
J. Fluid Mech. (2017), vol. 814, pp. 165–184. c© Cambridge University Press 2017
doi:10.1017/jfm.2017.19

165

Statistics of kinetic and thermal energy
dissipation rates in two-dimensional turbulent

Rayleigh–Bénard convection

Yang Zhang1, Quan Zhou1,† and Chao Sun2

1Shanghai Institute of Applied Mathematics and Mechanics, and Shanghai Key Laboratory of
Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China

2Center for Combustion Energy and Department of Thermal Engineering,
Tsinghua University, 100084 Beijing, China

(Received 7 September 2016; revised 3 December 2016; accepted 16 December 2016;
first published online 3 February 2017)

We investigate the statistical properties of the kinetic εu and thermal εθ energy
dissipation rates in two-dimensional (2-D) turbulent Rayleigh–Bénard (RB) convection.
Direct numerical simulations were carried out in a box with unit aspect ratio in the
Rayleigh number range 106 6 Ra 6 1010 for Prandtl numbers Pr = 0.7 and 5.3. The
probability density functions (PDFs) of both dissipation rates are found to deviate
significantly from a log-normal distribution. The PDF tails can be well described by
a stretched exponential function, and become broader for higher Rayleigh number and
lower Prandtl number, indicating an increasing degree of small-scale intermittency
with increasing Reynolds number. Our results show that the ensemble averages
〈εu〉V,t and 〈εθ 〉V,t scale as Ra−0.18∼−0.20, which is in excellent agreement with the
scaling estimated from the two global exact relations for the dissipation rates. By
separating the bulk and boundary-layer contributions to the total dissipations, our
results further reveal that 〈εu〉V,t and 〈εθ 〉V,t are both dominated by the boundary
layers, corresponding to regimes Il and Iu in the Grossmann–Lohse (GL) theory
(J. Fluid Mech., vol. 407, 2000, pp. 27–56). To include the effects of thermal plumes,
the plume–background partition is also considered and 〈εθ 〉V,t is found to be plume
dominated. Moreover, the boundary-layer/plume contributions scale as those predicted
by the GL theory, while the deviations from the GL predictions are observed for the
bulk/background contributions. The possible reasons for the deviations are discussed.

Key words: Bénard convection, convection, turbulent flows

1. Introduction
Turbulent Rayleigh–Bénard (RB) convection, which describes the convective motion

of a fluid layer between two horizontal parallel plates heated from below and cooled
from above, is a typical model system abstracted from many natural phenomena
and industrial processes (Ahlers, Grossmann & Lohse 2009; Lohse & Xia 2010;
Chillà & Schumacher 2012; Sun & Zhou 2014). A better knowledge of this system
not only points out a convenient way of understanding complicated convection
problems occurring in nature but also gives fundamental and perspective insight into
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some features of turbulence (Kadanoff 2001). One of the key issues that has been
comprehensively investigated is to physically understand the functional form of the
global heat transport, measured by the Nusselt number, defined as

Nu= Q
χ∆/H

, (1.1)

as a function of the two control parameters of the system: the Rayleigh number Ra
and the Prandtl number Pr, defined as

Ra= βg1H3

νκ
and Pr= ν

κ
. (1.2a,b)

Here, Q is the heat current density across the fluid layer of height H for an imposed
temperature difference ∆, g is the acceleration due to gravity and χ , β, ν and κ
are the thermal conductivity, thermal expansion coefficient, kinematic viscosity and
thermal diffusivity of the convecting fluid, respectively. The quantities that play an
important role in the heat-transport processes are the kinetic and thermal energy
dissipation rates, which are respectively given by

εu(x, t)= 1
2
ν
∑

ij

[
∂uj(x, t)
∂xi

+ ∂ui(x, t)
∂xj

]2

(1.3)

and

εθ(x, t)= κ
∑

i

[
∂θ(x, t)
∂xi

]2

. (1.4)

These two quantities denote direct dissipation of kinetic and thermal energy due to
the effects of the fluid viscosity and thermal diffusivity, and can be quantified by the
magnitudes of the gradients of the turbulent velocity and temperature fields, u(x, t)
and θ(x, t). As turbulent RB convection is a typical example for turbulent flows in a
closed system, its local dissipation rates can be directly connected to the global heat
transport through the convection cell via the two exact relations:

〈εu〉V,t = ν3

H4
(Nu− 1)RaPr−2 (1.5)

and

〈εθ 〉V,t = κ∆
2

H2
Nu, (1.6)

where 〈·〉V,t denotes an ensemble (or space–time) average. These relations form the
backbone of the popular Grossmann–Lohse (GL) theory of turbulent heat transfer
(Grossmann & Lohse 2000, 2004).

Due to the difficulty in the measurements of velocity or temperature gradients, the
experimental studies on the dissipation rates are rather limited in the field of turbulent
RB convection. The first attempt on this subject was carried out by He, Tong & Xia
(2007) and He & Tong (2009), who used four identical thermistors to simultaneously
measure the three components of the local temperature gradient. The time-averaged
thermal energy dissipation rate was then decomposed into two contributions: one
comes from the mean temperature gradient that concentrates in the thermal boundary
layers (BL) and the other generated by thermal plumes that dominates in the bulk
region. Using the same data set, He, Tong & Ching (2010), He, Ching & Tong
(2011) further constructed a locally averaged thermal dissipation rate over a time
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interval τ , which was found to exhibit good scaling in τ with exponents being in
excellent agreement with those predicted by a phenomenological intermittency model.
By measuring the second-order velocity structure functions in the dissipative range,
the time-averaged kinetic energy dissipation rate was indirectly obtained at the cell
centre by Ni, Huang & Xia (2011). The Ra dependence of the measured results
was found to agree with the predictions of the GL model and it was shown that
local kinetic energy dissipation rate balances local heat flux in the central region of
turbulent thermal convection.

Compared with the difficulty in experiments, the direct numerical simulations (DNS)
data enable the calculation of dissipation rates. The pioneering work on this subject
was performed by Verzicco & Camussi (2003) and Verzicco (2003), who analysed
the statistical properties of εu and εθ in a cylindrical cell of aspect ratio one half.
Later, Shishkina & Wagner (2006, 2008) investigated the formation and development
of thermal plumes and their interaction via evaluating the thermal dissipation rates.
Emran & Schumacher (2008) examined the probability density functions (PDF) of the
thermal dissipation rates in a cylindrical cell. They found that, similarly to passive
scalar mixing, the PDFs deviate significantly from a log-normal distribution and
the PDF tails can be well fitted by a stretched exponential function. Furthermore,
Kaczorowski & Wagner (2009) used the PDFs of εθ to distinguish the three different
physical regions in a long rectangular cell via the two inflection points of the PDFs.
Ng et al. (2015) calculated in vertical natural convection the dissipation contributions
that come from respectively the BL and bulk regions, and their results revealed that
the contributions scale as those predicted by the GL theory. Recently, Petschel et al.
(2013, 2015) put forward the idea of dissipation layers, which are based on the
systematic measurements of the dissipation rates and were found to share central
characteristics with classical BLs. In addition, such dissipation layers can be extended
naturally to arbitrary boundary conditions.

In the paper, we provide a detailed statistical analysis of the kinetic and thermal
energy dissipation rates in two-dimensional (2-D) turbulent RB convection by means
of the DNS data for 106 6 Ra 6 1010 and for Pr = 0.7 and 5.3. Two considerations
prompted us to restrict ourselves to the 2-D geometry: (i) the numerical effort
required for 2-D simulations is much smaller so that a good resolution of the BLs
as well as of the dissipation events at high Rayleigh/Reynolds numbers is guaranteed
and systematic studies can be performed; (ii) many well-cited theories for turbulent
RB systems are essentially two-dimensional, e.g. the popular GL theory (Grossmann
& Lohse 2000) and the recent Whitehead–Doering theory for the ultimate regime
(Whitehead & Doering 2011).

The remainder of this paper is organized as follows. In § 2, we give a brief
description of the governing equations and numerical model. The numerical results
are presented and analysed in § 3, which is divided into four parts. Section 3.1
describes the global features of the simulations. Section 3.2 studies PDFs of εu and
εθ . In § 3.3, we compare the dissipation contributions coming from the bulk with
those coming from the BL regions. The Ra and Re dependences of 〈εu〉 and 〈εθ 〉 are
presented and discussed in § 3.4. Finally, we summarize our findings in § 4.

2. Numerical methods

The mathematical model and the numerical scheme have been described in detail
elsewhere (Huang & Zhou 2013; Zhou 2013; Qiu, Liu & Zhou 2014; Zhou et al.
2016) and thus we give only their main features here. The computational domain
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consists of a 2-D box with uniform grids and of unit aspect ratio (i.e. ratio of the
horizontal length L to the cell height H, Γ = L/H = 1). While the two vertical side
walls are chosen to be adiabatic, cold and hot fixed temperatures, θ =−0.5 and 0.5,
are applied to the top and bottom plates, respectively. All the solid surfaces satisfy
the no-penetration and no-slip velocity boundary conditions.

The flow is solved by the numerical integration of the 2-D time-dependent
Navier–Stokes equations in vorticity–streamfunction formulation under the Boussinesq
approximation. The numerical scheme is a compact fourth-order central finite-
difference method (Liu, Wang & Johnston 2003). The equations are given by

∂ω

∂t
+ (u · ∇)ω= ν∇2ω+ ∂θ

∂x
, (2.1)

∇2ψ =ω, (2.2)

u=−∂ψ
∂z
, w= ∂ψ

∂x
, (2.3a,b)

∂θ

∂t
+ (u · ∇)θ = κ∇2θ, (2.4)

where u and w are, respectively, the horizontal and vertical components of the velocity
field, ψ is the streamfunction and ω = ∂w/∂x − ∂u/∂z is the vorticity field. The
equations have been made non-dimensional by using the cell height H, the temperature
difference ∆ and the free-fall velocity U=√βg1H, and hence the corresponding fluid
viscosity ν =√Pr/Ra and thermal diffusivity κ =√1/PrRa. In our present study, the
Rayleigh number was varied from 106 to 1010, while the Prandtl number was fixed
at Pr= 0.7 and 5.3, respectively corresponding to the working fluids of air (du Puits,
Resagk & Thess 2007) and water at 31◦ (Zhou et al. 2012). In table 1, we list the
flow and grid parameters of the simulations.

We briefly comment on the spatial and temporal resolutions. For the numerical study
of turbulent RB convection, the mesh size must be set to achieve a full resolution
of the BLs (Shishkina et al. 2010), as well as to resolve the smallest scales of the
flow, these being the dissipative scales, i.e. the Kolmogorov scale η and the Batchelor
scale ηB. In the present study, the number of grid points was generally chosen to be
the same for the two different Pr, except for the highest Rayleigh number Ra= 1010,
and was increased from 129 × 129 to 3073 × 3073 for Ra increasing from 106 to
1010. In table 1, we list the number of grids NBL within the thermal BL and the grid
spacing ∆g is compared with η and ηB for each simulation. It is seen that for all
of our simulations the thermal BL is resolved with at least 10 grid points and the
grid spacing ∆g . 0.57η and ∆g . 0.48ηB. Furthermore, the uniform grids adopted
in the present study ensure the spatial resolution at the side walls to be the same as
that close to the top and bottom plates. The viscous BLs near both the plates and
side walls are resolved with at least 8 grid points at lower Pr and with at least 16
grid points at higher Pr, due to the increasing viscous BL thickness with increasing
Pr. To check whether the present temporal resolution resolves the smallest time scale
in turbulence, we also compare the simulation time interval ∆t with the Kolmogorov
time scale τη in table 1. One sees that ∆t/τη < 0.01 for all runs, thus guaranteeing
the adequate temporal resolution. We note that the present spatial resolutions also obey
the criterion proposed by Grötzbach (1983) and the time step ∆t is chosen to fulfil
the Courant–Friedrichs–Lewy (CFL) conditions, i.e. the CFL number is 0.3 or less for
all computations presented in this paper.

Another way to verify the grid resolution is to test whether the two global exact
relations (1.5) and (1.6) hold for the simulations, as suggested by Stevens, Verzicco
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Pr Ra Nx ×Nz Nu Re
〈εu〉V,t

(Nu− 1)/
√

RaPr

〈εθ 〉V,t
Nu/
√

RaPr
NBL

∆g

η

∆g

ηB

∆t

τη
0.7 1× 106 129× 129 6.30 279 1.0041 1.0023 11 0.45 0.37 0.0069
0.7 3× 106 193× 193 7.64 492 1.0038 1.0018 13 0.42 0.35 0.0062
0.7 1× 107 257× 257 11.37 968 1.0031 1.0014 12 0.47 0.39 0.0058
0.7 3× 107 385× 385 16.50 1800 1.0025 1.0006 12 0.46 0.38 0.0071
0.7 1× 108 513× 513 25.25 3662 1.0021 0.9998 11 0.52 0.43 0.0088
0.7 3× 108 769× 769 35.73 6897 1.0017 1.0006 11 0.50 0.42 0.0070
0.7 1× 109 1025× 1025 53.51 15101 0.9967 0.9996 10 0.56 0.47 0.0069
0.7 3× 109 1537× 1537 66.95 28418 0.9896 1.0013 12 0.52 0.43 0.0029
0.7 1× 1010 2049× 2049 93.88 61797 1.0358 0.9996 12 0.57 0.48 0.0023
5.3 1× 106 129× 129 6.87 38 1.0026 1.0019 10 0.17 0.38 0.0042
5.3 3× 106 193× 193 9.33 70 1.0022 1.0009 11 0.16 0.37 0.0038
5.3 1× 107 257× 257 13.28 156 1.0017 1.0008 10 0.18 0.41 0.0023
5.3 3× 107 385× 385 18.86 296 1.0010 1.0009 11 0.17 0.40 0.0037
5.3 1× 108 513× 513 26.21 596 1.0000 1.0002 10 0.19 0.44 0.0033
5.3 3× 108 769× 769 35.96 1145 1.0016 1.0001 11 0.18 0.42 0.0026
5.3 1× 109 1025× 1025 51.28 2269 1.0030 1.0005 11 0.20 0.46 0.0031
5.3 3× 109 1537× 1537 71.57 4330 0.9996 1.0019 11 0.19 0.44 0.0022
5.3 1× 1010 3073× 3073 103.0 9916 0.9963 1.0003 15 0.16 0.33 0.0013

TABLE 1. Simulation parameters. The columns from left to right indicate the following:
Pr, Ra, the resolution in horizontal and vertical directions Nx × Nz, Nu, Re = UrmsH/ν
with Urms =

√〈(u2 +w2)〉V,t, 〈εu〉V,t compared with that obtained from the exact relation
〈εu〉 = ν3/H4(Nu− 1)RaPr−2= (Nu− 1)/

√
RaPr, 〈εθ 〉V,t compared with that obtained from

the exact relation 〈εθ 〉 = κ∆2/H2Nu = Nu/
√

RaPr, the number of grid points within the
thermal BL NBL, the grid spacing ∆g compared with the Kolmogorov scale estimated by
the global criterion η = HPr1/2/[Ra(Nu− 1)]1/4, ∆g compared with the Batchelor scale
ηB = ηPr−1/2 (Silano, Sreenivasan & Verzicco 2010), the time interval ∆t compared with
the Kolmogorov time scale τη =√ν/〈εu〉 =√Pr/(Nu− 1).

& Lohse (2010). The sixth and seventh columns of table 1 compare the directly
calculated dissipation rates with those obtained from Ra, Pr and Nu via the exact
relations. One sees that for most of the cases the difference is less than 1 %. This
guarantees the adequate resolution for small-scale turbulent structures, like thermal
plumes, even in the regions very close to the horizontal plates and close to the
vertical side walls.

3. Results and discussion
3.1. Global features

In figures 1(a,b), we show typical examples of the instantaneous velocity fields
(arrows), overlapped with the corresponding temperature fields (colour), obtained
from the simulations with Ra = 1010 and with Pr = 0.7 and 5.3, respectively. As
shown in figure 1(b), the overall flow pattern consists of a large counter-clockwise
(or clockwise in some cases) rotatory motion in the bulk and several smaller secondary
rolls at the four corners. This flow pattern is the same as those observed in previous
studies (Sugiyama et al. 2009, 2010; Zhou et al. 2011; Chandra & Verma 2013) and
is found to be stable for most of the time and for most of the runs, except for the
simulation with Ra = 1010 and Pr = 0.7, where the corner-flow rolls are always not
stable and would detach from the corners (see figure 1a).
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FIGURE 1. (a,b) Typical snapshots of the instantaneous temperature (colour) and velocity
(arrows) fields for Ra = 1010 and for Pr = 0.7 (a) and 5.3 (b). (c–f ) The corresponding
logarithmic fields of kinetic log10 εu(x, z) (c,d) and thermal log10 εθ (x, z) (e, f ) energy
dissipation rates for Pr= 0.7 (c,e) and 5.3 (d, f ).

Figure 1(c–f ) respectively displays the corresponding logarithmic fields of kinetic
log10 εu and thermal log10 εθ dissipation rates, where the local dissipation rate is
indicated according to the colour bar. It is seen that the intense dissipations of
both εu and εθ occur nearly in the regions with higher or lower temperature, which
correspond to hot or cold plumes detaching from the thermal BLs. This suggests that
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FIGURE 2. (Colour online) Log–log plots of Nu (a) and Re (b) as functions of Ra for
Pr = 0.7 (circles) and 5.3 (triangles). The dashed lines are the best power-law fits to
the corresponding data. The insets show the compensated plots NuRa−0.3 versus Ra and
ReRa−0.6 versus Ra.

the rising and falling thermal plumes are associated with large amplitudes of both
kinetic and thermal dissipation rates (Kerr 1996; Shishkina & Wagner 2007; Emran
& Schumacher 2008). This also suggests a strong positive correlation between the
two dissipation fields. Indeed, our calculation shows that the correlation coefficient
between εu and εθ is larger than 0.4 for all the simulations, similar to the findings in
2-D Rayleigh–Taylor turbulence by Zhou & Jiang (2016).

We now come to the scaling relations of the Nusselt number Nu and the Reynolds
number Re versus the Rayleigh number Ra. In the present study, Nu was calculated
over the whole cell and over time via the definition (Verzicco & Camussi 2003;
Verzicco & Sreenivasan 2008)

Nu= 1+√PrRa〈wθ〉V,t. (3.1)

Due to the zero value for the velocity average over the whole cell, we here choose
the root-mean-square (r.m.s.) velocity to define the Reynolds number (Sugiyama et al.
2009), i.e.

Re= UrmsH
ν

, (3.2)

where Urms=
√〈(u2 +w2)〉V,t can be used as a global measure for the strength of the

convection. The convergence of both Nu and Re has been checked by comparing the
time averages over the first and the last halves of each simulation, and the resulting
relative error was smaller than 1 % for all of our simulations.

Figure 2(a) shows a log–log plot of the measured Nu as a function of Ra for the
two Prandtl numbers Pr = 0.7 (circles) and 5.3 (triangles). The data can be well
described by a power-law relation and the best fit gives Nu= 0.099Ra−0.30±0.02, shown
as the dashed line in the figure. We note that the present scaling agrees well with the
previous numerical results found also in 2-D convection cells (Johnston & Doering
2009; van der Poel, Stevens, Sugiyama & Lohse 2012). We further note that the
exponent 0.30 ± 0.02 is in general consistent with those obtained in 3-D cylindrical
RB systems (Ahlers et al. 2009; Chillà & Schumacher 2012). This suggests that the
heat transport in both 2-D and 3-D convection might be dominated by the same
physical mechanism, and thus they could be modelled in a similar way. Indeed, as
we shall see in § 3.3, the results obtained in the present 2-D settings obey the GL
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phase diagram obtained for 3-D convection. Nevertheless, the prefactor 0.099 in the
best fit relation is smaller than its counterpart for the 3-D cases where it varies
between 0.12 and 0.15 (see, e.g. figure 2 of Wagner, Shishkina & Wagner (2012)).
The possible reason is that in a closed system the convective flow would sometimes
make hot (cold) plumes move downwards (upwards) and thus lead to strong count
gradient/negative local heat flux (Huang & Zhou 2013), which impedes the overall
heat transfer. This happens much more in two dimensions than in three dimensions.

Figure 2(b) displays the measured Re as a function of Ra in a log–log plot. Due
to the decreasing viscosity ν, the Reynolds number for Pr= 0.7 is found to be much
larger than that for Pr= 5.3. The best power-law fit to the data yields Re∼Ra0.59±0.02

for Pr = 0.7 and Re ∼ Ra0.60±0.01 for Pr = 5.3. The fitted scaling exponents are in
excellent agreement with the exponent 0.62 found for 2-D Boussinesq RB convection
by Sugiyama et al. (2009), but are notably larger than those varying from 0.42 to
0.5 seen for 3-D RB flows in various convecting fluids with wide parameter range
and based on the single- or multi-point measurements. (Ashkenazi & Steinberg 1999;
Niemela et al. 2001; Qiu & Tong 2001; Lam et al. 2002; Sun & Xia 2005; Brown,
Funfschilling & Ahlers 2007). The difference in Re scaling is not captured by the GL
model and implies that the convective flow in two dimensions has a stronger strength
than in three dimensions. Indeed, direct comparison between 2-D and 3-D convection
revealed a higher absolute value of the Reynolds number in two dimensions (van der
Poel, Stevens & Lohse 2013). The possible reason is that in the 2-D geometry almost
all plumes emitted from the top and bottom thermal BLs follow the motion of the
large-scale convective rolls (including the corner-flow rolls), and then drive these large-
scale rolls, due to the absence of the fluid motion in the third dimension, whereas this
is not the case for three dimensions (van der Poel et al. 2013).

3.2. Probability density functions (PDFs) of εu and εθ
Next, we investigate the statistics of the kinetic εu and thermal εθ energy dissipation
rates in this section. Figures 3(a,b) show the PDFs of εu obtained at Pr = 0.7 and
5.3, respectively. The corresponding PDFs of εθ are shown in figures 4(a,b). All
data have been normalized with respect to their root-mean-square (r.m.s.) values
(εu)rms =

√〈ε2
u〉V,t and (εθ)rms =

√〈ε2
θ 〉V,t. In the figures, two features are worthy of

note. First, for both εu and εθ , the PDF tails become more extended with increasing
Ra (and thus with increasing Re), implying an increasing degree of small-scale
intermittency possessed by the both dissipation fields. This is in spite of the fact
that the intermittency effects are expected to be absent for the velocity field in
2-D turbulent convection, as shown by Celani et al. (2002). It should be noted that
the convective flow studied by Celani et al. (2002) is forced by a mean gradient,
which has different boundary conditions from the present RB setting. Whether the
intermittency in the statistics of velocity fluctuations is absent also in the present
system needs to be verified, which requires a detailed study on the high-order
moments of velocity increments. Second, at a given Rayleigh number, the PDFs of
both εu and εθ obtained at lower Prandtl number (Pr = 0.7) have a fatter tail than
those obtained at higher Prandtl number (Pr = 5.3). The reason for this might be
attributed to the increasing Re (and thus an increasing degree of intermittency) with
decreasing Pr, as shown in figure 2(b). This is in line with the observations in 3-D
cylindrical RB systems (He et al. 2007; Emran & Schumacher 2008), but is different
from the results observed by Schumacher & Sreenivasan (2005) for the passive scalar
case, where the decreasing diffusivity with increasing Pr causes sharper gradients of
the scalar field and hence generates fatter PDF tails.
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FIGURE 3. (Colour online) (a,b) PDFs of the kinetic energy dissipation rates, εu, obtained
over the whole cell and normalized with respect to their r.m.s. values (εu)rms. The solid
lines are the best fits of stretched exponentials, as given by (3.3), to the corresponding
tails. (c,d) PDFs of log10 εu calculated over the whole cell. Here, µ and σ are, respectively,
the mean value and standard deviation of log10 εu. The dashed lines mark the log-normal
distribution for comparison. The data are obtained at Pr= 0.7 (a,c) and 5.3 (b,d).

To quantitatively describe the shape of the measured PDF tails, we note that a
stretched exponential function, i.e.

p(Y)= C√
Y

exp(−mYα), (3.3)

was derived analytically for the tails of passive scalar dissipation in the limit of large
Peclet and Prandtl numbers in two dimensions and α = 1/3 was found (Chertkov,
Falkovich & Kolokolov 1998). This result was then extended to arbitrary space
dimensions (Gamba & Kolokolov 1999), as the behaviour (3.3) is determined by the
dynamics of stretching (not of rotation) that is likely to take place in any dimension
(Chertkov et al. 1998). Here, C, m and α are fitting parameters, and Y = X − Xmp

with X = εθ/(εθ)rms and Xmp being the abscissa of the most probable (mp) amplitude.
In numerical studies of passive scalar in turbulence, the function (3.3) was found to
well fit to the fraction of the dissipation PDF that extends from the mp amplitude to
the end of the tail (Overholt & Pope 1996; Schumacher & Sreenivasan 2005). The
similar analysis was later conducted for active scalar in 3-D RB convection (Emran
& Schumacher 2008; Kaczorowski & Wagner 2009) and in 2-D Rayleigh–Taylor
turbulence (Zhou & Jiang 2016). Here, to follow this idea, we also adopted (3.3) to
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FIGURE 4. (Colour online) (a,b) PDFs of the thermal energy dissipation rates, εθ , obtained
over the whole cell and normalized with respect to their r.m.s. values (εθ )rms. The solid
lines are the best fits of stretched exponentials, as given by (3.3), to the corresponding
tails. (c,d) PDFs of log10 εθ calculated over the whole cell. Here, µ and σ are, respectively,
the mean value and standard deviation of log10 εθ . The dashed lines mark the log-normal
distribution for comparison. The data are obtained at Pr= 0.7 (a,c) and 5.3 (b,d).

fit the PDF tails for both εu and εθ obtained over the whole cell, and our results
show that (3.3) can be indeed used to describe well the tails of the dissipation PDFs
(see the solid lines in figures 3 and 4).

In some classical turbulence theories, like the refined similarity hypothesis proposed
by Kolmogorov (1962), the dissipation fields are often assumed to have a log-normal
distribution. However, the highly intermittent nature of the local dissipation generates
the observed deviations from the log-normality (Ferchichi & Tavoularis 2002;
Schumacher & Sreenivasan 2005; Emran & Schumacher 2008; Kaczorowski &
Wagner 2009). To check the deviations in our present systems, the dissipation PDFs
are represented in log-normal coordinates in figures 3(c,d) and 4(c,d). In the figures,
the dashed lines mark the log-normal distribution for reference. Clear departures from
log-normality can be seen for both εu and εθ . As Ra increases, the cores of the PDFs
seem to converge towards the log-normality and the right tails become fatter, while
the left tails do not appear to show systematic trends with the Rayleigh number.

3.3. Spatial distribution of εu and εθ
Figure 5(a–d) show the vertical profiles of 〈εu〉x,t and 〈εθ 〉x,t, which illustrate the
spatial distribution of the dissipation rates. Here, 〈·〉x,t denotes an average over the
horizontal direction and over time. The kinetic energy dissipation rate keeps nearly
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FIGURE 5. (Colour online) Averaged vertical profiles of kinetic (a,b) and thermal (c,d)
energy dissipation rates obtained at Pr = 0.7 (a,c) and 5.3 (b,d). The insets show an
enlarged portion of the profiles close to the bottom plate.

constant in the bulk, increases rapidly in the neighbourhood of the top and bottom
plates where viscosity becomes significant, and reaches its maximum value at the
solid-fluid interfaces. With decreasing Ra, the magnitude of 〈εu〉x,t enhances in the
bulk, but drops in the BL, indicating that the kinetic energy is dissipated more
equally over the whole cell at lower Rayleigh numbers. The thermal dissipation rate
also attains its largest value near the plates. However, in the core region (0.4. z. 0.6)
〈εθ 〉x,t has almost a zero value for all data, suggesting that most thermal energy is
dissipated within the thermal BLs.

To further quantify the spatial distribution, we calculate the dissipation contributions
coming from the bulk region, separated from those coming from the BLs, i.e.

〈εu〉V,t = 〈εu〉VBL,t + 〈εu〉Vbulk,t, (3.4)

and
〈εθ 〉V,t = 〈εθ 〉VBL,t + 〈εθ 〉Vbulk,t, (3.5)

where VBL and Vbulk denote the BL and bulk regions, respectively, and the averages
〈·〉VBL,t and 〈·〉Vbulk,t have been multiplied by their corresponding volume percentages.
Note that the splitting (3.4) and (3.5) are the central idea of the GL theory (Ahlers
et al. 2009). To do this splitting, the BL thickness must be first defined to separate
the bulk and BL regions. There are quite a few definitions of BL thickness, based on
either the mean velocity/temperature profiles or their r.m.s. profiles (Sun et al. 2005;
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FIGURE 6. (Colour online) Percentages of bulk (triangles) and BL (circles) contributions
to the kinetic energy dissipation rates, εu, as functions of Ra at Pr= 0.7 (a) and 5.3 (b).

du Puits, Resagk & Thess 2010; Zhou & Xia 2010, 2013; Scheel, Kim & White
2012; Scheel & Schumacher 2014; Ng et al. 2015; Shishkina et al. 2015). In 2-D RB
convection, however, due to the influences of the corner-flow rolls, the mean velocity
profiles might sometimes lead to unphysical viscous BL thickness, as shown by Zhou
et al. (2011). Therefore, in the present study, we define the viscous (thermal) BL
thickness, δrms

u (δrms
θ ), as the distance between the wall and the position at which the

r.m.s. velocity (temperature) is maximum. We find that this definition gives a thermal
BL thickness, δrms

θ , that is very close to the global estimation H/(2Nu). We further find
that whereas δrms

u increases with increasing Pr, δrms
θ at each Ra keeps nearly unchanged

for both Pr. The ratio between δrms
u and δrms

θ varies around 0.85 for Pr = 0.7, but
between 1.5 and 4 for Pr = 5.3. This is qualitatively consistent with the findings in
3-D cylindrical cells by Stevens, Lohse & Verzicco (2011).

As no-slip velocity boundary conditions are applied to all the solid surfaces, the
velocity field has BLs close to both the two horizontal conducting plates and the two
vertical side walls, whose thicknesses are determined from the horizontal and vertical
r.m.s. velocity profiles, respectively. On the other hand, due to the adiabatic side walls,
the thermal BLs include only those coming from the two horizontal plates. This BL–
bulk partition is consistent with the distinction proposed by the GL theory (see figure
2 of Ahlers et al. 2009) and has been adopted in previous studies (Verzicco 2003;
Verzicco & Camussi 2003).

The relative contributions of the bulk and BL regions to the total 〈εu〉V,t and 〈εθ 〉V,t
are plotted as functions of Ra in figures 6 and 7. It is seen that for our present
parameter ranges both εu and εθ are dominated by the BLs. Despite figures 5(a,b)
reveal that at lower Rayleigh numbers the kinetic energy is dissipated more equally
over the whole cell, the contribution to εu from the BL regions is still dominant as
the BL thicknesses (and thus the volume fraction occupied by the BLs) increases with
decreasing Ra. According to these results, the present series of simulations at Pr= 0.7
and 5.3 can be classified as Il and Iu regimes in the GL theory, respectively. Indeed,
when placing the Ra and Pr values of the present simulations into the phase diagram
of the GL theory (see figure 2 of Grossmann & Lohse 2000), we observe reasonable
agreement. Nevertheless, it should be noted that the GL phase diagram (Grossmann
& Lohse 2000) is obtained for 3-D convection, while the present simulations are
performed in two dimensions. Previous studies on the comparison between 2-D and
3-D RB convection (van der Poel et al. 2013) have revealed that the Nu–Ra scaling
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FIGURE 7. (Colour online) Percentages of bulk (triangles) and BL (circles) contributions
to the thermal energy dissipation rates, εθ , as functions of Ra at Pr= 0.7 (a) and 5.3 (b).

for 2-D and 3-D cases is very similar at higher Pr, differing only by a constant factor,
while the difference is large at lower Pr, due to the strong roll state dependence of
Nu in 2-D convection.

As the BL–bulk partition ignores the effects of thermal plumes which should be
included in the BL estimates, Grossmann & Lohse (2004) suggested to use the labels
pl (plume) and bg (background) for the two parts of the thermal energy dissipation
rates, i.e.

〈εθ 〉V,t = 〈εθ 〉Vpl,t + 〈εθ 〉Vbg,t. (3.6)

Here, 〈εθ 〉Vpl,t indicates the contributions from the plumes together with the BL and
〈εθ 〉Vbg,t signals those from the background. This pl–bg partition has been adopted in
some previous numerical studies to investigate the distribution of εθ in 3-D cylindrical
cells (Shishkina & Wagner 2006; Emran & Schumacher 2012). Next, we also consider
the pl–bg partition. To detect thermal plumes, we follow the approach of Huang et al.
(2013) and van der Poel, Verzicco, Grossmann & Lohse (2015). A thermal plume in
the bulk is defined as a region where

|θ(x, z, t)− 〈θ〉x,t|> cθrms and
√

PrRa|w(x, z, t)θ(x, z, t)|> cNu. (3.7a,b)

Here, we consider the absolute value of the local convective heat flux, |w(x, z, t)
θ(x, z, t)|, because thermal plumes may sometimes generate negative local heat
transport, which happens much more in two dimensions than in three dimensions, as
revealed by Huang & Zhou (2013). The empirical constant c is chosen to be 1.2,
which is the same as that of van der Poel et al. (2015) but larger than the value of
0.8 chosen by Huang et al. (2013). In a previous work in 3-D convection, Emran
& Schumacher (2012) identified thermal plumes by using a similar threshold that is
based only on wθ and they found that the increase of the threshold by two orders
of magnitude causes slight variations in the Ra scaling. In the present work, we also
find that the Re scalings of 〈εθ 〉Vpl,t and 〈εθ 〉Vbg,t do not depend apparently on the
value of threshold c. Figure 8(b) depicts the Vpl regions (in black) by applying the
criterion (3.7a,b) to the instantaneous temperature snapshot shown in figure 8(a).

Figures 9(a,b) shows the relative contributions from Vpl and Vbg to the total 〈εθ 〉V,t,
as functions of Ra. Clearly, εθ is plume dominated for the present parameter ranges.
When varying the value of threshold c, a systematic trend can be observed for both
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FIGURE 8. (a) A snapshot of the instantaneous temperature (colour) and velocity (arrows)
fields for Ra= 1010 and Pr=5.3. (b) The plume regions for the same snapshot are marked
in black, otherwise white.
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FIGURE 9. Percentages of plume (triangles) and background (circles) contributions to
the thermal energy dissipation rates, εθ , as functions of Ra at Pr= 0.7 (a) and 5.3 (b).

contributions. The smaller the threshold c, the more the Vpl contribution data are
shifted upwards and those from Vbg downwards. Moreover, when the threshold c
becomes large enough, the Vpl region will become negligibly small and then the
pl–bg partition will be the same as the BL–bulk partition.

3.4. Ra and Re dependence
Finally, we consider the Ra and Re dependence of the dissipation rates. Figure 10(a,b)
show the total dissipation rates, 〈εu〉V,t and 〈εθ 〉V,t, as functions of Ra in log–log plots.
The solid lines in the figure represent the best power-law fits to the corresponding data,
which yield

〈εu〉V,t = 0.077Ra−0.18±0.02 and 〈εθ 〉V,t = 0.10Ra−0.19±0.02 for Pr= 0.7, (3.8a,b)

〈εu〉V,t = 0.036Ra−0.19±0.01 and 〈εθ 〉V,t = 0.050Ra−0.20±0.01 for Pr= 5.3. (3.9a,b)

One sees that 〈εu〉V,t and 〈εθ 〉V,t have similar scaling behaviours with Ra but their
magnitudes vary with Pr.
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FIGURE 10. (Colour online) The Ra dependence of 〈εu〉V,t (a) and 〈εθ 〉V,t (b) calculated
at Pr= 0.7 (circles) and 5.3 (triangles). The solid lines represent the best power-law fits
to the corresponding data.

To understand these scaling behaviours, we note that figure 2(a) has shown that
Nu∼ Ra0.3. Plug it into the two global exact relations (1.5) and (1.6), we have

〈εu〉V,t = (Nu− 1)/
√

RaPr∼ Ra−0.2 and 〈εθ 〉V,t =Nu/
√

RaPr∼ Ra−0.2. (3.10a,b)

Comparing (3.10a,b) to our measured scalings (3.8a,b) and (3.9a,b) in figure 10, one
observes very good agreement within numerical uncertainty, again verifying that the
global exact relations for 〈εu〉V,t and 〈εθ 〉V,t are satisfied for our present simulations.

The essence of the GL theory (Grossmann & Lohse 2000) is the splitting of
the total dissipation rates into the contributions from the bulk and BL regions,
i.e. the relations (3.4) and (3.5). By assuming that there exist a large-scale mean
flow (associated with a Reynolds number Re) in the system and that the BLs are
characterized by a single effective thickness, the four contributions to the dissipation
can be estimated as follows:

〈εu〉VBL,t ∼
ν3

H4
Re5/2, (3.11)

〈εu〉Vbulk,t ∼
ν3

H4
Re3, (3.12)

〈εθ 〉VBL,t ∼ κ
∆2

H2
Re1/2g(Pr), (3.13)

〈εθ 〉Vbulk,t ∼ κ
∆2

H2
PrRe, (3.14)

where g(Pr) is a function of Pr. When the plume effects are included in the BL
estimates, we have

〈εθ 〉Vpl,t ∼ κ
∆2

H2
Re1/2Pr1/2f 1/2, (3.15)

〈εθ 〉Vbg,t ∼ κ
∆2

H2
RePrf , (3.16)

where, f is a shedding frequency that has no systematic dependence on Reynolds
number. To test these scalings, we examine the Re dependence of the normalized
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FIGURE 11. (Colour online) (a,b) The Re dependence of the normalized dissipation in the
bulk and BL regions for 〈εu〉/(ν3/H4) (a) and 〈εθ 〉/[κ(∆/H)2] (b) obtained at Pr = 0.7
and 5.3. For reference, the solid and dashed lines mark the GL predictions (3.11)–(3.14),
respectively, for the BL and bulk contributions. (c) The Re dependence of the normalized
thermal energy dissipation rates in the plume and background regions. For reference, the
solid and dashed lines mark the GL predictions (3.15)–(3.16), respectively, for the plume
and background contributions.

dissipations in figure 11. Figure 11(a,b) shows the results from the BL–bulk partition.
It is seen that both the BL and bulk contributions exhibit parallel trends as Re
increases. This is consistent with the observations in figures 6 and 7, which show
that the ratio of the BL-to-bulk contributions for both 〈εu〉 and 〈εθ 〉 appears to be
constant. Figure 11(c) shows the results from the pl–bg partition for εθ . Similar to
the BL–bulk partition, the contributions from Vpl and Vbg also exhibit roughly parallel
trends with increasing Re. We further find that these trends and their Re scaling do
not change apparently with the value of threshold c.

In addition, while the BL/plume contributions, 〈εu〉VBL,t, 〈εθ 〉VBL,t, and 〈εθ 〉Vpl,t,
follow well the GL predictions (3.11), (3.13), and (3.15) (the solid lines in
figure 11), the bulk/background contributions, 〈εu〉Vbulk,t, 〈εθ 〉Vbulk,t, and 〈εθ 〉Vbg,t deviate
obviously from the predicted Re scalings (3.12), (3.14) and (3.16) (the dashed lines
in figure 11). Similar deviations for the bulk contributions have already been reported
in homogeneous convection (Calzavarini et al. 2005), turbulent RB convection in
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spherical shells (Gastine, Wicht & Aurnou 2015) and vertical natural convection
(Ng et al. 2015). In the present study, the reason for the deviation of 〈εu〉Vbulk,t
from (3.12) is that the GL scaling (3.12) for the bulk contributions is based on
the Kolmogorov’s picture in which the kinetic energy cascades from large to small
scales. This assumption, however, does not hold in 2-D RB convection, where an
inverse cascade of kinetic energy from small to large scales is theoretically expected
(Celani et al. 2002). Indeed, the calculation of the third-order structure function of
longitudinal velocity increments, S3(r) = 〈(w(r + z) − w(z))3〉V,t, shows that S3(r) is
positive over all scales studied (not shown here), signalling the reversal of the kinetic
energy cascade in the present 2-D RB setting. A detailed study on this issue is out
of the scope of the present work.

4. Conclusion
In this paper, we present an analysis of the statistical properties of the kinetic and

thermal energy dissipation rates in 2-D turbulent RB convection, by means of high-
resolution DNS, with Pr fixed at 0.7 and 5.3 and Ra varying from 106 to 1010. Major
findings are summarized as follows:

(i) The global heat transport and momentum scaling exponents are examined, which
yields Nu ∼ Ra0.30±0.02 and Re ∼ Ra0.60±0.02 for both Pr. When comparing with
previous numerical and experimental results obtained in the 3-D cases, Nu(Ra)
is found to have a similar scaling exponent with smaller amplitudes, suggesting
that the heat transport in both 2-D and 3-D convection might be dominated
by the same physical mechanism and thus could be modelled in a similar way.
Whereas the exponent of Re(Ra) is notably larger than its 3-D counterpart,
implying a stronger strength of the convective flow in two dimensions than in
three dimensions.

(ii) Similar to the 3-D situations, the PDFs of both εu and εθ in 2-D RB convection
are found to be always non-log-normal, but their tails can be well fitted by a
stretched exponential function. These tails become more extended with increasing
Ra or decreasing Pr, which displays an increasing degree of small-scale
intermittency with increasing Re. This is in spite of that intermittency is expected
to be absent for velocity in 2-D turbulent convection (Celani et al. 2002). The
ensemble averages of both dissipation rates scale as Ra−0.18∼−0.20. This scaling
exponent agrees well with those estimated from the two global exact relations
(1.5) and (1.6).

(iii) When considering the dissipation contributions that come from the bulk and BL
regions, we find that 〈εu〉V,t and 〈εθ 〉V,t are both dominated by the BLs. This
corresponds to regimes Il and Iu in the GL theory (Grossmann & Lohse 2000) for
our present simulations of Pr= 0.7 and 5.3 respectively. To include the effects of
thermal plumes, the pl–bg partition is also considered and 〈εθ 〉V,t is found to be
plume dominated. Further analysis reveals that the BL/pl contributions scale as
those predicted by the GL theory, while the deviations from the GL predictions
are observed for the bulk/bg contributions.
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