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Abstract. We present a detailed ab initio calculation of wave modes in a strongly
magnetized pair-plasma slab (which we shall refer to as a beam) embedded in a
pair plasma of different number density. We consider a planar geometry and treat
the case of small beam thickness, for which approximate analytical results can
be obtained and compared with numerical calculations. We briefly compare our
results with those found by others in the case of cylindrical geometry as applied in
the context of radio pulsars.

1. Introduction
Curvature emission by charged particles moving along a strong curved magnetic
field is a mechanism that is often invoked to explain radio emission from pul-
sars. There is, however, no generally accepted theory of pulsar radio emission that
accounts for the coherence required to explain the observations while appealing to
the curvature of magnetic field lines alone. A recently suggested mechanism for
pulsar radio emission includes boundary effects in the treatment of the emission
region of the magnetosphere (Asséo et al. 1983 – hereinafter referred to as APS83;
Asséo 1995 – hereinafter referred to as A95), with the introduction of sharp bound-
aries claimed to be an essential ingredient in allowing instabilities to arise. In this
scenario, a beam of pair plasma streams along curved magnetic field lines, bounded
on either side by plasmas with different particle number densities. The system is
modelled locally in cylindrical geometry, with the exterior radius of the beam being
equated to the local radius of curvature of the magnetic field lines and assuming
infinite magnetic field strength. Three types of instabilities are thought to be pos-
sible: a radiative instability, identical to that considered by Goldreich and Keeley
(1971) and Buschauer and Benford (1978, 1979), a two-stream instability, and a
new so-called ‘finite beam instability’. APS83 and A95 suggest that the finite beam
instability is a prime candidate for radio emission close to the neutron star surface,
while the radiative instability may be one possibility for radio emission further out
in the magnetosphere. The invocation of at least two emission mechanisms is con-
sistent with the separation of pulsar emission into core and conal components, as
suggested by Rankin (1992).

This is the first of two papers in which we consider a pair plasma beam streaming
between bounding pair plasmas of different number densities in planar geometry,
rather than cylindrical. A detailed analysis of the planar-geometry case is useful
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for a number of reasons. An early treatment of the strong (essentially infinite)-
magnetic-field case appeared in Schmidt (1979) for a cold-plasma slab at rest and
immersed in a vacuum, for which a dispersion relation was derived; but solutions
in the form of our ‘thin-beam’ results were overlooked. These solutions are im-
portant, since they are related to the cylindrical-geometry results of APS83 and
A95, which lead to their version of the radiative instability. In the case of a slab
flowing relative to an external medium other than vacuum, these solutions can
also be shown, as we do here, to give rise to instability in planar geometry. The
planar-geometry case for a beam bounded by vacuum was considered by Asséo et
al. (1980), but in that work the thin-beam solutions were not considered, and the
dielectric constant for the beam contained both slow and fast components (here
we consider only one component). The instabilities found were not due to the
presence of sharp boundaries but rather the presence of the two components. The
results that we present here allow a detailed understanding of the planar-geometry
case, for a beam with arbitrary flow velocity bounded by vacuum or by a pair
plasma.

A second reason for the calculations is to highlight the fact that, in dealing with
bounded systems, one must take care in identifying instability, since the presence
of boundaries allows the input of wave energy from the external media. One must
identify the velocity of energy propagation in these media in order to determine
whether or not temporal growth of wave modes is accompanied by a net outflow
of energy from the beam (instability) or a net inflow of energy (no instability). In
the planar case, identification of the velocity of energy propagation is relatively
straightforward (although not trivial, since it is not always equivalent to the usual
group velocity), and we give forms for it that we use to interpret the stability
or otherwise of the wave modes. In particular, these forms reproduce the expected
result that, for a given plasma, the introduction of boundaries with vacuum (making
the plasma a slab) does not alter the stability properties.

The thin-beam results alluded to above apply when the thickness of the beam is
sufficiently small. As mentioned above, a thin-beam case in cylindrical geometry,
leading to a form of radiative instability, was described by APS83 and A95 and
is related to our results in planar geometry. One expects that if the beam is suffi-
ciently thin, and the radius of curvature of the beam is sufficiently large, then any
difference should be accounted for by the choice of global geometry (or equivalently
boundary conditions applied away from the beam interfaces), since curvature ef-
fects become higher-order corrections and the wave inside the beam does not resolve
the curvature. We hope to use the results presented here to consider this in more
detail elsewhere.

In Sec. 2, we summarize the properties of waves propagating in a pair plasma
streaming along a straight superstrong magnetic field (effectively infinite). These
properties are then used in Sec. 3 to derive the dispersion equation for waves prop-
agating in a beam bounded by plasma, assuming planar geometry. Section 4 details
the thin-beam solutions for waves in the bounded beam system with frequencies
around the beam resonance frequency. For bounding plasmas with non-zero plasma
frequency, the natures of the thin-beam solutions depend on the wavenumber par-
allel to the beam. For ‘short-wavelength’ waves the beam is stable but for ‘long-
wavelength’ waves instability is possible. In Sec. 5, we summarize the results and
briefly compare them with those of APS83 and A95. SI units are used through-
out.
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2. Wave modes in a homogeneous pair plasma
Writing the electric field E(t, x) in terms of its Fourier transform

E(t, x) =
∫
dω dk
(2π)4 ei(k·x−ωt)E(ω,k), (2.1)

and similarly for other field quantities, the linearized Maxwell equations reduce to
the homogeneous wave equation

[n2(κκ− δ) + K(ω,k)]E(ω,k) = 0, (2.2)

where the refractive index n = ck/ω, the normalized wavevector κ = k/k, k = |k|
and K(ω,k) is the dielectric tensor.

Consider a homogeneous electron–positron pair plasma immersed in a strong
magnetic field directed along the ẑ axis. Assuming that all electrons and positrons
flow along the magnetic field with speed U , the dielectric tensor takes the form
K(ω,k) = δ + (W − 1)ẑẑ, with δ the unit tensor and

W = 1− ω2
p

γ3
p(ω − k‖U )2 . (2.3)

Here ωp is the total plasma frequency, γp is the Lorentz factor of the plasma, and we
use the notations k‖ and kz interchangeably. The assumption of a strong magnetic
field requires that the cyclotron frequency Ωe � ωp, kU, ω and is of relevance
in an application to pulsars. As the dielectric tensor is Hermitian, there is neither
absorption of wave energy nor any kinetic instability (negative absorption). Another
important feature is the wave–particle resonance at the beam resonance frequency
ωR = k‖U .

One obtains non-trivial solutions for E(ω,k) when the determinant Λ(ω,k) of the
matrix in (2.2) vanishes:

Λ(ω,k) = (1− n2)[W (1− n2κ2
‖)− n2κ2

⊥] = 0, (2.4)

where κ2
⊥ = κ2

x+κ2
y. It can be shown that for these solutions ω is real for real k, indi-

cating that there are no reactive instabilities. One solution is n2 = 1, corresponding
to vacuum-like waves that are not coupled to plasma oscillations, and we do not
consider this mode further here. For the purposes of this paper, it is expedient to
write down the second solution for k2

x rather than n2:

k2
x2 =

ω2

c2 W

(
1− c2k2

z

ω2

)
− k2

y. (2.5)

Confining our attention to ky = 0, the second mode is conveniently written in the
form

E(ω,k) =
c2

ωW
[B+(ω,ks)2πδ(kx−kx2)+B−(ω,ks)2πδ(kx+kx2)](Wkz, 0,−kx), (2.6)

B(ω,k) = [B+(ω,ks)2πδ(kx − kx2) +B−(ω,ks)2πδ(kx + kx2)]ŷ, (2.7)

where we account for the two possible solutions kx = ±kx2, where kx2 is defined
to be either of the two roots of (2.5). This mode is partly longitudinal and partly
transverse, and is associated with both plasma-charge and current-density fluctu-
ations.
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3. Beam geometry and dispersion equation
We consider a beam (or slab) of electrons and positrons all moving along a strong
ambient magnetic field directed along the ẑ axis, as for the homogeneous plasma of
Sec. 2, and bounded by similar pair plasmas. We assume that the beam, of thickness
a, is situated between the planes x = x0 and x = x0 + a and is of infinite extent in
the y and z directions. The dielectric tensors for each of the three plasmas are of
the form given in Sec. 2, and W is denoted by Wl, Wr and Wb for the plasma on
the left of the beam, on the right of the beam and in the beam respectively.

In order to derive the dispersion equation for waves in the beam system, we
must apply the appropriate boundary conditions at both interfaces of the beam.
As the three plasmas are cold and the ambient magnetic field is uniform over all
space, we are free to assume that there are no surface currents on the two inter-
faces. The relevant boundary conditions in that case are that the tangential (to
the interfaces) components of both the electric and magnetic fields are continuous
across the interfaces. Assuming that in the bounding plasmas B−(ω,ks) = 0, the
boundary conditions applied to wave fields of the form (2.1) with (2.6) and (2.7)
can be written as a matrix equation

eik
l
xx0 −eikbxx0 −e−ikbxx0 0

0 eik
b
x(x0+a) e−ik

b
x(x0+a) −eikrx(x0+a)

− k
l
x

Wl
eik

l
xx0

kbx
Wb

eik
b
xx0 − k

b
x

Wb
e−ik

b
xx0 0

0 − k
b
x

Wb
eik

b
x(x0+a) kbx

Wb
e−ik

b
x(x0+a) krx

Wr
eik

r
x(x0+a)




B+
l

B+
b

B−b
B+
r

= 0. (3.1)

The superscripts and subscripts l, r and b refer to the three plasmas as before, and
we have dropped the subscript 2 on kx2 for convenience. In choosing B−(ω,ks) = 0,
we restrict our discussion to waves with one sign of kx in each of the bounding media.
This precludes wave reflections at the interfaces, and is consistent with looking for
normal modes of the system. The dispersion equation obtained is[(

kbx
Wb

)2

− klx
Wl

krx
Wr

]
sin(kbxa) + i

kbx
Wb

(
krx
Wr
− klx
Wl

)
cos(kbxa) = 0, (3.2)

and is to be solved for the wave frequency ω in terms of the surface wavenumber k‖.
The dispersion equation simplifies when the two bounding plasmas are identical

(Wl ≡ Wr). Then (klx)2 = (krx)2 and, choosing klx = −krx (a natural choice given the
reflection symmetry of the problem), (3.2) requires that either krx/Wr = 0 or(

1
Wr

+
1
Wb

)
krx sin(kbxa) + 2i

kbx
Wb

cos(kbxa) = 0, (3.3)

where, in the rest frame of the bounding plasma,

Wl ≡Wr = 1− ω2
pr

ω2 , (3.4a)

Wb = 1− ω2
p

γ3
p(ω − k‖U )2 . (3.4b)

Here ωpr is the rest-frame total plasma frequency of the bounding plasma, and,
for convenience, we do not label the beam total plasma frequency or Lorentz factor
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with a subscript b. We note that we could also have chosen klx = krx in the above, but
that choice does not lead to solutions of interest here. The equation krx/Wr = 0 leads
to formal solutions ω = 0 (a static wave with krx = ±∞, implying a perpendicular
wavelength of zero in the external media) and ω = ±ck‖ (a wave propagating with
phase speed c along the beam), which are also not of interest here. In order to solve
(3.3) in general, a numerical approach is required; however, one may prove that,
given a complex solution δω with krx = kx, the complex conjugate δω∗ is also a
solution with krx = −k∗x.

If the beam thickness a is sufficiently small, the dispersion equation (3.3) has
approximate analytical solutions around the beam resonance frequency ωR = k‖U
of the form ω ≈ ωR+δω+O[(δω)2], where |δω|� |ωR|. The reality condition implies
that we need only consider ωR > 0, and, without loss of generality, we thus assume
U > 0 and k‖ > 0 throughout the remainder of the paper. Two categories of solution
exist: solutions with δω = O(a1/2)� a and |kbxa|� 1, which will be referred to as
thin-beam solutions, and solutions with δω = O(a) and |kbxa| > 1, which will be
referred to as thick-beam solutions. Thick-beam solutions are discussed in Part 2
(Rowe and Rowe 1999), together with an alternative thin-beam expansion valid
for highly relativistic beams.

4. Thin-beam solutions: small-a approximation
Writing ω = ωR + δω +O[(δω)2] and assuming |ωR| 6≈ ωpr, one has, from (3.4),

Wl = Wr =
(

1− ω2
pr

ω2
R

)
+O(δω), (4.1a)

Wb = − ω2
p

γ3
p(δω)2 [1 +O(δω)], (4.1b)

and, from (2.5),

krx = krxR

(
1 +

1
krxR

δω

vrgx

)
+O(δω)2, (4.2a)

kbx = ± ωp|k‖|
γ

5/2
p (δω)

[1 +O(δω)] , (4.2b)

where

(krxR)2 = −
k2
‖
γ2
p

(
1− ω2

pr

ω2
R

)
, (4.3)

is the square of krx (as given by (2.5)) evaluated at the beam resonance frequency
ωR, and

vrgx =
∂ω2(k)
∂kx

∣∣∣∣
ωR

=
1

∂kx2(ω,ks)/∂ω

∣∣∣∣
ωR

=
c2krxR
ωR

[
1− ω2

pr

ω2
R

γ2
p

(γ2
p − 1)

]−1

, (4.4)

is the x component of the group velocity vrg of the wave mode in the bounding
plasma on the right of the beam, evaluated at ω = ωR (i.e. to lowest order in δω).
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Note that ω2(k) is the frequency that one obtains by solving (2.5) for ω in terms
of k.

Retaining lowest orders only in each contribution to (3.3) and assuming that a
is small such that O(|kbxa|) < 1 (thin-beam assumption), we expand the sine and
cosine terms and obtain

krxR = −2iWr

aWb
, (4.5)

with Wr and Wb as in (4.1). Squaring both sides and using (4.3) leads to

(δω)4 =
ω4
p

γ8
p(1− ω2

pr/ω
2
R)

(
k‖a
2

)2

, (4.6)

and there are four possible solutions for δω, the natures of which depend upon the
sign of 1− ω2

pr/ω
2
R as discussed below.

4.1. Short-wavelength waves

For short wavelengths satisfying

|k‖| > ωprγp
c(γ2

p − 1)1/2
, (4.7)

one has |ωR| > ωpr, and (4.6) then has two real solutions δω = ±|δω|, which we
label A and B respectively, and two imaginary solutions δω = ±|δω|i, which we
label C+ and C− respectively, where

|δω| = ωp
γ2
p|1− ω2

pr/ω
2
R|1/4

( |k‖|a
2

)1/2

. (4.8)

The real solutions (A and B) represent waves that are neither temporally growing
nor decaying, and in that case δω is simply a frequency shift. For these waves,
evaluation of the right-hand side of (4.5) determines that krxR = |krxR|i, where |krxR|
can be obtained from (4.3). One finds that, to O(a1/2),

krx = |krxR|i
(

1∓ |δω|
|krxR|2

krxR
vrgx

)
, (4.9)

with krxR/v
r
gx given by (4.4). Thus krx is positive imaginary (since the second term is

a small correction) and the waves are bound to the beam, exponentially decaying
in amplitude away from the beam in both the positive and negative x directions.
There is no real correction to krx, and thus no propagation of energy into or out of
the beam. Using (4.2b), we can write kbx ≈ |kbx|, where

|kbx| =
∣∣∣∣1− ω2

pr

ω2
R

∣∣∣∣1/4(2|k‖|
aγp

)1/2

, (4.10)

and hence the waves are freely propagating inside the beam. The wavelength of
waves in the beam is O(a1/2), which is greater than the order of the beam thickness
(for small a), and it is in this sense that the beam is thin.

The imaginary solutions δω = ±|δω|i (C+ and C−) represent waves that are
temporally growing and decaying respectively, with growth/decay rate |δω|. For
these waves, evaluation of the right-hand side of (4.5) implies that krxR = −|krxR|i,
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and hence, to O(a1/2),

krx = −|krxR|i
(

1∓ |δω|
|krxR|2

krxR
vrgx

i

)
, (4.11)

for these solutions. In contrast to modes A and B, these waves are not bound
to the beam, but rather grow exponentially in amplitude away from the beam,
as indicated by the fact that the imaginary part of krx is negative. This spatial
growth, along with the temporal growth or decay of the waves, is associated with a
real correction to krx, indicating that there is a propagation of energy either into or
out of the beam. As krxR is imaginary, it is clear that the x component of the group
velocity vrgx will also be imaginary, and thus vrgx cannot correspond to the speed at
which energy propagates perpendicular to the beam. The correct identification of
the speed of energy propagation perpendicular to the beam in this case is (see the
Appendix)

ṽrgx =
Im[δω]
Im[krx]

= ∓ |δω||krxR|
, (4.12)

where the tilde is used to avoid confusion with vrgx. Hence, the temporally growing
waves are associated with an influx of wave energy into the beam from the bounding
plasmas, whilst the temporally decaying waves are associated with radiation of
energy away from the beam and into the bounding plasmas.

In the case of radiating modes (such as mode C−), spatial growth is a necessary
requirement of the solutions. This was discussed to some extent in Rowe (1993)
in relation to the kinetic Alfvén mode, by Cally (1986) and by Schmidt (1979). In
the case of mode C+, energy is fed into the beam via the inverse of this radiation
process, and the temporal growth is not due to an instability. This solution is not a
normal mode of the system, but indicates that, under the right conditions, it may
be possible for an external source to supply energy to the beam.

For |k‖| > ωprγ
2
p/(γ

2
p − 1)c, the phase velocity ωR/Re[krx] and ṽrgx have the same

sign, and the waves are referred to as forward-propagating; that is, the waves and
the wave energy propagate in the same direction. Conversely, for |k‖| < ωprγ

2
p/

(γ2
p− 1)c, the phase velocity and ṽrgx have opposite signs, and we refer to the waves

as backward-propagating. Inside the beam, the waves are restricted to the edges of
the beam, given that kbx ≈ |kbx|i with (4.10).

4.2. Long-wavelength waves

For long wavelengths satisfying

|k‖| < ωprγp
c(γ2

p − 1)1/2
, (4.13)

one has |ωR| < ωpr, and (4.6) has two pairs of complex-conjugate solutions, which
may be written in the forms

δω =
1± i√

2
|δω|, δω = −1± i√

2
|δω|, (4.14a,b)

with |δω| as given by (4.8). We label the first pair of modes C+ and C− respectively,
since these solutions are related to the short-wavelength modes labelled C+ and
C−, and we label the second pair B− and B+ respectively, since they are related to
the short-wavelength B mode, as shown in Fig. 1. In this approximation, there is
no long-wavelength equivalent of mode A.
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ModesC+ andC− correspond to a temporally growing and a temporally decaying
wave mode, both of which are frequency-shifted upwards from the beam resonance
frequency ωR. For these waves, evaluation of (4.5) implies that krxR = ±|krxR|, and
then

krx ≈ ±|krxR|
(

1 +
|δω|
|krxR|2

krxR
vrgx

1± i√
2

)
, (4.15)

indicating that, to O(a1/2), the waves grow exponentially away from the beam. The
real part of krx implies that there is a flow of energy perpendicular to the beam,
and, since krxR is real, the speed of energy flow in the x direction (to lowest order
in a) is in this case given by the x component of the group velocity

ṽrgx ≡ vrgx = ∓|ω
2
pr/ω

2
R − 1|1/2

(γ2
p − 1)1/2

[
ω2
pr

ω2
R

γ2
p

(γ2
p − 1)

− 1

]−1

c, (4.16)

which satisfies |vrgx| 6 c. For mode C− there is a flow of energy out of the beam
and into the bounding plasma, whilst for mode C+ there is a flow of energy into the
beam from the bounding plasma (the sign of vrgx is opposite that of Im[δω]). As in
the short-wavelength case, mode C+ does not imply an instability nor does mode
C− imply absorption, but rather a source/sink of wave energy that is external to
the beam system.

The solutions B− and B+ correspond to a temporally decaying and a temporally
growing wave mode respectively, both of which are frequency-shifted downwards
from the beam resonance frequency. Again one finds krxR = ±|krxR|, and in this case

krx ≈ ±|krxR|
(

1− |δω|
|krxR|2

krxR
vrgx

1± i√
2

)
, (4.17)

so the waves decay exponentially into the bounding plasmas and are therefore
bound to the beam, to first order. The real part of krx implies an energy flow per-
pendicular to the beam, and the speed of this flow in the x direction is given by
(4.16). The modes B− and B+ are fundamentally different from the modes C+ and
C−, since the temporally decaying mode B− is associated with an energy flow into
the beam, and the temporally growing mode B+ is associated with an outflow of
energy. The temporal growth of B+ can be attributed to a reactive instability (or
particle bunching), and can be explained in terms of negative (or potential) en-
ergy of the forced particle motions in the wave. As the wave amplitude increases,
the particle energy becomes increasingly negative, while the bunching of particles
enhances the electromagnetic field of the wave, and the electromagnetic energy
increases. The total wave energy (electromagnetic plus particle) is negative, and
becomes increasingly negative as the wave amplitude grows, corresponding to a
flow of electromagnetic energy (positive by definition) out of the beam. The tem-
poral decay of the B− mode can be attributed to the inverse of this process. A
reactive instability of this type is only possible for modes with Re[δω] < 0, which
is a prerequisite for negative particle energy in the beam plasma.

4.3. Transition between long and short wavelengths

In deriving the long- and short-wavelength results, it was assumed that |ωR| 6≈ ωpr,
and the approximations obtained are not applicable at the transition point between
these two types of solution, as indicated by the singularity at |ωR| = ωpr. The
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transition point can be treated by assuming that |ωR| = ωpr(1 + ε), or equivalently

|k‖| = ωpr(1 + ε)γp
c(γ2

p − 1)1/2
, (4.18)

where ε is a small parameter.
We may seek a solution of the form ω = ω0 +ω1ε+ ... near the singularity, and the

dispersion equation then leads to a transcendental equation for ω0. In this section,
we have assumed that a is small enough so that an expansion in a is valid. We may
thus approximate ω0 by setting ε = 0 in (4.18), writing ω0 = ωR+δω, and, following
the procedure we used before, replacing the approximations given in (4.1a) and
(4.2a) for Wr and krx by

Wl = Wr = 2
δω

ωR
+O(δω)2, (4.19a)

(krx)2 = −2
k2
‖
γ2
p

δω

ωR
+O(δω)2. (4.19b)

Using these approximations, (3.3) reduces to an equation of the same form as (4.5),

krx = −2iWr

aWb
, (4.20)

except that in this case krx on the left-hand side is given by the square root of
(4.19b). Solutions are found that satisfy δω = O(a2/5) and can be written in the
form δω = |δωs|e2niπ/5, for n = 0, 1, 2, 3, 4, where

|δωs| =
[

ω3
prω

4
pa

2

8γ6
p(γ2

p − 1)c2

]1/5

. (4.21)

Of the five solutions, one is neither temporally growing nor decaying (n = 0), and
there are two complex-conjugate pairs (n = 1, 4) and (n = 3, 2), which correspond
to temporally growing and decaying waves. For the complex-conjugate solutions, n
is the number of the quadrant in the complex plane in which the particular solution
appears. The solutions can be written in the explicit form

δω = |δωs|, (4.22)

δω = |δωs|
(

sin
π

10
± i cos

π

10

)
, (4.23)

δω = −|δωs|
(

cos
π

5
± i sin π

5

)
. (4.24)

The wavenumber krx corresponding to these solutions is krx = |krxs|e(5+12n)iπ/10, with

|krxs| =
[

2ω2
pω

4
pra

γ3
p(γ2

p − 1)3c6

]1/5

, (4.25)

or, explicitly,
krx = |krxs|i, (4.26)

krx = ±|krxs|
(

sin
π

5
∓ i cos

π

5

)
, (4.27)
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Figure 1. Real and imaginary parts of δω/|δωs| for all modes as functions of α = ck‖/ωp
with γp = 1.1, ωpr/ωp = 1 and aωp/c = 0.01. The small-a approximation is shown (broken
curves) together with numerically calculated results (solid curves). Short-wavelength modes
appear to the right of αc = cωpr/Uωp and long-wavelength modes to the left, and the filled
circles are the transition-point approximations while the open circle indicates the cutoff for
mode A.

krx = ±|krxs|
(

cos
π

10
± i sin π

10

)
, (4.28)

respectively. To lowest order in a, we find that ω1 is finite and independent of
the sign of ε, indicating that there is no actual singularity at |ωR| = ωpr and
that the dispersion relations are continuous and smooth through that point. The
singularity in the approximations for the short- and long-wavelength cases is due
to the breakdown of those approximations near |ωR| = ωpr at which point the a
dependence of δω changes from a1/2 to a2/5.

Our approximate solutions are shown in Fig. 1, together with those obtained by
solving the dispersion equation (3.3) numerically, using a secant method with the
approximations as initial estimates of the roots. The numerical results verify that
the approximations are good for small a and that all the dispersion relations are
continuous through the transition point. The approximate solutions for δω at the
transition point may be related to those in the short- and long-wavelength regimes;
specifically, (4.24) is identified with B− and B+, and (4.23) with C+ and C−. After
passing through the transition point to the short-wavelength side, modes B− and
B+ coalesce and become negative real (mode B), while modes C+ and C− remain
a conjugate pair. The transition-point solution (4.22) is identified with the short-
wavelength approximation to mode A, which has no long-wavelength counterpart,
although mode A can extend into the long-wavelength regime as shown in Fig. 1.
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Figure 2. Imaginary and real parts of krx/|krxs| for all modes as functions of α = ck‖/ωp with
the same parameter values as for Fig. 1. The broken curves are small-a approximations, the
solid curves are numerically calculated results, and the filled circles are the transition-point
approximations. The open circle indicates the cutoff for mode A.

The behaviour of the real modes (A and B) may be further understood by consid-
ering the form of kx given by (2.5) and shown in Fig. 2. For k2

x < 0 in the external
media these modes are bound to the beam, while for k2

x > 0 they are not; thus
the natures of the wave modes may be expected to change at or near where the
solutions intersect either or both of the lines ω = ωpr and ω = ck‖, and k2

x < 0 for
real values of ω satisfying

Min

(
1,
c2k2
‖

ω2
pr

)
<

ω2

ω2
pr

< Max

(
1,
c2k2
‖

ω2
pr

)
. (4.29)

As verified by numerical calculations, mode A satisfies (4.29) until it reaches the
intersection point of the lines (where k‖ = ωpr/c and ω = ωpr) and cuts off. In the
short-wavelength regime, mode B approaches the line ω = ωpr as k‖ decreases, and
becomes a complex-conjugate pair (B− and B+) before reaching it.

5. Discussion
The results of Sec. 4 suggest that the thin-beam solutions fall into three categories:
short-wavelength, long-wavelength and those belonging to a transition region for
intermediate values of k‖. The small-a approximations can be used if a is small
enough that the thin-beam condition O(|kbxa|) < 1 holds. These approximations are
not uniformly good (in k‖), even for small a, being inaccurate near the transition re-
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Figure 3. The loci of the solutions for δω in the complex plane as α = ck‖/ωp is varied from 0
to 2αc and for the same parameter values and normalization as in Fig. 1. The solutions start
at a filled circle and move in the direction of the arrows as labelled, with A and B changing
direction at the vertical lines. For even larger values of α, mode A continues beyond the
right-hand side of the figure, mode B beyond the left-hand side, and modes C+ and C−

beyond the top and bottom respectively.

gion; however, the separate transition-point solutions that we obtained are accurate
for small a, as shown in Figs 1 and 2. The analytical study and the numerical results
both imply that there are at least four distinct solutions for small a, outside the
transition region. As k‖ is decreased from a value in the short-wavelength regime,
one real solution (A) cuts off at ω = ck‖ = ωpr, whereas a second real solution (B)
becomes a complex-conjugate pair (B+ and B−) near the transition region. Mode
B+ is unstable, with (4.24) giving a reasonable estimate for the maximum growth
rate, which occurs for k‖ ≈ ωpr/U . There are two ‘radiative’ modes (C+ and C−)
for all values of k‖. Figure 3 shows how the solutions move in the complex plane as
k‖ is varied for values of parameters consistent with the small-a approximation.

Previous discussion of the beam/plasma system in planar geometry by Schmidt
(1979) and by Asséo et al. (1980) did not include the thin-beam results presented
here. These, however, appear to be directly related to the thin-beam results obtained
by APS83 and A95 for the cylindrical-geometry case, as we discuss further below.
They are important, since they are the only results that lead to instability, when
the beam is immersed in a surrounding plasma (mode B+), and in the cylindrical
case appear to lead to the radiative instability of Goldreich and Keeley (1971).

It is instructive to briefly compare our results with those obtained in cylindrical
geometry by APS83 and A95. In these papers, a beam of thickness a and exterior
radius r0 of relativistic electrons and positrons was considered, flowing with an-
gular frequency Ω0 along an azimuthal magnetic field of infinite magnitude that
constrains the particles to move azimuthally. The boundary conditions used (conti-
nuity of the electric and magnetic fields across the beam boundaries) were the same
as applied here. Thin-beam and thick-beam cases were identified with a/r0� δω/ωR
and a/r0 � δω/ωR respectively. The component kbx of the wavevector in the pla-
nar case has an analogue in the cylindrical case that appears in the arguments of
Bessel functions, kbr = ωW

1/2
b /c. Using the approximation (4.1b) for Wb, one finds

that |kbra|� 1 for the thin-beam case, in analogy with our definition.
For the thin-beam case, APS83 obtain (to lowest order in a/r0� 1) a ‘radiative
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instability’ with growth rate

ωi ≈ 0.4
ωp

γ
3/2
p

m1/3
(
a

r0

)1/2

, (5.1)

for a beam embedded in vacuum, apparently reproducing the radiative instability
of Goldreich and Keeley (1971). In the above, m is the azimuthal wavenumber. It is
reasonable to expect to reproduce this result from the simpler planar-geometry cal-
culation, because r0� a and the perpendicular wavelength inside the beam is much
larger than the beam thickness, so that the beam is not resolved. This would imply
that only the global geometry is important, and this can be represented mathe-
matically by additional constraints on the wave fields. Our result corresponding to
(5.1) is

|δω| = 0.7
ωp
γ2
p

(|k‖|a)1/2, (5.2)

and, writing k‖ = m/r0, we obtain

|δω| = 0.7
ωp
γ2
p

|m|1/2
(
a

r0

)1/2

. (5.3)

The a dependence is the same in (5.1) and (5.3); however, the dependence on m and
γp, as well as the numerical factors in front, differ. The above arguments suggest
that the differences between the results are due to the choice of the waves in the
vacuum (here a single plane wave and in the cylindrical case waves with Bessel-
function form), or equivalently to the choice of global geometry.

6. Conclusions
In conclusion, we find here that instability only occurs for the planar case if the
beam is immersed in a surrounding plasma, not vacuum, and this instability occurs
for mode B+ as described above. These results are opposite to those of APS83 and
A95 (for cylindrical geometry), who find radiative instability for a beam surrounded
by vacuum, the instability being quenched in the presence of a surrounding plasma.
We hope to consider the connection between the planar and cylindrical cases further
in a forthcoming paper.

Appendix. Group velocity and velocity of energy propagation
Solutions of (2.4) may formally be written in the form ω = ωM (k) or alternatively
kx = kxM (ω,ks) for a given mode M such that

Λ(ωM (k),k) = 0, (A 1a)

Λ(ω, kxM (ω,ks),ks) = 0. (A 1b)

Differentiation of (A 1a) with respect to k leads to

vgM (k) =
dωM (k)
dk

= − ∂Λ(ω,k)/∂k
∂Λ(ω,k)/∂ω ωM (k)

, (A 2)

where vgM (k) is identified as the group velocity of the waves in mode M around k.
Partial differentiation of (A 1b) with respect to ω and ks then implies the alternative
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forms

vgxM (k) =
1

∂kxM (ω,ks)/∂ω ωM (k)
, (A 3)

vgsM (k) = −vgxM (k)
∂kxM (ω,ks)

∂ks ωM (k)
, (A 4)

where we use subscripts x and s to denote the components of vgM (k) in the x di-
rection and in the (y, z)-plane respectively. The group velocity vgM (k) is generally
identified as the velocity at which the wave energy propagates; however, this as-
sumes that the wavevector k is real or predominantly real (in the case of waves
that are not uniformly excited over all space). When k is not real, as in the case
of modes C+ and C−, which have predominantly imaginary kx in the bounding
plasmas, vgM (k) is imaginary or complex and cannot be identified as the velocity
of energy propagation.

Consider (4.2a), which is obtained by expanding the perpendicular wavenumber
krx = kxM (ωR + δω,ks) to first order in δω, using (A 3) and (A 4), krxR = kxM (ωR,ks)
and vrgx = vgxM (krxR,ks), with ωM (krxR,ks) = ωR. Equation (4.2a) can be written
in the form

δω − δkrxvrgx = 0, (A 5)

where we define δkrx = krx−krxR. Multiplying (A 5) by the total wave energy W̄M (ks)
in mode M and taking the imaginary part, we obtain

ωi(ks)W̄M (ks)− krxi(ks)F̄xM (ks) = 0, (A 6)

where ωi(ks) = Im[δω], krxi(ks) = Im[krx] and F̄xM (ks) is the x component of

F̄M (ks) = ṽgM (ks)W̄M (ks), (A 7)

with

ṽgxM (ks) =
Im[δkrxv

r
gx]

Im[krx]
, (A 8)

ṽgsM (ks) = vgsM (krxR,ks). (A 9)

Equation (A 6) can be interpreted as an equation for conservation of energy in
the absence of source terms,

∂W̄ (t, x,ks)
∂t

+∇ · F̄(t, x,ks) = 0, (A 10)

where

W̄ (t, x,ks) = W̄M (ks)e2[ωi(ks)t−krxi(ks)x], (A 11)

F̄(t, x,ks) = F̄M (ks)e2[ωi(ks)t−krxi(ks)x], (A 12)

and one thus identifies F̄M (ks) as the energy density flux per unit ks space. It
follows that the velocity of energy propagation is given by ṽgM (ks). The above
results are derived for a plasma that is non-dissipative and with ksi = 0, but the
identification of the energy propagation velocity remains the same if dissipative
effects are included and ksi 6= 0. Equation (A 6) implies that an alternative form to
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(A 8) in our case is

ṽgxM (ks) =
ωi(ks)
krxi(ks)

=
Im[δω]
Im[krx]

, (A 13)

as in (4.12).
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