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Abstract

We show that if a Finsler metric on S2 with reversibility r has flag curvatures K satisfying
(r/(r + 1))2 < K � 1, then closed geodesics with specific contact-topological properties
cannot exist, in particular there are no closed geodesics with precisely one transverse self-
intersection point. This is a special case of a more general phenomenon, and other closed
geodesics with many self-intersections are also excluded. We provide examples of Randers
type, obtained by suitably modifying the metrics constructed by Katok [21], proving that
this pinching condition is sharp. Our methods are borrowed from the theory of pseudo-
holomorphic curves in symplectizations. Finally, we study global dynamical aspects of 3-
dimensional energy levels C2-close to S3.

1. Introduction and main results

Classical and recent results show that pinching conditions on the curvatures of a Rieman-
nian metric force the geodesic flow to present specific global behavior, usually encoded in
geometric-topological and dynamical properties of closed geodesics. The interest in such
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phenomena can be traced back to Poincaré [23] and Birkhoff [9] where, among many other
topics, the geodesic flow on positively curved surfaces was studied.

In the 1970s and 1980s this subject again received much attention. For example, in the
articles of Thorbergsson [27], Ballmann, Thorbergsson and Ziller [5, 6, 7] and Klingen-
berg [22] one finds many results relating pinching conditions on the curvatures to the exist-
ence (or non-existence) of closed geodesics with various topological and dynamical prop-
erties. Let us recall two theorems along these lines proved around the same time. As usual,
a Riemannian metric is called δ-pinched if all sectional curvatures K satisfy δ � K � 1,
where 0 < δ � 1.

THEOREM 1·1 (Ballmann [4]). Given k � 1 and ε > 0, there exists δ < 1 such that
every prime closed geodesic of a δ-pinched metric on S2 is either a simple curve of length
in [2π − ε, 2π + ε], or has at least k self-intersections and length > ε−1.

THEOREM 1·2 (Bangert [3]). For every ε > 0 there exists δ < 1 such that the length l of
every prime closed geodesic of a δ-pinched metric on Sn satisfies either l ∈ [2π −ε, 2π +ε]
or l > ε−1.

Both theorems are of a perturbative nature and exhibit a “short-long” dichotomy for prime
closed geodesics: if the metric is sufficiently pinched then their lengths are either close to
the lengths in the round case (short), or arbitrarily large. This is surprising since one could
try to imagine a sequence of metrics converging in C2 to the round sphere admitting prime
closed geodesics with lengths close to 2kπ , for some k � 2. However, this does not happen.

Motivated by the above statements one might consider the following questions in the
more general framework of Finsler metrics on S2, or even in broader classes of Hamiltonian
systems:

(a) How much can we relax the pinching of the flag curvatures of a (possibly non-
reversible) Finsler metric on the 2-sphere and still keep some kind of dichotomy
similar to that in Theorem 1·1?

(b) Can the “short-long” length dichotomy in Theorem 1·2 be generalized to a “low-
high” action dichotomy on a broader class of Hamiltonian systems? If so, is there
any additional topological information that can be extracted in low dimensions, in a
way similar to Theorem 1·1?

Ballmann, Thorbergsson and Ziller [7] observe that a δ-pinched Riemannian metric on
the 2-sphere, with δ > 1/4, does not admit a closed geodesic with precisely one self-
intersection. The proof is an immediate application of two well-known comparison the-
orems. To be more precise, the pinching condition 0 < δ < K � 1 implies Klingenberg’s
estimate for the injectivity radius inj(p) � π, ∀p ∈ S2. Since a closed geodesic γ with
exactly one self-intersection point is the union of two loops, its lentgh l must satisfy l � 4π .
On the other hand, since γ is also a convex geodesic polygon, we have from Toponogov’s
theorem the estimate l � 2π/

√
δ < 4π if δ > 1/4. These two inequalities on the length l

imply that such closed geodesic cannot exist. In this case, closed geodesics are either simple
with length � 2π/

√
δ, or have at least two self-intersections and length � 6π . This may be

thought of as a simplest answer to (a) in the Riemannian case, but perhaps other pinching
conditions will rule out other types of geodesics.

We use the theory of pseudo-holomorphic curves in symplectizations developed by H.
Hofer, K. Wysocki and E. Zehnder as an alternative to comparison theorems. These meth-
ods reveal a more general phenomenon, in fact, under a certain pinching condition on the
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flag curvatures (cf. Theorem 1·5) there exists a larger class of immersed curves that can-
not be realized as closed geodesics. This class includes curves with precisely one trans-
verse self-intersection, but also many other curves with an arbitrarily large number of self-
intersections. Then we exhibit examples of Randers type showing that the above mentioned
pinching condition is optimal.

Finally, we quickly address (b). It follows trivially from the method of Bangert [3] that
a low-high action dichotomy holds for convex energy levels in R

2n which are C2-close to
S2n−1. In the case n = 2 we study the linking number between high- and low-action orbits.

1·1. Main results

We consider a weakened version of the notion of flat knot types discussed in [1], which
relates to V. I. Arnold’s J+-theory of plane curves described in [2].

Definition 1·3. Consider the set B of C2-immersions γ : S1 → S2 such that all self-
intersections are either transverse or negative tangencies, i.e., if γ (t0) = γ (t1) and t0 � t1

then γ̇ (t1) � R
+γ̇ (t0). We say that two curves γ0, γ1 ∈ B are equivalent if they are homotopic

through curves in B. A weak flat knot type is an equivalence class of curves in B.

If we fix a Finsler metric F on S2 then the unit sphere bundle SS2 := {v ∈ T S2 | F(v) =
1} admits a contact form αF given by the pull-back of the tautological 1-form of T ∗S2 via
the associated Legendre transform. Any weak flat knot type of some γ ∈ B singles out a
transverse knot type in the contact manifold (SS2, ker αF) determined by the knot γ̇ /F(γ̇ ).
In particular, topological and contact invariants of transverse knots, like the self-linking
number (cf. Section 2·2 below), induce invariants of weak flat knot types on S2. Note that
any prime closed geodesic of a Finsler metric on S2 represents a weak flat knot type. In
the reversible case negative self-tangencies of closed prime geodesics never happen, so one
gets a flat knot type as defined in [1]. However, negative self-tangencies could appear in the
non-reversible case.

To give a computable concrete example, consider the weak flat knot type k8 of an “eight-
like curve” having precisely one self-intersection point which is transverse. The proof of the
following lemma is found in Section 3·1.

LEMMA 1·4. Let the C2-immersion c : S1 → S2 represent the weak flat knot type k8,
and let F be any Finsler metric on S2. Then the curve ċ/F(ċ) in the unit sphere bundle is
unknotted and has self-linking number −1.

Before stating our main result we need to recall the notion of reversibility of a Finsler
metric F , defined by Rademacher [24] as

r := max{F(−v) | F(v) = 1} � 1. (1·1)

It equals 1 exactly when F(v) = F(−v) ∀v, and F is called reversible in this case. The
notion of reversibility is an essential ingredient in Rademacher’s proof of his sphere theorem
for Finsler metrics.

THEOREM 1·5. The following assertions hold:
(i) let F be a Finsler metric on S2 with reversibility r . If all flag curvatures K satisfy(

r

1 + r

)2

< K � 1 (1·2)

then no prime closed geodesic γ represents the weak flat knot type k8;
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Fig. 1. The weak flat knot type k8.

(ii) statement (i) is optimal in the following sense: for every choice of r � 1 and 0 < δ <

(r/(r + 1))2 there exists a Finsler metric on S2 with reversibility r and δ-pinched flag
curvatures admitting closed geodesics with precisely one transverse self-intersection.

We stress the fact that the proof of part (i) in Theorem 1·5 does not make use of any
version of Toponogov’s theorem for Finsler geometry. In fact, our method seems to be an
alternative tool in those cases where such a comparison theorem may not be effective.

Note that there exist immersions γ ∈ B representing k8 with an arbitrarily large number
of self-intersections, see Figure 1 for an example with 3 self-intersections. Such immersions
cannot be realized as a closed geodesic under the pinching condition (1·2).

To prove assertion (ii) we modify the metrics of Katok [21]. The examples are Randers
metrics given by suitably chosen Zermelo navigation data on surfaces of revolution in R

3,
see Section 3·3 for the detailed construction. Assertion (i) is proved by an application of
pseudo-holomorphic curve theory in symplectizations, as introduced by Hofer in [14], de-
veloped by Hofer, Wysocki and Zehnder during the 1990s, and later by many other authors.
The arguments are based on a dynamical characterization of the tight 3-sphere from [20],
extending earlier results from [16, 17]. For an outline of the proof we refer to Section 1·2·1
below.

Our second result relates to question (b). Denote by Conv(2m) the set of closed and
strictly convex hypersurfaces of class C2 in R

2m , equipped with the C2-topology. R
2m is

endowed with its standard symplectic structure ω0, and each S ∈ Conv(2m) is oriented as
the boundary of the bounded connected component of R

2m \ S. A closed characteristic on
S is a closed leaf of T S⊥ ⊂ T S, where ⊥ denotes the ω0-symplectic orthogonal. These are
precisely the geometric images of closed Hamiltonian orbits, for any Hamiltonian realizing
S as a regular energy level. We denote by P(S) the set of closed characteristics and think of
its elements as first iterates of periodic orbits of a Hamiltonian system. The action of a given
P ∈ P(S) is A(P) = ∫

P λ0, where λ0 = 1
2

∑
qdp − pdq is the standard Liouville form.

These Hamiltonian systems generalize geodesic flows on S2. In fact, as is well known,
the geodesic flow of any Finsler metric on S2 lifts to a Hamiltonian flow on a suitable star-
shaped hypersurface in R

4 via a double cover. This lifting procedure is nicely described
in [13]. In general, however, S is not convex. If the metric is C2-close to the round metric
then S belongs to Conv(4) and is close to S3. Action of an orbit on S is proportional to the
length of its projection on S2. With this picture in mind we make the following statement.

THEOREM 1·6. Given ε > 0 there exists a neighborhood Uε of S2m−1 in Conv(2m) such
that if S ∈ Uε then every P ∈ P(S) satisfies either A(P) ∈ [π − ε, π + ε] (short orbits) or
A(P) > ε−1 (long orbits). In the case m = 2, given any k � 1 there exists a neighborhood
Uε,k ⊂ Uε of S3 such that if S ∈ Uε,k then link (P, P ′) � k whenever P is short and P ′ is
long.

https://doi.org/10.1017/S0305004112000333 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004112000333


Reeb flows and applications to Finsler geodesic flows 5

The assertion about the high-low action dichotomy is a direct application of Proposi-
tion 4·1 due to Bangert [3], and in the case m = 2 it is crucial to estimating the linking
numbers. Obviously, the short orbits are unknotted, have self-linking number −1 and their
Conley–Zehnder indices belong to {3, 4, 5}. An analogous statement is true for energy levels
C2-close to irrational ellipsoids, except that the high-low action dichotomy is trivial in this
case. For an idea of the proof see Section 1·2·2 below.

1·2. Outline of the main arguments

For convenience of the reader we sketch some of the main steps in the proofs of our
results.

1·2·1. Non-existence of geodesics

Here we briefly explain why assertion (i) of Theorem 1·5 holds. For more details see
Section 3·2.

A contact form λ on a 3-manifold is called non-degenerate if the spectrum of the linear-
ized Poincaré map associated to any (prime) closed Reeb orbit does not contain roots of
unity when restricted to the contact structure. According to [18], λ is said to be dynamically
convex if c1(ker λ) vanishes and the Conley–Zehnder index of every contractible closed or-
bit of the associated Reeb flow is at least 3. See Section 2·1 for a definition of the index in
3-dimensions.

In [16, 17] it is proved that a closed connected tight contact 3-manifold M is the tight
3-sphere if, and only if, the contact structure can be realized as the kernel of a dynamically
convex non-degenerate contact form admitting an unknotted closed Reeb orbit P with self-
linking number −1 and Conley–Zehnder index 3. In fact, they show that the given orbit
bounds a disk-like global surface of section for the Reeb flow, but much more can be said:
there is an open book decomposition of M with disk-like pages and binding P , such that
every page is a global surface of section. In particular, M is homeomorphic to S3. The
following result from [20] states that the restriction on the Conley–Zehnder index can be
dropped.

THEOREM 1·7 ([20, corollary 1·12]). Let λ be a non-degenerate dynamically convex
tight contact form on a closed connected 3-manifold M. A closed Reeb orbit P is the binding
of an open book decomposition with disk-like pages which are global surfaces of section for
the Reeb flow if, and only if, it is unknotted and has self-linking number −1. In particular,
M is homeomorphic to the 3-sphere when an orbit P with these properties exists.

The geodesic flow restricted to the unit sphere bundle of a Finsler metric F coincides with
the Reeb flow of the contact form αF , as explained before. Suppose F is such a metric on S2

satisfying (1·2), and assume γ is a closed geodesic whose lift γ̇ is unknotted and has self-
linking number −1 in SS2. Theorem 1·7 together with the statement below due to Harris and
Paternain [13] provides, in the bumpy case, a contradiction to the existence of γ since the
unit sphere bundle is not homeomorphic to the 3-sphere. Thus the weak flat knot type k8 can
not be realized by a closed geodesic in view of Lemma 1·4. The general case is discussed in
Section 3.

THEOREM 1·8 (Harris and Paternain [13, theorem B]). If a Finsler metric F with revers-
ibility r on S2 is δ-pinched, for some δ > (r/(r + 1))2, then αF is dynamically convex.

The proof of Theorem 1·8 relies on Rademacher’s estimate for the length of geodesic
loops, see Section 2·4 below. As it will be clear, the proof of Theorem 1·5 shows that
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Harris–Paternain’s pinching condition is sharp in the following sense: given r � 1 and
0 < δ < (r/(r + 1))2 there exists a δ-pinched Finsler metric on S2 with reversibility r , such
that αF is not dynamically convex. In the Riemannian case, the sharpness of the above con-
dition for dynamical convexity follows from [5, theorem 4·1]. Given any 0 < δ < 1/4 they
construct a δ-pinched Riemannian metric on S2 carrying a prime simple closed geodesic
whose double cover is hyperbolic with index 2. For any r � 1 and 0 < δ < (r/(r + 1))2,
we construct a δ-pinched Finsler metric with reversibility r carrying a prime simple closed
geodesic such that its double cover is elliptic with index 1.

Remark 1·9. As the reader may already have noticed, our argument will actually show a
possibly stronger statement than that of Theorem 1·5. In fact, if we assume (1·2) then the
transverse knot γ̇ /F(γ̇ ) associated to a closed prime geodesic γ cannot be unknotted and
have self-linking number −1.

1·2·2. Convex energy levels C2-close to S2n−1

The low-high action dichotomy in Theorem 1·6 above is, of course, an immediate con-
sequence of the non-trivial analysis from [3].

Consider an unperturbed flow and a periodic orbit P with prime period T for which the
linearized transverse Poincaré map is the identity. Then, roughly speaking, a prime closed
orbit near P of a perturbed flow either has period ∼ T , or has a very large period. This is
a particular instance of Proposition 4·1 below which was extracted from [3]. The low-high
action dichotomy is obtained when we take as the unperturbed flow the Reeb flow on S2n−1

induced by the contact form λ0 = 1
2

∑
qdp − pdq, since all orbits are periodic with the

same period, and the transverse linearized Poincaré map is always the identity.
In the case n = 2 we study the relation between orbits with low and high action. Analyzing

specific global behavior of the “round” flow on S3 we are able to conclude that a short orbit
Ps of the perturbed Reeb flow bounds a disk transverse to the flow. A long orbit Pl either
stays far from Ps , and thus links many times with it, or gets close to Ps and again links many
times since the linearized flow along Ps rotates almost uniformly.

2. Preliminaries

This section is devoted to reviewing the definitions and facts necessary for the proofs that
follow.

2·1. The Conley–Zehnder index in 3 dimensions

The Conley–Zehnder index is an invariant of the linearized dynamics along closed Reeb
orbits, which we now describe in the 3-dimensional case.

Whenever I ⊂ R is a closed interval of length strictly less than 1/2 satisfying ∂ I�Z = �,
consider the integer μ̂(I ) defined by μ̂(I ) = 2k if k ∈ I , or μ̂(I ) = 2k +1 if I ⊂ (k, k +1).
It can be extended to the set of all closed intervals of length strictly less than 1/2 by μ̂(I ) =
limε→0+ μ̂(I − ε).

Let α be a contact form on the 3-manifold N , inducing the contact structure ξ = ker α.
Then ξ becomes a symplectic vector bundle with the bilinear form dα|ξ . Suppose x : R →
N is a contractible periodic trajectory of the Reeb vector R (uniquely defined by iRα = 1
and iRdα = 0) of period T > 0, and let f : D → N be a map satisfying f (ei2π t) =
xT (t) := x(T t). We can find a symplectic trivialization f ∗ξ � D × R

2, which restricts to a
trivialization � : x∗

T ξ → S1 × R
2. If φt is the Reeb flow then dφt preserves ξ , and we get

a smooth path of symplectic 2 × 2 matrices t ∈ R 
→ ϕ(t) = �t · dφT t · �−1
0 , where �t is

restriction of � to x∗
T ξ |t .

https://doi.org/10.1017/S0305004112000333 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004112000333


Reeb flows and applications to Finsler geodesic flows 7

Given w ∈ R
2, w � 0, define �(w) := (1/2π)(ϑ(1)−ϑ(0)), where ϑ(t) is a continuous

lift of the argument of ϕ(t)w. Then consider the closed real interval I := {�(w) : w ∈
R

2, w � 0}. It is easy to check that I has length strictly less than 1/2. Following [19], one
can define

μC Z (x, T ) = μ̂(I ). (2·1)

Note that μC Z (x, T ) � 3 if, and only if, I ⊂ {y ∈ R : y > 1}. Once f is fixed, the
above integer does not depend on the choice of symplectic trivialization f ∗ξ � D × R

2.
Nevertheless, the notation should indicate the dependence on the disk-map f , but μC Z (x, T )

does not depend on f when c1(ξ) vanishes, see [19] for more details.

2·2. The self-linking number

Let (M, ξ) be a contact 3-manifold, L ⊂ M be a knot transverse to ξ , and let � ↪→ M
be a Seifert surface for L , that is, S is an orientable embedded connected compact surface
� ↪→ M such that L = ∂�. Assume ξ = ker λ for some contact form λ. Since the bundle
ξ |� carries the symplectic bilinear form dλ, there exists a smooth non-vanishing section Z
of ξ |� which can be used to slightly perturb L to another transverse knot Lε = {expx(εZx) :
x ∈ L}. Here exp is any exponential map. A choice of orientation for � induces orientations
of L and of Lε . The self-linking number is defined as the oriented intersection number

sl(L , �) := Lε · � ∈ Z, (2·2)

where M is oriented by λ ∧ dλ. It is independent of � when c1(ξ) ∈ H 2(M) vanishes.

2·3. Basics in Finsler geometry

We recall the basic definitions in Finsler geometry following [12]. See also [8, 25, 28].
The knowledgeable reader is encouraged to skip to Section 2·4, and refer back only for the
notation established here.

2·3·1. Connections and curvatures

Let π : T M → M be the tangent bundle of a manifold M , and denote T M0 := T M \
{zero section}. Let V T M be the vertical subbundle ker dπ ⊂ T T M , with fiber VvT M over
v ∈ T M . V T M0 denotes its restriction to T M0. Whenever (x1, . . . , xn) are coordinates on
M we have natural coordinates

(x1, . . . , xn, y1, . . . , yn) �
∑

i

yi∂xi

on T M . Thus, {∂y1, . . . , ∂yn } is a local frame on V T M . On T M we have a vector field
defined in natural coordinates by C = ∑n

i=1 yi∂yi , and the almost tangent structure J ,
which is the V T M-valued 1-form on T M defined locally by J = ∑n

i=1 dxi ⊗ ∂yi . There is
a canonical linear isomorphism iv : Tπ(v)M � VvT M , for any given v ∈ T M , defined by
iv(w) = d

dt

∣∣
t=0

v + tw. In natural coordinates: iv(w) = ∑
i wi∂yi if w = ∑

i wi∂xi . Thus
Cv = iv(v).

A T T M-valued 1-form � on T M0 satisfying

�2 = I and ker(� + I ) = V T M0 (2·3)

is a Grifone connection on M . In natural coordinates the equations � · ∂xi = ∂xi − 2�
j
i ∂y j ,

�·∂yi = −∂yi define the connection coefficients �
j
i (we use Einstein summation convention).

Considering the associated horizontal subbundle H T M := ker(� − I ) we have a splitting

T T M = V T M ⊕ H T M (2·4)
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and induced projections PV : T T M → V T M , PH : T T M → H T M . The isomorphisms
i−1
v : VvT M � Tπ(v)M and dπ : HvT M � Tπ(v)M provide an isomorphism

(i−1
v ◦ PV , dπ ◦ PH ) : TvT M

∼−→ Tπ(v)M ⊕ Tπ(v)M (2·5)

when v � 0. If ζ = δxi∂xi + δyi∂yi ∈ TvT M then

ζ � (
(δyi + �i

kδxk)∂xi , δxi∂xi

) ∈ Tπ(v)M ⊕ Tπ(v)M

by the map (2·5).
The curvature form of � is the V T M-valued 2-form on T M0 defined by

R(X, Y ) = PV ([PH (X), PH (Y )]) (2·6)

where X, Y are vector fields on T M0.
Later we will need to consider lifts of a Grifone connection �. These are linear connec-

tions ∇ on V T M satisfying

H T M = ker(X 
−→ ∇X C). (2·7)

∇ is said to be symmetric if ∇XJ (Y ) − ∇YJ (X) = J ([X, Y ]) for arbitrary vector fields
X, Y on T M0. If ∇ has coefficients ∇∂xi ∂y j = �k

i j∂yk and ∇∂yi ∂y j = Dk
i j∂yk , in local natural

coordinates, then this symmetry condition implies Dk
i j = 0, �k

i j = �k
ji and y j�k

i j = �k
i .

The curvature tensor of ∇ is

R̃(X, Y )Z = ∇X∇Y Z − ∇Y ∇X Z − ∇[X,Y ] Z (2·8)

where X, Y are vector fields on T M0 and Z is a section of V T M0. The curvature endo-
morphism of ∇ in the direction of v ∈ T M0 is the linear map Rv : Tπ(v)M → Tπ(v)M
defined by

Rv(u) = i−1
v (R̃(vh, uh)iv(v)) (2·9)

where uh, vh ∈ TvT M are the (unique) horizontal lifts of u, v respectively.

2·3·2. Sprays and their geodesics

Recall that a spray is a continuous vector field S on T M , smooth on T M0, satisfying
equations

iSJ = C, LC S = S. (2·10)

In local natural coordinates one can write S = yi∂xi − 2Gi(x, y)∂yi . The Gi will be referred
to as the spray coefficients, and they satisfy Gi (x, t y) = t2Gi(x, y) ∀t > 0.

Every spray S defines a Grifone connection by �S := −L SJ . It follows from (2·10)
that LC�S = 0 and that �S is symmetric: if �

j
i are the connection coefficients in natural

coordinates then ∂yk �
j
i = ∂yi �

j
k for every i, j, k. Moreover, �

j
i = ∂yi G j .

The set of symmetric lifts of �S is non-empty: the Berwald connection of S is given in
natural coordinates by

∇∂yi ∂y j = 0, ∇∂xi ∂y j = �k
i j∂yk where �k

i j = ∂y j �k
i = ∂2Gk

∂y j∂yi
.

If ζ(t) ⊂ T M0 is an integral curve of S then ζ = γ̇ where γ = π ◦ ζ . This follows
from (2·10). A curve γ (t) on M is called a geodesic if γ̇ (t) is an integral curve of S, where
the condition γ̇ (0)� 0 is implicit.
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Reeb flows and applications to Finsler geodesic flows 9

Using �S one defines the covariant derivative of a vector field V (t) along a geodesic γ (t).
Namely, Ṽ (t) := iγ̇ (t)(V (t)) defines a (vertical) vector field along the integral curve γ̇ of S
and, hence, the Lie derivative L S Ṽ is well-defined. We set

Dγ V

dt
:= i−1

γ̇ (t)(PV (L S Ṽ )). (2·11)

In natural coordinates, if V = V i∂xi and γ i (t) = xi ◦ γ then

Dγ V

dt
= (

V̇ i + �i
k V k

)
∂xi (2·12)

where the �i
k are evaluated at (γ 1, . . . , γ n, γ̇ 1, . . . , γ̇ n). Note the drastic difference to the

Riemannian case, where the �i
k do not depend on γ̇ 1, . . . , γ̇ n . Thus, in the more general

present situation, covariant differentiation along arbitrary curves may not be defined only in
terms of the spray, and other choices must be made.

Parallel transport Pt : Tγ (0)M → Tγ (t)M along a geodesic γ is defined by Pt(V0) := V (t),
where V0 ∈ Tγ (0)M , Dγ V /dt = 0 and V (0) = V0.

LEMMA 2·1. Let ∇ be a symmetric lift of �S. Then

−Rv(u) = i−1
v (R(S, uh)) for any u ∈ Tπ(v)M

where uh ∈ HvT M is the horizontal lift of u (dπ · uh = u) and R is the curvature form of
�S. In particular, Rv is independent of the choice of the symmetric lift.

For completeness, and convenience of the reader, we include a proof of the above well-
known standard fact in the appendix.

2·3·3. The case of Finsler manifolds

A Finsler metric on a manifold M is a continuous function F : T M → [0, +∞), smooth
on T M0 := T M \ {zero section} satisfying:

(i) F(tv) = t F(v), ∀v ∈ T M, ∀t > 0. F is said to be positively homogeneous of
degree 1;

(ii) for each v ∈ T M0 the quadratic form gv : Tπ(v)M × Tπ(v)M → R given by

gv(w1, w2) = 1

2

∂2

∂s∂t

∣∣∣∣
s=t=0

F2(v + sw1 + tw2). (2·13)

is positive definite. This is called the convexity condition.

The Legendre transform L : T ∗M → T M is the fiber-preserving homeomorphism
defined in the following manner: given λ ∈ T ∗

p M then

L(λ) := v∗ ∈ Tp M where λ · v∗ − 1

2
F2(v∗) = sup

v∈Tp M
λ · v − 1

2
F2(v). (2·14)

Thus L(tλ) = tL(λ), ∀t � 0 and λ ∈ T ∗M , and λ = 0 ⇔ L(λ) = 0. As a consequence,
L is a diffeomorphism between T ∗M0 := T ∗M \ {zero section} and T M0. One defines the
cometric

F∗ : T ∗M −→ [0, +∞), F∗ = F ◦ L. (2·15)

Thus F∗ is smooth on T ∗M0, F∗(tλ) = t F∗(λ) ∀t � 0, and F∗(λ) = 0 ⇔ λ = 0.
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On T ∗M consider the tautological 1-form αtaut and the canonical symplectic structure
� := dαtaut.

In natural coordinates (x1, . . . , p1, . . . ) � ∑
i pi dxi on T ∗M associated to a set of co-

ordinates (x1, . . . , xn) on M , αtaut = ∑
i pi dxi and � = ∑

i dpi ∧ dxi . The Hamiltonian
H := 1

2 (F∗)2 induces the Hamiltonian vector field X H by −d H = �(X H , ·), and one
checks that

S := L∗ X H (2·16)

is a spray. Its flow is the geodesic flow of the Finsler metric F , and S is called the geodesic
spray.

If gi j (x, y) represents the quadratic form gv (2·13) in natural coordinates, where v �
(x, y), and if gi j is the inverse of gi j , then the geodesic spray coefficients are

Gi = 1

2
γ i

jk y j yk where γ i
jk := 1

2
gil(∂xk gl j − ∂xl g jk + ∂x j gkl). (2·17)

This is proved by analyzing the Euler-Lagrange equations of the variational problem asso-
ciated to the integral

∫
(F2/2)dt . The fundamental difference with Riemannian geometry is

that all functions gil , ∂xk gl j , etc also depend on the fiber coordinates y1, . . . , yn , and not only
on the x1, . . . , xn .

In the context of Finsler metrics, �S has a symmetric lift which is more suitable than
the Berwald connection. Consider the Cartan tensor: the (0, 3)-tensor on the bundle V T M0

defined in natural coordinates by

Ai jk = 1

4

∂3 F2

∂yi∂y j∂yk
. (2·18)

Roughly speaking, it governs how gv varies fiberwise. As explained in [25] or in [8], the
Chern connection is the symmetric lift of �S with coefficients

�i
jk = γ i

jk − gis
(

Asjt�
t
k − A jkt�

t
s + Akst�

t
j

)
. (2·19)

In the context of Finsler manifolds parallel transport has, as expected, useful metric prop-
erties.

LEMMA 2·2. Let γ (t) ⊂ M be a geodesic, and let V, W be vector fields along γ . Then

d

dt
gγ̇ (V, W ) = gγ̇

(
Dγ V

dt
, W

)
+ gγ̇

(
V,

Dγ W

dt

)
. (2·20)

In contrast to the Riemannian case, this formula may not hold when γ is not a geodesic.
See the appendix for a proof.

A flag pole is a pair (�, v), where v ∈ T M0 and � is a 2-plane in Tπ(v)M containing v.
In the context of Finsler manifolds explained above, the associated flag curvature is

K (�, v) = gv(−Rv(w), w)

gv(v, v)gv(w, w) − gv(v, w)2
(2·21)

where w ∈ � is any vector such that {v, w} is linearly independent. In the Riemannian case,
where all the tensors involved only depend on the base point, K (�, v) does not depend on
v ∈ �, and is the seccional curvature of �.

A vector field J along a geodesic γ satisfying D2
γ J/dt2 − Rγ̇ (J ) = 0 is called a Jacobi

field. This ODE is referred to as the Jacobi equation. The linearization of the geodesic flow
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can be suitably represented according to the following standard lemma. A proof is found in
the appendix.

LEMMA 2·3. Let �t be the flow of S and set ζ(t) = d�t · ζ(0) where ζ(0) ∈ Tγ̇ (0)T M
is fixed. If J is the Jacobi field determined by ζ(0) � ((Dγ J/dt)(0), J (0)) under the iso-
morphism (2·5) then

ζ(t) �
(

Dγ J

dt
(t), J (t)

)
. (2·22)

The unit sphere bundle SM = {v ∈ T M : F(v) = 1} has contact-type as a hypersurface
inside T M0 equipped with the sympletic structure �F := (L−1)∗�. This is so since C is a
Liouville vector field, that is, LC�F = �F . Thus αF := iC�F restricts to a contact form
on SM . The geodesic spray S coincides with the Reeb vector field associated to αF |SM , that
is, it satisfies iSαF ≡ 1, iS�F ≡ 0. SM becomes a contact manifold with contact structure
ξF = ker αF |SM ⊂ T SM .

Setting (Rv)⊥ = {w ∈ Tπ(v)M | gv(v, w) = 0} then, since gv = (1/2)(∂2 F2/

∂ yi∂ y j )dxi ⊗ dx j and αF(v) = (1/2)(∂ F2/∂y j )dx j = (1/2)(∂2 F2/∂yi∂y j )y j dxi =
gv(v, dπ ·) in natural coordinates, one has

ξF |v � (Rv)⊥ ⊕ (Rv)⊥ (2·23)

under the isomorphism (2·5). Since the linearized flow d�t preserves ξF we get, in view
of (2·23) and (2·22), a familiar fact from Riemannian geometry: if J (0), (Dγ J/dt)(0) ∈
(Rγ̇ (0))⊥ then J (t), (Dγ J/dt)(t) ∈ (Rγ̇ (t))⊥, for every t .

2·4. Estimates on the Conley–Zehnder index

For the sake of completeness we quickly discuss the proof of Theorem 1·8. We use the
notation established in the last paragraphs.

2·4·1. A global symplectic trivialization of ξF ⊂ SS2

Let F be Finsler metric on S2, which is equipped with its orientation induced as a sub-
manifold of R

3. The unit sphere bundle SS2 is equipped with the contact form αF discussed
in § 2·3·3. For every v ∈ SS2, gv is an inner-product on Tπ(v)S2, and there exists a unique
vector v⊥ ∈ Tπ(v)S2 such that {v, v⊥} is a positively oriented gv-orthonormal basis of Tπ(v)S2.
Thus (Rv)⊥ = Rv⊥ and we obtain a global trivialization

(v, (s, t)) ∈ SS2 × R
2 
→ (sv⊥, tv⊥) ∈ (Rv)⊥ ⊕ (Rv)⊥ � ξF |v (2·24)

of ξF . The last identification is given by (2·23). One checks easily that this trivialization is
symplectic with respect to dαF .

2·4·2. Estimating the linearized twist

Let γ (t) be a geodesic on S2 with unit speed, and choose ζ(0) ∈ ξF |γ̇ (0) ⊂ Tγ̇ (0)SM .
Let �t be the Reeb flow of αF on SS2. Then, setting ζ(t) := d�t · ζ(0) ∈ ξF |γ̇ (t), we can
use (2·5) and identify ζ(t) � ((Dγ J/dt)(t), J (t)) as in (2·22), for some Jacobi field J . The
vector field γ̇ ⊥ is parallel, as one can prove by using (2·20) and noting that gγ̇ (γ̇ , γ̇ ⊥) and
gγ̇ (γ̇ ⊥, γ̇ ⊥) are constant in t . Writing J = f γ̇ ⊥ we get Dγ J/dt = f ′γ̇ ⊥, D2

γ J/dt2 = f ′′γ̇ ⊥

and, consequently,

f ′′ = gγ̇

(
D2

γ J

dt2
, γ̇ ⊥

)
= gγ̇

(
Rγ̇ (γ̇ ⊥), γ̇ ⊥)

f = −K (Tγ S2, γ̇ ) f. (2·25)
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Abbreviating K (Tγ S2, γ̇ ) by K (t) we get, after further identifying

ζ(t) �
(

Dγ J

dt
(t), J (t)

)
� ( f ′, f )

.= u(t)

via (2·24), an equation

u̇ =
(

0 −K (t)
1 0

)
u.

Thus, if ϑ(t) is a smooth lift of the argument of u(t) and the Finsler metric is positively
curved then

ϑ̇ � δ for any δ satisfying 0 < δ < min{1, Kmin}, (2·26)

where Kmin is the infimum among all flag curvatures.

2·4·3. Rademacher’s estimate on the length of a closed geodesic

Let l denote the infimum among all lengths of geodesic loops, and Kmax be the supremum
among all flag curvatures. The following estimate was obtained by Rademacher in ([26,
proposition 1]). See [25] for a detailed account of the subject:

0 < Kmin � Kmax ⇒ l �
π

(
1 + 1

r

)
√

Kmax
(2·27)

where r � 1 is the reversibility. In the Riemannian case, r = 1 and (2·27) is obtained from
Klingenberg’s estimate on the injectivity radius.

LEMMA 2·4. In the particular case of a positively curved Finsler metric on S2, every
prime closed geodesic γ such that γ̇ is contractible in SS2 has length larger than or equal
to 2π(1 + r−1)/

√
Kmax .

Proof. The curve γ consists of at least two distinct loops since, otherwise, γ̇ is not con-
tractible in SS2.

2·4·4. Estimating the index

Consider a positively curved Finsler metric F with reversibility r such that all flag
curvatures lie in the half-open interval (r 2/(r + 1)2, 1]. After rescaling we can assume

1 = Kmin � Kmax <

(
r + 1

r

)2

.

It follows by Lemma 2·4 and estimate (2·26) that ϑ varies strictly more than 2π along a
closed geodesic γ with γ̇ contractible in SS2, regardless of the choice of initial condition in
ker αF |γ̇ (0). According to (2·1) this proves Theorem 1·8.

3. Proof of Theorem 1·5
We split the arguments in three parts. In Section 3·1 we prove Lemma 1·4. In Section 3·2

we use Theorem 1·7 to prove (i) in Theorem 1·5. Finally, in Section 3·3 we exhibit for any
ε > 0 and r � 1, examples of Finsler metrics of Randers type on S2 with reversibility r
and flag curvatures in (r/r + 1)2 − ε < K � 1 admitting geodesics with one transverse
self-intersection.
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3·1. Contact-topological invariants of k8

Let us denote by B8 ⊂ B the set of C2 immersions of S1 into S2 with precisely one
transverse self-intersection. Every c ∈ B8 induces an embedded copy of S1 inside F−1(1) ⊂
T S2 given by ċ/F(ċ). Recall the Legendre transform LF : T ∗S2 → T S2 induced by F ,
which is a continuous fiber-preserving map that restricts to a smooth diffeomorphism T ∗S2 \
0 � T S2 \0 and induces a cometric F∗ = F ◦LF . Then the tautological 1-form αtaut restricts
to a contact form on (F∗)−1(1). Consequently αF := (L−1

F )∗αtaut restricts to a contact form
on F−1(1), and clearly ċ/F(ċ) is positively transverse to the contact structure ξF := ker αF .
It is not hard to check that any two c0, c1 ∈ B8 are homotopic through curves cs ∈ B (or even
in B8) ∀s ∈ [0, 1], so that we get a corresponding isotopy ċs/F(ċs) through knots which are
transverse to ξF , thus preserving the knot type and the self-linking number. Consequently,
it suffices to exhibit one element c ∈ B8 such that ċ/F(ċ) is unknotted and has self-linking
number −1.

First we prove Lemma 1·4 for the metric F0(v) := √
g0(v, v), where g0 is the Rieman-

nian metric induced by isometrically embedding S2 in R
3 as the unit sphere. Taking polar

coordinates (θ, R) in C, θ ∈ R/2πZ and R � 0, consider the embedding

γ : C −→ S3 ⊂ C
2; (θ, R) 
→ 1√

1 + R2
(1, Reiθ ).

Denote by

λ0 = 1

4i
(z̄dz − zdz̄ + w̄dw − wdw̄) = 1

2
(q0dp0 − p0dq0 + q1dp1 − p1dq1)

the Liouville form on C
2 � R

4 with complex coordinates (z = q0 + i p0, w = q1 + i p1). The
embedded circles γR = γ (·, R) converge, as R → ∞, to the Hopf fiber P0 = {θ 
→ (0, eiθ ) |
θ ∈ [0, 2π]} in the C1-topology. All γR are positively transverse (with respect to λ0) to
ker λ0. It is well know that sl(P0) = −1, which implies sl(γR) = −1 ∀R > 0. Moreover,
γR0 is clearly unknotted since it is the boundary of the embedded disk DR0 parametrized by
γ |{R�R0}.

Identifying S3 � SU (2) via

(z, w) �
(

z w

−w̄ z̄

)
, |z|2 + |w|2 = 1,

and considering the matrices

j =
(

0 1
−1 0

)
and k =

(
0 i
i 0

)
there is a double cover D : S3 → F−1

0 (1) given by

A ∈ SU (2) � S3 
−→ (A−1 j A, −A−1k A) ∈ F−1
0 (1)

where we see a unit vector (x, y, t) ∈ S2 ⊂ R
3 sitting inside S3 as (i t, x + iy). Here A−1 j A

represents the base point and −A−1k A represents the tangent vector. We have D∗αF0 =
4λ0|S3 (cf. [11, 13]). The factor 4 appears since a Hopf circle on S3, which has λ0-action
equal to π , projects onto the unit velocity vector of a great circle prescribed twice, which
has length 4π .

The group of deck transformations of D is precisely {id, a}, where a is the antipodal
map. Thus, for each R0 > 0, �R0 := D ◦ γR0 is an embedded knot in F−1

0 (1) since the
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curve γR0 does not contain pairs of antipodal points. It is clearly transverse to ξF0 . By the
same token, D̃R0 := D(DR0) is an embedded disk with boundary �R0 , proving that �R0 is
unknotted. Moreover, since D is a 1-1 contactomorphism of a neighborhood of DR0 in S3

onto a neighborhood of D̃R0 in F−1
0 (1), we get that the self-linking number of �R0 is also

−1. We concluded that each �R0 is unknotted and has self-linking number −1 in the contact
manifold (F−1

0 (1), ξF0).
It only remains to find c ∈ B8 such that �1 is transversely isotopic to ċ/F0(ċ). Let c :

[0, 2π] → S2 be defined by the equation

c(θ) = π ◦ �1(θ)

where π : T S2 → S2 is the bundle projection. It is clear from the formula

c(θ) = 1

2
(1 + cos 2θ, sin 2θ, 2 sin θ) ∈ R

3

that c ∈ B8. Since �1 is positively transverse to ξF0 , we have

αF0 |�1(θ) · �̇1(θ) = g0(c(θ))(ċ(θ), �1(θ)) > 0 ∀θ.

Thus we find a C1 lift ϑ(θ) ∈ (−π/2, π/2) for the g0-angle between �1 and ċ/F0(ċ), and
can define a transverse homotopy between �1 and ċ/F0(ċ) keeping the base points fixed by
the formula

hs(θ) = (1 − s) ċ(θ)

F0(ċ(θ))
+ s�1(s)

F0

(
(1 − s) ċ(θ)

F0(ċ(θ))
+ s�1(s)

) ∈ Tc(θ)S
2 � F−1

0 (1).

It remains to show that {hs}s∈[0,1] is a transverse isotopy. The only possibility for self-
intersections of the curves θ 
→ hs(θ) ∈ F−1

0 (1) is at the values θ = 0 and θ = π where the
curve c(θ) self-intersects at the point (1, 0, 0). Looking at the formulas

ċ(θ) = (− sin 2θ, cos 2θ, cos θ) ∈ Tc(θ)S2

�1(θ) = (− 1
2 sin 2θ, 1

2 (cos 2θ − 1), cos θ) ∈ Tc(θ)S2

we note that both ċ(0) and �1(0) point at north hemisphere, while ċ(π) and �1(π) point
at the south hemisphere. Thus the formula for hs does not produce self-intersections and,
consequently, is a transverse isotopy. Lemma 1·4 is proved for the metric F0.

Now we consider a general Finsler metric F : T S2 → [0, +∞). We have associated
Legendre transforms LF0,LF and cometrics F∗

0 = F0 ◦ LF0 , F∗ = F ◦ LF . The map
� : (F∗)−1(1) → (F∗

0 )−1(1) defined by �(p) = p/F∗
0 (p) satisfies �∗(αtaut|(F∗

0 )−1(1)) =
(1/F∗

0 )αtaut|(F∗)−1(1), so that it is a contactomorphism. Hence we get a contactomorphism

� := LF0 ◦ � ◦ L−1
F : F−1(1) −→ F−1

0 (1).

Given any immersion c : S1 → S2 we construct two transverse embeddings Vc, Wc :
S1 → F−1

0 (1) covering c as follows: Vc = ċ/F0(ċ) and Wc = �(ċ/F(ċ)). Since � preserves
co-orientations induced by αF and αF0 , we have

g0(c(θ))(Vc(θ), Wc(θ)) > 0, ∀θ ∈ R/2πZ � S1.

Now let c0 ∈ B8 be arbitrary. Assume its self-intersection point is c0(0) = c0(π). We clearly
can find a homotopy cs : S1 → S2, s ∈ [0, 1], starting at c0, such that cs ∈ B8 for every
s ∈ [0, 1), and the immersion c1 has a unique self-intersection point at c1(0) = c1(π)

satisfying ċ1(0) = −ċ1(π) (negative self-tangency). This induces corresponding isotopies
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Vcs , Wcs : S1 → F−1
0 (1) through transverse knots. Now define a homotopy Hτ : S1 →

F−1
0 (1) satisfying H0 = Vc1 and H1 = Wc1 by

Hτ (θ) = (1 − τ)Vc1(θ) + τWc1(θ)

F0((1 − τ)Vc1(θ) + τWc1(θ))
,

where τ ∈ [0, 1]. The map Hτ is well-defined since g0(c1(θ))(Vc1(θ), Wc1(θ)) > 0, for all
θ , and hence the denominator above never vanishes. However, there could be some value of
τ where Hτ is not a knot in F−1

0 (1). This would only be the case if Hτ has self-intersections,
which is only possible at the values θ = 0 and θ = π . Note, however, that this never
happens because of the condition ċ1(0) = −ċ1(π). We succeeded in showing that the knots
Vc0 and Wc0 are transversally isotopic in (F−1

0 (1), ξF0). We already showed before that Vc0

is unknotted and has self-linking number −1. Thus the same is true for the knot ċ/F(ċ) ⊂
(F−1(1), ξF).

3·2. Non-existence of geodesics

Let F be a Finsler metric on S2 satisfying (1·2). Then, as remarked in Section 2·3·3, the
pull-back of the tautological 1-form to T T S2, via the inverse Legendre transform induced
by F , restricts to a contact form λ on SS2, which induces the contact structure ξ := ker λ.
By Theorem 1·8, λ is dynamically convex.

Assume, by contradiction, that there exists a prime closed geodesic γ with unit speed,
such that P = {t 
→ γ̇ (t)} ⊂ SS2 is a closed unknotted Reeb orbit with self-linking number
−1.

In the case λ is non-degenerate Theorem 1·7 implies that SS2 is homeomorphic to S3, a
contradiction. It remains to consider the degenerate case. Denote by

Oλ = { f ∈ C∞(SS2, R
+) | f λ is non-degenerate}.

The following lemma, which we state without proof, is an adaptation of [18, lemma 6·8] to
our situation, see also [15]. The proof is straightforward.

LEMMA 3·1. There exists a sequence fk ∈ Oλ converging to 1 in the C∞-topology as
k → +∞, such that each contact form λk := fkλ admits P = (x, T ) as a closed Reeb
orbit.

We will prove now that λk is dynamically convex for all k sufficiently large. We denote
by φt the Reeb flow of λ and by φk

t the Reeb flow of λk .
Consider the global dλ-symplectic trivialization � : ξ

∼→ SS2 × C described in (2·24).
Since λk → λ in C∞ we can find dλk-symplectic trivializations �k : ξ

∼→ SS2 × C such
that �k → � in C∞. Given p0 ∈ SS2 and v(0) ∈ ξp0 \ 0 arbitrary, the solution v(t) =
dφt · v(0) ∈ ξφt (p0) of the linearized λ-Reeb flow can be represented using the frame � as
a curve v(t) � r(t)eiθ(t) ⊂ C, where r(t) > 0 and θ(t) ∈ R is any continuous lift of the
argument. There exists a > 0 such that

θ̇ (t) > a, (3·1)

for all t , independently of the choice of p0 and v(0). The existence of a follows from es-
timate (2·26). Moreover, if p0 is a point on a closed contractible λ-Reeb orbit P = (x̄, T̄ )

then

θ(T̄ ) − θ(0) > 2π. (3·2)
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This is a consequence of (2·1) and of the dynamical convexity of λ. In the following, solu-
tions of the linearized λk-Reeb flow will be represented similarly by curves in the complex
plane with the use of the frame �k .

Arguing indirectly, suppose there exists a subsequence of fk , again denoted by fk , such
that λk is not dynamically convex. Then there exists a contractible closed λk-Reeb orbit
Pk = (xk, Tk), with μC Z (Pk) � 2, for each k. Assume first that Tk → +∞ as k → +∞.
Since λk → λ and �k → � in the C∞-topology, and SS2 is compact, inequality (3·1) holds
for any linearized solution vk � rkeiθk of the λk-Reeb flow over Pk , if k is large. In view of
the geometric definition of the Conley–Zehnder index explained in Section 2·1, this implies

μC Z (Pk) � θk(Tk) − θk(0)

π
− 1 >

aTk

π
− 1 −→ +∞

as k → ∞, in contradiction with μC Z (Pk) � 2.
Now assume that Tk = ∫

Pk
λk has a bounded subsequence. By the Arzelà-Ascoli theorem

we find a converging subsequence, still denoted Tk , such that Tk → T0, xk(Tk ·) → x0(T0·)
in C∞ where P0 = (x0, T0) is a closed λ-Reeb orbit. We also find a solution vk = rkeiθk of
the linearized flow over Pk , with vk(0) bounded and bounded away from 0 ∈ C, satisfying
θk(Tk)−θk(0) � 2π for each k. Again using that λk → λ and �k → � in C∞, a subsequence
of vk converges (in C∞) to a solution v0 = r0eiθ0 over P0 satisfying θ0(T0) − θ0(0) � 2π , in
contradiction to (3·2).

Therefore we end up with a sequence λk converging to λ in the C∞-topology such that, for
each k large enough, λk is a dynamically convex non-degenerate tight contact form on SS2

admitting the unknotted closed orbit P with sl(P) = −1. Reasoning as before, Theorem 1·7
leads to the contradiction SS2 � S3. The proof of (i) in Theorem 1·5 is complete.

3·3. Examples of Randers type

Here we prove (ii) in Theorem 1·5. A Riemannian metric a and a 1-form b on a manifold
M induce a Randers metric

F(v) = √
a(v, v) + b(v), v ∈ T M, (3·3)

precisely when |b|a < 1 everywhere. These form an interesting and rich family of Finsler
geometries, vastly studied in the literature.

3·3·1. Zermelo navigation

A pair (h, X), where h is a Riemannian metric on M and X is a vector field satisfying√
h(X, X) < 1, is called a Zermelo navigation data. It induces a Randers-type metric on

T ∗M by F∗(λ) = √
h∗(λ, λ)+λ · X , where h∗ is the dual of h. The pull-back F of F∗ by the

Legendre transform is a Finsler metric on M , which is said to solve the associated Zermelo
navigation problem. In fact, its geodesic flow parametrizes the movement of a particle on M
under the additional influence of a tangential wind, see [8] for a detailed discussion.

Remark 3·2. It is curious that F is of Randers type, that is, Legendre transformation pre-
serves the form of the metric. To see this, consider (x1 · · · xn, y1 · · · yn) natural coordinates
on T M , with dual coordinates (x1 · · · xn, p1 · · · pn) on T ∗M . Then F∗ = √

hrs pr ps + Xk pk

and

yi = 1

2

∂(F∗)2

∂pi
=

(
hi j p j√
hrs pr ps

+ Xi

)
F∗ ⇒ pk = hki(yi − F Xi)

√
hrs pr ps

F
.
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Plugging into the formula for F = F∗, and writing � = pk Xk , we get

F = F − �

F

√
hkl(yk − F Xk)(yl − F Xl) + �

which gives F = √
hkl(yk − F Xk)(yl − F Xl). Raising to the square and expanding the

right side we get a second degree polynomial εF2 + B F + C = 0, with ε = (1 − Xl Xl),
B = 2yk Xk and C = −hkl yk yl . Here we lowered the indices of X with the metric h. Solving
we get F = √

ai j yi y j + bk yk , with ai j = ε−1hi j + ε−2 Xi X j and bk = −ε−1 Xk .

The behavior of the geodesic flow of F is better understood if we work on T ∗M equipped
with its canonical symplectic structure � � dpi ∧ dxi and Hamiltonian (F∗)2/2. This
discussion is based on [25]. We can write

F∗ = H + K with H = √
hi j pi p j and K = pi Xi .

The Hamiltonian vector fields are X F∗ = X H +X K , where iX H � = −d H and iX K � = −d K .
If Rt is the flow of X then the flow of X K is λ 
→ (d R−1

t )∗ · λ. If X is Killing with respect
to the metric h then {H, K } = 0 since Rt are isometries. Thus the flows �H

t and �K
t of X H

and X K respectively, commute and, consequently, �F∗
t = �H

t ◦ �K
t . The geodesic flow is

precisely the Hamiltonian flow �
(F∗)2/2
t of (F∗)2/2. Hence

�
(F∗)2/2
t = �F∗

t = �H
t ◦ �K

t = �K
t ◦ �H

t on the unit sphere bundle (3·4)

since X(F∗)2/2 = F∗ X F∗ . Since H is constant along trajectories of X H 2/2 we have �H
t (λ) =

�
H 2/2
t/H(λ)(λ), which we can use to finally arrive at

�
(F∗)2/2
t (λ) = �K

t ◦ �
H 2/2
t/H(λ) (λ) , ∀λ ∈ (F∗)−1(1). (3·5)

Consider the Legendre transform L(λ) ∈ Tx M associated to (F∗)2/2, where λ = pi dxi ∈
T ∗

x M is some covector. If F∗(λ) = 1 we have

L(λ) =
∑

i

1

2
(∂pi (F∗)2)∂xi =

(
hi j p j√
hrs pr ps

+ Xi

)
∂xi = Lh

(
λ

H(λ)

)
+ X

where Lh is the Legendre transform associated to H 2/2. Thus, setting λ = L−1(v), we find

Lh

(
λ

H(λ)

)
= v − X, ∀v ∈ SM = F−1(1). (3·6)

Fix v ∈ SM and let c(t) be the geodesic of F satisfying ċ(0) = v. Then c(t) is the base
point of �

(F∗)2/2
t (λ). The base point of �

H 2/2
t/H(λ)(λ) is equal to γ0(t), where γ0 is the geodesic

with respect to the metric h satisfying γ̇0(0) = Lh(λ/H(λ)) = v − X , by (3·6). This fact
and (3·5) imply

c(t) = Rt(γ0(t)). (3·7)

This formula will be used later. The reversibility of F is

r = sup
x∈M

1 + |X (x)|h
1 − |X (x)|h . (3·8)

3·3·2. Pinched surfaces of revolution

Let (x, y, z) be standard Euclidean coordinates in 3-space. We consider a surface S of re-
volution around the z-axis symmetric under reflection with respect to the xy-plane, with the

https://doi.org/10.1017/S0305004112000333 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004112000333
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Riemannian metric induced by the ambient Euclidean metric. Denoting ρ = √
x2 + y2, then

S is determined by a curve in the ρz-plane, which we assume parametrized by a parameter
s satisfying ρ̇2 + ż2 = 1. We make s = 0 correspond to the equator, where the radius is
R = ρ(0). We always assume R < 1.

The symmetry condition forces ρ to be an even function of s in its domain (−L , L).
If S is a sphere then L < +∞, ρ̇ → −1 as ρ → ±L , the length of a meridian is 2L
and S intersects the z-axis in two poles. In the complement of the poles we have obvious
coordinates (s, θ) ∈ (−L , L) × R/2πZ.

The Gaussian curvature is K = −ρ̈/ρ, and we denote by Kmax and Kmin its maximum and
minimum, respectively. If K is everywhere positive then the maximal radius is attained at
the equator, and the maximal height is attained at the poles. We wish to construct S in a way
that K ≡ Kmin = 1 holds at the equator. Then ρ̈(0) = −R and, moreover, Kmax � 1/R2 is
a necessary condition. In fact, using ρ̇(0) = 0, we compute

1 − R2 =
∫ L

0
(ρ2 + ρ̇2)′ds =

∫ L

0
(K − 1)(−2ρρ̇)ds

� (Kmax − 1)

∫ L

0
(−2ρρ̇)ds = (Kmax − 1)R2.

Now we claim that if Kmax > 1/R2 then S with all the above properties exists. To see
that, consider a smooth function g : [0, R2] → [0, +∞) satisfying g(0) = 1, g(R2) = 0,
g′ ∈ [−Kmax , −1], g′ ≡ −Kmax near 0, g′ ≡ −1 near R2 and g′′ � 0. Note that g(x) =
R2 − x for x ∼ R2. Let ρ(s) be the unique solution of

ρ̇ = −
√

g(ρ2), ρ(0) = R (3·9)

for s � 0, which coincides with R cos s for s small. Here it should be noted that (3·9) does
not have a unique solution, as one can see by considering the constant function R. Then
ρ̇(0) = 0 and there exists L > 0 such that ρ(s) → 0+ and ρ̇(s) → −1+ as s → L−. This
solution ρ determines a C1-embedded disk in the half-space z � 0, which can be reflected
to provide the required C1 sphere of revolution S. One can check that S is smooth, that
the maximal value of the Gaussian curvature is Kmax (attained around poles), and that the
minimal value is Kmin = 1 (attained around the equator).

Note that g(x) � R2 − x ∀x ∈ [0, R2]. This implies

ρ(s) � R cos s, ∀s ∈ [0, L]. (3·10)

3·3·3. Estimating a return time

Fix any R ∈ (0, 1) and let g : [0, R2] → [0, +∞) be a function as in Section 3·3·2 with
Kmax > R−2. Consider the associated unique solution ρ(s) : [0, L] → R of (3·9) which
equals R cos s for small values of s. We claim that, for any b > 1, it is possible to make
2L < bπ R by taking Kmax close enough to R−2.

To prove this, let h : [0, R2] → [0, +∞) be the continuous function defined by h(x) =
1−Kmax x if x ∈ [0, x∗] and h(x) = R2−x if x ∈ [x∗, R2], where x∗ = (1−R2)/(Kmax−1) ∈
(0, R2). It is immediate that h(x) = g(x) for all x in a neighbourhood of {0, R2}. Since
g′′ � 0, we have g � h.

Let ξ(s) be the unique solution of ξ̇ = −√
h(ξ 2) with initial condition ξ(0) = R coin-

ciding with R cos s when s > 0 is small. We want to estimate the first s∗ > 0 such that
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ξ(s∗) = 0. Observe that ξ satisfies ξ̈ = −Kmaxξ if 0 � ξ � √
x∗ and satisfies ξ̈ = −ξ if√

x∗ � ξ � R. This implies that s∗ = s1 + s2 where s1 is such that ξ(s1) = √
x∗.

Now we prove that if we choose Kmax sufficiently close to 1/R2 then s∗ is close to π R/2.
Observe that ξ(s) = R cos s for 0 � s � s1. Thus if Kmax → R−2, x∗ → R2 and, therefore,
s1 → 0. For s � s1, ξ(s) is a solution of ξ̈ = −Kmaxξ satisfying ξ(s1) = √

x∗ and ξ̇ (s1) =
−√

1 − Kmax x∗ < 0. Thus the time s2 that it takes to reach zero is smaller than the time
1√

Kmax
cos(

√
Kmax s) takes to decay from 1√

Kmax
to 0, which is π/2

√
Kmax . Consequently

s2 <
π

2
√

Kmax
−→ π R

2

as Kmax → 1/R2. Thus Kmax ∼ R−2 implies s∗ = s1 + s2 < bπ R/2.
To estimate the length of the meridian observe that ρ(s) � ξ(s) for all s since g � h

on [0, R2]. Here we used a comparison theorem for solutions of first order scalar ODE’s
from [10]. Thus the length 2L of the meridian is at most 2s∗ which is smaller than bπ R for
Kmax close enough to R−2.

3·3·4. Introducing the wind and completing the proof

So far we have not fixed any of the data explicit in the statement of the Theorem 1·5.
Let r � 1 be given. Consider ε > 0 small and numbers R, Kmax satisfying

r

r + 1
− ε < R <

r

r + 1
,

(
r

r + 1

)−2

<
1

R2
< Kmax <

(
r

r + 1
− ε

)−2

. (3·11)

Following the construction in Section 3·3·2, we can find a smooth surface of revolution
(S, h) with Gaussian curvature taking values in [1, Kmax ], and with an equator of radius
R. We can arrange so that the curvature equals Kmax near the poles, and equals 1 near the
equator.

By the discussion of Section 3·3·3 we can assume, after making ε small enough, that the
length T of a meridian satisfies

T �
(

r + 1

r

)
π R < π. (3·12)

We can also assume that ((r − 1)/(r + 1))/(r/(r + 1) − ε) ∼ (r − 1)/r < 1 by making
ε even smaller. Take η � 0 so that ηR = (r − 1)/(r + 1). Similarly to [21], consider the
vector field

X = η
∂

∂θ
(3·13)

and let F be the Randers metric on S induced by the navigation data (h, X), as explained in
Section 3·3·1. By (3·8) F has reversibility r . Later we shall need to note that

T η � π

(
r − 1

r + 1

)(
r

r + 1
− ε

)−1

< π (3·14)

Crucial to our analysis is the fact that all flag curvatures of F are independent of the
chosen flagpole and coincide with the Gaussian curvatures of h, see [8].

LEMMA 3·3. Let x be a point in the equator and let v ∈ Tx S satisfy F(v) = 1 and
h(v − X, X) > 0 (� 0). Then the geodesic c(t) with respect to F with initial condition
ċ(0) = v satisfies h(ċ(t), X ◦ c(t)) > 0 (� 0), ∀t � 0.
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Proof. Clearly X is Killing for h. According to (3·7), c(t) = Rt ◦ γ0(t), where Rt is the
flow of X and γ0 is a geodesic with respect to h with γ̇0(0) = v − X . Thus, in view of
the Clairaut integral for surfaces of revolution, h(γ̇0, X ◦ γ0) > 0 (� 0) for t � 0. We can
estimate

h(ċ, X ◦ c) = h(X ◦ c, X ◦ c) + h(d Rt · γ̇0, X ◦ c)

= |X ◦ c|2h + h(d Rt · γ̇0, d Rt · X ◦ γ0)

= |X ◦ c|2h + h(γ̇0, X ◦ γ0) > 0 (� 0).

This concludes the proof of the lemma.

Fix a point x0 in the equator and let 0 < φ0 � π/2 be determined as follows: the unique
vector vφ0 ∈ Tx0 S pointing to the northern hemisphere, satisfying F(vφ0) = 1 and h(vφ0 −
X, X) = 0 makes h-angle φ0 with X . If for every φ ∈ [0, φ0] we denote by vφ the unique
vector not pointing south, satisfying F(vφ) = 1 and making h-angle φ with X , then φ <

φ0 ⇒ h(vφ − X, X) > 0. Analogously, we write cφ for the geodesic of F satisfying ċφ(0) =
vφ , and θφ(t) for the unique lift of the function θ ◦cφ(t) to the universal covering R satisfying
θφ(0) = 0, ∀φ ∈ [0, φ0). The lemma above provides the estimate θ̇φ > 0.

By (3·7), cφ0(t) = Rt ◦ γ+(t) where γ+ is a geodesic of h heading north that leaves x0

h-perpendicularly to the equator, and Rt is the flow of X . Thus cφ0 passes through the north
pole, and that is why θφ(t) is defined only for φ < φ0. Moreover, 1 = F(vφ0) = |vφ0 − X |h =
|γ̇+(0)|h , see Remark 3·2.

Let Tφ > 0 denote the first return time of the geodesic cφ to the equator, and P(φ) be the
point of return, which are well-defined smooth functions of φ ∈ (0, φ0]. This is so since, by
uniqueness of solutions of ODEs, the first hit of any geodesic cφ , with φ ∈ (0, φ0], with the
equator is transverse. We have that Tφ0 is equal to the h-length of the meridian T . To see that
one needs to make use of the identity F(v) = |v − X |h on F−1(1). For φ < φ0 we have

P(φ) = (R cos θφ(Tφ), R sin θφ(Tφ), 0).

Clearly the formula cφ0(t) = Rt ◦ γ+(t) implies

P(φ0) = (R cos(π + Tφ0η), R sin(π + Tφ0η), 0).

Thus dist(θφ(Tφ), {π + Tφ0η + {0, 2π, 4π, . . . }}) → 0 as φ → φ−
0 . We used that θ̇φ > 0 for

φ < φ0. The curves cφ converge in C1
loc to cφ0 as φ → φ−

0 , and cφ0 does not self-intersect
before hitting the equator since Tφ0η < π by (3·14). Thus cφ does not have a self-intersection
before first hitting the equator when φ is close to φ0. This proves that θφ(Tφ) → π + Tφ0η

as φ → φ−
0 .

The geodesic flow is the Reeb flow in the unit sphere bundle SS2 = F−1(1) equipped with
the contact form αF discussed in Section 2·3. The Jacobi vector field J (t) = ∂φ

∣∣
φ=0

cφ(t)
along c0(t) satisfies gċ0(ċ0, J (t)) ≡ 0 because it comes from a vertical variation and, as such,
lies in the contact structure ξF = ker αF . Thus J (t) = f (t)ċ⊥

0 (t), where f satisfies (2·25).
Here gv, v � 0, is the positive inner-product (2·13) on Tπ(v)S2, and ċ⊥

0 is the unique vec-
tor such that {ċ0, ċ⊥

0 } is a positively oriented gċ0 -orthonormal basis of Tc0 S2. Since the flag
curvatures along the equator are constant equal to 1, f (t) is a (positive) multiple of sin t and,
consequently, the first zero of J appears at time π . Thus

P(φ) → c0(π) = (R cos(π R−1 + πη), R sin(π R−1 + πη), 0)
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and θφ(Tφ) → π R−1 + πη as φ → 0+. Summarizing, we proved

lim
φ→φ−

0

θφ(Tφ) = π + Tφ0η < 2π (see (3·14)) (3·15)

and

lim
φ→0+

θφ(Tφ) = π R−1 + ηπ = R−1π(1 + ηR) >

(
r

r + 1

)−1

π
2r

r + 1
= 2π. (3·16)

By continuity of φ 
→ θφ(Tφ), there exists φ∗ ∈ (0, φ0) such that θφ∗(Tφ∗) = 2π , and cφ∗ first
returns to the equator exactly at x0. Moreover, cφ∗ does not self-intersects before hitting the
equator since, otherwise, there would be some t < Tφ∗ such that θ̇φ∗(t) � 0, a contradiction.

By the symmetry of F under the reflection Q with respect to the xy-plane,

ċφ∗(Tφ∗) = d Q · ċφ∗(0).

Here one has to make use of the Clairaut integral for the underlying Riemannian metric h.
Thus, c∗

φ : [0, 2Tφ∗ ] → S2 is a smooth closed geodesic with precisely one transverse self-
intersection. The flag curvatures lie between 1 and Kmax , where Kmax satisfies (3·11). We
can normalize the curvature, after dilating the Finsler metric, in order to complete the proof
of Theorem 1·5.

Remark 3·4. Given r � 1 and 0 < δ < (r/(r + 1))2 we can construct a surface of revolu-
tion Sδ,r as above to find an example of a δ-pinched Finsler metric on S2 with reversibility
equal to r , which is not dynamically convex. In fact, the double cover of the equator of
Sδ,r correspond to a contractible closed geodesic on its unit tangent bundle and has Conley–
Zender index equal to 1. Therefore, the pinching condition on the flag curvatures given by
Harris-Paternain in Theorem 1·8 that ensures dynamical convexity for αF is sharp.

4. Proof of Theorem 1·6
To prove the first assertion, observe that we can assume by contradiction the existence

of convex hypersurfaces Sk ⊂ R
2m , k � 1, converging to S2m−1 in Conv(2m) as k → ∞,

such that the Hamiltonian flow on Sk admits a closed orbit Pk with A(Pk) = ∫
Pk

λ0 → T0 ∈
R

+\{π}. These corresponds to the existence of functions fk : S2m−1 → (0, +∞) converging
to 1 in the C2-topology such that the Reeb flow �k : R × S2m−1 → S2m−1 associated to the
contact form λk := fkλ0|S2m−1 admits a closed orbit, also denoted by Pk , with prime period
Tk and satisfying A(Pk) = ∫

Pk
λk = Tk → T0 ∈ R

+\{π}. The Reeb vector fields R0, Rk ,
k � 1, associated to λ0|S2m−1 , λk , k � 1, satisfy Rk → R0, as k → ∞, in the C1-topology.
Since all the orbits of the Reeb flow �0 associated to λ0|S2m−1 are closed with prime period
π , and since Tk → T0, we conclude from Arzelà-Ascoli theorem the existence of a simple
closed orbit P0 ⊂ S2m−1 of �0 and a subsequence of Pk , again denoted by Pk , such that Pk

converges to a k0 cover of P0, for some integer k0 > 1 satisfying T0 = k0π . The following
proposition due to Bangert [3] is crucial for completing the proof.

PROPOSITION 4·1 (Bangert [3]). Let � : R × M → M, with M closed, be a C1 flow and
p ∈ M be a periodic point of � with prime period T . Then for every ε > 0 there exists a
neighbourhood U of � in the weak C1 topology in C1(R × M, M) and a neighbourhood U
of p in M such that the following holds: if a flow �̂ ∈ U has a periodic point p̂ ∈ U with
prime period T̂ then either T̂ > ε−1 or there exists an integer k̂ > 0 such that |T̂ − k̂T | < ε
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and the eigenvalues of the linear map

D2�(T, p) : Tp M → Tp M (4·1)

which are k̂th roots of unit generate all the k̂th roots of unity.

Applying Proposition 4·1 to our situation we conclude that

D2�
0(π, p0) = I dTp0 S2m−1 : Tp0 S2m−1 −→ Tp0 S2m−1, p0 ∈ P0, (4·2)

admits an eigenvalue λ0 which generates all the k0th roots of unity. But this is a contradiction
since k0 > 1 and all eigenvalues of (4·2) are equal to 1.

To prove the statement made in the case 2m = 4 about the linking numbers of short and
long orbits we proceed indirectly and assume, by contradiction, the existence of Sn → S3 in
Conv(4), Pn, P ′

n ∈ P(Sn) satisfying A(Pn) → π , A(P ′
n) → +∞ and supn link(P ′

n, Pn) =
k0 < ∞.

We may view Pn and P ′
n as closed Reeb orbits in S3 of contact forms fnλ0|S3 with fn → 1

in the C2-topology. Let R0 and Rn be the Reeb vector fields associated to λ0|S3 and fnλ0|S3 ,
respectively. Then Rn → R0 in the C1-topology. We denote by �n

t and �0
t the flows of Rn ,

R0 respectively. We can also assume, in view of the Arzelà-Ascoli theorem, that Pn → L0

in C1 for some Hopf fiber L0 ⊂ S3.
The Hopf fiber L0 corresponds to a π-periodic orbit of the flow �0. Identifying R

4 � C
2,

there is no loss of generality if we assume L0 = {(eiϑ, 0) | ϑ ∈ R}. Denote by E : C
2\{0} →

S3 the projection E(x) = x/|x | and by �τ the plane {ei2πτ } × C. Then each Dτ := E(�τ )

is an embedded disk, transverse to the vector field R0 in D̊τ satisfying ∂ Dτ = L1, where L1

is the Hopf fiber L1 = {(0, eiϑ) | ϑ ∈ R}. Moreover, Dτ is a global surface of section for
�0 and the (first) return map to D̊τ is precisely the identity.

This open book decomposition induces a diffeomorphism

� : S3 \ L1 −→ R/πZ × C

(z, w) 
−→
(

arg z

2
,

w√
1 − |w|2

)
(4·3)

satisfying �(D̊τ ) = {πτ } × C. The flow �̂0
t := �∗�0

t = � ◦ �0
t ◦ �−1 is obtained by

integrating the vector field R̂0 := �∗ R0 and is given by

�̂0
t (τ0, ζ ) = (τ0 + t, ei2tζ ). (4·4)

Note that L0 is mapped precisely onto R/πZ × 0 since �(ei2ϑ, 0) = (ϑ, 0).
Since Pn → L0 in C1, we find diffeomorphisms Fn of R/πZ × C satisfying: supp(Fn) ⊂

R/πZ × B1(0), Fn → id in C1 and Fn ◦ �(Pn) = R/πZ × 0. This follows from an
application of Lemma 4·2.

LEMMA 4·2. Let M be a Ck-manifold and Z ↪→ M be a closed Ck-submanifold. Sup-
pose U is any open neighbourhood of Z and Zn are Ck-submanifolds converging to Z in
the Ck-topology as n → ∞. Then there exist diffeomorphisms ϕn satisfying ϕn(Zn) = Z,
supp(ϕn) ⊂ U and ϕn → idM in the Ck-topology.

Proof. In fact, by considering a tubular neighbourhood of Z in M one sees that there is
no loss of generality if we assume M is a Ck-vector bundle, Z is the zero section, U is a
neighborhood of the zero section and the Zn are graphs of sections sn converging to the zero
section in the Ck-topology. Let f : M → [0, 1] be a fixed smooth function with support
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compactly contained in U that is identically equal to 1 in a neighborhood of the zero section
containing all Zn . If π is the projection of M onto its base, we define the diffeomorphism
ϕn : M → M by ϕn(v) := v − f (v)sn(π(v)). It is easy to check that ϕn satisfies all
requirements, when n is sufficiently large. This concludes the proof of the lemma.

If we set �n := Fn ◦�, R̂n := (�n)∗ Rn and denote by �̂n the flow of R̂n then the maximal
domain of definition of �̂n is an exhausting sequence of open subsets of R×R/πZ×C and
�̂n → �̂0 in the C1-topology on compact sets of R × R/πZ × C.

Consider D0 := �−1(R/πZ × [0, +∞)). This set is a smooth embedded disk satisfying
∂ D0 = L0 which is transverse to R0 at D̊0 = D0 \ L0. In fact, D̊0 coincides with E(C×{1}).
Now we consider disks

Dn := �−1
n (R/πZ × [0, +∞)). (4·5)

Since the support of Fn is contained in R/πZ × B1(0) the disk Dn coincides with D0 on
S3 \ �−1(R/πZ × B1(0)). Moreover, ∂ Dn = Pn .

We claim Dn is transverse to Rn at the points of Dn \ Pn . Using Taylor’s formula and
comparing with R̂0 we obtain

R̂n(τ, z) = R̂n(τ, 0) + D2 R̂0(τ, 0) · z

+
[

D2 R̂n(τ, 0) − D2 R̂0(τ, 0) +
∫ 1

0
D2 R̂n(τ, λz) − D2 R̂n(τ, 0)dλ

]
· z

= R̂n(τ, 0) + D2 R̂0(τ, 0) · z + εn(τ, z) · z

(4·6)

with

sup{|εn(τ, z)| : (τ, z) ∈ R/πZ × B1(0)} −→ 0

as n → ∞. In these coordinates the vector (0, 0, 1) is normal to the strip R/πZ × [0, +∞).
Note that

D2 R̂0(τ, 0) =
⎡⎣0 0

0 −2
2 0

⎤⎦ (4·7)

so for every η > 0 we find r0 > 0 and n0 > 0 such that

〈R̂n(τ, r), (0, 0, 1)〉 � (2 − η)r (4·8)

for every n � n0 and r < r0. This shows that R̂n is transverse to R/πZ × (0, r0) if n is large
since we can choose η < 2, which amounts to say that �−1

n (R/πZ× (0, r0)) is transverse to
Rn . Now observe that �−1

n (R/πZ × [r0, +∞)) is converging in the C1-topology to the disk
�−1(R/πZ × [r0, +∞)), which is transverse to R0. So �−1

n (R/πZ × [r0, +∞)) will also
be transverse to Rn if n is large, proving our claim.

Remark 4·3. Fix n and suppose γ : [a, b] → S3 \ (Pn � L1) is a closed curve. Define
s ∈ [a, b] 
→ ζ(s) ∈ C \ {0} by �n ◦ γ (s) = (∗, ζ(s)). Then it is not hard to check that

link(γ, Pn) = ϑ(b) − ϑ(a)

2π
(4·9)

where ϑ : [a, b] → R is any continuous lift of the argument of ζ(s).

We split the remaining arguments in two cases.
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Case 1. ∀n ∃yn ∈ P ′
n satisfying dist(yn, L1) → 0.

Since L1 is a closed orbit of R0, we can assume the existence of z1 ∈ L1 � D0 and
yn ∈ P ′

n such that yn → z1 as n → ∞. Let V ⊂ D0 be a small neighbourhood of z1.
Note that by the construction above, V ⊂ Dn for all n large. Now since Rn → R0 and
�0

π(z1) = z1, given any integer k > 0 and any real number ε > 0 we can find Uk,ε ⊂ V
neighborhood of z1, n0(k, ε) > 0 such that for all n > n0(k, ε) and z ∈ Uk,ε , the solution
{�n

t (z), t ∈ (0, (k + 1/2)π]}, intersects V transversely and positively at least k times, and
these intersections correspond to points t ∈ [ jπ − ε, jπ + ε] for each j ∈ {1, . . . , k}. Now
since A(P ′

n) → ∞ as n → ∞, it follows that link(Pn, P ′
n) = #{P ′

n � Dn} → ∞ as n → ∞
which is a contradiction. In this last assertion we strongly used that each Dn is a (positively)
transverse disk to Rn , when n is large, so P ′

n never intersects Dn negatively.

Case 2. inf{dist(y, L1) | y ∈ P ′
n} � δ > 0.

By our hypotheses ∃ρ > 0 such that �(P ′
n) ⊂ R/πZ × Bρ(0) when n is large enough.

Moreover, P̂ ′
n := �n(P ′

n) is a T ′
n-periodic orbit of the flow �̂n

t completely contained in
R/πZ × Bρ(0), and T ′

n → ∞.
For each n fix a point yn ∈ P̂ ′

n � (0 × Bρ(0)). Define γn(t) := �̂n
t (yn) = (τn(t), ζn(t)) ∈

R/πZ × Bρ(0). If τ̃n(t) is a continuous lift of τn(t) and ϑn(t) is a continuous lift of the
argument of ζn(t), then we consider

Nn := τ̃n(T ′
n) − τ̃n(0)

π
∈ Z

+ and ln := ϑn(T ′
n) − ϑn(0)

2π
∈ Z.

By (4·9) we have ln = link(P ′
n, Pn).

The (first) return time with respect to the flow �̂n
t for points of 0 × Bρ(0) to return to

0 × C is a function converging uniformly to the constant π on 0 × Bρ(0) since �̂n → �̂0 as
above. Since R̂n → R̂0 in C1

loc, R̂n is transverse to the disks τ × Bρ(0), τ ∈ R/πZ, when n
is large enough. Consequently we can divide, for each n large enough, the interval [0, T ′

n] in
precisely Nn intervals {I n

1 , . . . , I n
Nn

} of lengths uniformly close to π corresponding to points
where P ′

n intersects 0 × Bρ(0). This implies that Nn → ∞ as n → ∞.
We need to estimate ϑ̇n . Let us write R̂n = (an, Yn = (un, vn)). If ζn(t) = xn(t) + iyn(t)

then

ϑ̇n = −yn ẋn + xn ẏn

x2
n + y2

n

=
〈
ζn, −J0 · ζ̇n

〉
|ζn|2

= 〈ζn, −J0 · (Yn ◦ γn)〉
|ζn|2

=
〈

ζn

|ζn| , −J0 · [DYn(τn(t), 0) + εn] · ζn

|ζn|
〉

where J0 =
[

0 −1
1 0

]
and

εn(t) =
∫ 1

0
[DYn(τn(t), λζn(t)) − DYn(τn(t), 0)]dλ.

Now, since R̂n converges C1 to R̂0(τ, z) = (1, i2z), uniformly on R/πZ × Bρ(0), we
conclude that, as n → ∞, εn converges uniformly in t ∈ [0, T ′

n] to the zero matrix and
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DYn(τn(t), 0) converges uniformly in t ∈ [0, T ′
n] to the matrix[

0 −2
2 0

]
as was computed in (4·7). Consequently, one estimates ϑ̇n > 3/2, uniformly in t ∈ [0, T ′

n].
Thus ϑn is strictly increasing, and increases at least 3π/2 on each I n

j , for every j and every
n sufficiently large. Thus ln → +∞, and this contradiction concludes Case 2.

Appendix A. Lemmas from Finsler geometry

A·1. Proof of Lemma 2·1
For a fixed j we have, in natural coordinates, (∂x j )h = ∂x j − �k

j ∂yk . Thus, since S is
horizontal, we obtain

[PH (S), PH ((∂x j )h)] = [S, (∂x j )h] = [yi∂xi − 2Gi∂yi , ∂x j − �k
j ∂yk ]

= −2[Gi∂yi , ∂x j ] − [yi∂xi , �k
j ∂yk ] + 2[Gi∂yi , �k

j ∂yk ]
= 2(∂x j Gi)∂yi − yi (∂xi �k

j )∂yk − �k
j [yi∂xi , ∂yk ] + 2Gi (∂yi �k

j )∂yk + 2�k
j [Gi∂yi , ∂yk ]

= 2(∂x j Gi)∂yi − yi (∂xi �k
j )∂yk + �i

j∂xi + 2Gi(∂yi �k
j )∂yk − 2�k

j (∂yk Gi)∂yi

= {
2(∂x j Gi) − yk(∂xk �i

j ) + 2Gk(∂yk �i
j ) − 2�k

j (∂yk Gi)
}
∂yi + �i

j∂xi

and consequently

R(S, (∂x j )h) = PV ([PH (S), PH ((∂x j )h)])

= {
2(∂x j Gi) − yk(∂xk �i

j ) + 2Gk�i
jk − 2�k

j �
i
k + �k

j �
i
k

}
∂yi

(A 1)

Here we used PV (∂xi ) = �k
i ∂yk . On the other hand,

∇[S,(∂x j )h ]C = ∇[S,(∂x j )h ](yl∂yl ) = (dyl · [S, (∂x j )h])∂yl + yl∇[S,(∂x j )h ]∂yl

= (dyl · [S, (∂x j )h])∂yl + yl�i
j∇∂xi ∂yl = (dyl · [S, (∂x j )h])∂yl + yl�i

j�
k
il∂yk

= {
2(∂x j Gl) − yk(∂xk �l

j ) + 2Gk�l
jk − 2�k

j �
l
k + yk�i

j�
l
ik

}
∂yl . (A 2)

Using the identity yk�l
ik = �l

i one sees that (A 1) equals (A 2). Since ∇SC = ∇(∂x j )h C = 0
one computes at the base point v:

R̃(vh, (∂x j )h)iv(v) = R̃(S, (∂x j )h)C = −∇[S,(∂x j )h ]C = −R(S, (∂x j )h).

Here we used that the horizontal lift of v to TvT M is S, that iv(v) = C and, in the last
equality, that (A 1) equals (A 2). The conclusion follows because iv is an isomorphism.

A·2. Proof of Lemma 2·2
To prove (2·20) take natural coordinates and write

LHS = (
(∂xl gi j )ẋ l − 2(∂yl gi j )G

l − gl j�
l
i − gil�

l
j

)
V i W j + RHS.

Since V and W are arbitrary we must prove

(∂xl gi j )ẋ l − 2(∂yl gi j )G
l − gl j�

l
i − gil�

l
j = 0, ∀i, j.

Choosing a symmetric lift ∇ of �S , with local coefficients �l
i j , the above expression becomes

((∂xk gi j ) − 2Ai jl(∂yk Gl) − gl j�
l
ik − gil�

l
jk)ẋ k = 0, for every i, j , where Ai jl = ∂yl gi j/2 are

the components of the Cartan tensor (2·18). Thus, if the symmetric lift satisfies

(∂xk gi j ) − 2Ai jl(∂yk Gl) − gl j�
l
ik − gil�

l
jk = 0, ∀i, j, k (A 3)

https://doi.org/10.1017/S0305004112000333 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004112000333


26 UMBERTO L. HRYNIEWICZ AND PEDRO A. S. SALOMÃO

the claim follows. However, this may not be satisfied by an arbitrary ∇. In fact, we can
permute the (i, j, k) above to get terms corresponding to ( j, k, i) and (k, i, j). Adding the
(i, j, k)-term to the ( j, k, i)-term, subtracting the (k, i, j)-term and using �l

m = ∂ym Gl , one
obtains

2g jl�
l
ik = ∂xk gi j − ∂x j gki + ∂xi g jk − 2

{
Ai jl�

l
k + A jkl�

l
i − Akil�

l
j

}
.

Multiplying by gmj/2 and summing in j we get equations (2·19) for the coefficients of the
Chern connection, that is, if we use the Chern connection as the symmetric lift, the desired
conclusion holds. However, equation (2·20) does not depend on this choice, which implies
that we could have chosen any symmetric lift to carry on our calculations.

A·3. Proof of Lemma 2·3
Consider, in natural coordinates x = (x1, . . . , xn), y = (y1, . . . , yn), the ODE (ẋ, ẏ) =

(y, −2G) associated to the geodesic spray, where G = (G1, . . . , Gn) are the spray coeffi-
cients. Linearizing we get (

δ̇x
δ̇y

)
=

(
0 I

−2Dx G −2DyG

)(
δx
δy

)
(A 4)

where δx = (δx1, . . . , δxn) and δy = (δy1, . . . , δyn) are the fiber coordinates on T T M .
Here Dx G and DyG are n ×n matrices with entries ∂xi Gk and ∂yi Gk , respectively, evaluated
at (x1 = x1 ◦ γ (t), . . . , y1(t) = ẋ1, . . . ), where γ (t) is some geodesic.

We need to rewrite (A 4) in terms of invariantly defined objects. Consider the vector field
J (t) = δxi∂xi along γ . Then ˙δxk = (Dγ J/dt)k − �k

l δxl , where Dγ J/dt = (Dγ J/dt)k∂xk ,
and

¨δxk = d

dt

[(
Dγ J

dt

)k

− �k
l δxl

]
=

(
D2

γ J

dt2

)k

− �k
l

(
Dγ J

dt

)l

− d

dt
(�k

l δxl)

=
(

D2
γ J

dt2

)k

− 2�k
l

˙δxl − (∂xi �k
l )ẋ iδxl + 2(∂yi �k

l )G
iδxl − �k

i �
i
l δxl (A 5)

where we used ẏi + 2Gi = 0. Adding 2(∂xi Gk)δxi + 2(∂yi Gk) ˙δxi to (A 5) we get 0, in view
of (A 4), and

0 =
(

D2
γ J

dt2

)k

− 2�k
l

˙δxl − (∂xi �k
l )ẋ iδxl + 2(∂yi �k

l )G
iδxl

−�k
i �

i
l δxl + 2(∂xl Gk)δxl + 2(∂yl Gk) ˙δxl

=
(

D2
γ J

dt2

)k

+ {
2(∂xl Gk) − (∂xi �k

l )ẋ i + 2Gi(∂yi �k
l ) − �i

l �
k
i

}
δxl . (A 6)

Now observe that Rγ̇ (J ) = δxl Rγ̇ (∂xl ) = δxli−1
γ̇ (−∇[S,(∂xl )h ]C) where the vectors ∇[S,(∂xl )h ]C

were computed in (A 2). Plugging into (A 6) we get equations

0 =
(

D2
γ J

dt2

)k − Rγ̇ (J )k, ∀k = 1, . . . , n.
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