(K̃∞)n ] and
∣coker(pr(K̃∞)n )∣ can be bounded via the Control Theorem 4.1.

More precisely, for each n ∈N, we start from a commutative diagram

0 �� SelA(K̃n) ��

i(K̃∞)
n

��

H1(K̃n , A[p∞]) ��

f (K̃∞)
n

��

⊕
v

H1(K̃n ,v , A[p∞])/im(κn ,v)

g(K̃∞)
n

��
0 �� SelA(K̃∞)�n �� H1(K̃∞, A[p∞])�n �� (∏

v
H1(K̃∞,v , A[p∞])/im(κ∞,v))�n .

Here, �n = Gal(K̃∞/K̃n). The snake lemma yields an exact sequence

0 �� ker(i(K̃∞)n ) �� ker( f (K̃∞)n ) �� G(K̃∞)n �� coker(i(K̃∞)n ) �� 0 ,

where G(K̃∞)n is a subgroup of ker(g(K̃∞)n ). Here, we use the fact that f (K̃∞)n is
surjective by the inflation-restriction exact sequence, because Gal(K̃∞/K) ≅ Zp has
p-cohomological dimension 1; cf. [7, Lemma 4.3] and [9, Section 3.I]. Dualising, we
obtain exact sequences

0 �� Y(K̃∞)n /Z(K̃∞)n �� Un �� Vn �� coker(pr(K̃∞)n ) �� 0 ,

where pr(K̃∞)n ∶ X(K̃∞)/Z(K̃∞)n �→ X(K̃∞)n denotes the dualised map (i(K̃∞)n )∨,
Un = (G(K̃∞)n )∨ and Vn = ker( f (K̃∞)n )∨. Our task is to bound ∣Un ∣ and ∣Vn ∣, n ∈N.

First, ∣Un ∣ can be bounded prime by prime (cf. [7, Lemmas 4.4 and 4.6] and [9,
Section 4]). If v is totally split in the Zp-extension K̃∞, then K̃∞,v = K̃v , and therefore
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v does not contribute to ∣Un ∣. The same holds for primes of good reduction that are
inert in K̃∞ (see [9, Proposition 4.1] for the primes v ∤ p and [9, Proposition 4.3] for
the primes v ∣ p).

In particular, the archimedean primes do not contribute to ∣Un ∣, since K̃∞/K is
a real extension; cf. [9, Section 4.(B)]. In the following, we will only consider finite
primes. More precisely, it remains to consider the primes of bad reduction that are
not totally split in K̃∞, as well as the primes v ∣ p that are ramified.

We start with the latter set of primes. Choose a finite extension F of K such that A
has good, ordinary reduction at all primes dividing p in F. It has been shown in the
proof of [7, Lemma 4.6], and more generally in [9, Section 4.(C).I], that the contri-
bution to ∣Un ∣ of a prime v ∣ p ramifying in K̃∞ is bounded by ∣Ã(RK̃∞⋅F ,v)[p∞]∣2,
whereRK̃∞⋅F ,v denotes the residue field of K̃∞ ⋅ F at some prime dividing v and where
Ã denotes the reduction of A at v. Note thatRK̃∞⋅F ,v is finite as the residue fieldsRK̃n ⋅F ,v
stabilise, because v ramifies in K̃∞. Moreover, if m ∈N is large enough such that all
primes of K ramifying in K∞ are totally ramified in K∞/Km , then the sets of primes of
K that ramify in K∞, respectively, in K̃∞ ∈U(A, K∞, m + 1), coincide, and the residue
fields RK̃∞⋅F ,v and RK∞⋅F ,v are both equal to RKm ⋅F ,v .

Now let v be a prime of bad reduction. Then v ∤ p by assumption. If v is totally
split in K∞, then v also splits completely in K̃∞ for each K̃∞ ∈U(A, K∞, m). We are
therefore reduced to considering the inert primes. Let mv be the smallest integer such
that v is inert in Kmv+1/Kmv , and consider a neighbourhood U(A, K∞, m), where
m ≥ mv + 1 for each such v (recall that there exist only finitely many primes where A
has bad reduction).

Let Bv = H0(Kv , A[p∞]) = A(K∞,v)[p∞], where K∞,v denotes the unramified
Zp-extension of Kv . Since v ∤ p, K∞,v is the unique Zp-extension of Kv , and, in
particular, does not depend on K∞; i.e., Bv is the same abelian group for each
K̃∞ ∈U(A, K∞, m). It has been shown in the proof of [7, Lemma 4.4] (cf. also [9,
Proposition 4.1]) that the contribution of v to ∣Un ∣ is bounded by the finite index
[Bv ∶ (Bv)div] of the maximal divisible subgroup of Bv . By the above, this upper bound
holds for each K̃∞ ∈U(A, K∞, m).

It remains to show that ∣Vn ∣ can be bounded uniformly on U(A, K∞, m) for
sufficiently large m. For this task, we apply [7, Lemma 4.2] and [9, Section 3.I].
Using the inflation-restriction exact sequence, we see that the Pontryagin dual of Vn
is isomorphic to H1(�n , B), where B = H0(K∞, A[p∞]) is the p-primary subgroup
of A(K∞), and �n = �pn

= Gal(K∞/Kn). Since B is finite by assumption, it follows
that ∣Vn ∣ = ∣B/(wn ,0(T) ⋅ B)∣ for each n ∈N. Choose m ∈N large enough such that
wm ,0(T) ⋅ B = {0}; such an integer exists, because B is finite. Then ∣Vr ∣ = ∣B∣ for each
r ≥ m.

Now we consider some K̃∞ ∈ U ∶=U(A, K∞, vp(∣B∣) + 1). We have to be careful,
because B(K̃∞) = A(K̃∞)[p∞] might be infinite. We let B(K̃∞)div denote the maximal
divisible subgroup of B(K̃∞), and we set C(K̃∞) = B(K̃∞)/B(K̃∞)div . This is a finite Λ-
module. The exact sequence

0 �� B(K̃∞)div
�� B(K̃∞) �� C(K̃∞) �� 0(4.1)
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induces an exact sequence

H1(�n , B(K̃∞)div ) �� H1(�n , B(K̃∞)) �� H1(�n , C(K̃∞))(4.2)

for each n ∈N. Note that the kernel A(K̃n)[p∞] = (B(K̃∞))�n of the homomorphism
wn ,0(T) is finite for each n. This implies that wn ,0(T) ∶ B(K̃∞)div �→ B(K̃∞)div must be
surjective (recall that B(K̃∞) is cofinitely generated over Zp ; dualising, the kernel
and cokernel of the induced map both must be finite). It follows that the first term
H1(�n , B(K̃∞)div ) of the exact sequence (4.2) is trivial. This means that

∣H1(�n , B(K̃∞))∣ ≤ ∣H1(�n , C(K̃∞))∣ = ∣H0(�n , C(K̃∞))∣

for each n, since C(K̃∞) is finite, and thus ∣(C(K̃∞))�n ∣ = ∣C(K̃∞)/(wn ,0(T) ⋅ C(K̃∞))∣.
On the other hand,

∣H0(�n , C(K̃∞))∣ ≤ ∣H0(�n , B(K̃∞))∣ = ∣H0(�n , B)∣ ≤ ∣B∣

for each n ≤ vp(∣B∣) + 1 and every K̃∞ ∈ U . Therefore,

∣H1(�n , C(K̃∞))∣ = ∣H1(�n+1 , C(K̃∞))∣

for some n ≤ vp(∣B∣) + 1, and Nakayama’s Lemma implies that ∣C(K̃∞)∣ ≤ ∣B∣.
This means that

∣V (K̃∞)n ∣ = ∣H1(�n , B(K̃∞))∣ ≤ ∣B∣ = ∣V (K∞)n ∣

for each K̃∞ ∈ U and every n ∈N. ∎
Remark 4.6 In the above theorem and also in the following results, we assume
that A(K∞)[p∞] is finite. We list several results concerning this condition, without
claiming to give an exhaustive overview (special thanks are due to the anonymous
referees for bringing these results to our attention).
• If K∞ denotes the cyclotomicZp-extension of K, then A(K∞)[p∞] is finite by work

of Imai (if A has good ordinary reduction at p, cf. [10]) and Ribet ( cf. the appendix
of [15]).

• It has been proved by Wingberg (cf. [30, Theorem 4.3]) that there exist at most
dim(A) different Zp-extensions K∞ of K such that A(K∞)[p∞] is infinite, pro-
vided that the abelian variety A is defined over K and simple.

• Improving on a result of Bogomolov, Zarhin proved in [32] that the group
A(K∞)[p∞] is finite if K∞ is different from the cyclotomic Zp-extension of K
and K does not contain a CM-field. In particular, together with the result of Ribet
mentioned above, this proves that A(K∞)[p∞] is finite for every Zp-extension of
K if K does not contain any CM-field (e.g. if 2 ∤ [K ∶ Q]).

• It follows from [9, Proposition 3.2(ii)] that A(K∞)[p∞] is finite if A has potentially
ordinary reduction at every prime v ∈ Sp , and the residue field K∞,w is finite for any
prime w of K∞ above p (here K∞ is allowed to be a multiple Zp-extension of K).
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Going through the proof of Theorem 4.5, we can bound the parameters C1, C2 of
the Fukuda- Λ-module X(K∞) explicitly as follows.

Corollary 4.7 Suppose that A has potentially good and ordinary reduction at each
v ∈ Sp, and let K∞ be a Zp-extension of K such that each v ∈ Sp ramifies in K∞. Then
X(K∞) has parameters (C1 , C2 , 1), where

vp(C1) ≤ vp(∣A(K∞)[p∞]∣) and vp(C2) ≤ ∑
v∈Sbr

vp(cv) + 2 ∑
v∈Sp

vp(∣Ã(RKn ⋅F ,v)∣).

Here, cv denotes the local Tamagawa factor, n ∈N is chosen large enough such that each
v ∈ Sp has started ramifying in Kn , and F/K is a finite extension such that A has good
ordinary reduction over F.

Proof First, note that A(K∞)[p∞] is finite, because each v ∈ Sp ramifies in K∞ (cf.
[9, Proposition 3.2,(ii)]). Moreover, if Bv = A(K∞,v)[p∞] as in the proof of Theorem
4.5, then [Bv ∶ (Bv)div] = vp(cv) (cf. [7, Exercise 4.6]). In particular, these indices can
be computed numerically. ∎
Remark 4.8
(i) We will use the notation from the proof of Theorem 4.5. Suppose now that

A(K)[p∞] = {0}. Then the projections pr(K̃∞)n ∶ X(K̃∞) �→ X(K̃∞)n are surjective
for each n ∈N and every Zp-extension K̃∞ of K. Indeed, since K̃∞/K is a pro-
p-extension, it follows that A(K̃∞)[p∞] = {0}. Therefore, the maps f (K̃∞)n from
the proof of Theorem 4.5 are in fact isomorphisms.

(ii) In the special case A(K∞)[p∞] = {0}, the estimates from Corollary 4.7 also
simplify. More precisely, we can take C1 = 1, and the upper bound for C2 is sharp:
the proof of Theorem 4.5 then shows that

∣ker(pr(K∞)n )∣ = ∣Y(K∞)n /Z(K∞)n ∣ = ∣Un ∣.

In view of [9, Remark after Proposition 4.1, and Proposition 4.2], this number is
equal to

∑
v∈Sbr

vp(cv) + 2 ∑
v∈Sp

vp(∣Ã(RKn ⋅F ,v)∣)(4.3)

for all sufficiently large n.

Example 4.9 We consider the elliptic curve

E ∶ y2 + x y = x3 − x

defined over Q, and p = 3. Then E(Q) ≅ Z⊕Z/2Z, E has good ordinary reduction
at p, and the discriminant of E equals 65 = 5 ⋅ 13. The local Tamagawa factors (cf.
Corollary 4.7) are all 1; the prime v = 3 is totally ramified in the cyclotomic Z3-
extension K∞ of Q, and ∣Ẽ(Fp)[p∞]∣ = 3. Therefore, X(K∞) is a Fukuda- Λ-module
with parameters (1, 9) by Corollary 4.7 and the above remark.

Exploiting the Fukuda module structure of X(K∞) = lim←�X(K∞)n , we can derive
information about X(K∞) by studying sufficiently many layers X(K∞)n , by an appli-
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cation of Theorem 3.5. Recall from Section 2 that any finitely generated torsion Λ-
module X has Iwasawa invariants μ(X) and λ(X).
Corollary 4.10 Let A be as in Theorem 4.5, and let (C1 , C2) be a pair of Fukuda
parameters of X(K∞). Suppose that there exist at least vp(C2

1 C2) + 2 different layers
X(K∞)n such that rankp(X(K∞)n ) ∶= vp(∣X(K∞)n /(p ⋅ X(K∞)n )∣) = M for some M ∈N.
Then X(K∞) is Λ-torsion, μ(X(K∞)) = 0, and λ(X(K∞)) ≤ MC1C2.
Proof It follows from Corollary 3.8 that rankp(X(K∞)) ≤ MC1C2 (let I ∶= (p) be the
principal ideal generated by p in this corollary). In particular, Nakayama’s Lemma
implies that X(K∞) is a Zp-module of rank at most MC1C2, and in particular is Λ-
torsion. ∎

Using more general quotients X/(λ ⋅ X), with arbitrary λ ∈ Λ, we can now prove
an application of Theorem 4.5 that transfers information about the Selmer module
X(K∞) from some Zp-extension K∞/K to Zp-extensions K̃∞ ∈U(A, K∞, m), for
sufficiently large m. The following theorem restates and concretises Theorem 1.1 from
the Introduction.
Theorem 4.11 Let A be an abelian variety defined over K, and suppose that A has
potentially good and ordinary reduction at the primes of K dividing p. Let K∞ be a Zp-
extension of K. We assume that A(K∞)[p∞] is finite and that X(K∞) is a torsion Λ-
module. Then there exists a neighbourhood U =U(A, K∞, m) of K∞ such that
• X(K̃∞) is a torsion Λ-module for each K̃∞ ∈ U;
• μ(X(K̃∞)) ≤ μ(X(K∞)) for each K̃∞ ∈ U;
• λ(X(K̃∞)) ≤ λ(X(K∞)) for each K̃∞ ∈ U such that μ(X(K̃∞)) = μ(X(K∞)).
Proof Let U =U(A, K∞, m) be a neighbourhood of K∞ as in Theorem 4.5, and
suppose that C1 , C2 ∈N denote integers as in that theorem, bounding the parameters
of the Fukuda modules X(K̃∞) for K̃∞ ∈ U . We let X = X(K∞), C1 = C1(X), and
C2 = C2(X), and we choose a polynomial

ν = ν2k ,k(T) ∶=
(T + 1)p2k − 1
(T + 1)pk − 1

∈ Λ

such that
(a) X/(ν ⋅ X) is finite (just choose ν such that it does not share any non-trivial

common factor with the characteristic polynomial FX(T) of X in Λ; this is
possible because ν2k ,k(T) and ν2 l , l(T)have no common factors as soon as k ≥ 2l ,
respectively);

(b) λ(X) < pk−1(p − 1);
(c) pk > k ⋅ λ(X) + C, where C = vp(∣F(X)∣) + vp(C2

1 ⋅ C2), F(X) denoting the maxi-
mal finite Λ-submodule of X, and

(d) k > C.
For any Λ-module M, we define rankν(M) = vp(∣M/(ν ⋅M)∣), provided that this is
finite. Since rankν(X) < ∞, we have rankν(X i) ≤ rankν(X) + vp(C1) for each i ∈N.
This means that there exists an integer M ≤ rankν(X) + vp(C1) such that

rankν(X i) = M
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for infinitely many i; choose m large enough such that rankν(X i) = M for at least
vp(C2

1 ⋅ C2) + 2 different indices i ≤ m. Then Corollary 3.8, applied with the principal
ideal I = (ν), implies that

rankν(X(K̃∞)) ≤ M + vp(C1⋅C2) ≤ rankν(X) + vp(C2
1 C2)

for every K̃∞ ∈ U , because each X(K̃∞) is a Fukuda- Λ-module with parameters at
most C1, C2 by Theorem 4.5. If EX(K̃∞) denotes the elementary Λ-module attached to
X(K̃∞), then

rankν(EX(K̃∞)) ≤ rankν(X(K̃∞))

for each K̃∞ ∈ E(K) (and for each ν ∈ Λ); cf. [16, Proposition 3.4 and the proof of
Theorem 3.10]. Therefore, X(K̃∞) is a torsion Λ-module for each K̃∞ ∈ U . On the other
hand, since λ(X)

pk−1(p−1) < 1, we have

rankν(EX) = (p2k − pk)μ(X) + (2k − k)λ(X) = pk(pk − 1)μ(X) + kλ(X) .(4.4)

The first equality can be seen as follows. The quotient Z ∶= Λ/(ν) is a free Zp-module,
and multiplication by T is a Zp-linear map on Z with eigenvalues equal to the roots of
the polynomial ν in some fixed algebraic closure Qp of Qp , i.e. given by ζ − 1, where
ζ runs over the primitive pl -th roots of unity in Qp , k < l ≤ 2k. For every divisor h i
of FX(T), the quotient Λ/(h i , ν) is the cokernel of the endomorphism on Z given by
multiplication by h i . This map has eigenvalues h i(ζ − 1), ζ as above, and the order
of the cokernel is associated in Zp with the determinant, i.e., the product of the
eigenvalues.

Since FX(T) = ∏i h i , we can conclude that

rankν(EX) = ∑
k<l≤2k
ζ pl
=1

vp(FX(ζ − 1)).

Now FX(T) is associated with pμ(X) times a distinguished polynomial of degree λ(X).
If λ(X)

pk−1(p−1) < 1, then vp(FX(ζ − 1)) = μ(X) + λ(X)
p l−1(p−1) for each ζ of exact order pl ,

k < l . This proves the first equality in (4.4).
Furthermore, rankν(X) ≤ rankν(EX) + vp(∣F(X)∣) by [16, Proposition 3.4]. Sum-

marising,

rankν(EX(K̃∞)) ≤ pk(pk − 1)μ(X) + kλ(X) + C(4.5)

for each K̃∞ ∈ U , where C is as in condition (c) above.
The statement of the theorem now follows by imitating the proof of [16, Theorem

3.10]. First, rankν(EX(K̃∞)) ≥ pk(pk − 1)μ(X(K̃∞)), and therefore μ(X(K̃∞)) ≤ μ(X)
because of assumption (c) above. Now we restrict to the subset of Zp-extensions
K̃∞ of K that satisfy μ(X(K̃∞)) = μ(X); from now on we will assume that
μ(X) = μ(X(K̃∞)) = 0. This means that

rankν(EX(K̃∞)) ≤ k ⋅ λ(X) + C
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for each K̃∞ ∈ U . Similarly as above,

rankν(EX(K̃∞)) = ∑
k<l≤2k
ζ pl
=1

vp(FX(K̃∞)(ζ − 1)) .

If λ(X(K̃∞)) = deg(FX(K̃∞)) is greater than or equal to pk(p − 1), then

vp(FX(K̃∞)(ζ − 1)) ≥ 1

for each primitive pk+1-th root of unity, and therefore, rankν(EX(K̃∞)) ≥ pk(p − 1),
yielding a contradiction to assumption (c). Therefore,

rankν(EX(K̃∞)) = k ⋅ λ(X(K̃∞)) ≤ k ⋅ λ(X) + C ,

and thus λ(X(K̃∞)) ≤ λ(X), because k > C by assumption (d). ∎
Let us state an important special case.

Corollary 4.12 Let A be an elliptic curve defined over Q , and suppose that K/Q
is abelian, and that A has potentially good and ordinary reduction at the primes of K
dividing p. Let K∞ be the cyclotomic Zp-extension. Then there exists a neighbourhood
U = E(K∞, m), m ∈N, in the sense of Greenberg’s original topology from [6] , such that
the conclusions of Theorem 4.11 hold for each K̃∞ ∈ U.

Proof Since each prime of K dividing p ramifies in K∞, it follows from [9, Proposi-
tion 3.2,(ii)] that A(K∞)[p∞] is finite. The main result of [14] implies that X(K∞) is
Λ-torsion, because K is abelian. Moreover, as each prime of K is finitely decomposed
in K∞,U(A, K∞, m) = E(K , m) as long as m has been chosen large enough to ensure
that each prime of K dividing p has already started ramifying in Km . ∎

If X(K∞) is not known to be Λ-torsion, then we can at least bound the Λ-rank of
(the maximal torsion-free quotient of) X(K̃∞) in some neighbourhood U.

Lemma 4.13 Let A be an abelian variety defined over K, and suppose that A has
potentially good and ordinary reduction at the primes of K dividing p. We assume that
K∞ denotes a Zp-extension of K such that B = A(K∞)[p∞] is finite. Then there exists
a constant r ∈N such that

rankΛ(X(K̃∞)) ≤ rankΛ(X(K∞)) + r

for each K̃∞ ∈U(A, K∞, m), m ∈N sufficiently large.

Proof We consider rank(p,T)(X(K̃∞)) = vp(∣X(K̃∞)/((p, T) ⋅ X(K̃∞))∣). First, note
that

rank(p,T)(X(K∞)) ≤ rankΛ(X(K∞)) + vp(∣F(X(K∞))∣) + s,

where F(X(K∞)) denotes the maximal finite submodule of X(K∞), as in the proof of
Theorem 4.11, and where s denotes the number of summands Λ/(h) of an elementary
Λ-module E corresponding to X(K∞).
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Let (C(K∞)1 , C(K∞)2 ) be the parameters of the Fukuda- Λ-module X(K∞). Then

rank(p,T)(X(K∞)i ) ≤ rank(p,T)(X(K∞)) + vp(C(K∞)1 )

for each i ∈N, and Theorem 4.5 and Corollary 3.8 (applied with the ideal I = (p, T))
imply that

rank(p,T)(X(K̃∞)) ≤ rank(p,T)(X(K∞)) + vp(C)

for each K̃∞ ∈U(A, K∞, m) and some fixed C ∈N, provided that m is sufficiently
large. Since

rankΛ(X(K̃∞)) ≤ rank(p,T)(X(K̃∞)),

the statement of the lemma follows. ∎
Let us conclude the current section by pointing out briefly that the above approach

can also be used for the consideration of Selmer groups in multiple Zp-extensions. In
order to be able to directly adapt the proof of Theorem 4.5 to Zd

p-extensions, d > 1, we
will restrict to a special situation.
(a) Since Gal(K∞/K) ≅ Zd

p , d > 1 is not longer pro-cyclic, our argument for bound-
ing ∣C(K̃∞)∣ ≤ ∣B(K∞)∣ used in the proof of Theorem 4.5 does not apply; we
therefore assume the boundedness of ∣B(K̃∞)∣ in a suitable neighbourhood of K∞.
A sufficient condition for ∣B(K̃∞)∣ to being finite is that each v ∈ Sp is almost totally
ramified in K̃∞, i.e., that the corresponding inertia subgroups in Gal(K̃∞/K) ≅
Zd

p have Zp-rank d (cf. [9, Proposition 3.2,(ii)]; the main point is that the residue
field of K̃∞,v is then finite for each v ∈ Sp).

(b) If d > 1, then each prime v ∤ p splits into infinitely many primes in K∞. In order
to nevertheless bound the contribution to ∣Un ∣, we do not know how to do better
than assuming that A(Kv)[p∞] = {0} for each v ∈ Sbr (which ensures that in fact
A(K̃∞,v)[p∞] = {0} for each Zd

p-extension K̃∞ of K).

For a Zd
p-extension K∞ of K and any m ∈N, we denote by E(K∞, m) the set of Zd

p-
extensions K̃∞ of K such that (K̃∞ ∩ K∞) ⊇ Kn , where Kn denotes the intermediate
field of K∞/K that is fixed by Gal(K∞/K)pn

(i.e., Gal(Kn/K) is isomorphic to
(Z/pnZ)d ).

Using this notation, we can formulate a generalisation of Theorem 4.5.

Theorem 4.14 Suppose that A has potentially good and ordinary reduction at each
prime of K dividing p, and that these primes are almost totally ramified in the Zd

p-
extension K∞/K. We assume that A(Kv)[p∞] = {0} for each prime v of bad reduction,
and that ∣A(K)[p∞]∣ is finite, where K denotes the composite of all Zp-extensions of
K. Then there exists an integer m ∈N such that X(K̃∞) is a Fukuda- Λd -module with
bounded parameters (C1 , C2 , 1) for each K̃∞ ∈ E(K∞, m).
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Note: if Sbr ≠ ∅, then the fact that A(Kv)[p∞] = {0} for v ∈ Sbr also implies that
automatically

A(K)[p∞] = A(K)[p∞] = {0}.

Proof We start from an exact sequence

Wn �� Y(K̃∞)n /Z(K̃∞)n �� Un �� Vn �� coker(pr(K̃∞)n ) �� 0 ,

and we have to bound ∣Un ∣, ∣Vn ∣, and ∣Wn ∣ uniformly in n.
For ∣Un ∣, we proceed as in the proof of Theorem 4.5. The primes v ∈ Sbr do not

contribute to ∣Un ∣, since Bv = A(Kv)[p∞] = {0}, and therefore A(K̃∞,v)[p∞] = {0}
for each such prime v and every Zd

p-extension K̃∞ of K. For a ramified prime v ∈ Sp ,
we can use [9, Proposition 4.2] in order to conclude that the contribution to ∣Un ∣
is bounded by ∣Ã(Rv)[p∞]∣2 for some fixed finite extension Rv of Fp that arises as
residue field of the completion at v of a finite extension F of K such that A has good
ordinary reduction over F and such that the residue fields of the primes in Sp have
stabilised in K∞ ∩ F. If m has been chosen large enough such that K∞ ∩ F is contained
in the m-th layer Km ∶= KGal(K∞/K)pm

∞ , and such that each prime v ∈ Sp is totally
ramified in K∞/Km−1, then this extension F can be used for each K̃∞ ∈ E(K∞, m).
Finally, if v ∤ p is a prime of good reduction, then it does not contribute to ∣Un ∣ by [9,
Proposition 4.1].

Using the results of [9, Section 3], we can bound ∣Vn ∣ and ∣Wn ∣ (recall from the
proof of Theorem 4.5 that, in fact, ∣Wn ∣ = 1 for Z1

p-extensions of K). Indeed, the proof
of [9, Proposition 3.1] implies that letting B ∶= B(K∞), we have

∣V(K∞)n ∣ = ∣H1(�n , B)∣ ≤ ∣B∣d and ∣W(K∞)
n ∣ ≤ ∣H2(�n , B)∣ ≤ ∣B∣d

2

for each n ∈N, where �n = Gal(K∞/K)pn
(here we see that ∣W(K∞)

n ∣ = 1 for a Z1
p-

extension, since in this case Gal(K∞/K) ≅ Zp has p-cohomological dimension 1).
By assumption, A(K)[p∞] ⊇ B is finite; this shows that ∣V(K̃∞)n ∣ and ∣W(K̃∞)

n ∣ are
bounded on E(K∞, m).

In particular, if Sbr ≠ ∅, then B(K) = {0}, and therefore ∣V (K̃∞)n ∣ = ∣W(K̃∞)
n ∣ = 1 for

each n and every K̃∞. ∎
Remark 4.15 Restrictions on the number of rational p-torsion points seem necessary
in order to bound the Fukuda parameters: starting from any abelian variety A over any
number field K, Greenberg constructed in [9, end of Section 3] an example of a Zd

p-
extension L∞ of L ∶= K(A[p∞]) such that L∞/K is normal and ∣Vn ∣ is unbounded in
L∞/L as n →∞ (of course L is not longer a number field, but the unboundedness of
∣A(L)[p∞]∣, and thus of ∣A(L∞)[p∞]∣, seems to play a role here).

We have seen in the proof of Theorem 4.14 that

∣V (K̃∞)n ∣ = ∣H1(�n , B(K̃∞))∣.
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On the other hand, as Greenberg notes on [9, p. 262], for p ≠ 2 and an arbitrary Zd
p-

extension K∞/K, we have an isomorphism

W(K∞)
n ≅ H2(�n , B(K∞)).

It seems plausible that the orders of these cohomology groups can be unbounded if
B(K) = A(K)[p∞] is infinite.

Using Theorem 4.14, one can prove an analogue of Theorem 4.11 for bounding the
so-called generalised Iwasawa invariants of Selmer groups X(K∞) for multiple Zp-
extensions (using arguments from [17, 18]). Finally, one can also generalise Lemma
4.13. For any finitely generated Λd -module X, we denote by rankΛd (X) the rank
of the maximal torsion-free quotient of the elementary Λd -module EX , and we let
dim(X) denote the Krull dimension of Λd/Ann(X), where Ann(X) ⊆ Λd denotes the
annihilator ideal of X (which is (0) if X is not Λd -torsion). Then dim(X) is smaller
than or equal to the Krull dimension d + 1 of Λd , it is at most d if X is Λd -torsion,
and typically can be even smaller. One should also compare this with the dimension
of the classical Fukuda module X(K∞) = lim←�Xn attached to the Zd

p-extension K∞/K,
as defined in Example 3.2. This Λd -module often happens to be pseudo-null, which
means that dim(X(K∞)) ≤ d − 1 = dim(Λd) − 2. For instance, if K∞ =K denotes the
composite of all Zp-extensions of K, then by Greenberg’s Generalised Conjecture (cf.
[8, Conjecture 3.5]) X(K∞) should be pseudo-null as a Λd -module. We also mention
the following special case: over Λ1 = Λ, a Noetherian module X is pseudo-null if and
only if X is finite.

Recall that E(K∞, m) denotes a neighbourhood with respect to Greenberg’s topol-
ogy, i.e., it contains every Zd

p-extension K̃∞ of K that coincides with K∞ up to the
m-th layer; we defined these sets in the paragraph before Theorem 4.14.

Lemma 4.16 In the situation of Theorem 4.14, there exists a neighbourhood
U = E(K∞, m), m ∈N, of K∞ such that
(i) rankΛd (X(K̃∞)) ≤ rankΛd (X(K∞)) + r for each K̃∞ ∈ U, where r ∈N denotes a

fixed constant, and
(ii) dim(X(K̃∞)) ≤ dim(X(K∞)) for each K̃∞ ∈ U.

Proof We start with the proof of (ii). Letting s = dim(X(K∞)), there exist ele-
ments f1 , . . . , fs contained in the maximal ideal (p, T1 , . . . , Td) of Λd such that
X(K∞)/(( f1 , . . . , fs) ⋅ X(K∞)) is finite. We let

rank( f1 , . . . , fs)(X(K∞)) = vp(∣X(K∞)/(( f1 , . . . , fs) ⋅ X(K∞))∣) .

As in the proof of Lemma 4.13, Corollary 3.8 implies that for sufficiently large m ∈N,
we have

rank( f1 , . . . , fs)(X(K̃∞)) ≤ rank( f1 , . . . , fs)(X(K∞)) + vp(C)

for some constant C ∈N. In other words, X(K̃∞)/(( f1 , . . . , fs) ⋅ X(K̃∞)) is finite for
each K̃∞ ∈ U , and therefore dim(X(K̃∞)) ≤ s.
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Statement (i) can be proved analogously by working with (p, T1 , . . . , Td)-ranks. As
in the proof of Lemma 4.13, we cannot avoid the occurrence of some fixed constant r
in our estimate. ∎

5 Further Applications

In this section, we will study several topics that are related to the theory of Selmer
groups. We will still use the general notation from Sections 2 and 4.

5.1 Mordell-Weil Groups and Tate–Shafarevich Groups

Let K∞/K be a Zp-extension. In this subsection, we will apply the Fukuda module
structure of the Selmer group X(K∞) to modules related to X(K∞) via the exact
sequences (1.1) from the Introduction. Dualising (1.1), we obtain the following com-
mutative diagram:

(XA(K∞)∨)�n

sXn
��

�� (X(K∞))�n

prn
��

�� (Â(K∞))�n

sA
n

��

�� 0

0 �� XA(Kn)∨ �� X(K∞)n �� Â(Kn) �� 0.

Here, XA(Kn)∨, n ∈N, denotes the Pontryagin dual of the p-primary subgroup of
the Tate-Shafarevich group, as defined in Section 2, and Â(Kn) denotes the Pontryagin
dual of A(Kn) ⊗Qp/Zp , i.e.,

Â(Kn) ≅ Homcont(A(Kn),Zp) ≅ ZrankZ(A(Kn))
p .

Â(K∞) and XA(K∞)∨ are defined analogously. The maps sA
n and sXn are chosen

such that the diagram is commutative (note that prn is induced by the cohomological
corestriction map, and therefore, sA

n is induced by the norm map, cf. [21, Appendix 2]).
The snake lemma yields an exact sequence

ker(prn) �� ker(sA
n ) �� coker(sXn ) �� coker(prn) �� coker(sA

n ) �� 0 .

If A has potentially good ordinary reduction at each prime v ∈ Sp , then X(K∞) is
a Fukuda module by Corollary 4.2; in the following, we will write (C1 , C2) for the
Fukuda parameters of X(K∞). In particular, ∣coker(sA

n )∣ is then bounded as n →∞,
and the order of ker(sA

n ) is bounded if and only if the order of coker(sXn ) is bounded.
We now make the following assumption.

Assumption 5.1 There exists an integer l such that

rankZ(A(Km)) = rankZ(A(K l))

for every m ≥ l , and coker(sXn ) is finite for each n < l .

Lemma 5.2 Let A be an abelian variety defined over K, and suppose that A has poten-
tially good ordinary reduction at each prime v ∈ Sp. Under Assumption 5.1, Â(K∞) =
lim←� Â(Kn) is a Fukuda- Λ-module with parameters (C1 , C ⋅ C2 , 1), for a suitable C ∈N.
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Proof First, note that ∣coker(sXn )∣ is bounded. Indeed, the maps sA
n from the

above commutative diagram have finite cokernels; since Â(Kn) and Â(K∞) are free
Zp-modules of the same rank for every n ≥ l by Assumption 5.1, it follows that
Â(K∞) ≅ (Â(K∞))�n

≅ Â(Kn) and that the sA
n are actually injective for all n ≥ l , and

therefore

∣coker(sXn )∣ ≤ ∣coker(prn)∣ ≤ C1

for every n ≥ l . This means that

∣coker(sXn )∣ ≤ C ∶=max (C1 , ∣coker(sX1 )∣, . . . , ∣coker(sXl−1)∣)

for every n ∈N.
Using the exact sequence

0 �� XA(K∞)∨ �� X(K∞) �� Â(K∞) �� 0 ,

Proposition 3.7 implies that Â(K∞) is a (C1 , C ⋅ C2 , 1)-Fukuda- Λ-module. ∎
Lemma 5.3 Let A be an abelian variety defined over K that has potentially good
ordinary reduction at each prime v ∈ Sp . Suppose that

rankZ(A(Km)) = rankZ(A(K))

for all m ∈N, that XA(K) is finite, and let C ∶=max(C1 , ∣XA(K)∣) (cf. also the
constant defined in the proof of Lemma 5.2).

Then XA(K∞)∨ = lim←�XA(Kn)∨ is a (C , C2 , 1)-Fukuda- Λ-module.

Proof Since rankZ(A(K∞)) = rankZ(A(K)), the polynomials

νn+1,n(T) =
(T + 1)pn+1 − 1
(T + 1)pn − 1

= wn+1,0(T)
wn ,0(T)

do not share any non-trivial common factor with the characteristic power series
of Â(K∞), because the quotient (T ⋅ Â(K∞))/(wn ,0(T) ⋅ Â(K∞)) is finite for all n.
Therefore, Proposition 3.9 can be applied with the choices Z(B)n ∶= wn ,0(T) ⋅ X(K∞)
and fn+1,n ∶= νn+1,n(T); note that X(K∞)/XA(K∞)∨ ≅ Â(K∞) is Λ-torsion as finitely
generated Zp-module. Moreover, Â(K∞) ≅ ZrankZ(A(K∞))

p does not contain any non-
trivial finite Λ-submodules. Therefore, (the proof of) Proposition 3.9 implies that
XA(K∞)∨ is a Fukuda-submodule of X(K∞) with parameters (C , C2 , 1). ∎
Remark 5.4 In the situation of Lemma 5.3, if the XA(Kn) are finite for all n ∈
N, then vp(∣XA(Kn)∣) grows asymptotically as in Iwasawa’s famous class number
formula, i.e.,

vp(∣XA(Kn)∣) = μ(XA(K∞)∨) ⋅ pn + λ(XA(K∞)∨) ⋅ n +O(1).

Lemma 5.5 If X(K∞) is Λ-torsion, then the first part of Assumption 5.1 holds.

Proof It is well known that rankZ(A(Kn)) ≤ λ(X(K∞)) for all n ∈N (see, e.g., the
proof of [7, Corollary 4.9]): this follows from the exact sequences (1.1) by using that
X̂(K∞)div = SelA(K∞)div ≅ (Qp/Zp)λ , via application of the Control Theorem 4.1. In
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particular, there exists some l ∈N such that rankZ(A(Kn)) = rankZ(A(K l)) for all
n ≥ l . ∎
Remark 5.6
(i) X(K∞) is conjectured to be Λ-torsion (which implies the first part of Assumption

5.1 by Lemma 5.5) if K∞/K is the cyclotomicZp-extension and A = E is an elliptic
curve with potentially good and ordinary reduction at each v ∈ Sp ; this conjecture
is a theorem when A is defined over Q and K is abelian ([14, 26]). On the other
hand, it is known that there exist (non-cyclotomic) Zp-extensions K̃∞/K such
that X(K̃∞) has Λ-rank greater than zero, e.g., if A = E is an elliptic curve over
Q and K̃∞ is the anticyclotomic Zp-extension of an imaginary quadratic number
field K such that End(E) ⊗Z Q ≅ K, E has good ordinary reduction at p, and the
Hasse-Weil L-series L(E , s) has an odd order zero at s = 1 (cf. [7, Theorem 1.8]).

(ii) Turning towards the second part of Assumption 5.1: it is conjectured that the Tate–
Shafarevich group attached to any abelian variety over any number field is finite.
Note that we are not assuming that ∣XA(Kn)∣ is bounded as n →∞.

On the other hand, if we know that Assumption 5.1 holds, and if

∣XA(Km)∣ = ∣XA(Km+1)∣ = . . . = ∣XA(Km+k)∣

for some m ∈N and some sufficiently large k ∈N (the necessary magnitude of k
depends on a bound C as in (the proof of) Lemma 5.2), then we can deduce that
the ∣XA(Kn)∣ are actually bounded, and therefore, that XA(K∞) is finite.

Let K∞/K be a Zp-extension. Then Theorem 4.11 can be used to bound the growth
of rankZ(A(K̃ i)), i ∈N, for all Zp-extensions K̃∞ of K that are close to K∞.

Lemma 5.7 Let A, K∞, and X(K∞) be as in Theorem 4.11, and let λ = λ(X(K∞)). If
U =U(K∞, m) denotes a neighbourhood as in Theorem 4.11, then

rankZ(A(K̃n)) ≤ λ

for each K̃∞ ∈ U satisfying μ(X(K̃∞)) = μ(X(K∞)) and for every n ∈N.

Proof By the choice of U, we have λ(X(K̃∞)) ≤ λ for each K̃∞ ∈ U satisfying
μ(X(K̃∞)) = μ(X(K∞)). As in the proof of Lemma 5.5, this bounds the Mordell-Weil
ranks: rankZ(A(K̃n)) ≤ λ for each such K̃∞ ∈ U and every n ∈N. ∎
Remark 5.8 More generally, if X(K∞) is not necessarily Λ-torsion, then Lemma
4.13 together with [7, Corollary 4.12] implies that there exists a neighbourhood U =
U(K∞, m) of K∞ such that

rankZ(A(K̃n)) ≤ (rankΛ(X(K∞)) + r1) ⋅ pn + r2

for suitable constants r1 , r2 ∈N that do not depend on n; r1 , moreover, is independent
from K̃∞.

We now briefly describe why these results might prove useful for numerical
computations. In the following, we will always assume that A = E is an elliptic curve
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defined over Q, which will be considered over a number field K, and that E has good
ordinary reduction at the primes of K dividing p. Mordell–Weil ranks in a cyclotomic
tower are often bounded via analytical tools. More precisely, let K∞ = K c yc

∞ be the
cyclotomic Zp-extension of K. Under the main conjecture, the Iwasawa invariants of
X(K∞) are equal to the analytical Iwasawa invariants μan(K) and λan(K) of the p-adic
L-function Lp(E , s) ∈ Λ = Zp�T�. Therefore, the corresponding analytical λ-invariant
(which is by definition the degree of the distinguished polynomial associated with
Lp(E , s) via the Weierstraß Preparation Theorem) bounds the Mordell–Weil ranks
of the A(Kn), n ∈N. Note: for this bound, one part of the main conjecture suffices,
namely, the inequality λ(X(K∞)) ≤ λan(K); this direction has been proved in [14] for
abelian K under the above ordinaryness assumption—the reverse inequality is also
known in many cases due to the work of Skinner and Urban (cf. [28]).

However, this approach only works for the cyclotomic Zp-extension, and only
if (one part of) the main conjecture is known over K; to the best of the author’s
knowledge, there does not exist any family of fields K which are not abelian over Q
or over an imaginary quadratic number field, and for which the main conjecture is
known.

If K is imaginary quadratic, then there exist further specialZp-extensions of K, like
the anticyclotomic Zp-extension Kanti

∞ , for which main conjectures have been proved
in some cases. If E is a non-CM elliptic curve defined over Q, then inequalities of the
form λ(X(Kant i

∞ )) ≤ λan(K) (for a suitable analytic λ-invariant) have been obtained
first by Bertolini–Darmon and Darmon–Iovita (cf. [1, 4]). Suppose now that E is an
elliptic curve which has CM by the ring of integers OK of K, and that E has good
ordinary reduction at a prime p > 3. If p splits in K, pOK = pp, then Rubin (cf. [27])
has proved a main conjecture for the unique Zp-extension Kp∞ of K that is unramified
outside of p.

By application of Theorem 4.11 to X(K∞) for a given Zp-extension K∞/K, we
obtain bounds for the growth of the Mordell–Weil ranks in infinitely many Zp-
extensions K̃∞ ≠ K∞. Moreover, as pointed out in Corollary 4.10, we can in principle
use Fukuda theory for obtaining upper bounds for the Iwasawa invariants of X(K∞)
via computation of the first layers Xn , without using any analytical information about
p-adic L-functions.

Example 5.9 Let A = E be the elliptic curve of discriminant 11 defined over Q by

E ∶ y2 + y = x3 − x2 .

We consider the prime p = 5 and the cyclotomic Z5-extension of the 5-th cyclotomic
field K = Q(μ5) (i.e. K∞ is generated over Q by adjoining all 5-power roots of unity).
E has good ordinary reduction at p = 5, and in view of Corollary 4.12, we can apply
Theorem 4.11 to the Selmer group X(K∞). In fact, it has been shown in [3, Theorem 5.4]
that X(K∞) = {0}; therefore, μ(X(K̃∞)) = λ(X(K̃∞)) = 0 for all Zp-extensions K̃∞ of
K that are contained in a suitable Grenberg open neighbourhood of K∞. In particular,
the Mordell–Weil ranks of number fields contained in infinitely many different Zp-
extensions of K are all zero (see Lemma 5.7). Moreover, we note that Assumption 5.1
holds in this example.
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Using the Fukuda module structure of Â(K∞) = lim←� Â(Kn), we can bound the
growth of Mordell–Weil ranks without referring to λ(X(K∞)).
Corollary 5.10 In the situation of Lemma 5.2, let C1 , C2 ∈N be the parameters of the
Fukuda- Λ-module X(K∞). We assume that there exist at least

vp(C2
1 ⋅ C2 ⋅ C) + 2

different indices n i ≤ m, m ∈N, such that rankZ(A(Kn i )) = M for each n i and some
fixed M ∈N, where C is a constant as in the proof of Lemma 5.2. Then

rankZ(A(Kn)) ≤ M + vp(C1C2C)

for each n ∈N.

Proof Lemma 5.2 implies that Â(K∞) is a (C1 , C ⋅ C2)-Fukuda- Λ-module. There-
fore,

rankZ(A(K∞)) ≤ M + vp(C1C2C)

by application of Corollary 3.8 to the Λ-module Â(K∞)/(p ⋅ Â(K∞)), noting that

Â(Kn)/(p ⋅ Â(Kn)) ≅ (Z/pZ)rankZ(A(Kn))

for each n, because Â(Kn) is Zp-free of rank rankZ(A(Kn)). The corollary follows,
since rankZ(A(Kn)) ≤ rankZ(A(K∞)) for each n ∈N. ∎

This corollary can be used, for example, if ∣XA(Kn)∣ ≤ C for all n ∈N (this is of
course a strong assumption).

5.2 Fine Selmer Groups

In [20], Lei and Ponsinet proved a control theorem for fine Selmer groups (the
definitions are recalled in Section 2) for the cyclotomicZp-extension K∞/K, provided
that the rational prime p is unramified in K/Q and that A has good supersingular
reduction at each prime v ∈ Sp . We will use a modification of this result in order to
prove that the fine Selmer groups of abelian varieties over an arbitrary Zp-extension
yield a Fukuda module under suitable assumptions. Note: in the case of supersingular
reduction, there does not exist a control theorem for usual Selmer groups, since the
cokernels of the maps

prn ∶ (X(K∞))�n
�→ X(K∞)n

do not have bounded orders (see [25, Section 2]). The task of finding an appropriate
control theorem for fine Selmer groups of elliptic curves in the supersingular case has
been considered also by Kurihara (cf. [19]) and Wuthrich (cf. [31]) for the cyclotomic
Zp-extension, and by Iovita and Pollack (cf. [11]) for arbitrary Zp-extensions. The
growth of fine Selmer groups in more general, non-necessarily commutative, exten-
sions, has been studied by Coates and Sujatha, cf. [2].

For any Zp-extension K∞ of K, we let Y(K∞) = lim←�Yn denote the projective limit
of the duals Yn = SelA,0(Kn)∨ of the fine Selmer groups.
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Theorem 5.11 Let A be an abelian variety defined over K, and suppose that A has
good reduction at each prime v ∈ Sp. Moreover, we assume that A(Kv)[p∞] = {0} for
each v ∈ Sp. Let K∞ be a Zp-extension of K. Then there exist m, C2 ∈N such that the
fine Selmer group Y(K̃∞) is a Fukuda- Λ-module with parameters (1, C2 , 1) for each
K̃∞ ∈ E(K∞, m) (this is a neighbourhood in the sense of Greenberg’s topology, as defined
in Section 3).

Proof We modify the proof of [20, Lemma 2.3], using also arguments from [9]. For
any Zp-extension K̃∞ of K and each n ∈N, we let

r(K̃∞)n ∶ H1(K̃n , A[p∞]) �→∏
v

H1((K̃n)v , A[p∞])

be the localisation map. Then Yn = ker(r(K̃∞)n )∨, n ∈N (cf. Section 2). We obtain a
commutative diagram

∏
v
(H1(K̃v , A[p∞])∨)�n

g(K̃∞)
n

��

�� (H1(K̃∞, A[p∞])∨)�n

f (K̃∞)
n

��

�� Y�n

pr(K̃∞)
n

��

�� 0

0 �� im(r(K̃∞)n )∨ �� H1(K̃n , A[p∞])∨ �� Yn �� 0.

Since Sp ≠ ∅, the assumed triviality of A(Kv)[p∞] for each v ∈ Sp implies that
A(K)[p∞] = {0} and therefore also B(K̃∞) ∶= A(K̃∞)[p∞] = {0}. Therefore, the
inflation-restriction exact sequence implies that f (K̃∞)n is an isomorphism for each
n ∈N and every Zp-extension K̃∞ of K.

Following [20], the order of the cokernel of g(K̃∞)n can be bounded prime by prime,
and the local contribution of a prime v is ∣H1(�n , B(K̃∞)v )∣, where

B(K̃∞)v = A(K̃∞,v)[p∞].

Consider first the primes v ∤ p. If A has good reduction at v, then v does not
contribute at all to ∣coker(g(K̃∞)n )∣, as shown in [20]. If A has bad reduction at
v, then the contribution to ∣coker(g(K̃∞)n )∣ is smaller than or equal to the index
[Bv ∶ (Bv)div], which is bounded (again, this is essentially the same argument as in
the proof of Theorem 4.5). Note that Bv is the same for each K̃∞ ∈ E(K∞, m), since
the unramified Zp-extension of Kv is unique. If v is totally decomposed in K̃∞,
then K̃∞,v = (K̃m)v = Kv , and H1(�m , B(K̃∞)) = {0}. We are therefore reduced to
considering the primes of bad reduction that are finitely decomposed in K∞. We can
choose m ∈N large enough such that the number of primes of K̃∞ dividing these v is
constant on E(K∞, m). Therefore, the corresponding contribution to ∣coker(g(K̃∞)n )∣
is bounded independently of n and K̃∞ ∈ E(K∞, m).

Now consider the primes v ∈ Sp . Since A(Kv)[p∞] = {0} by assumption, it follows
that also A(K̃∞,v)[p∞] = {0}, and therefore v does not contribute to ∣coker(g(K̃∞)n )∣.

The theorem follows by applying the snake lemma to the above commutative
diagram. ∎
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Remark 5.12 Let v ∈ Sp . In [20], the authors give the following sufficient criterion
for A(Kv)[p∞] to be trivial (recall that this condition is needed in Theorem 5.11):
A has good supersingular reduction at v, and the rational prime p is unramified in
K/Q. Indeed, if p is unramified in K, then [23, Lemma 5.11] implies that the canonical
reduction map induces an isomorphism A(Kv)[p∞] ≅ Ã(Rv)[p∞], whereRv denotes
the finite residue field of Kv . If A has supersingular reduction at v, the latter group is
trivial.

Using Proposition 3.7, we can derive another set of conditions that are sufficient
for Y(K∞) to be a Fukuda module. This approach is based on the exact sequences (2.2)
(see Section 2) that relate the fine and usual Selmer groups. Dualising, we obtain

⊕
v∣p

Â(Fv) �� XA(F) �� YA(F) �� 0 ,

where Â(Fv) ≅ ZrankZ(A(Fv))
p denotes the Pontryagin dual of A(Fv) ⊗Qp/Zp , as in

Section 5.1.

Theorem 5.13 Let K∞/K be a Zp-extension. We assume that A has potentially
good ordinary reduction at each prime v ∈ Sp, and that each v ∈ Sp is ramified in
K∞/K. Then there exist integers m, C1 , C2 ∈N such that Y(K̃∞) is a Fukuda- Λ-module
with parameters (C1 , C2 , 1) for each K̃∞ ∈U(A, K∞, m), where the neighbourhood is
defined as in Section 3.

Proof In view of Proposition 3.7, it is sufficient to show that the orders of the
cokernels of the projection maps

prn ∶ ∏
v∣p
(Â(K̃∞,v))�n

�→⊕
v∣p

Â(K̃n ,v)

are bounded as n →∞. Dualising, we study the kernels of the natural maps

in ∶ ⊕
v∣p
(A(K̃n ,v) ⊗Qp/Zp) �→∏

v∣p
(A(K̃∞,v) ⊗Qp/Zp)Gal(K̃∞,v/K̃n ,v),

n ∈N.
First, it follows from [9, Proposition 3.2] that each A(K̃∞,v)[p∞] is finite, provided

that m ∈N has been chosen large enough to ensure that the primes v ∈ Sp are ramified
in each K̃∞ ∈U(A, K∞, m). More precisely, it follows from the proof of Theorem
4.5 that ∣A(K̃∞,v)[p∞]∣ ≤ ∣A(K∞,v)[p∞]∣ for every v ∈ Sp and K̃∞ ∈U(A, K∞, m),
provided that m has been chosen large enough. In the following, we write Bv ∶=
A(K∞,v)[p∞] and bv ∶= ∣Bv ∣, v ∈ Sp .

We will now bound the exponent of ker(in) in terms of ∏v∣p bv . Suppose that e
denotes the exponent of the group ker(in) for some n. Let

P ⊗ p−e ∈ A(K̃n ,v) ⊗Qp/Zp

be an element of order pe such that in(P ⊗ p−e) = 0. Then P = pe ⋅ Q for some
Q ∈ A(K̃∞,v). Since the extension K̃∞,v/K̃n ,v is normal, γ(Q) ∈ A(K̃∞,v) for each
γ ∈ Gal(K̃∞,v/K̃n ,v). Therefore, pe ⋅ (Q − γ(Q)) = 0, since γ(P) = P. But this shows
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that e ≤maxv(exp(A(K̃∞,v)[p∞])). Since rankp(ker(in)) is finite for every n ∈N,
this also shows that each individual kernel ker(in) is finite.

Now let n0 ≥ m be large enough such that

A(Kn0 ,v)[p∞] = A(K∞,v)[p∞]

for each v ∈ Sp (the analogous equality then holds for every K̃∞ ∈U(A, K∞, n0), by
cardinality reasons).

We fix n ≥ n0, v ∈ Sp , and we choose a topological generator γ ∈ Gal(K̃∞,v/Kv).
Then we define

φ ∶ ker(in ∣(A(K̃n ,v)⊗Qp/Zp)
) �→ A(K̃∞,v)[p∞]

by mapping P ⊗ p−e ∈ ker(in) to Q − γpn(Q), where Q ∈ A(K̃∞,v) satisfies P = pe ⋅
Q, as above. The map φ is a well-defined group homomorphism, and it is actually
injective. This shows that

∣ker(in)∣ ≤ B ∶=max ( ∏
v∈Sp

bv , ∣ker(i0)∣, . . . , ∣ker(in0)∣). ∎

Example 5.14 Let p = 3, and consider the elliptic curve

E ∶ y2 + x y + y = x3 − x2

over K = Q. Then E has good, supersingular reduction at p, Sbr = {43}, all local
Tamagawa factors cv (cf. Corollary 4.7) are 1, and ∣Ẽ(F3)∣ = 5. Therefore, E(Q3)[3∞] =
{0} by Remark 5.12, and it follows from (the proof of) Theorem 5.11 that Y(K∞) is
a Fukuda- Λ-module with parameters (1, 1), where Q∞ denotes the cyclotomic Z3-
extension of K = Q.

In particular, if one could compute the first layers of Y(K∞), then a result similar
to Corollary 4.10 could be used in order to obtain information about the Λ-module
structure of Y(K∞) (it would be sufficient to find two consecutive layers with the same
rank, as C1 = C2 = 1 in this example).

If, on the other hand, E denotes the elliptic curve

E ∶ y2 + x y = x3 − x

from Example 4.9, which has good ordinary reduction at p = 3, then Y(K∞) is a Fukuda
module with parameters (1, 9B, 1), where B = ∣E(Q∞,3)[3∞]∣ (this is an upper bound
for ∣ker(in)∣, cf. the proof of Theorem 5.13). Since the 3-division polynomial ψ3(x) =
3x4 + x3 − 6x2 − 1 has no root modulo 9, it follows that actually B = 1.

It is a straightforward task to prove an analogue of Theorem 4.11 for fine Selmer
groups.

Theorem 5.15 Let K∞/K be a Zp-extension, and suppose that the assumptions of
either Theorem 5.11 or Theorem 5.13 are satisfied. If Y(K∞) is Λ-torsion, then there exists
a neighbourhood U =U(A, K∞, m) of K∞ such that
• Y(K̃∞) is a torsion Λ-module for each K̃∞ ∈ U;
• μ(Y(K̃∞)) ≤ μ(Y(K∞)) for each K̃∞ ∈ U;
• λ(Y(K̃∞)) ≤ λ(Y(K∞)) for each K̃∞ ∈ U such that μ(Y(K̃∞)) = μ(Y(K∞)).
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We finally point out an interesting analogy between the fine Selmer group Y(K∞)
of a Zp-extension K∞ of K and the classical Iwasawa module X(K∞) = lim←�Xn (cf.
Example 3.2; the module X(K∞) should not be confused with the usual Selmer group
here). In [2], Coates and Sujatha raised the following conjecture.

Conjecture 5.16 If K∞ denotes the cyclotomic Zp-extension of the number field K,
then Y(K∞) is a torsion Zp�T�-module such that

μ(Y(K∞)) = 0

(i.e. , Y(K∞) is finitely generated over Zp).

For comparison, we state the analogous conjecture for X = lim←�Xn .

Conjecture 5.17 If K∞/K denotes the cyclotomic Zp-extension, then

μ(X(K∞)) = 0.

Conjecture 5.17 is due to Iwasawa (see [13]). Coates and Sujatha proved in [2,
Theorem 3.4] that Conjectures 5.16 and 5.17 are equivalent if E is an elliptic curve, p ≠ 2
and K(E[p∞])/K is a pro-p-extension. Note that the finite layers Xn of the classical
Iwasawa modules can be computed more easily than the (fine) Selmer groups, and
therefore (at least currently), our method remains primarily of theoretical interest.
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