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We present a mathematical model describing the distribution of monomer and micellar sur-

factant in a steady straining flow beneath a fixed free surface. The model includes adsorption

of monomer surfactant at the surface and a single-step reaction whereby nmonomer molecules

combine to form each micelle. The equations are analysed asymptotically and numerically

and the results are compared with experiments. Previous studies of such systems have often

assumed equilibrium between the monomer and micellar phases, i.e. that the reaction rate is

effectively infinite. Our analysis shows that such an approach inevitably fails under certain

physical conditions and also cannot accurately match some experimental results. Our theory

provides an improved fit with experiments and allows the reaction rates to be estimated.

1 Introduction

A surfactant is an amphiphilic chemical. When dissolved in a bulk liquid phase (usually

water), it is energetically favourable for surfactant molecules to arrange themselves with

their hydrophobic components expelled through any liquid-air interface present. This

adsorption of surfactant at a free surface reduces the local surface tension. Nonuniform

adsorption thus results in a surface tension gradient that drives a liquid flow and, hence,

affects the transport of surfactant molecules. Consequently, when surfactant solution flows

beneath a free surface, the fluid dynamics and surface chemistry are, in general, intimately

coupled.

If enough molecules are present locally, they can also reduce their free energy by

combining in aggregates called micelles, in which their hydrophobic parts are shielded

from the surrounding liquid. The minimum concentration required for the formation of

micelles is called the Critical Micelle Concentration (CMC). Micelles may take several

forms including spheres and sheets [23] (see Figure 1). Although different-sized micelles

may occur, one size is usually far more stable than the others [23].

In this paper we consider the flow of a micellar surfactant solution (i.e. with bulk

concentration above the CMC) beneath a free surface. If the free surface expands, the

surface concentration of surfactant decreases and hence must be replenished from the

bulk. This reduces the local bulk concentration and, potentially, causes micelles in a

neighbourhood of the interface to dissociate. The process of interface adsorption from

micellar solutions under dynamic conditions is described further in Noskov [21].

The coupling between surface expansion and micellar breakdown has been investigated

using an experimental apparatus, known as the OverFlowing Cylinder (OFC), in which
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Figure 1. Schematic showing cross-sections through spherical and sheet micelles.

water is pumped up a vertical cylinder and flows gently over the rim. The resulting

stagnation-point flow is easily accessible for non-invasive measurements of surface velocity,

surface tension and surface concentration of surfactant [3, 19, 20]. Introduction of even a

small amount of surfactant to the system induces a large increase in the surface expansion

rate. This can be explained as follows. Expansion of the surface causes depletion of

surfactant near to the rim of the cylinder as compared to the centre. The resulting surface

tension gradient is responsible for accelerating the free surface. The theory behind this

process for surfactant solution below the CMC is given in Breward et al. [6] and Howell &

Breward [15].

Conventional wisdom suggests that, above the CMC, the air/liquid interface is loaded

with surfactant and thus rendered immobile (indeed, it is common to apply no-slip bound-

ary conditions at surfactant-loaded interfaces when modelling soap-films; see Schwartz &

Princen [22], for example). Alternatively one might argue that, with surfactant readily

available in the form of micelles, any nonuniformity in surface concentration should

be rapidly replenished, so that surface tension gradients are effectively eliminated. The

OFC investigations show that neither of these hypotheses is correct: the large surfactant-

induced surface expansion persists even when the bulk concentration is much higher than

the CMC. In Figure 2, for example, we see that the maximum surface expansion rate θ

for the surfactant C14TAB is achieved above the CMC. This suggests that the overflowing

cylinder operates in a regime where the local surfactant concentration beneath the free

surface is sub-CMC even when the bulk concentration is not.

In this paper we derive a simple mathematical model describing the flow of micellar

surfactant solution beneath a gas-liquid interface. The model incorporates surfactant in

three different forms: individual monomer molecules in solution, micelles in the bulk, and

molecules adsorbed at the interface. Our aim is to show how surface expansion causes

micelles to break down. Indeed, our theory allows the timescale for micelle breakdown to

be inferred from the results of OFC experiments.

Our main simplifying assumption is to allow only micelles of a single fixed size to form

via the combination of n individual monomers. There are many more complicated models
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Figure 2. Surface expansion rate θ at the centre of the OFC versus bulk concentration Cb of

surfactant (C14TAB+ 0.1M NaBr). The CMC for this surfactant solution is 0.2 molm−3. The data

are reported in Valkovska et al. [24] and reproduced by kind permission of the authors.

in the literature, describing aggregates whose sizes vary as they gain or lose monomer

molecules [4, 9, 13, 21]. All these models neglect fluid motion and thus surfactant

transport by convection. Our model is similar to that used in Danov et al. [10] and

amounts to lumping all such intermediate stages into a single effective reaction between

monomers and micelles. It has the advantage of limiting to two the number of rate

constants to be fitted from experiments. It is also simple enough to be applied to

situations where the monomer and micelle concentrations are far from their equilibrium

values.

In § 2, we derive our general governing equations and boundary conditions in di-

mensionless form. Typical behaviour of the solutions to these equations is illustrated in

§ 3, by considering a particularly simple limit in which they can be solved analytically.

In general, although exact analytical solutions are not available, the equations may be

simplified considerably by taking relevant asymptotic limits. This is done in § 4, where

the simplified models are validated via comparison with numerical solutions of the full

model. Further validation is provided in § 5 by comparing our asymptotic and numerical

solutions with experimental data. Finally, in § 6, we discuss our results and draw our

conclusions.

2 Mathematical model

2.1 Governing equations

We suppose that each micelle is an aggregation of n monomer molecules, where n is

typically in the range 80–100 for spherical micelles [2]. We model this process as a single
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chemical reaction of the form

nMON

k1

�
k−1

MIC, (2.1)

neglecting all intermediate reaction steps. The law of mass action implies that the rate, j,

at which surfactant changes phase from monomer to micelle is

j = k1Ĉ
n − k−1Ĉm, (2.2)

where the concentrations of monomer and micellar surfactant are denoted by Ĉ and Ĉm,

respectively. Here and throughout, ˆ is used to indicate dimensional variables. Both phases

are advected with the fluid velocity û while diffusing, with diffusion coefficients denoted

by D and Dm respectively. Hence the two concentrations satisfy the reaction-advection-

diffusion equations

∂Ĉ

∂t̂
+ û · ∇̂Ĉ = D∇̂2Ĉ − nj, (2.3)

∂Ĉm

∂t̂
+ û · ∇̂Ĉm = Dm∇̂2Ĉm + j, (2.4)

where the fluid is assumed to be incompressible so that ∇̂ · û = 0.

In this paper, we restrict our attention to radially-symmetric flow beneath a flat interface.

We therefore use cylindrical polar coordinates (r̂, ẑ) with the free surface at ẑ = 0 and the

ẑ-axis pointing vertically downward into the liquid. Far away from the interface, the two

concentrations are assumed to be in equilibrium, with the net concentration of surfactant

molecules equal to a known constant Ĉb. The corresponding values of Ĉm and Ĉ are

given by

Ĉm ∼ k1

k−1
Ĉn, Ĉ + n

k1

k−1
Ĉn → Ĉb, as ẑ → ∞. (2.5)

The surface concentration of surfactant molecules adsorbed at the interface is denoted

by Γ̂ . If surface diffusion is neglected (see Breward et al. [6] for the justification), then

Γ̂ evolves through advection along the interface, with surface velocity ûs(r̂) = û(r̂, 0), and

replenishment by monomer from the bulk:

D
∂Ĉ

∂ẑ
=

∂Γ̂

∂t̂
+ ∇̂ · (ûsΓ̂ ) at ẑ = 0. (2.6)

Micelles, whose outer surfaces are hydrophilic, are not directly adsorbed without first

breaking up into monomers, so the flux of Ĉm at the interface must be zero:

∂Ĉm

∂ẑ
= 0 at ẑ = 0. (2.7)

Finally, we assume that the timescale for adsorption of monomer onto the free surface

is small (i.e. the monomer and adsorbed phases are in thermodynamic equilibrium) so

there is a functional relationship between Γ̂ and Ĉ at the interface. We use the Langmuir
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isotherm [1]

Γ̂ =
ΓsatĈ

k + Ĉ
at ẑ = 0, (2.8)

where Γsat and k are material properties of the surfactant.

The initial profiles of both concentrations are also supposed to be given:

Ĉ = ĈI (ẑ), Ĉm = ĈmI (ẑ) at t̂ = 0. (2.9)

In general the fluid velocity û must be found by solving the Navier–Stokes equations

and appropriate free-surface conditions, where the surface tension is related to surface

concentration of surfactant. To simplify matters, though, we suppose for the moment that

û is a given function of r̂, ẑ and t̂. Then (2.3)–(2.9) form a closed system of equations and

boundary conditions for Ĉ , Ĉm and Γ̂ .

2.2 Nondimensionalisation

From (2.5), we deduce the following expressions for the equilibrium concentrations far

from the interface:

nĈm

Ccmc

=

(
Ĉ

Ccmc

)n

,

(
Ĉ

Ccmc

)
+

(
Ĉ

Ccmc

)n

=
Ĉb

Ccmc

, (2.10)

where

Ccmc =

(
k−1

nk1

)1/(n−1)

. (2.11)

If Ĉb < Ccmc then, since n is a large integer (of order 100), (2.10) implies that Ĉ ∼ Ĉb

and Ĉm ∼ 0. On the other hand, if Ĉb > Ccmc then we deduce that Ĉ ∼ Ccmc and

Ĉm ∼ (Ĉb − Ccmc)/n. We can therefore identify Ccmc with the critical micelle concentration

above which micelles form.

We use this insight in nondimensionalising the problem as follows:

û =
D

L
u, (r̂, ẑ) = L(r, z), t̂ =

L2

D
t, Ĉ = CcmcC, Ĉm =

Ccmc

n
Cm, Γ̂ = ΓsatΓ , (2.12)

where the length-scale L can be determined later, depending on the geometry under

consideration. The resulting dimensionless equations and boundary conditions read

∂C

∂t
+ u · ∇C = ∇2C −K(Cn − Cm), (2.13)

∂Cm
∂t

+ u · ∇Cm = D∇2Cm +K(Cn − Cm), (2.14)

with

Cm ∼ Cn, C + Cn → Cb as z → ∞, (2.15)

1

S

∂C

∂z
=

∂Γ

∂t
+ ∇ · (usΓ ) ,

∂Cm
∂z

= 0, Γ =
C

β + C
at z = 0, (2.16)

C = C0(z), Cm = Cm0(z) at t = 0. (2.17)
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Along with n, there are five dimensionless groups, defined by

D =
Dm

D
, K =

L2k−1

D
, Cb =

Ĉb

Ccmc

, S =
Γsat

LCcmc

, β =
k

Ccmc

. (2.18)

Depending on the flow and geometry under consideration, it may be possible to reduce

these to four by making a suitable choice of L.

2.3 Application to stagnation point flow

Now we apply this model (2.13)–(2.17) to the overflowing cylinder experiment. The cylinder

used has radius 4 cm and, within 2 cm of the axis of the cylinder, the experimentally-

measured leading-order flow is that of a stagnation point (see Breward et al. [6]), with

velocity field

û =
θr̂

2
er − θẑez ,

where er and ez are unit vectors in the r̂- and ẑ-directions, respectively. To determine θ

theoretically, it is necessary to solve for the flow all the way out to the rim of the cylinder

[15]. Instead, as in Breward et al. [6], we suppose that θ is known (from experimental

measurements) and try to determine the surfactant concentrations.

For this flow field, the appropriate nondimensionalisation is û = θLu, which can be

reconciled with (2.12) by choosing the lengthscale L appropriately:

L =
√
D/θ. (2.19)

If the concentrations C and Cm are assumed only to depend on z, the dimensionless model

reads

d2C

dz2
+ z

dC

dz
= K(Cn − Cm), (2.20)

Dd2Cm

dz2
+ z

dCm
dz

= −K(Cn − Cm), (2.21)

with
dC

dz
= S

C

β + C
at z = 0, (2.22)

dCm
dz

= 0 at z = 0, (2.23)

Cm ∼ Cn, C + Cn → Cb as z → ∞. (2.24)

The dimensionless parameters n, β and D depend only on the surfactant under con-

sideration. Of these, n is large and β is usually small, say O(0.01). The ratio of the

diffusion coefficients may be estimated from the ratio of the molecular weights, which

suggests D ∼ n−1/3 ≈ 0.2. The remaining parameters vary from experiment to experiment,

depending on the bulk concentration and flow rate, but S and Cb are both typically order

one. The final parameter K is proportional to the reaction rate k−1 which is unknown. If

micelle breakdown is assumed to occur very rapidly, then we can take the limit K → ∞, in

which case the monomer and micelle phases are everywhere in equilibrium (see Valkovska
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et al. [24]). In this paper, we are particularly interested in the non-equilibrium regime,

where K is finite and the timescale for micelle breakdown is an important limiting process.

3 Paradigm problem

We first consider a particularly straightforward, although physically unrealistic, limit

in which equations (2.20) and (2.21) can be integrated analytically. From this we gain

valuable insight into the relevant asymptotic scalings that can be used to simplify the

problem in general.

Suppose the diffusion coefficients of the two phases are equal, so D = 1. Suppose

further that the dimensionless reaction rate K is very large. Then we deduce from (2.20)

and (2.21) that the two phases are everywhere in equilibrium, i.e.

Cm ≡ Cn. (3.1)

Then, by adding (2.20) and (2.21), we obtain a linear differential equation for C + Cn,

whose solution is

C + Cn = Cb −
(
Cb − C0 − Cn

0

)
erfc (z/

√
2), (3.2)

where C0 is shorthand for the subsurface monomer concentration C(0). This remaining

unknown is fixed by applying the boundary condition (2.22), which leads to

Cb = C0 + Cn
0 + S

√
π

2

(
C0 + nCn

0

β + C0

)
. (3.3)

It is readily shown that, given S and β, (3.3) defines a one-to-one relationship between

C0 and Cb. Once C0 has been found, the concentration C is given by the algebraic equa-

tion (3.2).

First suppose C0 < 1, so that Cn
0 	 1. Then (3.3) reduces to a quadratic equation for

C0, whose solution is

C0 ∼ 1

2

{
Cb − β − S

√
π

2
+

√
(Cb − β − S

√
π/2)2 + 4βCb

}
. (3.4)

The hypothesis C0 < 1 is hence only valid when the bulk concentration is bounded by

Cb < 1 +
S

1 + β

√
π

2
. (3.5)

Next we analyse equation (3.2) in this limit. If Cb < 1, then the system is sub-micellar

(C < 1) everywhere, so the solution of (3.2) is approximately

C ∼ Cb − (Cb − C0) erfc (z/
√

2), Cm ∼ 0. (3.6)

If Cb > 1, then (3.6) is only valid in z < Z , where Z satisfies C(Z) = 1, that is

erfc (Z/
√

2) =
Cb − 1

Cb − C0
. (3.7)
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Figure 3. Monomer and micelle concentrations, C and Cm, versus depth z with bulk concentration

(a) Cb = 1.5, (b) Cb = 3. The solid line is the exact solution (3.2)–(3.3) with n = 100; the dotted line

is the large-n asymptotic solution (3.6)–(3.8). The other parameter values are β = 0.01 and S = 1.

In z > Z , the balance in (3.2) switches to

C ∼ 1, Cm ∼ Cb − 1 − (Cb − C0) erfc (z/
√

2). (3.8)

For higher values of Cb, not satisfying (3.5), the hypothesis Cn
0 ≈ 0 fails, with the

result that (3.4) over-predicts C0. Instead, the leading-order approximate solution of (3.3)

becomes

C0 ∼ 1 − 1

n

{
log

(
nS

1 + β

√
π

2

)
+ log

(
Cb − 1 − S

1 + β

√
π

2

)}
. (3.9)

In this limit, the solution is everywhere micellar, so the approximation (3.8) applies right

up to the free surface z = 0.

Figure 3 shows comparisons between the asymptotic approximations (3.6)–(3.9) and

numerical solutions of (3.2) and (3.3). With the parameter values used, the critical value

of Cb given by (3.5) is 2.24. In general, the liquid is partitioned into two regions, separated
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by the free boundary z=Z , which satisfies (3.7). The value of Z for the parameters

used in Figure 3(a) is 0.82. In z < Z , there are effectively no micelles and the monomer

concentration is below the CMC while, in z > Z , the micelle concentration is positive and

the monomer concentration is approximately at the CMC. At bulk concentrations below

the CMC, the latter region ceases to exist and the solution is sub-micellar everywhere, that

is Z → ∞. At the other extreme (see Figure 3(b)), if the bulk concentration exceeds the

limit given in (3.5), then Z is effectively zero, the monomer concentration is constant and

micelles exist all the way up to z = 0.

There is a further complication: we have as yet made no attempt to impose the micelle

flux boundary condition (2.23). This condition is approximately satisfied if the subsurface

concentration is sub-micellar, so that (3.6) applies near z = 0. It is no longer satisfied,

though, if C0 becomes sufficiently close to 1. Specifically,

∂Cm
∂z

(0) ∼ nCn−1
0

∂C

∂z
(0) ∼ nSCn

0

β + C0
,

which is order one if

C0 ∼ 1 − 1

n
log

(
nS

1 + β

)
⇒ Cb ∼ 1 +

√
π

2

(
S

1 + β
+ 1

)
. (3.10)

At bulk concentration higher than this, the limit K → ∞ necessarily fails in a neighbour-

hood of z = 0. It is clear in Figure 3(b), for example, that ∂Cm/∂z is nonzero at z = 0.

This illustrates the danger of assuming in advance that the monomer and micelle phases

are everywhere in equilibrium.

4 Asymptotic analysis

4.1 The limit n → ∞

Now we return to the full equations (2.20)–(2.24) and use the insight gained from the

simplified model in § 3 to construct approximate solutions in asymptotic limits relevant to

real-life surfactants.

In all surfactant systems of interest, the number n of monomers contained in each

micelle is a large parameter. Hence we can, as in § 3, partition the fluid into a sub-micellar

region where C < 1, and a micellar region where C ≈ 1, divided by the free boundary

z = Z . In the former, Cn is exponentially small, so the reduced equations

z < Z, C < 1, KCm = Dd2Cm

dz2
+ z

dCm
dz

, KCm = −d2C

dz2
− z

dC

dz
(4.1)

are valid to all algebraic orders in 1/n. To analyse the case where C is close to 1, we set

C = 1 + φ/n, so

Cn ∼ eφ
{

1 − φ2

2n
+
φ3(8 + 3φ)

24n2
+ · · ·

}
as n → ∞.
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Hence the version of (4.1) that holds in the micellar region is

z > Z, C = 1 +
φ

n
,

K

{
Cm − eφ

(
1 − φ2

2n
+ · · ·

)}
= Dd2Cm

dz2
+ z

dCm
dz

= −1

n

(
d2φ

dz2
+ z

dφ

dz

)
. (4.2)

Our analysis in the remainder of this section is based on (4.1) and (4.2).

4.2 The limit K → ∞

Before attempting to find and match solutions of (4.1) and (4.2), we first consider the

simplified equations that result from the equilibrium limit K → ∞. In this limit, Cm = Cn

everywhere and we find, as in § 3, that the micelle concentration in z < Z is effectively

zero, so (4.1) becomes

z < Z, Cm = 0,
d2C

dz2
+ z

dC

dz
= 0. (4.3)

The solution, satisfying C(Z) = 1, is

C = C0 +
(1 − C0) erf (z/

√
2)

erf (Z/
√

2)
, (4.4)

where C0 = C(0) as before. An equation for C0 comes from the boundary condition (2.22):

S

√
π

2
erf (Z/

√
2) =

(1 − C0)(β + C0)

C0
. (4.5)

The leading-order equations in z > Z are

z > Z, C = 1, Dd2Cm

dz2
+ z

dCm
dz

= 0, (4.6)

to be solved with the conditions

Cm(Z) = 0, Cm → Cb − 1 as z → ∞. (4.7)

We assume here that Cb > 1, so that Z < ∞. Then the solution of (4.6), (4.7) is

Cm = (Cb − 1)

{
1 − erfc (z/

√
2D)

erfc (Z/
√

2D)

}
. (4.8)

It remains to determine the location of the free boundary z = Z . In principle this could

be done by asymptotic matching of the two solutions (4.4) and (4.8) through a boundary

layer near z = Z; see § 4.3 for details. Here we can circumvent this step by ensuring that

surfactant is conserved across z = Z . Since C ∼ 1, the flux of surfactant crossing z = Z

from above is purely in the form of micelles. In z < Z , though, there are no micelles, so
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surfactant enters through z = Z only in monomer form. By setting these fluxes equal to

each other,

dC

dz
= DdCm

dz
at z = Z,

we obtain the following transcendental equation for Z:

erf (Z/
√

2)e−(1−D)Z2/2D

erfc (Z/
√

2D)
=

1 − C0

(Cb − 1)
√

D
, (4.9)

where C0 satisfies (4.5). Notice that (4.9) agrees with (3.7) if D = 1.

In Figure 4, we compare the approximate solutions (4.4) and (4.8) with numerical

solutions of the full equations (2.20)–(2.24) with n and K large but finite. As K and n

increase, C0 increases and the solutions tend to the infinite K and n limit. The second

graph indicates the peril of working in the infinite K and n limit: for moderate values

micelles exist right up to the free surface. The asymptotic solution (4.4), (4.5), (4.8) and

(4.9) is the nondimensional version of that presented in Valkovska et al. [24].

4.3 The limit K = O(1)

Now we investigate the effects of the micellar and monomer phases being out of equilib-

rium. In z < Z , we first solve (4.1) for Cm(z), with C ′
m(0) = 0:

Cm = B1e
−z2/2DΦ

(
1 +K

2
,
1

2
,
z2

2D

)
, (4.10)

where Φ is a confluent hypergeometric function [14, page 1084], and B1 is an integration

constant. Next we solve (4.1) for C(z):

C = C0+B2

√
π

2
erf

(
z√
2

)
−K

√
π

2

∫ z

0

{
erf

(
z√
2

)
− erf

(
ζ√
2

)}
Cm(ζ)eζ

2/2 dζ, (4.11)

where the integration constants are related through the boundary condition (2.22) on

z = 0:

C0 =
βB2

S − B2
. (4.12)

In z > Z , we solve (4.2) for Cm and φ as asymptotic expansions of the form

Cm ∼ Cm0 + n−1Cm1 + · · · , φ ∼ φ0 + n−1φ1 + · · · .

The leading-order solutions are

Cm0 = Cb − 1 + (eB3 − Cb + 1)
erfc (z/

√
2D)

erfc (z/
√

2D)
, (4.13)

φ0 = log (Cm0) , (4.14)
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Figure 4. Concentration of (a) monomer and (b) micelles versus depth z for n = 10, K = 10

(small-dashed line), n = 100, K = 10 (large-dashed line), n = 10, K = 100 (dot-dashed line) and

n = 100, K = 100 (dotted line). The solid line shows the asymptotic solution for infinite n and K .

The other parameter values are S = 1, β = 0.01 and Cb = 2.

where the integration constant B3 is defined such that

φ0(Z) = B3, Cm0(Z) = eB3 , C ′
m0(Z) = −

√
2

πD
(eB3 − Cb + 1)e−Z2/2D

erfc (Z/
√

2D)
. (4.15)

Now, to determine the unknown constants C0, B3 and Z , we match the solutions (4.10),

(4.11), (4.13) and (4.14) across an inner layer near z = Z . To explore this layer we perform

the rescaling

z = Z + y/
√
n, φ(z) = ψ(y), Cm(z) = g(y), (4.16)

so that ψ and g satisfy the equations

K

{
g − eψ

(
1 − ψ2

2n
+ · · ·

)}
= Dnd2g

dy2
+(Z

√
n+y)

dg

dy
= −d2ψ

dy2
−

(
Z√
n

+
y

n

)
dψ

dy
. (4.17)
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We seek the solutions as asymptotic expansions of the form

g ∼ g0 + n−1/2g1 + n−1g2 + · · · , ψ ∼ ψ0 + n−1/2ψ1 + n−1ψ2 + · · · .

At leading order, we find that g′′
0 (y) = 0 and hence, by matching as y → ∞,

g0(y) = eB3 . (4.18)

Then ψ0 satisfies the differential equation

d2ψ0

dy2
= K(eψ0 − eB3 ), (4.19)

with ψ0 → B3 as y → ∞. By choosing the arbitrary translation in y appropriately, we may

write the solution in the form

√
2Ky =

∫ ψ0

0

ds√
es − eB3 + eB3 (B3 − s)

. (4.20)

For matching purposes, we need the behaviour of ψ0 as y → −∞, which we obtain

from
√

2KeB3/2y ∼ 2
√
B3 − 1 − ψ0 + I(B3) as ψ0 → −∞,

where the function I(B) is defined by

I(B) =

∫ ∞

1−B

(
1√

s+ B − 1
− 1√

s+ B − 1 + e−s−B

)
ds−

∫ 1−B

0

ds√
s+ B − 1 + e−s−Z

.

(4.21)

Hence we find

ψ0 ∼ −1

2
KeB3y2 +

√
K

2
eB3/2I(B3)y + B3 − 1 − I(B3)

2

4
+ · · · as y → −∞. (4.22)

Proceeding to O(n−1/2), we find that g′′
1 (y) = 0 and hence, by matching as y → ∞,

g1 = −y
√

2

πD
(eB3 − Cb + 1)e−Z2/2D

erfc (z/
√

2D)
+ B4, (4.23)

where B4 is another integration constant.

Now we are finally in a position to match the solution in this inner layer with that in

z < Z . First, the trivial equations for g0 and g1 imply that Cm and C ′
m are both continuous

across z = Z to leading order:

Cm(Z) ∼ eB3 , C ′
m(Z) ∼ −

√
2

πD
(eB3 − Cb + 1)e−Z2/2D

erfc (Z/
√

2D)
. (4.24)
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Next, we expand our three-term inner solution for C ∼ 1 + n−1ψ0 in outer variables:

C ∼ 1 − 1

2
KeB3 (z − Z)2 +

√
K

2n
eB3/2I(B3)(z − Z) + O(n−1). (4.25)

The leading-order boundary conditions for C are, therefore

C(Z) = 1, C ′(Z) = 0. (4.26)

For relatively large values of K , it might be useful to include the O(n−1/2) correction to

C ′(Z) implied by (4.25). To avoid awkward calculations involving the unwieldy function

I(B), we do not bother to do so in this paper.

Now, applying the conditions (4.26) to (4.11), we obtain

B2 = K

∫ Z

0

ez
2/2Cm(z) dz, (4.27)

1 − C0 = K

√
π

2

∫ Z

0

erf

(
z√
2

)
Cm(z)ez

2/2 dz. (4.28)

Then substitution for Cm from (4.10) leads to two equations for B1 and B2:

B2 = KB1

∫ Z

0

e(D−1)z2/2DΦ

(
1 +K

2
,
1

2
,
z2

2D

)
dz, (4.29)

KB1

√
π

2

∫ Z

0

erf

(
z√
2

)
e(D−1)z2/2DΦ

(
1 +K

2
,
1

2
,
z2

2D

)
dz = 1 − C0. (4.30)

A third equation is obtained by eliminating B3 from (4.24):√
πD
2

erfc

(
Z√
2D

)
eZ

2/2DC ′
m(Z) = Cb − 1 − Cm(Z)

⇒ B1

√
π

2DZ erfc

(
Z√
2D

){
(1 +K)Φ

(
3 +K

2
,
3

2
,
Z2

2D

)
− Φ

(
1 +K

2
,
1

2
,
Z2

2D

)}

= Cb − 1 − B1e
−Z2/2DΦ

(
1 +K

2
,
1

2
,
Z2

2D

)
. (4.31)

Now, given D, β, S , Cb and K , we have to solve the four coupled equations (4.12),

(4.29), (4.30) and (4.31) for B1, B2, C0 and Z . As before, a single transcendental equation

for Z may be obtained by eliminating all the other unknowns, but it is too lengthy to be

worth reproducing here.

In Figure 5, we compare the approximate solutions for large n and finite K with the

approximate solutions for large n and large K and the numerical solution for finite n

and K . With the parameter values chosen, micelles exist right up to the free surface, but

show a marked increase near z = Z . The large n and finite K asymptotics captures well

the behaviour of C and Cm at all depths. The peril of assuming equilibrium between

monomer and micelles is again apparent, since the infinite n and K asymptotic solution

has no micelles closer to the free surface than z = Z .
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Figure 5. (a) Monomer and (b) micellar surfactant concentrations versus depth z. The dashed line

shows the numerical solution for K = 10, n = 100, the dotted line shows the asymptotic solution for

large n and K finite, and the solid line shows the solution for infinite n and K . The other parameter

values are D = 0.2, S = 1, β = 0.01 and Cb = 2.

4.4 Summary

In this section we have presented several asymptotic limits of the model (2.20)–(2.24). By

comparing the solutions to the asymptotic problems with numerical solutions to (2.20)–

(2.24), we showed that the infinite-n asymptotic solution gives a good approximation to

the model both for K infinite (compare the dotted and solid lines in figure 4) and for K

finite (see Figure 5). Since the infinite-n solution captures well the behaviour of the actual

solution to (2.20)–(2.24), in the next section we use the models presented in § 4.2 and § 4.3

to test the theory against experimental results.

In a real surfactant solution, β is typically small, and this may be used to simplify

further the transcendental equations derived above. It transpires, though, that three

different dominant balances may prevail as β → 0, depending on the size of Z (which
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Table 1. Approximate physical parameter values for C14TAB and for C16TAB

Parameter Units Value for C14TAB Value for C16TAB

Ccmc mol m−3 0.2 0.035

Γsat mol m−2 3.6 × 10−6 4.0 × 10−6

k mol m−3 0.004 0.00028

D m2 s
−1

4.5 × 10−10 5 × 10−10

Dm m2 s
−1

9 × 10−11 10−10

n – 100 100

β – 0.02 0.008

D – 0.2 0.2

must itself be found as part of the solution). The slight simplification in the equations is

thus outweighed by the inconvenience of choosing between these possible limits as S and

K are varied. We therefore treat β as an O(1), although numerically small, constant.

5 Comparison with experiments

We now compare the predictions of our mathematical model with experimental data from

the overflowing cylinder experiment. We consider two sets of experimental data, the first

using solutions of C14TAB with salt and the second using C16TAB with salt. The salt

is intended to screen out any electrical effects and thus render the surfactant effectively

non-ionic. Approximate values of the physical parameters for these two surfactants are

summarised in Table 1.

For each of these two surfactants, the bulk concentration Ĉb fed into the OFC is varied,

and the corresponding surface concentration Γ̂ is measured. The results are shown in

Table 2.

In separate experiments (using different measurement tools), the surface expansion rate

θ is measured as the bulk concentration Ĉb is varied. For each such experiment, we can

thus calculate the remaining two dimensionless parameters Cb and S . If the system is

assumed to be in equilibrium, then we have enough information to determine Z and C0

from (4.5) and (4.9), and may then obtain the dimensional surface concentration Γ̂ from

(2.8). The results of this process for C14TAB are shown in Table 3. We also show the

corresponding non-equilibrium predictions when k−1 = 5 s−1 and k−1 = 2 s−1.

Direct comparison between the values in Tables 2 and 3 is difficult, since different

bulk concentrations are used in either case. We therefore compare them graphically in

Figure 6. The agreement between the equilibrium values and the experimental data is

excellent, which both validates our simple model for micellar breakdown and indicates

that the limit K → ∞ gives a good approximation for this surfactant. In other words,

the micellar and monomer phases were everywhere close to equilibrium in this set of

experiments. In fact the experimental surface concentrations are systematically lower than

the theoretical equilibrium values, and a slightly better fit is obtained with the k−1 = 5 s−1
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Table 2. Experimentally measured values of surface concentration Γ̂ versus bulk

concentration Ĉb for the surfactants C14TAB and C16TAB

C14TAB C16TAB

Ĉb (mol m−3) Γ̂ (mol m−2) Ĉb (molm−3) Γ̂ (mol m−2)

0.047 0.70 × 10−6 0.058 0.676 × 10−6

0.06 0.93 × 10−6 0.107 0.943 × 10−6

0.077 1.10 × 10−6 0.207 1.32 × 10−6

0.084 1.19 × 10−6 0.390 1.79 × 10−6

0.10 1.26 × 10−6 0.746 2.43 × 10−6

0.11 1.36 × 10−6 1.04 3.14 × 10−6

0.14 1.54 × 10−6 1.97 4.01 × 10−6

0.177 1.70 × 10−6

0.244 1.95 × 10−6

0.312 2.17 × 10−6

0.40 2.44 × 10−6

0.511 2.75 × 10−6

0.55 2.90 × 10−6

0.71 3.19 × 10−6

0.91 3.39 × 10−6

1.165 3.58 × 10−6

Table 3. Experimentally measured values of bulk concentration Ĉb and surface expansion

rate θ for C14TAB, corresponding dimensionless parameters Cb and S , and calculated values

of Γ̂ in the equilibrium limit, with k−1 = 5 s−1 and with k−1 = 2 s−1

Γ̂ (10−6 mol m−2)

Ĉb (mol m−3) θ (s−1) Cb S Eqm k−1 = 5 s−1 k−1 = 2 s−1

0.05 1.13 0.25 0.902 0.779 0.779 0.779

0.1 1.61 0.5 1.08 1.30 1.30 1.30

0.2 3.11 1.0 1.50 1.87 1.87 1.87

0.285 4.48 1.43 1.80 2.09 2.07 2.03

0.389 5.06 1.95 1.91 2.46 2.42 2.33

0.6 5.32 3.00 1.96 3.15 3.07 2.92

0.92 5.15 4.60 1.93 3.48 3.45 3.39

1.2 3.71 6.0 1.63 3.53 3.51 3.50

data. We cannot necessarily infer the approximate value of k−1 from this observation,

since the slight departure from the equilibrium curve might also be caused by inaccuracies

in the values of the other parameters such as Ccmc, Γsat and D.

Next we perform the same procedure for C16TAB. Again, with given experimental values

of Ĉb and θ, we can calculate Cb, S and hence Γ̂ . The values obtained in the equilibrium

limit K → ∞ are listed in the fifth column of Table 4 and compared graphically with
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Figure 6. Dimensional surface concentration Γ̂ versus dimensional bulk concentration Ĉb for

C14TAB; experimental values (�) and asymptotic predictions (�) in the equilibrium limit K → ∞,

(�) with k−1 = 5 s−1, (�) with k−1 = 2 s−1.

Table 4. Experimentally measured values of bulk concentration Ĉb and surface expansion

rate θ for C16TAB, corresponding dimensionless parameters Cb and S , and calculated values

of Γ̂ in the equilibrium limit, with k−1 = 20 s−1 and with k−1 = 10 s−1

Γ̂ (10−6 molm−2)

Ĉb (mol m−3) θ (s−1) Cb S Eqm k−1 = 20 s−1 k−1 = 10 s−1

0.045 1.05 1.29 5.24 0.751 0.750 0.749

0.1 1.28 2.86 5.78 1.23 1.22 1.21

0.2 2.00 5.71 7.23 1.65 1.60 1.54

0.46 3.52 13.1 9.59 2.42 2.13 1.92

0.6 4.66 17.1 11.0 2.64 2.16 1.89

0.92 5.03 26.3 11.5 3.66 2.76 2.34

1.2 5.1 34.3 11.5 4.0 3.29 2.75

2.5 4.29 71.4 10.6 4.0 3.96 3.93

measured values of Γ̂ in Figure 7. Here, the predicted equilibrium surface concentration is

significantly higher than the experimental values. We infer that the transport of surfactant

to the surface is limited in this case by micellar breakdown. We also tabulate non-

equilibrium predictions for Γ̂ in Table 4, using values of k−1 = 20 s−1 and k−1 = 10 s−1.

These are also visualised in Figure 7, where we can see that reducing the rate constant

k−1 has the desired effect of reducing Γ̂ . In particular, k−1 = 20 s−1 gives rather good

agreement with experiment. This suggests that the experiments using C16TAB were in

a nonequilibrium regime and allows us to estimate the relevant rate constant k−1 ≈
20 s−1.
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Ĉb

2 2.5

1

2

3

4

k = 10

k = 20

Eqm

Exp.

Γ̂

Figure 7. Dimensional surface concentration Γ̂ versus dimensional bulk concentration Ĉb for

C16TAB; experimental values (�) and asymptotic predictions (�) in the equilibrium limit k → ∞,

(�) with k−1 = 20 s−1, (�) with k−1 = 10 s−1.

6 Discussion

We have presented a model describing the distribution of monomer and micelles in a

surfactant solution, and applied it to a stagnation point flow. As well as being particularly

relevant to the so-called overflowing cylinder experiment, this linear straining flow also

represents the canonical local behaviour near an expanding free surface. We first analysed

a particularly simple limit in which the model equations may be integrated exactly. We

then used the insight gained to construct leading-order asymptotic solutions of the full

equations. These approximate solutions were compared both with numerical solutions

and with experimental results.

Our asymptotic analysis reveals two limiting regimes: one in which the monomer

solution is significantly below the CMC and one in which it is approximately at the CMC.

The solution of the problem thus hinges on locating the free boundary separating regions

where the two different regimes prevail. The analysis is particularly straightforward if the

micelle and monomer phases are assumed everywhere to be in equilibrium, which amounts

to assuming that the timescale for micelle breakdown is much shorter than any other

timescale in the problem. In this limit, micelles only exist where the monomer solution

is at the CMC, and the free boundary satisfies a single transcendental equation. If the

timescale for micelle breakdown is finite, the analysis is slightly more complicated, and

involves matching across a thin boundary layer in which the transition from a micellar

to a sub-micellar solution occurs. Nevertheless, the free boundary still satisfies a (rather

complicated) transcendental equation.

Because we only consider steady states, our general model is a boundary-value problem

for a system of ordinary differential equations. As an alternative to asymptotic analysis,

these may also be directly solved numerically; we illustrated such solutions in § 4. Our

asymptotic reduction offers many advantages, though. By assuming that n and K are large,

we remove any explicit dependence on these parameters from the problem. Moreover, the
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governing equations (2.20) and (2.21), containing terms like Cn where n ≈ 100, are

numerically very stiff as they stand. If our theory were applied to more general flows, for

which analytical solutions were unavailable, the numerical difficulty would still be greatly

reduced by taking the limit n → ∞.

We have chosen to consider only micelles of a given fixed size, thus lumping all

intermediate aggregates into our effective reaction rates. Others, for example Dushkin [13]

and Noskov [21], have derived generalised models allowing micelles of many sizes to

coexist. Due to the added complexity, though, these authors only consider concentrations

that are close to their equilibrium values, while we are able to study systems that are far

from equilibrium. Nevertheless, it would be interesting to discover whether the inclusion

of intermediate reactions would affect our conclusions significantly, and we plan to pursue

this question subsequently.

Our model is similar to that described in Danov et al. [10] for surfactant solution in

a dilational flow. However, our method of solution is completely different. They invoke

imaginary layers and prescribe the forms for monomer and micelle concentrations in each

layer. We systematically solve the model using asymptotic and numerical techniques.

In the experiments, salt is used to help screen the electrical double-layer that forms

when ionic surfactant is adsorbed at an interface. In practical applications, though, such

ionic effects often play a crucial role in the behaviour of surfactant solutions, and their

influence on the OFC model for sub-CMC solutions has been considered by Bosson

et al. [5]. To complete the picture, we plan to derive a general model incorporating ionic

and micellar effects.
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