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Dynamic and stationary shapes of rotating
toroidal drops in viscous linear flows
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Dynamic and stationary axisymmetric deformation of viscous toroidal drops submerged
in slow viscous flow are studied numerically. The immiscible ambient fluid is subject to a
combination of rotation and extensional/compressional (biextensional) flow. The creeping
flow approximation is assumed. The numerical simulations are performed with the help
of the boundary integral method. The process under consideration is governed by three
dimensionless parameters: the capillary number that characterizes the ratio of viscous
and surface tension forces; the Bond number, that characterizes the ratio of centrifugal
and surface tension forces; and the ratio of viscosity of the two fluids. Our simulations
for the equal viscosity case demonstrated that, depending on the governing parameters,
the toroidal drop either collapses, extends indefinitely or it attains a stationary toroidal
shape. The latter may be stable or unstable with respect to axisymmetric disturbances.
Conditions for the realization of each of the dynamic regimes and stationary states in
terms of governing parameters are presented. In particular, stable toroidal shapes result
under the combined action of rotation and extensional flow, and were not found under the
action of rotation and compressional flow.

Key words: drops, computational methods

1. Introduction

In recent years, the interest in non-trivial forms of fluid particles was stimulated by
applications of non-spherical microparticles to have important potential as building blocks
for self-assembled materials including clustering of cells, imaging probes for therapy, drug
carriers (see, for example, Dean et al. (2007), Nurse, Freund & Youssef (2012) and a
review by Champion, Katare & Mitragotri (2007)) and more. In particular, toroidal forms
are advantageous compared with spherical and spheroidal shapes due to their relatively
large surface-to-volume ratio. One of the advanced methods for producing microparticles
of complex shapes is solidification of drops deformed by the flow in microfluidic devices.
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Such solidification can be achieved by induction of cross-linking in a polymer drop by
ultraviolet radiation (see, for example, Szymusiak et al. 2012); see also Shum et al. (2010)
and Chen et al. (2009) for solidification methods involving polymers. Another method
of mass production of toroidal forms with sizes in the micrometre to millimetre range via
vortex ring freezing was recently demonstrated by An et al. (2016) with particular potential
for encapsulating DNA segments, cells and bacteria, an application that was also proposed
by Chang et al. (2015).

Toroidal drops can be obtained in rotating fluid as in Plateau’s (1857) experiments and
the recent studies of Pairam & Fernández-Nieves (2009) and Pairam et al. (2013). Toroidal
formation occurs also in the course of free fall of a drop in an immiscible fluid (Baumann
et al. 1992; Sostarecz & Belmonte 2003), splashing in an immiscible medium (Sharma
et al. (2012); see figure 1c) or by the impact of a droplet with a superhydrophobic surface
(Renardy et al. 2003) or by head-on collision of two drops (Menchaca R et al. 1996). Other
mechanisms are by deformation of the drop in electric fields (Deshmukh & Thaokar 2013;
Ghazian, Adamiak & Castle 2013) or in magnetic fields (Texier et al. 2013). Of particular
attention are swarms of particles that can evolve in a viscous fluid into a toroidal shape
(Machu et al. 2001b,a). The unique interest in this case is that, although these swarms
have practically zero surface tension, they behave dynamically as ‘drops’ composed of an
immiscible different phase. These phenomena have significance in geophysical flows.

Several experimental and theoretical studies are devoted to the question of stability
of toroidal drops. The experiments of Pairam & Fernández-Nieves (2009) demonstrated
that a toroidal drop in a quiescent fluid is unstable, and it either shrinks and forms a
singly connected drop, or it break up via Rayleigh–Plateau instabilities. The shrinking
mode was simulated by Ee et al. (2018) making use of axisymmetric boundary integral
equations (BIE) and the result was compared with the experimental data of Pairam
& Fernández-Nieves (2009), showing an excellent agreement. The algorithm in the
current study is a modification of the one used by Ee et al. (2018). Development of
non-axisymmetric three-dimensional shape disturbances was simulated by Mehrabian
& Feng (2013) using finite elements on an unstructured and adaptively generated
grid. Fragkopoulos & Fernández-Nieves (2017) presented an experimental study of the
dynamics of a charged toroidal drop, that results in cross-sections similar in shapes to
those shown in this work. It was demonstrated that charging can qualitatively change
the behaviour. In some cases it suppressed the shrinking instability, caused the droplet to
expand and led to disintegration into small droplets due to Rayleigh–Plateau instabilities.

Several recent papers address theoretically the existence of rotating fluid tori with a
deforming free surface (see, for example, Hynd & MacCuan (2006), Nurse, Coriell &
McFadden (2015) and the literature cited therein). These analyses are focused on flows in
which inertia is the dominant component and viscous forces are neglected. Such tori are
typically observed in low viscosity liquids (e.g. by dolphins in water) or in the atmosphere
(e.g. by people who smoke). However, the recent and more intensive interest in producing
and sustaining toroidal shapes, as for medical purposes mentioned above, is focused on
viscous regimes and on toroidal drops with sizes of the order of microns and even less.
Hence, recent theoretical efforts are directed toward analyses in which viscous forces are
typically dominant, as is addressed below.

The existence of toroidal shapes for drops in a viscous domain was reported as a result
of deformation of drops settling in a quiescent fluid, as a consequence of an interfacial
instability induced by a finite surface perturbation (Kojima, Hinch & Acrivos 1984).
They also studied the dynamics of a highly expanded slender toroidal drop, in their
nomenclature a torus having radius, b, much larger than the cross-section dimension, εb,
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Rotating toroidal drops in viscous linear flows
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Figure 1. A toroidal drop with R = (Rmin + Rmax)/2.

with ε � 1, making use of matched asymptotic expansion techniques, and showed that
such a settling drop can expand only if small effects of inertia are incorporated into the
analysis. On the other hand, the numerical simulations of Machu et al. (2001b) and Machu
et al. (2001a) demonstrated that the non-slender torus can expand also in quasi-static
Stokes flow. In practice, obtaining toroidal shapes from a spherical drop via sedimentation
is demonstrated vividly by several works (e.g. Baumann et al. 1992; Sostarecz &
Belmonte 2003; Szymusiak et al. 2012). Fontelos, Garcia-Garrido & Kindelán (2011)
used a boundary integral approach to simulate the evolution and breakup of a viscous
rotating drop under the quasi-stationary approximation. The toroidal stationary shape
of a rotating drop was found among various families of axisymmetric and asymmetric
forms. Zabarankin, Lavrenteva & Nir (2015) and Ee et al. (2018) numerically analysed
the deformation of an immiscible toroidal drop embedded in axisymmetric compressional
(biextensional) Stokes flow making use of the boundary integral formulation. These
studies confirmed the prediction obtained earlier that a spherical drop, experiencing such
viscous forcing, becomes flat, eventually loses stability and becomes toroidal (Zabarankin
et al. 2013). Numerical simulations of the quasi-stationary dynamics performed revealed
that, when the viscous forces, proportional to the intensity of the flow, are relatively
weak compared with the surface tension (the ratio of these forces is characterized by the
capillary number, Ca), three different scenarios of drop evolution are possible: indefinite
expansion of the liquid torus; contraction and collapse to the centre; and a stationary
toroidal shape. Here, and in what follows, torus expansion or collapse refers to increase
or decrease in its radial dimensions, respectively. These dimensions are defined below in
figure 1. When the intensity of the flow is low, the stationary shapes are shown to be close
to circular tori. Once the outer flow strengthens, the cross-section of the stationary torus
assumes first an elliptic and then an egg-like shape. For capillary numbers greater than a
critical value, toroidal stationary shapes were not found.

A main common finding in the general case is that all toroidal stationary states of a
drop under rotating or biextensional outer flow are unstable and that any infinitesimal
axisymmetric perturbation will cause a collapse or an infinite expansion of the torus.
Indeed, the dynamics will vary between cases, but no stable shapes are predicted.

In the present work we study the evolution and stationary axisymmetric deformation of
a toroidal viscous drop submerged in viscous fluid subject to a combination of rotation
and extensional or compressional (i.e. biextensional) flow. We follow the work of Malik,
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Lavrenteva & Nir (2020), who investigated the deformation of a spherical drop embedded
in the combination of these viscous flows, where the joint action of the two types of flow
are presented in the normal component of the stress boundary condition, expressed in
terms of capillary and Bond numbers. Malik et al. (2020) reported on the boundaries
of the domain of parameters in which the drop deformation resulted in stable singly
connected bodies. Beyond these boundaries the drop deformation becomes unstable and,
in some cases, can result in toroidal shapes. Our present simulations demonstrate that,
depending on the governing parameters and the initial conditions, a liquid torus collapses
to a singly connected shape, or extends indefinitely, or it attains a stationary toroidal
shape. Conditions for the realization of each scenario in terms of governing parameters are
presented. In particular, it is demonstrated that under the combined action of rotation and
extensional flow multiple toroidal stationary shapes exist, with one of them being stable,
at least with respect to axisymmetric perturbations. Note that in the absence of any one of
these two components of the outer flow no stable toroidal shapes were found. It is noted
that the paper does not include a stability analysis, and it is assumed that onset of loss of
stability toward collapse or extension preserves an axially symmetric shape. Nevertheless,
it can be expected that both stationary stable and unstable shapes, observed in this study,
may be subject to three-dimensional disturbances such as, for example, capillary driven
perturbations. A complete stability analysis of such phenomena deserves a separate study.

The paper is organized as follows. In § 2, the problem of the dynamic and stationary
deformation of a liquid torus in axisymmetric linear viscous flow is formulated. Section
3 describes the details of the numerical method. In § 4, the problem of toroidal drop
deformation in the rotating fluid is revisited and the results are presented in a form
convenient to the comparison with the more general case. Section 5 outlines numerical
results showing the dynamic evolution of the toroidal drops under the combined action
of rotation and extensional or compressional flow, and the conditions in which stationary
drops are obtained for the various values of the governing parameters. Stable and unstable
stationary toroidal drops are shown and discussed in § 6, and a summary of the multiplicity
of toroidal stationary solution branches is presented in the phase plane of parameter space.
The existence of this space constitutes the primary objectives of this paper. The relation to
the relevant singly connected solution branches is also demonstrated. A short discussion
is given in § 7.

2. Mathematical model

Consider a viscous toroidal drop (figure 1) of viscosity μ and constant volume V which
is embedded in an unbounded viscous fluid having viscosity equal to that of the drop.
We assume that the drop and the external fluid are rotating axisymmetrically with angular
velocity ω. The study is conducted in the presence of external flow effects. External flow
is a combination of rotation and extensional or compressional (biextensional) flow which,
in the absence of the drop, is given by

u∞
i = ±Gijxj + εijkωjxk, (2.1)

where G11 = G22 = G, G33 = −2G and Gij = 0 if i /= j. Here G denotes the constant
shear rate and ωj = ωδj3. The positive and negative signs in (2.1) denote compressional
and extensional modes of flow, respectively, whereas, in the absence of external flow we
have G = 0. Let D(1) and D(2) be the domains occupied by the drop and the ambient
fluid and u(1), p(1) and u(2), p(2) denote the velocity and pressure fields in D(1) and D(2),
respectively. Assuming a creeping flow, and ignoring inertia and sedimentation effects, the
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Rotating toroidal drops in viscous linear flows

velocity and pressure fields satisfy the following Stokes equations, in coordinates rotating
at angular velocity ω:

−∇p(i) + μ(i)�u(i) − ρiω × (ω × r) = 0, in D(i)(t), (2.2)

∇ · u(i) = 0, in D(i)(t), i = 1, 2. (2.3)

At the drop interface, S, the velocity and stress balance conditions are given by

u(1) = u(2) (2.4)

and

(τ (2)
ij − τ

(1)
ij )nj = γ

∂nj

∂xj
ni, (2.5)

where γ is the constant interfacial tension and n is the unit normal vector pointing
outwards of the drop surface. Here τ (1) and τ (2) denote the stress tensors inside and outside
the drop, given as

τij = −pδij + μ

(
∂ui

∂xj
+ ∂uj

∂xi

)
. (2.6)

Far from the drop, the pressure and velocity approach those of the undisturbed fields
p(2) → p∞ u(2) → u∞. For a fixed axis of rotation a modified pressure (Fontelos et al.
2011) can be written as

P(i) = p(i) − ρiω
2r2

2
, (2.7)

where ω = |ω| and r denotes the distance of r from the axis of rotation. Substituting (2.7)
into (2.2) results in

− ∇P(i) + μ(i)�u(i) = 0, in D(i)(t), i = 1, 2 (2.8)

with

u∞
i = ±Gijxj. (2.9)

Note that (2.8) and (2.9) coincide with the form of the equations for the study of a Stokes
flow under shearing force. However, the introduction of the rotation mode is hidden in the
rotating coordinate system and is expressed explicitly in (2.13).

Introducing the characteristic length and velocity as l and U, respectively, we define
non-dimensional variables as

x̄ = x
l
, ū(i) = u(i)

U
, P̄(i) = lP(i)

μU
, ρi = ρi

ρ1
, τ̄

(i)
jk =

lτ (i)
jk

μU
, (2.10a–e)

where l is the undisturbed spherical drop radius given by l = 3
√

3V/4π and U is yet
to be defined in §§ 3 and 5. For the sake of brevity, we will omit the overbars from
non-dimensional variables in the forthcoming part. Finally, the non-dimensional form of
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(2.8), (2.3) and (2.5) can be written as

−∇P(i) + �u(i) = 0, in D(i)(t), (2.11)

∇ · u(i) = 0, in D(i)(t) i = 1, 2, (2.12)

and the modified interfacial stress difference(
τ

(2)
ij − τ

(1)
ij

)
nj = 1

Ca

(
∂nj

∂xj
− Bo

2
r2
)

ni, on S, (2.13)

with Ca being the capillary number and Bo being the Bond number defined by

Ca = μU
γ

, Bo = (ρ1 − ρ2)ω
2l3

γ
, (2.14a,b)

where
√|Bo| gives the dimensionless angular velocity intensity.

3. Solution methodology

The problem of simulating a rotating drop can be studied in the absence or presence of
an external flow field. The former case can be simulated by solving ordinary differential
equations for the solid body rotation (Aussillous & Quéré 2004; Heine 2006; Fontelos
et al. 2011; Malik et al. 2020). In the presence of external flow more advanced methods of
solution such as boundary elements and BIE methods were used by Fontelos et al. (2011)
and Malik et al. (2020). In this paper we have used both mentioned methods as and when
required. A short summary is provided below.

3.1. Method of ordinary differential equations
In the absence of an external shear flow, the drop has a stationary shape and the entire
external medium rotates in solid body rotation. In this case U = γ /μ and, in view of
(2.14a,b), Ca = 1. The equilibrium shapes of a drop can be obtained by integrating the
following differential equation (Fontelos et al. 2011):

κ = −P + Bo
2

r2, (3.1)

where κ denotes the mean curvature of drop surface and P is the modified pressure
difference across the drop interface, which is constant. The geometry of a drop is defined
with the help of a function g(r), that gives the height of the interface as a function of r, i.e.
the distance from the axis of rotation. Under the assumption of axial symmetry, we have

κ = −1
r

d
dr

(
rgr√

1 + g2
r

)
. (3.2)

Following Fontelos et al. (2011), (3.1) and (3.2) lead to the relation∫ rmax

a

Bor5 − 4Pr3 − (8a + Boa4 − 4Pa2)r√√√√√√1 −

⎛
⎜⎝Bo

8
r3 − P

2
r −

⎛
⎜⎝a + Bo

8
a4 − P

2
a2

r

⎞
⎟⎠
⎞
⎟⎠

2
= 16

3
, (3.3)
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Rotating toroidal drops in viscous linear flows
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Figure 2. Deformation (D = (Rmax − zmax)/(Rmax + zmax)) of stationary toroidal (blue) and singly connected
(red) drops for varying Bo when G = 0.

where (see figure 1) rmax and a can be obtained from

Bo
8

r3
max − P

2
rmax −

⎛
⎜⎝a + Bo

8
a4 − P

2 a2

rmax

⎞
⎟⎠ = 1. (3.4)

The solution of (3.3) and (3.4) give the shape of a toroidal drop with a = rmin. The same
formulation leads to a simply connected drop when a = 0.

Figure 2 shows the complete pattern of deformation, in the absence of external flow,
under which a spherical shaped drop takes the form of toroidal drop after breakup at the
critical point. The critical point for the breakup of the drop is obtained when Bo = 4.0004
with a deformation factor given by 0.6665. The two starred points are highlighted as they
play a special role in the results presented in § 6.

3.2. Boundary integral method
The solution via ordinary differential equations is limited to the case in which there is no
external flow. In the presence of extensional or compressional effects of external flow, the
solution of the Stokes equations (see 2.11), together with boundary conditions (2.4) and
(2.13), is obtained by using the boundary integral method. Here, we consider a cylindrical
coordinate system (r, φ, z) where the z-axis coincides with the axis of rotation. For a given
shape of drop and equal viscosities of the drop and the ambient fluid, the solution of the
Stokes equations can be written as follows:

uj(xp) = u∞
j − 1

8πCa

∫
S

(
κ(x) − 1

2
Bor2

)
ni(x)Jij(x, xp)dS(x), (3.5)
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which consists of a direct evaluation of the velocity from the integral that is comprised of
geometrical variables only. Here, xp denotes the position vector of point p, and

Jij(x, xp) = δij

|x − xp| + (xi − xp,i)(xj − xp,j)

|x − xp|3 . (3.6)

Here δij is the Kronecker delta and u∞ = ±(Gl/U)(1, 1, −2) in which positive and
negative signs represent compressional and extensional flow, respectively. The expressions
for the kernels can be found in Pozrikidis (1992).

The stability and stationarity of a drop can be decided by computing its dynamical
deformation. A drop is considered to be stationary if the shape remains constant for a
relatively long period of time. A stationary drop is said to be stable if after a certain time
the drop shape remains unchanged indefinitely, i.e. the deformation factor of drop becomes
constant, and the normal velocity component of the surface elements diminishes. In this
study, the drop deformation factor for the toroidal drop is defined as (Zabarankin et al.
2015)

D = Rmax − zmax

Rmax + zmax
, (3.7)

where Rmax is the maximum distance of drop interface from the centre of drop at z =
0. Also, zmax is the maximum distance of the drop interface in the z-direction from the
plane z = 0 as shown in figure 1. A stationary drop is considered unstable if any small
deformation of the shape results in its deviation from stationarity.

Recently, the solution of (3.5) for simply connected shapes has been obtained and
discussed by Malik et al. (2020). In the present study, we have a doubly connected region,
more specifically, a toroidal-like structure for which we employed a similar approach for
the solution. As discussed by Zabarankin et al. (2015), the simulation of quasi-stationary
dynamic deformation of toroidal drop can be made by assuming some initial shape
(Rallison & Acrivos 1978). In the current problem, the simulation process is started with
a circular cross-section of a toroidal shape having a volume equal to that of a unit sphere.
The shape is then allowed to deform with calculated velocity on the boundaries and a
possible stable or unstable stationary solution is attained. A general process, applied in the
simulation, is as follows.

(i) Consider an initial shape St as a torus having a circular cross-section at time t = 0.
(ii) Partition St to N evenly distributed boundary elements and represent each element

by a cubic spline parameterized by the arclength.
(iii) Calculate unit normal vector and curvature in each surface element using cubic

splines.
(iv) Evaluate the boundary integral given in (3.5) throughout the surface using

Gauss–Legendre quadrature with singularity subtraction (Pozrikidis 1992) and
obtain a velocity profile u.

(v) Evaluate the norm of the normal component of the surface ‖un‖2 =
(1/
∫

dS)
∫ ‖u2‖ dS.

(vi) If ‖un‖ < ε, where ε is a small tolerance level, we accept this shapes as a stationary
state. Otherwise we update the time by t = t + �t and the surface of drop St using
the rule

St+�t = St + u�t (3.8)

and go to step (ii) with updated parameters to continue in a similar manner.
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Rotating toroidal drops in viscous linear flows

For the validation of simulated results we have compared the drop deformation with
those of Ee et al. (2018), in the case of Bo = 0 and equal viscosity of the drop and the
ambient fluid with varying Ca values. The calculated results of both codes are in excellent
agreement.

4. Stable and stationary axisymmetrically rotating drop in the absence of external
shear flow (Fontelos et al. (2011) revisited)

In this section we study the stable and unstable stationary rotating drops (singly connected
and toroidal), embedded in a rotating frame of reference, in the absence of compressional
or extensional external flow, i.e. when G = 0. The transformation from singly connected
drop to a toroidal drop has always been a case of special interest, hence, a detailed
discussion, including the particular case of transformation point Bo = 4.0004 is provided
in § 6, where a few cases of singly connected drops are compared with relevant toroidal
shapes. While following Fontelos et al. (2011) our interest somewhat diverges. We are
less interested in the influence of the forcing flow on the moment of inertia but, rather,
our focus is on the deformation. Furthermore, much of their attention is devoted to drops
that possess a very thin film connecting a toroidal rim (termed type-II) while this paper
concentrates on toroidal rings. The work of Fontelos et al. (2011) is an excellent gateway to
concentrate on combining the rotation with an additional shear field, in which case there
exist characteristics and special results that are discussed below and are relevant to the
more general study discussed in the following sections.

As mentioned in section § 3.1, the drop simulation in the absence of external flow effects
is obtained by solving (3.1) and (3.2), which enables us to yield multiple solutions for
drop stationarity deformation (Malik et al. 2020) with a relatively high accuracy. The
multiple solutions include both singly connected and toroidal stationary shapes for varying
Bo values. Figure 2 presents the deformation pattern of singly connected and toroidal drops
in equilibrium shape when G = 0 and U = γ /μ. We recognize three distinct regions in
the interval 0 < Bo < 4.5497, having two, three and four different solutions of (3.1) and
(3.2) representing different stationary shapes.

In the subregion 0 < Bo < 4.0004 we identify two solutions. The lower branch
is comprised of singly connected bodies, with the shape’s deformation changing
continuously from a spherical drop at Bo = 0 up to an oblate flat drop at Bo = 4.0. The
upper branch displays a toroidal shape’s deformation changing continuously from a torus
of infinite extent and vanishing circular cross-section at Bo = 0, to an almost collapsed
torus with an egg shape cross-section at Bo = 4.0. The flat and toroidal drop shapes at
Bo = 4.0 have deformation factors D = 0.3974 and 0.5731, respectively, and are depicted
in figure 3(a). The stationary flat oblate shapes in this region of Bo are stable (see Fontelos
et al. 2011; Malik et al. 2020) while the stationary toroidal shapes were suggested by
Fontelos et al. (2011) to be unstable. Indeed, this assumption is validated in § 6, below, for
the more general Bo analysis where the deformation curves are also obtained by solving
the BIE, and where infinitesimal perturbations grow indefinitely.

A second region of Bo, where two solutions to the problems (3.1) and (3.2) coexist, is
in the interval 4.2312 < Bo < 4.5497. In this region we observe only singly connected
shapes. Here Bo = 4.5497 is the turning point, shown in figure 2, and denotes the
maximum value of Bo (with G = 0) for which stationary shapes exist. At this location
D = 0.5702, its rate of change with Bo is infinite, and dimples are evident at the axis
of symmetry on both sides of the symmetry plane at z = 0, with an ever growing
negative curvature component as the deformation factor increases toward D = 0.6480 at
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Figure 3. (a) Shapes of toroidal and singly connected drop at Bo = 4; (b) shapes of evolution of dimples in
singly connected drop; (c) multiple shapes of stationary toroidal and singly connected drops for Bo = 4.2312;
(d) comparison of shapes of toroidal and singly connected drop at critical transition region when G = 0.

Bo = 4.2312 and beyond. Shapes with evolution of such dimples are shown in figure 3(b).
Note that all flat shapes below D = 0.5702 (where Bo = 4.5497) are stable, while flat
shapes beyond this D value, are unstable (Malik et al. 2020).

We turn next to the region in the intermediate interval 4.0004 < Bo < 4.2312. The
boundaries of this interval represent special points. At Bo = 4.2312 we observe (see
figure 2) a turning point beyond which no toroidal solutions exist. The deformation factor
there is D = 0.6225. Thus, at this particular Bo value there are three stationary solutions
to (3.1) and (3.2), the limiting toroidal shape and two singly connected shapes, i.e. a stable
flat one and an unstable dimpled one. These are shown in figure 3(c). The boundary
point Bo = 4.0004, at which D = 0.6665, is a point at which transition from a singly
connected shape to a toroidal one occurs. At this point either the evolving dimples in the
stationary flat drop reach both sides of the symmetry plane z = 0 and a toroidal drop may
form or, vice versa, a stationary toroidal drop reached its ultimate collapsed shape and
converts into a dimpled drop. It is noted that a focus on such transitions should involve
thin layer stability analysis integrating hydrodynamic, intermolecular and thermodynamic
considerations, and is not in the scope of this manuscript. Nevertheless, the shapes on both
‘sides’ of the transition point were calculated and are depicted in figure 3(d).

As is evident in figure 2 the interval 4.0004 < Bo < 4.2312 contains four solutions
to (3.1) and (3.2). There are two singly connected shapes and two toroidal. The flat
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Rotating toroidal drops in viscous linear flows

stable shape has a minimum deformation factor while the dimpled unstable one shows
a maximum deformation, and the two toroidal deformation values are located in-between.

We close this subsection concluding that, depending on the value of the Bond number,
in the absence of an additional external shear, the solution of problem (3.1) and (3.2)
results in branches that exhibit several stationary drop deformations with different shapes,
some stable and others unstable. Note that our analysis does not contain the toroidal
type-II branch discussed by Fontelos et al. (2011), i.e. consisting of a zero thickness film
connecting a toroidal rim, as it assumes that toroidal type-I shapes, having Rmin > 0, are
more likely to be a preferred result of the unstable situation once the dimples touch.

5. Dynamics and evolution of rotating toroidal drops under the action of extensional
or compressional flow

In this section we study the dynamics of axisymmetrically rotating drops under the
influence of compressional or extensional flow at various Ca for fixed Bo values lying
within the range of [−5, 5]. The simulation of drop deformation is conducted with the
help of the boundary integral method due to the involvement of external flow effects, as
explained in § 3.2. The initial drop is considered to be a torus of circular cross-section
which is subjected to axisymmetric extensional or compressional viscous flow. The
dynamics of the deformation of the rotating torus under the mentioned effects is governed
by various forcing: the surface tension which tends to shrink the torus; the drop viscosity
that slows down the deformation; the rotation which tries to expand or collapse the torus,
depending on the density differences; the external flow. Here, the external flow is one
of two types: a compressional flow, which tends to expand the torus; or an extensional
flow, which tends to collapse it. Based on these forces the drop dynamics is studied to
yield possible stable or unstable stationary shapes. For the sake of clarity, in what follow
the non-dimensional velocity is scaled with unit of U = Gl and the results related to
extensional flow are presented using negative signs of Ca, whereas the region Ca > 0
represents the compressional flow. From the definition of Bo given in (2.14a,b), when
Bo < 0, the drop is said to be lighter than ambient fluid and Bo > 0 represents a relatively
heavier drop.

Figures 4–7 represent the time evolution of various factors defining the dynamic
deformation of the drop. In addition to D these include the radial distance to the centre
of the torus cross-section, R, and the deformation of the cross-section of the torus, Dcs,
defined as

R = Rmin + Rmax

2
and Dcs = Rmax − Rmin − 2zmax

Rmax − Rmin + 2zmax
, (5.1a,b)

where Rmin, Rmax and zmax are presented in figure 1. Note that the superscripts u and s
used in figures denote the values of the respective parameters at the unstable stationary
and stable stationary states of toroidal drops, respectively, discussed below.

5.1. Rotating drops in compressional flow
Figures 4 and 5 show the typical evolution of these parameters for the case of light drops
in compressional flow for various values of the initial major radius, R(0). In figure 4,
Bo = −1 and Ca = 0.21, while in figure 5, Bo = −3, Ca = 0.3. In the presented cases,
R, D and Dcs initially increase. There exists a critical value of R(0) for which the drop
shape parameters do not change for a considerable length of time, which is denoted by Rc.
Note that we have calculated Rc to a high degree of accuracy that is needed to identify the
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Figure 4. Dynamic evolution of parameters of a deforming torus, initially having circular cross-section,
when Bo = −1 and Ca = 0.21. (a) Major radius of toroid. (b) Taylor deformation factor of the torus.
(c) Deformation factor of the torus cross-section. (d) Minimum radius of torus. (e) Cross-section shapes of
collapsing torus when R(0) = R(0)−. ( f ) Cross-section shapes of expanding torus when R(0) = R(0)+ where
R(0) = 0.855914357242, R(0)+ = 0.8559144 and R(0)− = 0.85591435723.

stationary state and to prolong its existence before losing stability. Indeed, less accuracy
in establishing this value, as is expected in experiments, will result in deviation from
stationarity at shorter time. If the initial major radius exceeds the critical value Rc (see
dashed lines in figures 4 and 5), the torus expands indefinitely. The cross-section first
elongates along the r-axis while with the passage of time, as the toroid expands, Dcs
diminishes toward the almost circular cross-section shape typical to a torus with large R.
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Figure 5. Dynamic evolution of parameters of a deforming torus, initially having circular cross-section,
when Bo = −3 and Ca = 0.3. (a) Major radius of toroid. (b) Taylor deformation factor of the torus.
(c) Deformation factor of the torus cross-section. (d) Minimum radius of torus. (e) Cross-section shapes of
collapsing torus when R(0) = R(0)−. ( f ) Cross-section shapes of expanding torus when R(0) = R(0)+ where
R(0) = 0.8926018709, R(0)+ = 0.89262 and R(0)− = 0.892599.

The value of Rc in this figure and in figures 5–7 relate to the curves marked by respective
solid curve.

If the initial major radius R(0) is less than Rc (see dashed–dotted lines in figures 4 and 5),
following the initial expansion, the torus begins to shrink and eventually collapses towards
the z-axis. Figure 4(d) represent the variation of Rmin for the case of collapsing drop
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with initial radius R(0) = R(0)−. Here, Rmin decreases with the initial increase in drop
size, R, and the flattening of the cross-section. From t = 4 until t = 10, approximately, it
shows negligible change, and after that period it tends to shrink as the torus collapses.
Note the slight increase in Rmin that can be observed near t = 14.63, which is due to
the small pocket of outer fluid created near r = 0, that it is unable to be drained from
the innermost part of the cross-section during the last stages of the collapsing dynamics,
as it is shown in figure 4(c,e). Such capture is also evident in the video demonstration
of axisymmetric collapse (Fragkopoulos et al. 2017) as can be seen in the last stages of
cross-section approaching contact. Thus the first contact of total collapse is at some circle
at r = 0 and z /= 0. Similar behaviour of Rmin is observed in figure 5(d). The evolution
of the cross-section shapes corresponding to two regimes, collapsing and expanding is
illustrated in figures 4(e, f ) and 5(e, f ). Finally, for R(0) = Rc, after initial increase in R and
D and decrease in Rmin, all of the parameters approach dynamic ‘equilibrium’ values and
remain visibly constant for a relatively long time (solid curves). Note that after a certain
time, following a slight disturbance as is, for example, an infinitesimal inaccuracy in R(0),
the drop either collapses or starts an indefinite expansion. This behaviour indicates the
instability of the above mentioned equilibrium. These three dynamic regimes, collapse,
expansion and stationarity, exist when the capillary number does not exceed some critical
value, Cac(Bo), while beyond the critical Ca, no equilibrium shapes are observed, and,
hence, no stationary solutions were found. Note that, for a given Bo, as Ca approaches
the critical value the time span of existing equilibrium becomes ever shorter until it
completely diminishes at Ca = Cac. This behaviour is qualitatively similar to that reported
in Zabarankin et al. (2015) and Ee et al. (2018) for the cases Bo = 0. Note also that in the
case of heavy drops rotation and external compressional flow, combined, tend to expand
the torus and resist the collapse caused by surface tension. As is shown below in § 6, all
cases corresponding to compressional flow fail to yield a stationary stable shape.

5.2. Rotating drops in extensional flow
When the outer flow is extensional and tends to shrink the torus, no forcing exists that may
lead to extension of a light toroidal drop and it collapses to the axis for any initial radius
R(0). The situation changes when a heavy rotating drop is exposed to an extensional flow.
We performed simulations of such drops under extensional flow and examples of such
results are presented below in figures 6 and 7.

Time evolutions of the parameters, R, D, Dcs and Rmin for various initial major radius
R(0) with Bo = 3 and Ca = −0.05, and with Bo = 1.0 and Ca = −0.025 are shown in
figures 6 and 7, respectively. Rather unexpected, in both figures, one can see the existence
of two stationary shapes of the torus at radii, Ru and Rs where, Ru < Rs. Evidently
(figures 6 and 7), in the case of extensional flow regime with heavy drops the toroidal
drop may show dual stationary solutions corresponding to a single capillary number. The
two cases in these figures differ in the distance between Ru and Rs which translates to
different shapes of tori, their cross-sections and their dynamic evolutions. In figure 6(a)
for Rc = 3.4011, the drop exhibits an unstable stationary solution when the drop’s radius
reaches the value Ru = 3.401 that is maintained from t = 1 to t = 8. Evolutions with R(0)

below Rc tend to collapse and with R(0) above Rc show expansion. Nevertheless, this
expansion does not proceed unbounded and it converges to a torus with Rs = 5.82 which
continues to be stable for as long as the simulation proceeds. All dynamic evolutions
initiating with R(0) > Rc, whether smaller or larger than R = 5.82, will converge to this
Rs. Hence, starting the dynamics at Rc is required only for realizing the unstable solution,
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Figure 6. Dynamic evolution of parameters of a deforming torus, initially having circular cross-section,
when Bo = 1 and Ca = −0.025. (a) Major radius of toroid. (b) Taylor deformation factor of the torus.
(c) Deformation factor of the torus cross-section. (d) Minimum radius of torus. (e) Cross-sectional shapes
of collapsing torus for R(0) = 3.4. ( f ) Cross-sectional shapes of expanding torus for R(0) = 4.5.

whereas, the stable solution is realized once obtained. This observation is also backed by
figures 6(b) and 6(c) depicting the dynamic changes of D and Dcs. The dynamic collapse of
cases starting at R(0) < Rc and the corresponding shapes of the cross-section are depicted
in figures 6(d) and 6(e). Here, we see that once the evolution departs from Ru the decrease
of Rmin is rather fast and the cross-section shape at almost total collapse is characterized by
the enclosure of some external fluid near z = 0. Hence, as in the collapse during unsteady
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Figure 7. Dynamic evolution of parameters of a deforming torus, initially having circular cross-section,
when Bo = 3 and Ca = −0.05. (a) Major radius of toroid. (b) Taylor deformation factor of the torus.
(c) Deformation factor of the torus cross-section. (d) Minimum radius of torus. (e) Cross-sectional shapes
of collapsing torus for R(0) = 1.121148. ( f ) Cross-sectional shapes of expanding torus for R(0) = 1.125.

dynamics in the case of compressional flow, the first contact in the inner region of the
torus is at a circle at z /= 0 and r = 0. The cross-section shapes of the torus undergoing
expansion from the unsteady shape to the steady one are depicted in figure 6( f ) where it
is clear that they gradually converge to an oval that is almost circular.

Similar dynamic evolution is shown in figure 7. Two stationary solutions are obtained,
one unstable at Ru = 1.119 and one stable solution at Rs = 14.39. Here too, the dynamics
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of expanding tori from the unsteady shape eventually converges to the stable steady torus
with almost circular cross-section, as is depicted in figures 7(a), 7(b) and 7( f ), while the
collapsing tori show a similar fast approach of Rmin to the z-axis and a similar evolution
of the cross-section shape, particularly at contact. There is, however, a difference in the
cases shown in figures 6 and 7. It is a result of the distance between Ru and Rs in each
respective case. Note that in figure 6 the stable and unstable tori are relatively close to
each other, while in figure 7 we presented a case in which the radius Rs of the steady torus
is an order of magnitude larger than that of the unsteady one. Indeed, in as much as the
dynamic expansion from the unsteady torus to the steady one, we see no major dynamic
differences. The evolution, governed by the viscous forces, approaches the steady solution
monotonically as is shown in figures 6(c) and 6( f ). Similarly, the stages of collapse,
that follow an evolution starting at R(0) = 3.4 (slightly less than 3.4011), resemble those
encountered in collapse associated with compressional flow.

However, there is a considerable difference in the deformation factors of the
cross-sections and their dynamics, in figures 6 and 7. In figure 6(c), Du

cs < Ds
cs, while in

figure 7(c), Du
cs > Ds

cs. The dynamics of transfer from the unsteady solution to the steady
one, in the case of figure 6, does not involve major changes in the cross-section shape
and, thus, surface tension plays a minor role and the transition is monotonic and smooth
as is shown in figure 6(c). However, in the case depicted in figure 7, the cross-section
shape in the unsteady torus is an almost perfect relatively large circle. The transition to the
steady state involves a considerable shrinking of the almost circular cross-section with the
acting surface forces affected by an ever increasing local curvature. Indeed, the evolution in
expansion (or collapse) depicted in figure 7(c) shows nonlinear dynamic effects rendered
by capillarity, with local minima and maxima appearing along the processes. Figures 7(e)
and 7( f ) show the shape of cross-sections of the collapsing and stable stationary drops,
respectively. The dynamic cross-section deformation, corresponding to the initial radius
R(0) = 1.121148, is shown in figure 7(e) where the major radius shrinks while the
cross-sectional area increases. Finally, the torus collapses towards the centre after t � 4.0.
The cross-sectional shapes of stationary stable drop are shown for the case when R(0) =
1.125 in figure 7( f ), and the drop radius extends until it attains a stable stationary state.
In § 6 we present maps showing the subregions in which steady and unsteady stationary
solutions exist and their relation with relevant singly connected branches reported by Malik
et al. (2020).

6. Stable and unstable stationary axisymmetrically rotating drops under the
influence of compressional or extensional flow

This section is devoted to a summary report of stationary shapes of the toroidal drop
in a linear flow that combines axisymmetric shear and rotation, in terms of the physical
parameters, Taylor deformation factor and capillary and Bond numbers. Recall that, in
this paper, positive Ca corresponds to compressional flow while negative Ca is used to
describe extensional flow. Positive and negative Bo indicate a drop with the density higher
or lower than that of the ambient fluid, respectively.

6.1. Rotating drop in compressional flow
In figure 8 the Taylor deformation factor D defined in (3.7) is plotted versus the capillary
number for a variety of Bond numbers. Evidently, for each value of the Bond number
there exist a critical capillary number, Cac(Bo), beyond which no stationary solutions are
found. This critical capillary number decays with the growth of Bo. For a light drop and
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Figure 8. Phase plane of stable and unstable stationary toroidal drops rotating in axisymmetric linear flow.
Here Ca > 0 and Ca < 0 denote compressional and extensional flow, while Bo > 0 and Bo < 0, refer to heavy
and light drops, respectively. Circled points are special cases discussed in § 5.

subcritical intensity of compressional flow (0 < Ca < Cac(Bo), Bo ≤ 0) only one toroidal
stationary shape exists, that was shown to be unstable in our simulations. In the case of
a light drop, both the centrifugal force and the surface tension tend to shrink the toroid.
Thus, the more intensive is the rotation (higher |Bo|), the more intensive compressional
flow (higher Ca) is required to resist this collapse, thereby increasing the tendency of the
unstable tori to expand indefinitely. Thus, light drops require stronger compressional flow
to maintain stationarity and such cases are more susceptible to loose stability. In contrast
to this, when the drop is heavier than the ambient fluid, Bo > 0, the centrifugal force tends
to expand the torus. The critical Ca diminishes with the growth of rotation intensity, and
for high enough Bond number, no equilibrium shapes are found under compressional flow.
These are the cases depicted in figure 8 in the subregion Ca > 0.

6.2. Heavy drops in extensional flow
When the outer flow is extensional, it tends to shrink the torus. Under such a flow no
forcing exists that may lead to an expansion of a light toroidal drop and it therefore
collapses to the axis for any initial radius. For a heavy drop under extensional flow, the
interplay of surface tension, centrifugal force and shear results in two possible stationary
states for a pair (Ca, Bo). Our simulations demonstrate that shapes with lower major
radius are unstable, while those with higher radius, do not change for an indefinitely
long time. This suggests that it is stable with respect to axisymmetric disturbances. We
address these shapes as stable, though we did not perform analytical stability analyses.
In figure 8 unstable solutions are denoted by solid curves and stable shape are shown by
dashed curves.
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For each intensity of the rotation (Bo > 0) there is a negative critical Cacr, under
which the shrinking effect of surface tension and extensional outer flow dominates over
the expanding effect of rotation for any torus shape. Thus at a given Bo, for Ca < Cacr
no stationary shapes are found. This is similar to the other extreme in the case of
compressional flow when Ca > Cac. Here, for any constant value of the rotation intensity,
Bo, there is an interval of capillary number defined by

Cacr(Bo) < Ca < Cac(Bo), (6.1)

in which stationary solutions are found. The solutions within these boundaries may contain
all possible combinations of relative drop density and compressional or extensional flow.
In figure 8 stable and unstable solutions connecting values of Cacr(Bo) are divided by a
thick line. Stable solutions are in the upper left region above this line. This indicates that
stable solutions are possible only for heavy drops under extensional flow. In this subregion,
the rotation aims to expand the torus while extension and surface tension act to restrain
this expansion, and the equilibrium is stable as is evident in the dynamic calculations. In
the rest of the parameters’ domain the combined action of rotation and shear results in an
equilibrium that is unstable. It is sensitive to any infinitesimal perturbation that grows to
send the torus to collapse or expand either to infinity or to merge onto a stable equilibrium.
Note that the two starred points of figure 2, at Bo = 4 and 4.0004, are transferred to figure 8
at Bo = 0 and at Ca = 0 due to the change in the value of the normalizing velocity, which
is proportional to G in this section.

6.3. Description of fluid flow
In this subsection we describe the fluid flow under the combined effect of rotation and
compressional or extensional linear flow. We start with the undisturbed flow. In the
laboratory frame and with the absence of rotation, the stream surfaces are hyperbolic
concentric envelopes surrounding the axis of rotation. Progressing along such an envelope,
from large z to smaller z, it widens in the r direction. At large r these surfaces are almost
parallel to each other asymptotically approaching the z = 0 plane. Particle paths on these
surfaces will look like a bundle of spaghetti noodles. Adding a rotation about the axis
of symmetry, the structure of the envelopes as concentric surfaces will not be altered,
however, the path lines (streak lines) on them will be twisted along the rotational velocity
component as their radial distance increases. Next, when inserting a torus centred at the
origin and symmetric about the z = 0 plane, the structure of the envelopes in the outer
flow is expected to be distorted, reflecting the surface shape.

We next address the torus surface and internal streak lines in the laboratory frame. In the
absence of rotation, when vertical cross-section is observed, they will look like close loops,
(see, e.g. Zabarankin et al. 2015). In compressional flow the streak line progresses from
Rmin to Rmax on the surface and retracts within the torus on the z = 0 plane to meet the
same point at the torus inner Rmin circle. Inner streak lines are enclosed within the surface
one. However, when rotation exists the particle on the surface streak line is continuously
pushed in the rotational direction, and when it approaches back toward the torus inner
circle it will be at a different point depending on the intensity of the shear (Ca) and the
rotation (Bo). The inner paths of particles will experience the same effect of rotation.
A schematic plot of the spiral structure of a surface streak line is depicted in figure 9,
where a segment of the circular torus is schematically spread. In this figure the progress of
the particle on the path line follows a compressional flow component. For extensional
flow component, the arrows on the steak line should be inverted, but the structure
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Spread of angular coordinate

Zmax

Figure 9. Schematic plot of a streak line on a stationary surface for compressional flow combined with
rotation.
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Figure 10. The intensity of the surface tangential velocity between Rmin and Rmax shown in laboratory frame.
(a) Rotation and compression at Ca = 0.21, Bo = −1 and R = 0.85591. (b) Rotation and extension at Ca =
−0.025, Bo = 1 and R = 3.4011.

remains similar. These apply of course only to stationary states where the flow and the
surface structure remain unchanged in time.

In figure 10 we present examples showing the tangential velocity vectors along a
cross-section of the exposed surface in the laboratory frame, spanning the surface interval
between Rmin at the inner circle and Rmax at the outer one. The two examples, figures 10(a)
and 10(b), demonstrate the tangential velocity of rotation, combined with compressional
or extensional shear, respectively. Those are demonstrated in the unstable stationary cases
depicted in figures 4 and 6. The length of the arrows simulates the intensity of the vector
in which, for the purpose of demonstration only, the rotational component is rescaled by
ω, i.e. ω/G = 1. The presented tangential velocity components apply just as well along a
streak line in the axisymmetric stationary state since all values of tangential velocity, at
a constant radial position on the surface, are the same. Note also the vectors approaching
the pole Rmax, that seem inclined backward. These are not in error as they tend to become
oriented parallel to the vertical coordinate where the tangential velocity is in the direction
of rotation.

The schematic description in figure 9 suggest a continuous non-zero value for the surface
tangential velocity vector. This is indeed verified in the examples depicted in figure 10.
This description indicates that there is no point of separation of streak line at the surface
or of the external streamlines. Indeed, for the non-rotating cases, when Bo = 0, Ee et al.
(2018) demonstrated that there will be no such separation at all Ca, for the torus viscosity
equal to, and less or greater than, the viscosity of the outer fluid. Below, in figure 11, we
present several such calculated values of the tangential velocity in rotational coordinates
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Figure 11. Tangential velocity (ut) in rotating coordinate frame on surface of stationary shapes in rotation and
extension. (a,b) Unsteady and steady cases at Bo = 1 and Ca = −0.025, R = 3.4011 and 5.78, respectively.
(c,d) Unsteady and steady cases at Bo = 3 and Ca = −0.05, R = 1.12115 and 16.0, respectively.

frame, at Bo not equal to zero, demonstrating that a similar phenomenon of no separation
exits also in the presence of the additional rotation. These examples in figure 11 are shown
in cases involving rotation and extension, when dual solutions exist for the same Bo and
Ca values. It is seen that there is no difference in the structure of surface tangential
velocity indicating similar flow structure for both unsteady and steady stationary cases.
The values in the case figure 11(d) are somewhat higher than those in figure 11(c) since the
torus is more expanded in the radial direction. The appearance of axisymmetric stability
at these expanded tori, affected by the balance of rotation and expansion, may reflect a
strong capillary force acting on a small almost circular cross-section, with a much higher
curvature compared with the diminishing curvature of torus radius.

6.4. Special points
Some points in figure 8 deserve special attention. They are marked in extra circles. Note
the two points on the right-hand side of the figure. They belong to the curves of unstable
stationary solutions of the cases Bo = −1 and Bo = −3 depicted and discussed in § 5 in
figures 4 and 5. They are the most extreme calculations we could safely perform for tori,
all in compressional flow before collapse, though somewhat short of Cac for these cases.

For the cases of rotating heavy drops subjected to extensional flow we marked two points
on the Bo = 1 curve and two on the Bo = 3 curve. The former two points are at Ca =
−0.025 and the dual solution are relatively close on both sides of the dividing line of Cacr,
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separating the steady and unsteady solutions for Bo = 1. These solutions are discussed in
§ 5, in figure 6. The latter two points at Bo = 3, are relatively far apart and are the cases
discussed there in figure 7.

Note that for the case of Bo = 4 the last point of unsteady solution evaluated by the BIE
method is at Ca = −0.07. Nevertheless, we can associate with this case two more points
from figure 2 (with Ca = 0) at Bo = 4 (lower point) and at Bo = 4.0004 (upper point at
total collapse). With these two additions we can estimate the curve of the case Bo = 4 and
this interpolation is illustrated by the black points.

The last special point that is worth mentioning is the one designated by Ca = 0 and
D = 1. This is the limit to which all unsteady tori in compressional flow are aiming at and
it is also the Cacr for all the compression cases in the inequality (6.1). This point is also the
limiting point of all steady tori in extensional flow. At this point the limiting torus radius is
R → ∞ and it has a circular cross-section of zero area. It is the ‘black hole’ of all rotating
tori embedded in axisymmetric linear flows.

6.5. Multiplicity of solution
The branches denoting stationary solutions showing toroidal shapes are associated with
branches showing stable singly connected drops obtained by Zabarankin et al. (2013), Ee
et al. (2018) and Malik et al. (2020). The former two investigated compressional flow
without rotation, Bo = 0, for various values of the viscosity ratio, while Malik et al.
(2020) extended their domain to span the entire region of stable stationary solutions,
including also extensional flow components for negative and positive values of Bo. The
stable rotating singly connected drops are shown in the interval Cal ≤ Ca ≤ Car in the
nomenclature definition of Malik et al. (2020). Our definition will yield −Car ≤ Ca ≤
−Cal using their values. Examples of such calculated two types of branches, singly
connected and toroidal, are depicted in figure 12 for the cases Bo = −3, 0 and 4. Note that
in these cases we incorporated points, taken from figure 2 and from Malik et al. (2020),
marked by circled asterisks. The branches arrive at close proximity but do not show a
joint point, mainly because of the numerical difficulties encountered in obtaining unsteady
heavily dimpled flat drops as well as almost completely collapsed tori (with Rmin → 0).
These gaps that may contain segments that connect the two branches deserve separate
attention as they can be completed by combining a special approximated method with BIE
calculations (Lavrenteva et al. 2021). Examples of deformation curves containing both
simply connected and toroidal branches are presented in figure 12. We observe that there
is a gap between the last calculated point of the flat drop (calculated at |Cal|, beyond which
no stable dimpled drop exists) and the last point of the almost collapsed stationary unstable
toroidal drop (for which stationarity could still be assumed). This gap is augmented with
the increase of |Bo| and is, thus, common to heavy and light drops as well.

The case Bo = 4 contain two points taken from figure 2 on the vertical line Ca = 0
that deserves special attention and is detailed in figure 13. It is evident that the curve
of Bo = 4 must cross the Ca = 0 vertical line into the compressional zone at the lower
point, and turn back toward the extensional zone at the upper point, thereby suggesting a
turning location for Cac for this case at approximately Cac ≈ 0.005 and deformation factor
of D ≈ 0.63. Estimated interpolations are marked by solid dots. The upper dot on the
Ca = 0 line is also a point denoting the collapse into a singly connected shape. Hence, the
point of maximum existence of singly connected drop at Cal and the point of its collapse
to toroidal shape at Ca = 0 were also connected by an estimated interpolation marked by
solid dots. More exact approximation of these interpolated dots, connecting these segments
of highly unstable stationary solutions, require a hybrid approach employing BIE and a
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Figure 12. Examples of branches of stationary toroidal and associated stable singly connected drops when
the cases Bo = 4, 0 and −3. Circled points are obtained from figure 2.
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Figure 13. Map of stationary solutions for the special case Bo = 4. The dashed line denotes calculated stable
toroidal and singly connected drops; the solid line denotes calculated unsteady toroidal drops; solid dots are
approximate interpolation; circled points are obtained from figure 2.
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Figure 14. Cross-sections of stationary shapes of toroidal drops for Bo = 4 at various Ca. The top three are
stable and the bottom four are unstable.

special estimate of shapes, as was recently suggested for the case Bo = 0 (Lavrenteva
et al. 2021).

It is interesting to note the expected multiplicity of solutions for this case, Bo =
4. In addition to the stable stationary singly connected drop, we find in the interval
−0.1435 = Cacr < Ca < 0 two toroidal shapes, a stable torus and an unstable one, both
in extensional flow. Farther in the interval 0 < Ca < Cac ≈ 0.005 we find two toroidal
shapes both unstable in compressional flow. Beyond Cac in the interval Cac < Ca <

−|Cal| = 0.02252 we expect only two singly connected drops, a stable one and an unstable
dimpled one.

The various stationary shapes associated with the case Bo = 4 are depicted in figure 14.
It is interesting to observe that the cross-sections of the toroidal shapes are mostly oval.
In the stable tori subregion these ovals are very close to circular where the vertical
dimension only slightly exceeds the horizontal one, zmax > (Rmax − Rmin)/2 or Dcs < 0.
Near the transition from stable to unstable shapes the cross-section vertical orientation of
the ellipse becomes more pronounced with the least Dcs observed. However, when one
proceeds to examine more collapsed torus shapes as the shear flow turns from extensional
to compressional, the cross-section major oval direction changes to horizontal and, near the
collapse region of the stationary torus it acquires an egg shape with the higher curvature
near Rmin with Dcs = 0.42825.

7. Discussion and conclusion

In this paper we presented a numerical study of dynamic and of stationary deformation
patterns of toroidal drops embedded in a viscous flow field, combined of rotation and
axisymmetric linear shear, compressional or extensional.
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It is demonstrated that under a compressional (biextensional) flow the behaviour of a
rotating toroidal drop is qualitatively similar to that in the absence of rotation (studied
in Zabarankin et al. 2015; Ee et al. 2018). Namely, when the viscous forces that are
proportional to the intensity of the shear, are relatively weak compared with the surface
tension (the ratio of these forces is characterized by the capillary number, Ca), three
different scenarios of drop evolution are possible: indefinite expansion of the liquid torus,
contraction to the centre and a stationary toroidal shape. For capillary numbers greater
than a critical value, depending on the intensity of rotation Cac = Cac(Bo), no stationary
toroidal shapes are found.

In the case of a light drop (with density less than that of the ambient fluid, Bo < 0), the
centrifugal force tends to shrink the toroid, i.e. it acts together with surface tension against
the compressional flow. Thus, the more intensive the rotation is (higher |Bo|), the more
intensive compressional flow (higher Ca) is required to overcome this tendency and make
the torus expand dynamically to indefinitely. The critical capillary number increases with
the absolute value of Bo. In contrast to this, when the drop is heavier than the ambient
fluid, Bo > 0, the centrifugal force tends to expand the torus. The critical Ca diminishes
with the growth of rotation intensity, and for high enough Bond number, no equilibrium
shapes are found under compressional flow.

The situation changes when the outer flow is extensional and tends to shrink the
torus. Under such a flow no forcing exists that may lead to an expansion of a light
toroidal drop, and it collapses to the axis for any initial radius. For a heavy drop a
multiplicity of stationary toroidal shapes exists. These branches are an addition to branches
of singly connected drop shapes reported by Malik et al. (2020). When rotation is
combined with extensional flow, a considerable subdomain of Bond and capillary numbers
with stable stationary solutions, implying stable tori, does exist. The existence of stable
toroidal deformation was a primary objective of this effort. For each positive value of
Bo (heavy drops in extensional flow) there exists a critical negative capillary number,
Cacr, under which no stationary solutions were found. The line collecting these critical
values Cacr(Bo) denotes the boundary between the zones of stable and unstable toroidal
shapes. The lower subdomain of a combination of rotation and extensional flow, and the
entire domain in which rotation and compressional flow are combined, result in stationary
solutions, all of them yielding unsteady shapes. It is noted that the latter branches are
approaching branches of singly connected flat drops having the same Bo. The connection
of these branches is yet to be resolved and calculated.

It is interesting to compare the dynamics with that observed when different forcing is
present. Fragkopoulos & Fernández-Nieves (2017) presented an experimental study of the
dynamics of charged toroidal drop. The charging tends to expand the torus and to prevent
its collapse to the centre. However, in their experiments, when collapse is hindered, tori
always end up breaking into spherical droplets due to Rayleigh–Plateau instability.

Recall that we term the solution unstable if with passage of time it is destroyed
by the development of unavoidable numerical disturbances, and stable if it can persist
indefinitely. This suggest instability or stability with respect to axisymmetric disturbances,
while the effect of non-axisymmetric ones that may result in the development of the
Rayleigh–Plateau instability is yet to be studied.
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