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Distribution of gyrotactic micro-organisms
in complex three-dimensional flows.

Part 1. Horizontal shear flow past a vertical
circular cylinder
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As a first step towards understanding the distribution of swimming micro-organisms
in flowing shallow water containing vegetation, we formulate a continuum model for
dilute suspensions in horizontal shear flow, with a maximum Reynolds number of
100, past a single, rigid, vertical, circular cylinder that extends from a flat horizontal
bed and penetrates the free water surface. A numerical platform was developed to
solve this problem, in four stages: first, a scheme for computation of the flow field;
second, a solver for the Fokker–Planck equation governing the probability distribution
of the swimming direction of gyrotactic cells under the combined action of gravity,
ambient vorticity and rotational diffusion; third, the construction of a database for
the mean swimming velocity and the translational diffusivity tensor as functions
of the three vorticity components, using parameters appropriate for the swimming
alga, Chlamydomonas nivalis; fourth, a solver for the three-dimensional concentration
distribution of the gyrotactic micro-organisms. Upstream of the cylinder, the cells are
confined to a vertical strip of width equal to the cylinder diameter, which enables
us to visualise mixing in the wake. The flow downstream of the cylinder is divided
into three zones: parallel vortex shedding in the top zone near the water surface,
oblique vortex shedding in the middle zone and quasi-steady flow in the bottom
zone. Secondary (vertical) flow occurs just upstream and downstream of the cylinder.
Frequency spectra of the velocity components in the wake of the cylinder show two
dominant frequencies of vortex shedding, in the parallel- and oblique-shedding zones
respectively, together with a low frequency, equal to the difference between those two
frequencies, that corresponds to a beating modulation. The concentration distribution
is calculated for both active particles and passive, non-swimming, particles for
comparison. The concentration distribution is very similar for both active and passive
particles, except near the top surface, where upswimming causes the concentration
of active particles to reach values greater than in the upstream strip, and in a thin
boundary layer on the downstream surface of the cylinder, where a high concentration
of active particles occurs as a result of radial swimming.
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1. Introduction
Wetlands, generally populated by various aquatic plants, are among the most

significant ecosystems on Earth (Costanza et al. 1997). Vast numbers of motile
micro-organisms are found in wetlands, and many important ecological phenomena,
such as consumption of nutrients, predation by larger organisms, harmful algal blooms
(Smayda 1997) etc., occur as such micro-organisms interact with the vegetation.
Understanding the distribution of swimming micro-organisms in shallow water
containing vegetation, and possibly experiencing a slow horizontal flow (e.g. in
tidal marshland), will make an important contribution to understanding the ecology
of the whole biological system. The main long-term goal of our work is to be able
to predict the effect of cell motility on the distribution of algal cells in the complex
geometry of aquatic vegetation. This will require combining methods to compute
both the flow field and the distribution of cells within it, to be compared with the
distribution of passive scalars.

The type of vegetation to be considered here is so-called ‘emergent vegetation’, in
which most of the leafy part of the plants is exposed to the air above the water, and
is supported by less leafy stalks beneath the surface (Cronk & Fennessy (2001), Nepf
(2012) and references therein). A good example is the salt-water cordgrass, Spartina
alterniflora, which is native to and forms a dominant part of many coastal salt marshes
on the Atlantic coast of the Americas. In the interior of a marsh there can be 200–300
stems per m2 (Leonard & Luther 1995), indicating a mean spacing l0 of 6–7 cm; the
stem diameter d is 0.10–0.25 cm (Lightbody & Nepf 2006). The height of these plants
can be as much as 2–3 m, with smooth stems and culms below the water surface,
except possibly at high tide. In the observations of Lightbody & Nepf (2006) the mean
water velocity ranged from zero (at low or high tide) to 24 cm s−1. Thus the Reynolds
number based on stem diameter ranged from zero to 600.

In general the vegetation is flexible, but an obvious simple model of emergent
vegetation is an array of rigid vertical circular cylinders in a quasi-steady, horizontal
shear flow driven by a pressure gradient ρgS, where ρ is the fluid density, g is
the gravitational acceleration and S is the slope of the free surface. As a first step
towards analysing the behaviour of swimming micro-organisms in such an array, this
paper will be concerned with flow past a single rigid vertical cylinder that extends
from a flat horizontal bed and penetrates the free surface of the fluid. Upstream
of the cylinder the flow will be taken to be a unidirectional shear flow containing
micro-organisms (see figure 1). For the non-uniform flow field to have a significant
effect on the cell distribution, the latter must also be non-uniform, so in this paper
we take the upstream cell distribution to have a particular form: cells are confined
to a vertical strip of fluid, with the same width as the cylinder. This is obviously
unrealistic, but any other choice would be equally so. We will be able to see the
effect of the flow on horizontal mixing and, since the cell swimming introduces
vertical inhomogeneity, on vertical variations as well.

The type of micro-organisms to be considered are motile algae, such as Chlamy-
domonas or Dunaliella, that normally swim upwards on average, in still fluid, because
they are bottom heavy. When the fluid is flowing with non-zero vorticity, however,
the cells experience a viscous torque which, when balanced against the gravitational
torque induced by their bottom heaviness, causes them to swim in a non-vertical
direction (or, if the horizontal vorticity exceeds a critical value, to tumble unsteadily).
This process is termed gyrotaxis (Kessler 1985, 1986). Although there have been
extensive investigations of the transport of passive particles in flows associated
with vegetation (Lightbody & Nepf 2006; Tanino & Nepf 2008; Chen, Zeng &
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FIGURE 1. Sketch of a horizontal shear flow containing a vertical strip of micro-organisms
past a vertical circular cylinder.

Wu 2010; Nepf 2012; Zeng et al. 2014), the characteristics and mechanisms of
active micro-organisms in such flows remain unclear, due to the complexity of both
swimming behaviour and flow patterns.

Swimming of gyrotactic micro-organisms strongly depends on the shear in the
ambient flow. Gyrotaxis was first observed in suspensions of C. nivalis placed in
a vertical pipe flow, where focussing towards the axis or the pipe wall occurred
in downward or upward flow, respectively (Kessler 1985), unless the shear in the
ambient flow was too strong to be compensated by the gravitational torque, when
tumbling cells have an approximately horizontal mean swimming velocity (Bees, Hill
& Pedley 1998). In horizontal shear flow this can lead to gyrotactic trapping (Durham
& Stocker 2012). A general analysis of the orientation of spheroidal micro-organisms
in a linear flow was performed by Pedley & Kessler (1987); the conclusions of
Kessler (1985, 1986) for spherical cells were confirmed as a special case of the
predicted stable equilibrium in a weak shear flow.

There exist two types of model to describe the distribution of gyrotactic micro-
organisms in general ambient flows: individual-based models in which cell trajectories
are tracked from, usually, random initial conditions, and continuum models based
on cell conservation. Individual models have been applied to investigate various
phenomena associated with gyrotaxis, including bioconvection (Hopkins & Fauci
2002), the formation of thin phytoplankton layers in the ocean (Durham, Kessler
& Stocker 2009), microscale patches (Durham et al. 2013), accumulation caused by
turbulent acceleration (De Lillo et al. 2014), dispersion in two- and three-dimensional
fields (Thorn & Bearon 2010; Croze et al. 2013), etc. In these models, the
concentration distribution of cells is determined by counting cells in small volume
elements, the resolution of which is limited by the overall number of cells in the
computational domain. On the other hand, a continuum model was proposed by Pedley
& Kessler (1990, 1992) to describe hydrodynamic phenomena in dilute suspensions
of gyrotactic micro-organisms, in which the interactions between the ambient flow
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and the micro-organisms were taken into account. Pedley & Kessler (1990) evaluated
the mean swimming velocity and the random cell swimming, represented by a
translational diffusivity tensor, as functionals of the probability density function for
swimming direction, which is assumed to satisfy a quasi-steady Fokker–Planck
equation. The model has been applied extensively to analyse bioconvection of
gyrotactic micro-organisms, driven by the density difference between the cells and
water, and occurring if the cell concentration is sufficiently large (Bees & Hill 1998;
Hill & Pedley 2005; Ghorai & Hill 2007; Pedley 2010; Williams & Bees 2011;
Hwang & Pedley 2014a,b). A comparison of an individual-based model and the
population-level model for linear flows (in particular unidirectional flows) shows that
the two types of model are generally in good agreement over much of parameter
space, but with some significant exceptions (Bearon, Hazel & Thorn 2011). These
models are currently valid only for dilute suspensions.

A key challenge for the future is how to develop a population-level model, such as
a mixture theory (Lega & Passot 2003; Wolgemuth 2008), that can incorporate both
steric and hydrodynamic interactions between swimmers in non-dilute suspensions. A
promising model for rod-like micro-organisms, such as bacteria, was presented by
Ezhilan, Shelley & Saintillan (2013), on the assumption that at high concentrations
steric interactions between cells would be more important than hydrodynamic ones;
this assumption was based on the observation that bacteria tend to align with their
neighbours when very close together. The steric interactions can be modelled as
an effective torque which may be included in the Fokker–Planck equation for
the orientation distribution. However, in the case of approximately spherical cells
it may not be possible to separate steric effects from near-field hydrodynamics.
Individual-based simulations exist for simple spherical models of swimmers (e.g.
Ishikawa, Simmonds & Pedley 2006, Ishikawa, Pedley & Yamaguchi 2007, Ishikawa,
Locsei & Pedley 2008), but cannot be used for large populations because of the
immense computational requirements.

As stated above, we here investigate a very simple proxy for flow through emergent
vegetation: horizontal shear flow past a single vertical cylinder, and how the swimming
of the micro-organisms affects the distribution of cells in that flow. We will consider
first the flow field, at moderate Reynolds numbers (O(100)), and then the effect of
gyrotaxis on the cell distribution.

Flow past a circular cylinder with spanwise shear is a classical problem in
fluid mechanics and has been investigated extensively (Griffin 1985; Williamson
1996; Williamson & Govardhan 2004), and there has been much research aimed at
understanding the effects of Reynolds number, length-to-diameter ratio (Mukhopadhyay,
Venugopal & Vanka 2002), end conditions (Woo, Cermak & Peterka 1989;
Mukhopadhyay, Venugopal & Vanka 1999), stiffness (Bourguet, Karniadakis &
Triantafyllou 2011) and oscillation (Stansby 1976) on vortex shedding. The most
striking feature in the flow is the appearance of spanwise zones, in each of which
the vortex-shedding frequency is constant. This can be attributed to coupling between
advection and diffusion of momentum in the spanwise direction (Mukhopadhyay et al.
1999). Moreover, the vortex-shedding frequency in a zone was found to be lower
than would have been seen in a uniform flow with a velocity equal to the average
oncoming velocity for that zone, due to near wake effects (Mukhopadhyay et al.
2002). Kappler et al. (2005) have shown that a large aspect ratio tends to result in a
scattering of the size and location of zones. End effects appear in limited regions near
the ends; for example, Maull & Young (1973) reported that the effect of the ends
of bluff bodies could extend inwards about 8 diameters along the spanwise direction.
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Mukhopadhyay et al. (1999) found that the end conditions could change the range
of observed Strouhal numbers. Another feature is that vertical secondary flow exists
along the whole cylinder, which can be attributed to the spanwise pressure variation
on the leading side and in the lee of the cylinder due to the spanwise variation of
the oncoming velocity (Woo et al. 1989).

This paper is organised as follows. In § 2.1, we formulate the problem, first for the
flow field and then for the transport of gyrotactic micro-organisms in the flow, the
relevant equations being simplified after analysis of the time scales of flow variation,
cell reorientation and cell rotary diffusion. In § 2.2, we develop and test a numerical
platform to solve this problem, including a computational fluid dynamics (CFD)
code for the flow field, a code to solve the Fokker–Planck equation based on the
finite volume method, and a code to compute the three-dimensional concentration
distribution of gyrotactic micro-organisms, using OpenFOAM (www.openfoam.org).
In § 2.3, the computational domain, boundary and initial conditions and mesh are
described. In § 3.1, we use the results for the three-dimensional flow field to describe
the characteristics of the velocity and vorticity fields; in § 3.2 we calculate the
mean swimming velocity and translational diffusivity, as functions of all three
vorticity components, and place the results in a database. We interpolate from this
database to obtain the corresponding quantities at the relevant mesh points in order
to solve the cell conservation equation for the three-dimensional distribution of
both gyrotactic micro-organisms and passive particles. It is the difference between
these two distributions that reveals the effect of swimming and gyrotaxis on the
micro-organism population. Some discussion is presented in § 4.

2. Problem formulation
2.1. Governing equations

We consider the distribution of gyrotactic micro-organisms in a horizontal shear flow
past a vertical circular cylinder with diameter much larger than the cell’s size. It is
quite natural to model a suspension of micro-organisms in such circumstances as a
continuum rather than as discrete particles, due to the huge difference of the length
scales. We neglect the influence of the cells on the bulk flow, both the gravitational
force due to the density difference between cells and water and the stresses generated
by the cells’ swimming motions; we also assume that the suspension is sufficiently
dilute for cell–cell interactions to be negligible. Hence the governing equations for
mass, momentum and cell concentration are as follows:

∇ · u= 0, (2.1)
∂u
∂t
+∇ · (uu)=−

1
ρ
∇p+ ν∇2u, (2.2)

∂C
∂t
+∇ · [(u+Vc)C] =∇ · (D · ∇C), (2.3)

where ∇ is the gradient operator in x-space, with x standing for position, u is the
bulk velocity, t is time, ρ is the fluid’s density, p is the pressure excess above
hydrostatic, ν is the kinematic viscosity, C is the number of cells per unit volume,
Vc is the mean cell swimming velocity and D is the cell diffusivity tensor. The effect
of cell sedimentation, due to the density differences between cells and fluid, is not
taken into account in (2.3), which is reasonable for some micro-organisms, such
as C. nivalis considered in this paper, whose sedimentation velocity (approximately
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3 µm s−1) is small compared with its swimming speed (approximately 70 µm s−1)
(Pedley & Kessler 1990).

Cell swimming, in general, exhibits stochastic behaviour. On the assumption that
the cell swimming speed is subject to a stationary random process, independent of
the random swimming direction p, Vc can be written as (Pedley & Kessler 1992)

Vc = Vs〈 p〉, (2.4)

where Vs is the mean swimming speed, and 〈〉, defined as

〈·〉 ≡

∫
· f ( p) dp, (2.5)

represents the ensemble average, f (p) is the probability density function (p.d.f.) of p
and the integral is over the surface of the unit sphere in p-space. In the model of
Pedley & Kessler (1990) the translational diffusivity tensor is given by

D = V2
s τ [〈 pp〉 − 〈 p〉〈 p〉], (2.6)

where τ is the correlation time of cells’ random walks and, for simplicity, is assumed
to be constant. It is known that (2.6) is not a good approximation in all circumstances,
especially when the shear rate is quite large. A better approximation, which is
nevertheless also invalid in some circumstances (e.g. in a straining flow), is given by
‘generalised Taylor dispersion theory’ (Hill & Bees 2002; Manela & Frankel 2003;
Bearon et al. 2011; Bearon, Bees & Croze 2012; Croze et al. 2013; Croze, Bearon
& Bees 2017). However, it is much easier to implement (2.6) and we retain it; see
also Hwang & Pedley (2014a).

The function f (p) is in principle a function of x and t as well as p, and satisfies
the Fokker–Planck equation (Pedley 2010):

∂f
∂t
+

1
C
∇ ·
[
ẋCf − D · ∇(Cf )

]
+∇p · (ṗf )=Dr∇

2
p f , (2.7)

where ẋ = u + Vsp is the cell velocity, ∇p is the gradient operator in p-space, ṗ is
the gyrotactic reorientation rate and Dr is the rotational diffusivity. We assume Dr is
constant. For spherical cells, ṗ is given by

ṗ=
1

2B

[
k− (k · p)p

]
+

1
2
ω ∧ p, (2.8)

where k is the unit vector pointing vertically upwards, B is the time scale for
cell reorientation by the gravitational torque, and ω is the ambient vorticity. For
non-spherical cells there is an additional term involving the rate of strain tensor, but
we will consider only spherical cells.

If the time scales for the flow field to change and for advection to a place with
different vorticity are large compared with both the reorientation time, B, and the time
scale for rotational diffusion, Dr

−1, then the ∂/∂t term and the ∇ term in (2.7) will
both be negligible. For the case in which the Reynolds number Re= 100, the Strouhal
number St = 0.165, and the diameter of the circular cylinder is d = 4 cm (values
that we choose as standard – see § 2.3), the time scale for velocity variation in the
wake of the cylinder is approximately 100 s which is significantly larger than both
the reorientation time B = 3.4 s and the time for rotational diffusion Dr

−1
= 14.9 s
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for C. nivalis. On the other hand, the advective time scale, assuming the length of a
shed vortex to be approximately 2d, is only approximately 32 s, which is not very
much larger than Dr

−1. Nevertheless we shall assume that both terms are negligible,
so f (p) is assumed to be quasi-steady, although we will retain the ∂f /∂t term in (2.7)
in order to be able to test our codes with various initial conditions. The Fokker–Planck
equation (2.7) therefore simplifies to

∂f
∂t
+∇p · (ṗf )=Dr∇

2f . (2.9)

It can be seen from equations (2.8) and (2.9) that, before the latter can be solved, it
is essential to know the vorticity everywhere in the flow domain. That is why the first
computation must be of the velocity field.

2.2. Development and validation of numerical platform
To obtain the distribution of gyrotactic micro-organisms in the complex flow, we
need to solve numerically the continuity equation (2.1), Navier–Stokes equation
(2.2), Fokker–Planck equation (2.9) and concentration equation (2.3), as shown
in figure 2. First of all, OpenFOAM, an open source code which has been
extensively used and tested in various research fields (for example, transition in
the wake of a circular cylinder by Jiang et al. (2016)), is directly used to solve the
continuity and Navier–Stokes equations. The time derivative term, convective term and
Laplacian term of equation (2.2) are discretised using a hybrid of the second-order
Crank–Nicolson scheme and the first-order Euler scheme, the Gauss LUST scheme
(a second-order scheme), as well as a linear interpolation scheme, respectively. The
PISO (pressure implicit with splitting of operator) algorithm is employed to calculate
the coupling of pressure and velocity.

A solver is developed to solve the Fokker–Planck equation, based on the finite
volume method of Gaussian integration. A third-order low-storage Runge–Kutta
method is used for time marching. The convective and diffusive terms in (2.9) are
discretised using a second-order linear scheme. The solver is validated against several
analytical results reported in the literature, and the corresponding governing equations,
initial conditions and parameters are given in appendix A, as are the validation results
for four different cases: case 1 is designed to test the accuracy of the solver for the
Fokker–Planck equation with only gravitational terms. Case 2 is designed to test
the accuracy with gravitational and rotational diffusion terms. Case 3 is designed
to test the accuracy with gravity, rotational diffusion and one component of the
vorticity. Case 4 is designed to test the accuracy with gravity, rotational diffusion and
a vorticity vector with all three components non-zero.

A solver is developed to solve the concentration equation (2.3) based on the
program pisoFoam in the OpenFOAM framework. The time derivative term,
convective term and Laplacian term of the concentration equation are discretised
using a hybrid of the second-order Crank–Nicolson scheme and the first-order Euler
scheme, the Gauss limited linear scheme (degenerating to a first-order scheme
from a second-order scheme to guarantee boundedness in the region of a rapidly
space-varying gradient) and a linear interpolation scheme, respectively. We designed
an analytical solution to test the capacity of this solver to compute anisotropic
diffusion with a non-diagonal diffusivity tensor. The computed concentration is in
good agreement with the analytical solution, as shown in figure 24, and the details
of the test are reported in appendix B.
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FIGURE 2. Diagram of numerical simulation of the distribution of gyrotactic micro-
organisms in complex three-dimensional flows.

2.3. Computational domain, mesh, boundary and initial conditions and parameters
2.3.1. Computational domain and mesh

Consider a flow past a vertical circular cylinder of diameter, d, in a Cartesian
coordinate system, with the x-axis aligned with the streamwise direction, y-axis
parallel to the cross-flow direction, z-axis vertically upwards and the origin located at
the intersection of the bottom bed and the axis of the cylinder, as shown in figure 3.
The computational domain extends from x = −20d to x = 40d, from y = −20d to
y = 20d and from z = 0 to z = 25d in the streamwise, cross-flow and spanwise
(vertical) directions, respectively. 4 338 900 grid cells, with 32 140 grid cells in
each layer perpendicular to the cylinder axis, are employed to compute the cell
concentration distribution. Figure 4 shows the horizontal mesh around the circular
cylinder. A check of mesh and domain dependence for two-dimensional flow in the
horizontal plane, at Re = 100, is reported in appendix C. The vertical size of each
grid cell is 0.2d for the region of 1 < z/d < 24 (1/25 6 z/H 6 24/25, where H is
the water depth), while it is 0.1d for the region of z/d 6 1 or z/d > 24. This choice
of vertical resolution is based on the fact that the characteristic length of spanwise
(vertical) secondary structure is approximately 3d–7d (Mukhopadhyay et al. 1999).

2.3.2. Boundary and initial conditions
Boundary conditions are listed in table 1. The specified velocity Uin(z) and

concentration Cin(y) at inlet are given by

Uin(z)=U0
z
H

(
2−

z
H

)
(2.10)
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FIGURE 3. Computational domain.
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FIGURE 4. Horizontal mesh near the circular cylinder.

and

Cin(y)=

{
C0, |y/d|6 0.5, t > 0

0, |y/d|> 0.5,−t0 6 t< 0,
(2.11)

where U0 is the flow velocity at the free water surface, C0 is the constant
concentration in the strip to which the cells are initially confined and t0 is the
time after which the flow no longer shows a dependence on the initial conditions.
The initial flow velocity and concentration of gyrotactic organisms are set as (0, 0, 0)
and 0. The non-dimensional time t0U0/d = 607.95 is taken in the present work,
according to the trial computation.
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Boundaries u p C

Inlet (Uin(z), 0, 0)
∂p
∂n
= 0 Cin(y)

Outlet
∂u
∂n
= (0, 0, 0) 0

∂C
∂n
= 0

Water surface Free slip
∂p
∂n
= 0 zero flux

Bed (0, 0, 0)
∂p
∂n
= 0 zero flux

Cylinder (0, 0, 0)
∂p
∂n
= 0 zero flux

Lateral boundaries Free slip
∂p
∂n
= 0

∂C
∂n
= 0

TABLE 1. Boundary conditions; n is the coordinate normal to the boundary.

Parameters Description Reference value Units

ρ Fluid density 1.0× 103 kg m−3

ν Kinematic viscosity 10−6 m2 s−1

U0 Velocity at the free surface 2.5× 10−3 m s−1

Vs Swimming speed 6.3× 10−5 m s−1

B Gyrotactic orientation parameter 3.4 s
Dr Rotational diffusivity 6.7× 10−2 s−1

τ Correlation time scale 5.0 s
C0 Initial cell concentration 1.0× 1010 cells m−3

d Cylinder diameter 4.0× 10−2 m
H Cylinder length 1.0 m

TABLE 2. Parameter values. Parameter values of Vs, B, Dr and τ are taken from Pedley
& Kessler (1990, 1992), Hwang & Pedley (2014b).

2.3.3. Parameters
The parameters used in the present work are listed in table 2. Typical values of

Vs, B, Dr and τ of C. nivalis are taken from Pedley & Kessler (1990, 1992) and
Hwang & Pedley (2014b). Since the effects of cell concentration on the ambient
flow are neglected, and (2.3) is linear, the value of C0 is arbitrary; we choose
1.0 × 1010 cells m−3 as being a reasonable value for coastal marsh land (Bratbak,
Egge & Heldal 1993; Millie et al. 1997).

3. Results
3.1. Flow field

The major determinant of flow around a circular cylinder is the Reynolds number.
In the present case, the local Reynolds number, defined as Relocal = Uind/ν, varies
from 0 at the bottom bed to 100 at the free water surface. There are two typical
flow structures in horizontal planes: shedding vortices which are generated alternately
from either side of the cylinder and travel downstream, and an approximately fixed
symmetrical vortex pair in the lee of the cylinder. The vortex shedding occurs in the
region above z/d ≈ 12.5, or Relocal ≈ 67, which is larger than the critical Reynolds
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FIGURE 5. Velocity (u/U0) and pressure (p/(0.5U2
0)) fields in the centreplane at tU0/d=

157.2. To clearly illustrate the velocity distribution in the vicinity of the circular cylinder,
the computed velocity field on the quite fine mesh is interpolated to a coarse mesh. The
arrow in the white quadrilateral is the reference vector.

number (about 49) for generating vortex shedding in uniform flow (Williamson 1996).
Parallel shedding occurs in a region with thickness approximately 2d near the free
surface, while oblique shedding occurs in the region 12.5 6 z/d< 23.

Oblique vortex shedding in shear flow has also been found in previous experiments
(Kappler et al. 2005) and numerical simulations (Mukhopadhyay et al. 1999). In
addition, oblique shedding was found in the wake of a circular cylinder moving at a
constant speed in a towing tank (Williamson 1989); Williamson (1989) stated that this
phenomenon was caused by the endplate attached to the cylinder, and that it could
be manipulated by adjusting the angle of the endplate to the axis of the cylinder.
A quasi-steady symmetrical vortex pair occurs below z/d ≈ 12.5, and its size in
the streamwise direction decreases gradually downwards. According to the typical
flow patterns described above, the wake of the cylinder can be roughly divided into
three zones: the parallel-shedding zone near the water surface (23 6 z/d 6 25), the
oblique-shedding zone (12.5 6 z/d < 23) and the quasi-steady zone (0 6 z/d < 12.5)
near the bottom bed.

The flow near the cylinder shows strongly three-dimensional structure. In particular,
there is a vertical (or spanwise) secondary flow in the vicinity of the cylinder, as
shown in figure 5. On the leading side of the cylinder, the secondary flow is vertically
downwards, and on the lee side it is vertically upwards. The non-zero vertical velocity
is driven by a vertical pressure gradient (Woo et al. 1989). This arises because at the
stagnation line on the front surface of the cylinder (x = −0.5d, y = 0), Bernoulli’s
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FIGURE 6. Variation of ux/U0 with tU0/d for three given points at different vertical
positions with x/d= 4.0 and y/d= 0.5.

theorem tells us that the pressure is

p= p0 +
1
2ρUin

2(z), (3.1)

where p0(≈ 0) is the uniform pressure excess (over hydrostatic) far upstream and
Uin(z) is given by (2.10). Hence the pressure is greater near the top surface than the
bottom. At the back of the cylinder, in the region of separated flow, we have

p≈ p0 − γρUin
2(z), (3.2)

a formula obtained for steady two-dimensional flow, with γ ≈ 0.2 for Re = 100
(Fornberg 1985), which is higher at the bottom than the top. These vertical pressure
differences are the drivers of the computed secondary flows, as shown in figure 5.
The vertical velocity becomes much weaker with distance downstream.

It was noted by Mukhopadhyay et al. (1999) that the frequency of the vortex
shedding in a shear flow did not vary continuously with spanwise position according
to the local upstream velocity, but the flow exhibited a cellular structure along
the span. In each of the cells, with lengths of approximately 6 diameters, the
vortex-shedding frequency had a constant value, slightly lower than the average
of the ‘expected’ values over the length of the cell, and with finite jumps over
a short distance in between. To investigate the frequency structure in our flow,
we have taken spectra of the three velocity components at various locations. The
spectra are computed by fast Fourier transforms, based on 8400 sampling times
with a sampling period of 0.3 s, corresponding to tU0/d ≈ 0.019, using the values
of U0 and d given in table 2. For example, figure 6 shows time traces of the
dimensionless streamwise velocity ux/U0 at x/d = 4.0 and y/d = 0.5 (one cylinder
radius away from the centreplane), and at three different heights. The corresponding
spectra are shown in figure 7. It can be seen that there is one dominant shedding
frequency, f2, in the parallel-shedding zone, and a different one, f1, in the lower part
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FIGURE 7. Frequency spectra corresponding to figure 6; Ax is the amplitude of the ux/U0
signal at frequency f ; f1 = 0.00635 Hz and f2 = 0.00794 Hz.

of the oblique-shedding zone. In between there is an overlap region, in which both
frequencies are present (very similar results are found at other streamwise locations,
but are not shown here). Besides f1 and f2, a much lower frequency, f0, appears in
the parallel-shedding zone and oblique-shedding zone, and it is clear that f0 = f2 − f1;
this frequency represents modulation of the velocity traces in the parallel-shedding
zone (see figure 6a) – a beating frequency between the two primary oscillations.
The same can be seen when we plot the vertical, or spanwise, velocities and their
spectra (figures 8 and 9) (similar results are found for cross-flow velocity but are
not shown here). However, when we plot the spectra of vertical velocity at a point
closer to the cylinder (x/d = 1.0, y/d = 0.5; figure 10), we see that the dominant
frequency is f0, though its amplitude is considerably smaller than at x/d = 4.0. This
indicates that the coupling between the two vortex-shedding regimes, leading to the
beating (generally a weakly nonlinear process), comes about because of the presence
of significant vertical velocities, i.e. the secondary flows already discussed. We may
note that a similar phenomenon of beating in the velocity fluctuation spectra was
observed experimentally by Williamson (1989), who also explained it as resulting
from the interaction of two higher frequencies.

Corresponding to the typical characteristics of the velocity distribution, the
vorticity exhibits a range of behaviour according to the spanwise position. In the
parallel-shedding zone, the vortex shedding is close to two-dimensional. The vertical
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FIGURE 8. Variation of uz/U0 with tU0/d for three given points at different vertical
positions with x/d= 4.0 and y/d= 0.5.

vorticity is much larger than the horizontal vorticity. The weak vorticity in the
cross-flow (y-) direction at first gradually increases with downstream distance, but
later dies away due to viscous dissipation.

In the oblique-shedding zone, strong three-dimensional vorticity is evident. The
streamwise and vertical vorticities are comparable with each other. The oblique
vortices link well with the approximately parallel vortices in the parallel-shedding
zone in the region near the cylinder.

In the quasi-steady zone, none of the three vorticity components changes
significantly with time and they are symmetrical with respect to the centreplane.
The streamwise and spanwise vorticity components become weaker at smaller values
of z, due to the lower incoming velocity near the bottom of the channel, while the
cross-flow vorticity becomes strong there, due to the higher shear of the incident
flow.

Positive circumferential vorticity ωφ , defined as

ωφ =
∂ur

∂z
−
∂uz

∂r
, (3.3)

where uz and ur are the vertical and radial velocity components, and r is the radial
distance from the cylinder axis, mainly occurs in the area around the upstream
stagnation point at all spanwise positions (except close to the water surface and the
bottom bed), while negative circumferential vorticity dominates the remainder of the
cylinder surface, as shown in figure 11. On the surface of the cylinder ∂ur/∂z = 0,
so the sign of ωφ is opposite to that of the vertical (secondary) velocity, from (3.3).

3.2. Mean swimming velocity and translational diffusivity
In the present case, the p.d.f. of swimming direction, f (p), is taken to be quasi-steady,
as discussed at the end of § 2.1, and therefore satisfies equation (2.9) without the
∂f /∂t term. (We actually solve the equation retaining the ∂f /∂t term with a particular
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FIGURE 9. Frequency spectra corresponding to figure 8; Az is the amplitude of the uz/U0
signal at frequency f ; f1 = 0.00635 Hz and f2 = 0.00794 Hz.

initial condition, and use the solution after it becomes steady.) We consider values
of the vorticity vector that satisfy B

√
ω2

x +ω
2
y < 1, so cells do not tumble and there

is no possibility of cell trapping by shear (Durham et al. 2009). The Fokker–Planck
equation (2.9) is solved for a particular value of ω and the corresponding mean
swimming velocity Vc and translational diffusivity D are obtained from equations
(2.4) and (2.6) respectively.

When the vorticity is very small, so |Bω| < 0.02, the swimming velocity and
translational diffusivity are directly calculated from the analytical solution of Pedley
& Kessler (1990), which can be rewritten in the current notation as

Vc

Vs
= (0.45Bωy,−0.45Bωx, 0.57), (3.4)

and
D

V2
s τ
=

 0.26 0 −0.10Bωy
0 0.26 −0.10Bωx

−0.10Bωy −0.10Bωx 0.16

 . (3.5)

However, when |Bω|> 0.02, Vc and D are calculated from a database that we set
up for these quantities in the three-dimensional vorticity space. This is established by
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FIGURE 10. Frequency spectra of streamwise velocity uz/U0 at points with x/d= 1.0 and
y/d= 0.5 for different vertical positions; Az is the magnitude of uz/U0 signal at frequency
f ; f1 = 0.00635 Hz and f2 = 0.00794 Hz.

solving the Fokker–Planck equation 4901 times, with the same initial condition, i.e.
f = 1/4π, for a set of vorticities (ωj

1, ω
k
2, ω

l
3) ( j = 1, 2 . . . 13, k = 1, 2 . . . 13 and

l= 1, 2 . . . 29) subject to

Bωj
i =


−2j/100, i= 1, 2, j= 1 . . . 6
0, i= 1, 2, j= 7
2j−7/100, i= 1, 2, j= 8 . . . 13

(3.6)

and

Bωj
i =


−2j/100, i= 3, j= 1 . . . 14
0, i= 3, j= 15
2j−15/100, i= 3, j= 16 . . . 29,

(3.7)

where i represents the ith component of vorticity. The vorticity in the database
(|Bωx|6 0.64, |Bωy|6 0.64, and |Bωz|6 163.84), covers the whole range of vorticity
found for the present flow round a circular cylinder. It is noted that the database is
specific only to C. nivalis with B= 3.4 s and Dr = 0.067 s−1.

In our principal computation, the mean swimming velocity and translational
diffusivity tensor are updated at each time step by linear interpolation in the
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FIGURE 11. Contours of ωφB around the circular cylinder at tU0/d= 157.2: (a) z/d= 24,
(b) z/d= 20, (c) z/d= 15 and (d) z/d= 2.5.

database of Vc − ω and D − ω, as well as by the analytical solution for the steady
Fokker–Planck equation for small |Bω|.

In the parallel-shedding zone, the mean swimming velocity components in the
horizontal directions are much smaller than that in the vertical (spanwise) direction,
which means that cells swim almost vertically upwards. There is no obvious variation
of horizontal swimming velocity in the wake of the cylinder, which is attributable to
the weak streamwise and cross-flow vorticity in this zone.

In the oblique-shedding zone, the distribution of streamwise mean swimming
velocity is matched with the corresponding distribution of the cross-flow vorticity,
while the distribution of cross-flow mean swimming velocity is matched with the
corresponding distribution of the streamwise vorticity, as shown in figure 12. In
the upper portion of this region, the magnitude of the horizontal mean swimming
velocity is much smaller than that of the vertical mean swimming velocity, but
varies noticeably in the wake of the cylinder. As we would expect, the vertical mean
swimming velocity in the wake of the cylinder is smaller than that outside the wake,
due to the influence of horizontal vorticity.

In the quasi-steady zone, the horizontal mean swimming velocity is generally
smaller than that in the oblique-shedding zone. The small horizontal mean swimming
velocity in this zone was caused by the weak incoming velocity, in contrast to that
in the parallel region caused by the weak shear of the incoming flow.

To characterise the relative importance of mirco-organism swimming and ambient
flow, we define the relative swimming velocity βi as

βi =
|Vi|

|ui| + ε
, (3.8)
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FIGURE 12. Contours of swimming velocity and vorticity at z/d = 20: (a) Vx/Vs, (b) Bωy,
(c) Vy/Vs, (d) Bωx and (e) Vz/Vs.

where Vi and ui are the ith components of the mean swimming velocity and flow
velocity, respectively, and ε, taken as 10−3 µm s−1, is included to avoid the singularity
caused when ui = 0.

In the parallel-shedding zone, βx≈ 0.08, βy≈ 0.10 and βz≈ 0.9, which implies that
the horizontal advective transport of cells is dominated by advection with the ambient
flow, and that the contribution of the vertical mean swimming velocity is comparable
with that of the vertical fluid velocity.

In the oblique-shedding zone, the ambient flow still overwhelms the horizontal
mean swimming. In the vortex cores, the vertical flow is stronger than the vertical
swimming, while, just outside the cores, the vertical swimming is comparable with the
vertical flow, i.e. |βz| = O(1) as shown in figure 13. As z decreases, the importance
of the vertical relative swimming gradually increases due to the decreasing incident
velocity.

In the quasi-steady zone, the horizontal mean swimming velocity in the streamwise
direction is much smaller than the horizontal flow velocity except in the region next to
the bed bottom; the vertical mean swimming velocity and vertical flow are comparable
with each other.

On the surface of the cylinder, except very near the water surface and the bottom
bed, the dimensionless radial mean swimming velocity, Vr/Vs, is directed outwards on
the leading side of the cylinder and inwards in the lee of the cylinder, as shown in
figure 14. This distribution of radial mean swimming velocity is consistent with the
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FIGURE 13. Contours of βz at z/d= 0, 5, 10, 15, 20 and 25.
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FIGURE 14. Contours of Vr/Vs around the circular cylinder at U0t/d=157.2: (a) z/d=24,
(b) z/d= 20, (c) z/d= 15 and (d) z/d= 2.5.

distribution of ωφ (figure 11), and can be understood from the steady-state solution
of (2.8):

sin θ = Bωφ, (3.9)

where ωφ is the non-zero horizontal component of vorticity and p= (sin θ, 0, cos θ).
In the present case, the orders of magnitude of the diagonal components of

the translational diffusivity tensor are much greater than those of the off-diagonal

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

49
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.494


Gyrotactic micro-organisms in complex three-dimensional flows. Part 1 377

0–5
5 10 15 20 25

0–5
5 10 15 20 25

0–5
5 10 15 20 25

0–5
5 10 15 20 25

0–5
5 10 15 20 25

0–5
5 10 15 20 25

05

05

05 05

05

0510

15

25

20

10

15

25

20

10

15

25

20

10

15

25

20

10

15

25

20

10

15

25

20

0.152

0.2580 0.2585 0.2590 0.2595 0.2600 0.26100.2605 0.2580 0.2585 0.2590 0.2595 0.2600 0.26100.2605

0.154 0.156 0.158 0.160 0.162 0.164 0.001–0.001–0.002–0.003 0 0.002

0.001 0.002 0.004–0.004 –0.001–0.002 0.006–0.006 0–0.010–0.015 –0.005 0.005 0.010 0.015

(a) (b)

(c) (d)

(e) ( f )

FIGURE 15. Contours of diffusivity tensor at z/d = 15, 20 and 25: (a) Dxx/(V2
s τ), (b)

Dyy/(V2
s τ), (c) Dzz/(V2

s τ), (d) Dxy/(V2
s τ), (e) Dxz/(V2

s τ) and ( f ) Dyz/(V2
s τ). Note that the

colour scales are different for different panels.

components in the wake of the cylinder, as shown in figure 15, which means that
the cell flux by translational diffusion through a plane mainly depends on the
concentration gradient normal to that plane. (Note that the colour scales vary between
the panels of figure 15 in order to emphasise the zones in which the different
components of D are greatest.) The diagonal components Dxx, Dyy and Dzz vary to
some extent in the present work, in contrast to the constant value for an ambient flow
with B|ω| � 1 (Pedley & Kessler 1990). The order of magnitude of Dyz is greater
than that of Dxy.
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FIGURE 16. Variation of C/C0 with tU0/d for positions y/d = 0.0: (a) x/d = −8.0,
(b) x/d = 1.0 and (c) x/d = 8.0. Green colour represents z/d = 24 or z/H = 0.95; red
colour represents z/d= 12.5 or z/H = 0.5.

3.3. Three-dimensional distribution of gyrotactic micro-organisms and passive
particles

Here we compute the concentration distribution of motile cells, and compare the
results with those for passive particles that are advected without diffusion, and
for passive particles that are advected in the presence of isotropic diffusion with
diffusivity D = V2

s τ/3. The strip of incoming motile micro-organisms (C. nivalis)
spreads little in the cross-flow direction until the particles come close to the cylinder.
This is the same as for passive particles, as shown in figure 16(a), where the particle
concentration is plotted against time for a position on the centre plane 8 diameters
upstream of the cylinder axis. The weak variation of cell concentration upstream is
explained by the large time scale, O(d2/Dyy) = 3.1 × 105 s, for diffusion across the
width of the strip d = 4 cm by translational diffusion, compared to the time scale,
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FIGURE 17. Distribution of C/C0 for z/d = 5, 10, 15, 20 and 25 at tU0/d = 157.2:
(a) active particles, and (b) passive particles without diffusion.

O(L0/U0) = 320 s, for travelling to the cylinder by advection from upstream, where
L0 is the distance from the upstream inlet to the axis of the cylinder.

The presence of the cylinder greatly changes the dispersion of both active and
passive particles. In the parallel-shedding zone, both active and passive particles
travel downstream in the pattern of the shed vortex street rather than the initial strip
distribution, forming alternating concentrated regions on either side of the wake, as
shown in figure 17. The general pattern of the concentration distribution is quite

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

49
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.494


380 L. Zeng and T. J. Pedley

0 20 40 60 80 100 120 140 160

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Active particles

Passive particles (without diffusion)

tU0/d

FIGURE 18. Variation of Qc with tU0/D.

similar for active and passive particles, which means that the horizontal transport of
particles in this zone is dominated by advection, which is consistent with the result
that the mean swimming velocity is quite weak compared with the ambient flow.
However, the maximum concentration of active particles occurs at the upper surface
of the fluid, in the wake region, and greatly exceeds that in the upstream strip, as
shown by the red patches on the top surface in figure 17(a), while that of passive
particles does not. The reason for this difference lies in the fact that the active
particles can swim across streamlines and accumulate at the free surface while the
passive particles cannot. The obvious accumulation of active particles in the top layer
near the water surface shows that vertical swimming plays an important role. This is
in good agreement with the result that the values of βz are close to 1 (figure 13).

The effects of cell swimming on the total number of particles that accumulate in
the top layer are also shown in figure 18, where Qc is defined as

Qc =
1

C0V0

∫∫∫
V

C(x, y, z, t) dx dy dz, (3.10)

and
V0 =

∫∫∫
V

dx dy dz. (3.11)

The domain of integration, V , is defined as −20 6 x/d 6 40, −0.5 6 y/d 6 0.5 and
24.5 6 z/d 6 25, so Qc represents the ratio of the number of cells in the top 0.5d to
the corresponding number if C = C0 everywhere. It is interesting that, although the
concentration of active particles is very large at the free surface behind the cylinder,
it is actually significantly lower than that of passive particles at mid-depth, as shown
in figure 16(b) (red curves). However, this difference does not persist downstream
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(at x/d = 8.0) as shown in figure 16(c). At particular points the concentrations of
active and passive particles oscillate dramatically, as shed vortices sweep past, bringing
particle-free fluid from outside the strip across the centre plane. This can be seen
clearly in figures 16(c) and 17, for example.

In the upper part of the oblique-shedding zone, both active and passive particle
clouds travel downstream in the pattern of an oblique vortex street, while in the lower
part of this zone the particle clouds travel in a pattern that resembles a fluttering
ribbon, as shown in figure 17. The general pattern of concentration distribution
implies that the shape of particle clouds in the horizontal plane is mainly determined
by advection, which is consistent with the fact that the cell swimming velocity is
much smaller than the horizontal components of the flow velocity. However, there
is still an effect of vertical swimming on the concentration distribution, as shown in
figure 16(b,c), because the vertical components of swimming and flow velocity are
comparable.

In the quasi-steady zone, the particle concentration distribution is approximately
symmetric with respect to the wake centreplane (figure 17). There is a low
concentration of cells immediately behind the cylinder because the concentration
was initially zero, and neither swimming nor diffusion has brought particles into that
zone by the time depicted in figure 17. Moreover, upswimming (of active particles)
tends to remove particles from that zone. Further out, in the y-direction, swimming
and translational diffusion smooth out the interface between the low concentration
behind the cylinder and the outer region. Both active and passive particles move
downward slightly on the leading side of the cylinder near the bed bottom, due
to the downward flow velocity, as shown in figure 19. The boundary of the active
particle cloud, represented by a black bold line in figure 19(a) is above that of the
passive particle cloud, represented by a white bold line in figure 19(b), due to the
upward swimming of active particles.

Another striking difference between the concentration distributions of passive and
active particles is found in a thin layer adjacent to the circular cylinder, as shown
in figure 20. For the active particles, a high concentration region occurs in the lee
of the cylinder, while a low concentration region appears on the leading side (see
figure 20b in particular). The concentration variation in this thin layer is caused by
radial swimming (see figure 14), in contrast to the high concentration layer of active
particles at the top surface which is a consequence of upward swimming (figure 17a).
No high concentration layer was found on the cylinder for passive particles.

We should note that figures 17(b), 19(b) and 20(c,d) are for passive particles
without diffusion. Corresponding plots for passive particles with isotropic diffusion
are indistinguishable from these and are therefore not presented. It is clear that
isotropic diffusion with D= Vs

2τ/3 would have negligible effect in this flow.

4. Discussion

It is intended that this paper will be the first in a series to investigate tidal fluid
flow and the distribution of motile micro-organisms in coastal wetlands populated
by emergent vegetation, characterised by tall stems which may be branched but not
leafy under water. An important aim of the paper has therefore been to develop a
computational platform for solving the problems that arise: compute the fluid flow
from the Navier–Stokes equations; assume a dilute suspension of swimming cells, but
in a continuum description, and compute their orientation distribution by solving a
Fokker–Planck equation that involves the torque applied to the cells by vorticity in the
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FIGURE 19. Distribution of C/C0 for y/d= 0.0 at tU0/d= 157.2: (a) active particles, and
(b) passive particles without diffusion. For description of black and white bold lines, see
text.

flow, and hence set up a database of mean cell swimming velocity and translational
diffusivity as functions of that vorticity; and finally solve the cell conservation
equation for the cell population density. As a first example, we have considered the
highly idealised model of a horizontal shear flow past a single vertical, rigid, circular
cylinder of diameter d, that is fixed in the bottom bed of a parallel-sided channel and
extends through the whole depth of the fluid; the Reynolds number at the free surface
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FIGURE 20. Distribution of C/C0 for z/d= 20 (b,d) and 23 (a,c) at tU0/d= 157.2: (a,b)
active particles, and (c,d) passive particles without translational diffusion.

was taken to be 100. The cells that have been considered are gyrotactic motile algae
such as C. nivalis that are bottom heavy and swim upwards on average when there
is no flow. The inflowing cells were taken to occupy a vertical strip of width d; this
is clearly unrealistic but permits an examination of the effect of the cylinder and of
gyrotaxis on such lateral inhomogeneity. The distribution of active particles (cells)
was compared with that for passive particles.

The main results were as follows. First of all, the flow field downstream of the
cylinder is dominated by vortex shedding, in three zones: parallel shedding near the
top surface, where the incoming shear rate is small; oblique shedding below that;
and quasi-steady separated flow near the bottom. The zones are coupled in part
by a mean secondary flow, downwards just upstream of the cylinder and upwards
just downstream (figure 5). These findings are qualitatively consistent with those of
previous authors (Williamson 1989; Woo et al. 1989; Mukhopadhyay et al. 1999).
The magnitude of the streamwise component of vorticity is comparable to that of the
spanwise (vertical) component in the oblique-shedding zone. Near the cylinder surface
the horizontal component of the vorticity is circumferential (ωφ); this component is
positive in the neighbourhood of the upstream stagnation line and negative almost
everywhere else on the surface (figure 11). These signs are consistent with the signs
of the secondary flow velocity in the corresponding locations.

Perhaps the most interesting aspects of the flow field are the time spectra of the
velocity components in the vortex-shedding zones. The parallel-shedding zone is
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dominated by one frequency, f2 (see figure 7, for example), and the oblique-shedding
zone is dominated by another, f1; where the zones overlap, there is a marked
contribution from the beating frequency, f0 = f2 − f1 (see figures 7 and 9; f0 in
fact dominates the spectrum of the vertical velocity component (figure 10). It is
interesting that these dominant frequencies do not vary with z. This, together with
the existence of the beating frequency, is clear evidence of nonlinear vortex dynamics.

The mean swimming velocity and translational diffusivity tensor of the cells were
computed for organisms with (2BDr)

−1
= 2.2 (e.g. C. nivalis), and for vorticity vectors

such that |Bωx| < 0.64, |Bωy| < 0.64 and |Bωz| < 163.84. The computations were
based on a combination of the analytical solution by Pedley & Kessler (1990) and
numerical solutions of the steady Fokker–Planck equation. The results were stored in a
database of Vc−ω and D−ω, and the mean cell swimming velocity and translational
diffusivity tensor in the flow around the cylinder were obtained from that database.
In the whole region, with the exception of the bottom bed and the surface of the
cylinder, the ambient flow overwhelms cell swimming in the horizontal direction. In
the parallel-shedding zone, cells swim almost vertically upwards in the wake of the
cylinder due to the weak streamwise and cross-flow vorticity. In the oblique-shedding
zone, the vertical flow dominates the vertical migration of cells in the vortex cores,
while outside the cores and in the quasi-steady zone vertical swimming is comparable
to the vertical flow. The distribution of radial mean swimming velocity is consistent
with the distribution of ωφ . In the wake of the cylinder, the orders of magnitude of the
diagonal components of the translational diffusivity tensor are much greater than those
of the off-diagonal components, meaning that the cell flux by translational diffusion
through a plane is almost proportional to the normal component of the concentration
gradient.

The incoming strip of particles, either active or passive, spreads little in the
cross-flow direction until the particles are close to the cylinder. In the parallel-
shedding zone (except at the very top surface), the general pattern of the concentration
distribution is quite similar for both active and passive particles, which means that
the horizontal transport of particles in this zone is dominated by advection. However,
the maximum concentration of active particles in the wake region occurs at the top
surface, and exceeds the initial concentration, while that of passive particles does
not. This difference is attributable to the cells’ ability to swim across streamlines.
In the upper part of the oblique-shedding zone, both active and passive particle
clouds travel downstream in the pattern of the oblique vortex street, while in the
lower part of this zone, the particle clouds more resemble a fluttering ribbon. The
effect of vertical swimming on the concentration distribution is still observed in
the oblique-shedding region. In the quasi-steady zone, the particle concentration
distribution is approximately symmetric with respect to the wake centreplane.
Swimming and translational diffusion of cells smooth out the sharp concentration
interface in the rear of the cylinder. The region of zero cell concentration above the
bottom bed is deeper for active particles than for passive particles, due to vertical
swimming. Another striking difference between passive and active particles is that a
high concentration region of swimming cells occurs in the lee of the cylinder, which
is caused by the radial swimming velocity rather than the spanwise swimming that
takes place in the thin layer near the water surface.

This discussion will now address two major concerns: the validity of the
assumptions and approximations that have been made in solving the model problem,
and the relevance of the model problem to wetland flows.

First, the presence of the cells has been ignored in the Navier–Stokes equation
(2.2): the (negative) buoyancy term would be Cgv1ρ/ρ, where v is cell volume,
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1ρ/ρ is the relative density difference between cells and water and g is gravity, and
the contribution from the divergence of the ‘particle stress tensor’ scales as 4CTa/ρd,
where T is the thrust exerted by a cell (equal to its drag), a is the cell radius and C is
the number density of cells. Using values from table 2 and Pedley & Kessler (1990),
the ratios of these to the Newtonian viscous term ν∇2u are approximately 0.17 and
0.03 respectively when C≈ 104 cm−3. This value of C is lower than that which leads
to bioconvection in the laboratory (Pedley & Kessler 1992) but larger than values
normally found in the field (Bratbak et al. (1993) and Millie et al. (1997) found
maximum concentrations of 5× 103 cells cm−3 and 1.2× 104 cells cm−3, respectively,
during algal blooms of two different species). Thus the neglect of these terms is
justified as a first approximation, but the gravitational term, in particular, may lead
to new effects on non-horizontal boundaries.

We have already discussed, in § 2.1, the conditions for the p.d.f. of swimming
direction to be quasi-steady and quasi-uniform, i.e. the time derivative and advective
terms to be negligible in the Fokker–Planck equation (2.7), leading to (2.9). Using the
parameter values given in table 1, these conditions are met only very approximately.
However, in order to solve (2.7) exactly, the cell velocity ẋ and the local vorticity ω
would have to be updated at every time step, which would require the velocity and
vorticity fields to be recorded throughout the computation, and this is still beyond the
realistic capability even of supercomputers. The problem would be less troublesome
if the flow were effectively independent of time, which may be relevant in an array
of cylinders (see below) or at much lower Reynolds numbers. A side issue is that
we have assumed that the vorticity is nowhere large enough to cause cell tumbling,
i.e. |(ω−ωzk)|B< 1; that this is satisfied is demonstrated in figure 12.

Another important assumption is of the validity of the continuum model itself.
This requires that length scales over which the flow varies should be greater than
a typical spacing between the cells. For the quoted cell density of 104 per cm3 the
average spacing is about 400–500 µm; this is less than the length scales that appear
in the flow, although not much less in the interesting zone just behind the cylinder
(figure 20b). For significantly smaller cell number densities, it would be necessary to
use an individual-based model, not a continuum model (see Hopkins & Fauci 2002,
Thorn & Bearon 2010, De Lillo et al. 2014).

We also return briefly to the approximation (2.6) for the translational diffusivity
tensor. Hill & Bees (2002) developed generalised Taylor dispersion (GTD) theory for
gyrotactic cells (see Croze et al. (2017), appendix A, or Bearon et al. (2012) for a
succinct statement of how to calculate D in GTD theory). They showed in particular
that, for a linear shear flow in the x-direction with vorticity in the y-direction, this
theory predicts that all components of D, except Dyy, tend to zero as the vorticity
tends to infinity, whereas (2.6) predicts that all components tend to non-zero constants
in that limit; for relatively small vorticity, on the other hand, equation (2.6) agrees
quite well with GTD theory. These results were later confirmed by comparing the
predictions with an individual-based model (Croze et al. 2013) and with experiment
(Croze et al. 2017). However, it remains the case that even GTD theory agrees poorly
with an individual-based simulation in strain-dominated flows, because the velocity
gradient (assumed uniform in the theory) can vary rapidly with position (Bearon et al.
2011), and straining cannot be neglected in the flow patterns that we have computed
in this paper. In the future, we should either use GTD theory or embark on individual-
based simulations.

The discussion and references in the introduction indicate that a rigid cylinder is
not a bad model for grasses such as S. alterniflora, although the stems do branch
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towards the upper surface; in particular the chosen Reynolds number is in a realistic
range. However, such stems are flexible to some extent, and bend in the flow; other
grasses with thinner stems will be significantly deformed by flow. The greatest
bending moment experienced by the vertical cylinder in our model will occur at the
base, where it will be equal to

M =
1
2
ρd
∫ H

0
Cd(z)(Uin(z))2z dz, (4.1)

where Cd is the z-dependent drag coefficient and Uin(z) is given by (2.10), and we
have assumed that the drag per unit length at height z is the same as for an infinite
cylinder in a velocity Uin(z). Cd would vary from about 1.3 at the top, where Re=
100, to about 2.2 at z/H= 0.1 where Re≈ 19 (Batchelor 1967, figure 4.12.7). Rather
than aspire to complete accuracy, we recognise that the contributions from larger z
will dominate M, and arbitrarily choose Cd = 1.5 in the above equation. Using the
parameter values given in table 2, therefore, we obtain M ≈ 7.8× 10−5 kg m2 s−2.

The radius of curvature of a rod at any point is equal to its bending stiffness
Σ divided by the bending moment at that point. Feagin et al. (2011) gave
data for S. alterniflora from which we can deduce a bending stiffness of Σ ≈

2.35 × 10−2 N m2, while Hamann & Puijalon (2013) measured Σ for several other
emergent aquatic plants, and found values in the range 10−3 < Σ < 10−1 N m2.
Hence the radius of curvature Σ/M at the base of the stem in our case would be
greater than 10 m. Thus the drag force exerted by a stream of maximum speed
U0 = 2.5 × 10−3 m s−1 (table 2) will not be enough to bend the stems significantly.
(We should nevertheless bear in mind that M is proportional to U0

2, so it would only
take a stream of 2.5× 10−2 m s−1 to give Σ/M between 0.1 and 10 m, the smaller
of which represents considerable bending.)

A further implicit assumption of our model is that, in a saltmarsh with emergent
vegetation, there is no significant effect on the flow from external sources, such as
oceanic turbulence or waves, including locally wind-driven waves as well as those
propagating in from the ocean. Especially in marshes in which the grasses are close
together and do not deform significantly, it seems obvious that turbulence in the
incoming flow will die away quickly with distance from the leading edge of the
vegetation. Some authors of papers in this field use the word turbulence to describe
the flow resulting from time-dependent vortex shedding from the stems of the plants.
Following Lightbody & Nepf (2006) we do not call this turbulence; although the
interaction between such vortices will produce a very complex flow, it is precisely
this flow that we will wish to investigate in future work.

The importance of surface waves is more difficult to assess. Waves are clearly
significant for seagrass meadows that are fully submerged, especially when the
grasses are long and very flexible (and exhibit beautiful wave patterns themselves);
see Luhar et al. (2010), for example. In the emergent case, as for turbulence, very
short waves coming from upstream will be damped out quickly, and the part of the
vegetation above water will suppress the local generation of waves by the wind (if the
subsurface vegetation is effectively rigid). However, there remain fairly long waves
coming in from the ocean. Consider an incoming, sinusoidal, shallow-water wave
of wave speed c =

√
gH, height amplitude h0 and corresponding velocity amplitude

u0 =
√

g/Hh0 which we take to be large compared with the underlying shear flow
velocity U0. Then the drag on a single cylinder is FD = (1/2)ρdHCdU2, where U is
the instantaneous, depth-averaged flow speed, and the rate at which energy is lost as
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a result of the drag is |U|FD. We assume that the reedbed consists of N identical
cylinders, evenly spaced per unit horizontal area (p.u.h.a.). Hence the mean rate of
energy loss p.u.h.a. is

W = 1
2ρ dHCd|U|3N, (4.2)

which scales as ρdHu0
3N, ignoring multiplicative constants of O(1) (see Dean &

Bender (2006) for example). Now the mean energy in the waves, E p.u.h.a., scales
as ρgh0

2 so dE/dt=−W, with the result that

ρg
dh0

2

dt
=−ρ dg

√
g
H

Nh0
3, (4.3)

and hence

h0 =
h00

1+ 1
2 h00σ t

, (4.4)

where σ = d
√

g/HN and h00 is the initial amplitude. For H= 1.0 m, d= 2.5× 10−3 m
and N=200 m−2, typical values for S. alterniflora (see § 1), σ ≈101/2 m−1 s−1. Hence
the time required for the wave amplitude to fall by one half is (2σh00)

−1 s. If the
incoming amplitude is, say, 0.1 m this time is only t= 4

√
5 s, which corresponds to

a propagation distance of
√

gHt, or 28 m. Thus such waves will be fully attenuated
by the time they reach the core of any substantial reedbed. Laboratory studies on a
model reedbed with d= 1.2 cm and N = 194 stems per m2 (Augustin, Irish & Lynett
2009) show attenuation of 20–40 % over a distance of 6 m, and field studies on wave
attenuation by coastal saltmarsh vegetation have found a decrease in amplitude of
typically 30 % over a distance of 10 m (Möller 2006). These findings suggest that
the above estimate for a highly idealised saltmarsh is of the right order of magnitude.

A single, rigid, vertical, circular cylinder is clearly a highly idealised model for
emergent aquatic vegetation in general. A much more reasonable model would be an
array of slightly flexible, and possibly branched, cylindrical stems (Lightbody & Nepf
2006; Nepf 2012), in which the flow would be very different and consequently so
would the distribution of passive and active (in particular gyrotactic) micro-organisms.
However, much of the computational platform that we have developed will be
directly applicable to more realistic configurations, since the methods for solving the
Fokker–Planck equation and the equation for the concentration distribution of particles
will not have to be significantly changed; only the flow solver will require substantial
modification. In fact, our next project considers a regular array of vertical circular
cylinders, which is somewhat less computer intensive than the single-cylinder problem
because, for certain values of the spacing-to-diameter ratio, the flow field becomes
steady and periodic in the streamwise and cross-stream directions. A laboratory
experiment is being developed in parallel with the computational code for this
project.

Of the results obtained here, the most relevant to any real vegetation are the
predictions of the places where the cell concentration is significantly greater than
for passive particles as a result of cell swimming. These are at the upper fluid
surface in the shed vortices (figure 17a) and on the leeward surface of the cylinder
(figure 20b). The former would be intuitively predictable but the latter would not.
Either zone would be potentially profitable for predators; it would be of great interest
to investigate such zones in the field to find evidence of enhanced predator–prey
interactions.
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Appendix A.

Case 1:
∂f
∂t
+∇p ·

{
1

2B
[k− (k · p)p] f

}
= 0, (A 1)

f (θ, φ, 0)=
1

4π
, (A 2)

where B = 3.4 s. We can see that the computed instantaneous probability density
agrees well with the corresponding analytical solution of Ishikawa et al. (2007), as
shown in figure 21, where f (θ, φ, t) is plotted against θ for φ = π; θ and φ are
the polar and azimuthal angles in the spherical coordinate system in which θ = 0 is
vertically upwards and φ = 0 is aligned with the positive x-direction. The Cartesian
coordinates (x, y, z) and the spherical coordinates (1, θ, φ) satisfy

x= sin θ cos φ,
y= sin θ sin φ,

z= cos θ.

 (A 3)

Case 2:

∇p ·

{
1

2B
[k− (k · p)p]f

}
=Dr∇

2
p f , (A 4)

where B= 3.4 s, and Dr = 0.067 s−1. The computed steady probability density is in
quite good agreement with the analytical results of Pedley & Kessler (1990), as shown
in figure 22, where f (θ, φ) is plotted against θ for φ=π/2. Also, the computed mean
swimming velocity

Vc

Vs
= (0.000, 0.000, 0.566), (A 5)

and translational diffusivity tensor

D

V2
s τ
=

0.260 0.000 0.000
0.000 0.260 0.000
0.000 0.000 0.160

 , (A 6)
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10 2 3 4 5

0.05
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Present calculation
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Present calculation

Ishikawa et al. (2007)

Ishikawa et al. (2007)

Ishikawa et al. (2007)

f

t

FIGURE 21. Comparison between the present numerical results and the analytical results
by Ishikawa et al. (2007) of the probability density of swimming direction p in the case
of pure gravity. f = f (θ,π, t), and t is time; B= 3.4 s.

(to 3 significant figures) are consistent with the analytical solutions

Vc

Vs
= (0, 0, 0.57), (A 7)

D

V2
s τ
=

0.26 0 0
0 0.26 0
0 0 0.16

 , (A 8)

given by Pedley & Kessler (1990).
Case 3:

∇p ·

{
1

2B
[k− (k · p)p]f +

1
2
ωj∧ pf

}
=Dr∇

2
p f , (A 9)

where B = 3.4 s, and Dr = 0.067 s−1. The computed components (Dxx and Dzz) of
translational diffusivity tensor are in good agreement with the fourth-order analytical
approximations by Bees et al. (1998) based on spherical harmonic expansions, as
shown in table 3.

Case 4:

∇p ·

{
1

2B
[k− (k · p)p]f +

1
2
ω ∧ pf

}
=Dr∇

2f , (A 10)

where B= 3.4 s, ω= (0.01i+ 0.01j+ 0.01k) s−1, and Dr = 0.067 s−1. The computed
mean swimming velocity

Vc

Vs
= (0.00450,−0.00443, 0.566), (A 11)
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0 0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

0.20

 0.25

0.30

0.35

0.40
Present calculation
Pedley & Kessler (1990)

f

FIGURE 22. Comparison between the numerical results and the analytical results by
Pedley & Kessler (1990) of the probability density function of swimming direction p in
the case of gravity and rotational diffusion. f = f (θ,π/2); B= 3.4 s and Dr = 0.067 s−1.

Bω Dxx/V2
s τ Dxx/V2

s τ Dzz/V2
s τ Dzz/V2

s τ ,
Bees et al. (1998) Present results Bees et al. (1998) Present results

0.0 0.259 0.2598 0.156 0.1598
0.2 0.257 0.2571 0.163 0.1657
0.4 0.250 0.2508 0.182 0.1841
0.8 0.241 0.2415 0.234 0.2348
1.6 0.268 0.2686 0.296 0.2957
3.2 0.313 0.3131 0.321 0.3211

TABLE 3. Comparison between the present numerical results and the fourth-order
approximations of translational diffusivity given by Bees et al. (1998) in the case of
combined action of gravity, vorticity and rotational diffusion.

and translational diffusivity tensor

D

V2
s τ
=

 0.260 0.000 −0.000996
0.000 0.260 −0.000978

−0.000996 −0.000978 0.159

 , (A 12)

are in good agreement with the analytical solutions given by

Vc

Vs
= (0.0045,−0.0044, 0.57), (A 13)
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and translational diffusivity tensor

D

V2
s τ
=

 0.26 0 −0.001
0 0.26 −0.001

−0.001 −0.001 0.16

 , (A 14)

which are derived from the theoretical model by Pedley & Kessler (1990).

Appendix B.

The solution of the definite problem given by

∂C
∂t
=∇ · (D∇C) , |x|6

1
2
, |y|6

1
2
, |z|6

1
2
, (B 1a−d)

n · ∇C= 0, |x| = 1
2 , |y| =

1
2 , |z| =

1
2 , (B 2a−d)

C(x, y, z, 0)= δ(x, y, z), (B 3)

where

D =

2 0 0
0 1 0
0 0 1/2

 , (B 4)

is

C(x, y, z, t)=C1(x, t)C2(y, t)C3(z, t), (B 5)

C1(x, t)= 1+ 2
∞∑

i=1,2,...

cos
iπ
2

cos
[

iπ
(

x+
1
2

)]
exp

(
−2i2π2t

)
, (B 6)

C2(y, t)= 1+ 2
∞∑

i=1,2,...

cos
iπ
2

cos
[

iπ
(

y+
1
2

)]
exp

(
−i2π2t

)
, (B 7)

C3(z, t)= 1+ 2
∞∑

i=1,2,...

cos
iπ
2

cos
[

iπ
(

z+
1
2

)]
exp

(
−

1
2

i2π2t
)
. (B 8)

As we rotate sequentially the domain through angles π/6, π/6, and π/6 with
respect to the positive x-axis, the positive y-axis and the positive z-axis, respectively
(see figure 23), the diffusivity tensor D becomes

D =



175
128

29
√

3
128

−
39
64

29
√

3
128

149
128

−
5
√

3
64

−
39
64

−
5
√

3
64

31
32

≈
 1.36719 0.39242 −0.60938

0.39242 1.16406 −0.13532
−0.60938 0.13532 0.96875

 . (B 9)
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x x

y y
z z

(a) (b)

FIGURE 23. Computational domain: (a) before rotation, and (b) after rotation.

The solution at (x1, y1, z1) in the rotated domain is equal to that at (x0, y0, z0) in the
initial domain, where x0, y0 and z0 are subject to

x0
y0
z0

=


3x1

4
+

√
3y1

4
−

z1

2

−

√
3x1

8
+

7y1

8
−

√
3z1

4
5x1

8
−

√
3y1

8
+

3z1

4


. (B 10)

Then, we solve the definite problem in the rotated domain and compare the
computed results and analytical solutions. The comparison of the numerical and
analytical results at the points PT1(0.133373, 0.327003, −0.016747), PT2(0.343750,
0.054126, 0.062500) and PT3(0.156250, −0.044026, 0.187500) in the rotated domain,
corresponding to points P1 (1/4, 0, 0), P2 (0. 1/4, 0) and P3 (0, 0, 1/4) in the initial
domain, respectively, shows that the numerical results are in good agreement with the
analytical solution, as shown in figure 24.

Appendix C.

The mesh was generated based on a meshing utility, blockMesh, in OpenFOAM.
We examined the mesh and domain dependence in the horizontal plane, based on a
reference mesh with 32 140 mesh cells. The reference mesh has a domain size of
L = 60d, W = 40d and H = 25d, in which the circular cylinder is placed in the
centreplane 20d away from the upstream inlet. The perimeter of the cylinder was
discretised evenly with 96 nodes for φ = π/4 ∼ 7π/4, and with 48 nodes for the
remainder, and the radial size of the first layer of the mesh adhered to the cylinder
was set as 0.01d. The extension ratio of the mesh size was smaller than 1.1.

Three variants of the reference mesh and three variants of the reference domain
size are designed to test the mesh and domain dependence for two-dimensional flow
at Re = 100. The drag coefficient, lift coefficient and Strouhal number, used in test
cases (5–11), are defined as

Cd = Fd/(ρ dU2/2), (C 1)
Cl = Fl/(ρ dU2/2), (C 2)

St= fd/U, (C 3)
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0 0.02 0.04 0.06 0.08 0.10 0.12
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2.5

3.0
PT1 analytical
PT1 numerical
PT2 analytical
PT2 numerical
PT3 analytical
PT3 numerical

C

t

FIGURE 24. Comparison between the present numerical results and the analytical
results for concentration C subject to anisotropic diffusion in a cubic region due
to an instantaneous point source. PT1, PT2 and PT3 represent three points with
coordinates (0.133373, 0.327003, −0.016747), (0.343750, 0.054126, 0.062500) and
(0.156250, −0.044026, 0.187500) in a cubic domain which is generated by rotating the
domain of |x| 6 1/2, |y| 6 1/2 and |z| 6 1/2 sequentially by π/6, π/6 and π/6 with
respect to the positive x-axis, positive y-axis and positive z-axis.

where Fd and Fl are the drag force and lift force exerted on the surface of the
cylinder, respectively, f is the frequency of the fluctuating lift force, and U is the
velocity of the incoming flow. Cases 5–8 are designed to test the dependence on
the horizontal mesh, as shown in table 4. The relative deviations, with respect to
the reference mesh, of the time-averaged drag coefficient C̄d, the magnitude of the
lift coefficient Ĉl and Strouhal number St, are less than 0.15 %, 1.12 % and 0.61 %,
which means the increase of mesh numbers hardly changes the computational results.
Therefore, the resolution of the reference mesh (Case 5) is adopted in generating
three-dimensional mesh cells. Cases 9–11 are designed to test the dependence on
the horizontal domain, based on the resolution of the reference mesh. The maximum
relative deviations, with respect to the reference mesh, of C̄d, Ĉl and St are −1.25 %,
−1.96 % and −0.61 % for Cases 9–11, which means that the domain size of the
reference mesh is large enough. Therefore, the mesh resolution and domain size in
Case 5 are adopted in generating the three-dimensional mesh. The reliability of mesh
resolution and computation domain adopted in the present work is also confirmed by
the comparison between the computed results based on the reference mesh and other
experimental and independent numerical results, as shown in table 5.

The vertical mesh size is dependent on the characteristic length of the vertical
(spanwise) flow structure. Many experimental and numerical studies showed that
the secondary structure in the spanwise direction normally varies from 3d to 7d.
Mukhopadhyay et al. (1999) showed that a vertical mesh size of 0.2d is sufficient
to capture the secondary flow structure in the shear flow past a circular cylinder. In
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C̄d Ĉl St

Williamson (1989) — — 0.164
Park, Kwon & Choi (1998) 1.33 0.332 0.164
Durbin & Medic (2007) 1.39 0.35 0.17
Canuto & Taira (2015) 1.34 0.329 0.167
Jiang et al. (2016) — — 0.166
Present results 1.357 0.357 0.165

TABLE 5. Comparison of C̄d, Ĉl and St.

the present work, the vertical mesh size of 0.2d is adopted for most regions, except
the regions next to the water surface and the bottom bed where a vertical interval of
0.1d is adopted to have a higher resolution for flow and concentration distribution.

The non-dimensional time step 1tU0/d = 0.01875 is chosen to maintain the
Courant number below 0.9 in the whole computational domain. The present parallel
computation has been carried out at Tianhe-2 (MilkyWay-2)-TH-IVB-FEP Cluster of
National Super Computer Center in Guangzhou, China, which took approximately
150 h of wall-clock time on 768 processors.
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