https://doi.org/10.1017/jfm.2021.898 Published online by Cambridge University Press

J. Fluid Mech. (2022), vol. 930, A20, doi:10.1017/jfm.2021.898

F liad?

7~y On u._ﬂ-':?,&
/9 . ':I" v

On the spacing of meandering jets in the
strong-stair limit"

R.K. Scott!>+, B.H. Burgess' and D.G. Dritschel!

1School of Mathematics and Statistics, University of St Andrews, North Haugh, St Andrews KY16 9SS,
UK

(Received 3 May 2021; revised 5 August 2021; accepted 28 September 2021)

Based on an assumption of strongly inhomogeneous potential vorticity mixing in
quasi-geostrophic B-plane turbulence, a relation is obtained between the mean spacing
of latitudinally meandering zonal jets and the total kinetic energy of the flow. The relation
applies to cases where the Rossby deformation length is much smaller than the Rhines
scale, in which kinetic energy is concentrated within the jet cores. The relation can be
theoretically achieved in the case of perfect mixing between regularly spaced jets with
simple meanders, and of negligible kinetic energy in flow structures other than in jets.
Incomplete mixing or unevenly spaced jets will result in jets being more widely separated
than the estimate, while significant kinetic energy outside the jets will result in jets closer
than the estimate. An additional relation, valid under the same assumptions, is obtained
between the total kinetic and potential energies. In flows with large-scale dissipation, the
two relations provide a means to predict the jet spacing based only on knowledge of the
energy input rate of the forcing and dissipation rate, regardless of whether the latter takes
the form of frictional or thermal damping. Comparison with direct numerical integrations
of the forced system shows broad support for the relations, but differences between the
actual and predicted jet spacings arise both from the complex structure of jet meanders and
the non-negligible kinetic energy contained in the turbulent background and in coherent
vortices lying between the jets.

Key words: geostrophic turbulence, quasi-geostrophic flows

1. Introduction

Coherent jets are one of the most striking features of planetary atmospheres and oceans,
and appear ubiquitous in a wide range of geophysical, as well as astrophysical and
magnetized plasma, systems. They have received much attention over the past few decades,
from the early work of Rhines (1975) to a vast range of articles in the recent comprehensive
collection of Galperin & Read (2019), exploring aspects of jet formation, structure and
transport properties using a variety of theoretical, numerical and experimental approaches.
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Despite the range and depth of investigations, however, a general theoretical framework
with predictive capability under a wide range of forcing conditions remains elusive, and
fundamental issues such as energy equilibration and the process of jet merger are still not
well understood.

One of the simplest settings in which to study jets is the two-dimensional barotropic
vorticity equation with varying background potential vorticity. The system is amenable to
numerical integration, where any unresolved process, such as gravity wave breaking or
baroclinic instability, can be represented by a prescribed random forcing. Two important
length scales can be identified: the Rhines scale, Lg, = +/U/f, where U is a characteristic
velocity and g is the background planetary vorticity gradient, (Rhines 1975; Williams
1978); and L, = &¢'/3873/3, where ¢ is the energy input rate, which can be related
to the scale at which anisotropy becomes important (Maltrud & Vallis 1991; Vallis &
Maltrud 1993; Sukoriansky, Dikovskaya & Galperin 2007). Studies have been moderately
successful in describing the parameter values for which strong jets emerge, and the general
properties of the associated turbulent energy spectrum. In particular, on the potential
vorticity staircase, a limiting case in which potential vorticity is perfectly mixed in a
piecewise constant profile (Mclntyre 1982; Marcus 1993; Peltier & Stuhne 2002), the
relation between Rhines scale and jet separation was made explicit in Dritschel & McIntyre
(2008) and Dunkerton & Scott (2008) for straight, regularly separated jets. A further
key result of Scott & Dritschel (2012) and Scott & Tissier (2012) is that this strong jet
limit first emerges when the ratio Lgy,/L. becomes sufficiently large, numerically above
a value of approximately 6. In this paper, we refer to such a regime as the ‘strong-stair
limit’. This limit corresponds approximately to the zonostrophic regime discussed in
Galperin et al. (2019) for barotropic flow, with the strong-stair limit being approached
at somewhat larger values of Lgj;, /L. than the zonostrophic regime. The conceptual model
in which the potential vorticity staircase arises naturally from general mixing processes
applies far beyond the barotropic system, however, and has proved a powerful tool in the
understanding of the ubiquity of jets in planetary atmospheres and oceans.

While successful, single-layer models necessarily omit consideration of many detailed
aspects of real geophysical flows, such as vertical shear and variations in horizontal
temperature and static stability. Another branch of numerical investigation has focussed
on the more realistic, but much harder situation described by two-layer or fully
three-dimensional flows. These introduce two main complications over the single-layer
case: (i) a deformation length scale describing the cross-over between rotation and
stratification dominated flow; (ii) resolved forcing mechanisms such as baroclinic
instability or fully three-dimensional convection. The simplest system to capture both
effects is the two-layer system, which has received much attention over many years
(Panetta 1993; Thompson & Young 2007; Esler 2008; Berloff, Kamenkovich & Pedlosky
2009; Zurita-Gotor, Blanco-Fuentes & Gerber 2014; Williams & Kelsall 2015). When a
free surface is included, the two-layer system in fact admits both internal and external
deformation radii, both of which may influence the cascade of energy from small to larger
scales. With more complete vertical structure, studies have considered various aspects of
jet development, such as the dependence of jet scaling on planetary parameters (Chemke
& Kaspi 2015; Liu & Schneider 2015), the vertical structure of jets in deep atmospheres
(Heimpel, Gastine & Wicht 2016) or the development and variability of jets in atmospheres
and oceans (Arbic et al. 2014; Shevchenko & Berloff 2015; Robert, Riviere & Codron
2017), among many others. However, the greatly increased complexity of these systems
severely complicates the development of a more general theory along the lines of the
single-layer case.
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As an intermediate step, it is possible to consider the dynamics introduced by (i) without
the complications of (ii), while remaining within the simple two-dimensional framework
of single-layer flow. An appropriate system is the quasi-geostrophic shallow-water model,
which includes a parameter Lp representing the finite deformation length. The model is
obtained as the limit of Ro < Fr* < 1, of the usual shallow-water model, where Ro is
the Rossby number and Fr is the Froude number (e.g. Pedlosky 1979; Vallis 2006). In this
system, forcing must still be included in a prescriptive way, and may be considered (as
in the barotropic model) as representing the dynamical effects of unrepresented processes
such as convection or baroclinic instability without unduly complicating the dynamics.
The simplifying assumption of the mid-latitude S-plane is again useful. Generalization to
the full shallow-water system and spherical geometry is possible (Cho & Polvani 1996;
Scott & Polvani 2007), but the effect of the latitudinal variation of Lp (Okuno & Masuda
2003; Theiss 2004) and the peculiarities of dynamics in the tropics (e.g. Kitamura &
Ishioka 2007; Scott & Polvani 2008) make a systematic analysis of this system harder
than on the mid-latitude B-plane.

While it was noted in Okuno & Masuda (2003) and Theiss (2004) that a small
deformation radius Lp may prevent the formation of well-defined zonal jets, early studies
of quasi-geostrophic shallow-water turbulence typically lacked both the spatial resolution
and temporal extent needed for a detailed analysis of jets across a variety of parameter
ranges. As in the barotropic case, to obtain strongly mixed potential vorticity it is necessary
to use weak forcing acting over long time scales. The reduction of the dynamical time scale
at small Lp and the need to include Lp in the range of resolved spatial scales places severe
numerical constraints on the problem. The richness of the dynamics and the need for
high spatial resolution were illustrated in Dritschel & MclIntyre (2008). For these reasons,
even the basic question of how the emergence of strong jets depends on the length scales
Lp, Lgp, and L, remains unanswered, although calculations reported in Scott & Dritschel
(2019) indicate a role for the parameter Lgy, /L., but with the strong-stair limit approached
more quickly at small Lp. In fact, the calculations reported below indicate that at small
Lp strong jets emerge already for values Lg,/L: ~ 3, well before their counterparts in
barotropic flows. Part of the reason they have not been recognized previously is that
extensive latitudinal meandering obscures their form in the traditional zonal mean.

Because of the extensive meandering of jets, previous estimates of jet spacing based
on simple x-independent flows (Dritschel & MclIntyre 2008; Dunkerton & Scott 2008,
summarized in § 3.1) are likely to be inaccurate in practice. One of the main aims of the
current paper, therefore, is to extend such estimates to the more typical case of jets that
meander extensively in latitude.

The introduction of the parameter Lp means that the total energy of the system splits
into kinetic and potential components. In a forced-dissipative system, and with typical
choices for the large-scale dissipation mechanism, neither kinetic nor potential energy
can be determined from the global energy equation. This further complicates a priori
estimates of the jet spacing L; in terms of Lgy,, where Lgy, is often most naturally based on
the root-mean-square (r.m.s.) velocity, or kinetic energy. A second main aim of the paper,
therefore, is to obtain a constraint on the partition of energy between kinetic and potential
contributions that will enable such a priori estimates to be made.

The remainder of the paper is organized as follows. In §2 we define the governing
equations of the system, the principal length scales and dimensionless parameters and
recall the properties of energy equilibration that may be deduced independently of jet
formation. In §§ 3 and 4, we present the main scaling results of the paper, the spacing
of strong meandering jets in the strong staircase limit, and corresponding constraints on
the kinetic and potential energies. In § 5, we compare the predictions of jet spacing and
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energy partition with a series of numerical experiments; the experiments also make clearer
the region of parameter space where strong staircases can be obtained. In § 6, we conclude
with some general remarks and discuss briefly the more complex flow structures — vortices,
irregular meanders and loops — that limit the accuracy of the scaling relations.

2. Governing equations and physical parameters

The quasi-geostrophic shallow-water system on the mid-latitude S-plane can be expressed
as an evolution equation for the potential vorticity, ¢

9 +JY¥,q) =F+D, 2.1)
q—By=(V*—LyHy, 2.2)

where v is the streamfunction, g is the background potential vorticity gradient and F and
D are forcing and dissipation functions. It differs from the two-dimensional barotropic
system only through the introduction of the Rossby deformation length, Lp. If we assume
that the three length scales Lp, Lg, and L. are (i) much smaller than the domain scale,
Ly, and (ii) much larger than the forcing scale Ly and the scale of enstrophy dissipation,
then we are left with a system that is described entirely in terms of the two independent
dimensionless parameters Lg;/Le and Lg,/Lp. Either of these may be replaced by the
third combination, L, /Lp. This approach can be compared with that of Scott & Tissier
(2012) for the barotropic, Lp — 00, system, which considered the effect of Ly as a third
length scale. In that paper it was shown that the basic dependence of jet structure on
Lgp/Le persists even up to the point when Lg,/Ly ~ 1, and the usual inverse energy
cascade is absent. With finite Lp but small Ly, we can similarly consider the approximate
location of the boundary between strong and weak jets in the two-dimensional parameter
space spanned by Lgy /L. and Lgy,/Lp.

In (2.1), a common and natural choice of energy dissipation, and one used to obtain a
stationary state in the barotropic case, is a linear (Rayleigh) friction on the velocity field,

for which D = —r¢, where ¢ is the vorticity. Assuming that the forcing F increases the
total energy at a constant rate, €, the domain average of (2.1) gives the energy equation
d&
— =e—-2r7, (2.3)
dr

where £ is the total energy and 7 is the kinetic energy of the system. Unlike the barotropic
case, where £ = 7, (2.3) places no a priori bound on the system. As noted in Scott &
Dritschel (2013), kinetic energy may equilibrate at any value 7 < ¢/2r, while total energy
may continue to grow at a rate ¢ — 2r7 . If we define the Rhines scale as Lz, = /U/B
with U = +/27, we find that it is bounded a priori but not known precisely. In § 4, we
show that it is possible to take advantage of the jet structure in the staircase limit to obtain
an additional relation between kinetic and potential energy that guarantees equilibration
of 7 at the value 7 = ¢/2r.

The quasi-geostrophic shallow-water system also has a natural representation of thermal
relaxation, in which the dissipation operator takes the form D = KLBZw, where « is the
relaxation rate (Smith et al. 2002). With this choice, the energy equation becomes

d&

i e —2kP, (2.4)
where P is the potential energy. Again, this equation on its own places no a priori bound
on the total energy: potential energy may equilibrate at any value P < &/2k, while total
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energy may continue to grow at a rate € — 2k ’P. Here, however, because of the property
that potential energy is contained in larger-scale flow structures than kinetic energy, the
up-scale energy cascade means that if potential energy equilibrates then so too must kinetic
energy, though at a level that is not determined by the forcing and dissipation rates (Scott &
Dritschel 2013). Again, in the strong-stair limit the relation between kinetic and potential
energy derived in § 4 may be used to constrain the kinetic energy.

3. Jet spacing in the strong-stair limit

For the simplest case of straight (x-independent) jets in the barotropic limit, Lg,/Lp —
0, Dritschel & Mclntyre (2008) (hereafter DMO08) derived the relation Lj = 23/3Lrio
between jet spacing L; and a Rhines scale Lrpo = +/Umax/B based on the maximum
along-jet velocity, uy.c. The relation follows immediately from the result that u,,,, =
% ,BLf for a regular piecewise constant potential vorticity staircase, with step size BL;.
The same scaling was obtained by Dunkerton & Scott (2008) on the sphere asymptotically
close to the equator, and is essentially a consequence of the quadratic dependence of
angular momentum on latitude.

In the opposite limit of Lgpo/Lp — 00, of interest here, a similar estimate can be derived
under the (temporary) assumption of straight jets. Again, for a perfectly mixed, regular
staircase the potential vorticity jump across a jet core, separated from adjacent jets by a
distance, L;, is

Ag = BL;. (3.1)

For small Lp, the velocity profile decays exponentially from the jet core as
u(y) = Umax e_|y|/LD, (3.2)

and is illustrated schematically in figure 1(a). Since the potential vorticity jump is equal
to the jump in —u, across the jet, we have that BL; = 2uy4x/Lp, giving immediately the
relation

Lj/Lgrno ~ 2Lgno/Lp, (3.3)

as obtained in DMOS8 from the calculation of the full staircase solution. That is, the ratio
of jet spacing to Rhines scale now grows as Lp becomes smaller than Lgpo.

The same result can be given in terms of the more usual Lg, = +/ums/B by noting that
in the limit of small Lp nearly all the kinetic energy resides in the jet core. We therefore
have that

2 0,0
2~ / 2 e 2WI/Ingyr
0

rms = m max
~ Ii—?uﬁwx, (3.4)
so that
s = 3LpLiB, (3.5)
or
Li/Lgy ~ 4L}, /L3). (3.6)

As discussed above, a serious limitation of (3.3) or (3.6) is that it holds only for straight,
x-independent (zonal) jets. As the examples shown in § 4 illustrate (see e.g. figure 3 below),
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(a) (b)
q=pL;
=0 L=Lymn;
N
s
9=-pL; q=-bL,

Figure 1. Schematic of (@) straight and (b) meandering jets, illustrating the jet spacing, L;, equal to the
domain length divided by jet number, and the along-jet velocity profile decaying exponentially over a scale Lp.

jets in this limit tend to meander extensively in latitude. Here, guided by the examples
from direct numerical simulation, we look for a correction based on the typical length
of jet meanders. All other things being equal, a meandering jet in which the along-jet
length is a factor 1 4+ « greater than that of a straight jet will have a total kinetic energy
that is also a factor 1 + « greater than that of the straight jet, provided that the radius of
curvature of the meanders is larger than Lp. Here, o is the increase in length over the
straight jet configuration. We assume here that the meander does not alter the across jet
velocity profile, that the kinetic energy is again concentrated in the jet core, and that the
maximum jet speed u,,,; does not vary along the jet. The latter assumption is partially
justified on the grounds that the straight-jet velocity, u,,,, depends only on the potential
vorticity jump across the jet, tya; = %ﬂLjLD. This argument may fail when, for example,
two jets become close together.

To estimate the increase in jet length due to meanders, we note that lateral perturbations
of the jet position with a radius of curvature of the order of Lp will tend to project onto
Rossby wave modes that will propagate along the jet; i.e. there is a Rossby wave elasticity
on scales Lp and smaller (DMOS8). We hypothesize therefore, that meanders will typically
increase to fill the region between jets, while maintaining their radius of curvature as large
as possible, and always much larger than Lp. A notional meander configuration is shown
schematically in figure 1(b). If we impose the requirement that radius of curvature be as
large as permitted geometrically, then the typical jet length in the y-direction will equal
the typical jet length in the x-direction, resulting in an increase in jet length by an amount
o = 1, and therefore a doubling of the kinetic energy in the jet cores.

Following the argument for (3.6), but with kinetic energy increased by a factor of two,
leads therefore to the estimate

Li/Lgy ~ 2L,/ L3), (3.7)

the only difference being the pre-factor. Physically, for a given jet number, or jet
spacing, the amount of kinetic energy that the meandering potential vorticity staircase can
accommodate is double what it would be were the jets straight. Equivalently, meandering
jets allow a given amount of kinetic energy to fit into a smaller space than would be
possible were the jets straight, and therefore allow a closer jet spacing. Note that, here, the
jet separation is taken as the distance between potential vorticity jumps in an appropriate
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equivalent-latitude, or area-based, sense; that is, the separation that would result were the
jets to be straightened out, keeping the areas between them fixed.

To the extent that the only contribution to the kinetic energy comes from the jets, the
estimate (3.7) provides a lower bound for the jet spacing, being based on the rearrangement
of potential vorticity into a perfect staircase distribution with regularly spaced steps. Any
departure from a perfectly regular staircase, either because of incomplete mixing between
jet cores, or because of departures from regular spacing, will result in a jet spacing that
is wider than the estimate. Conversely, if significant kinetic energy also resides in other
flow features, for example in coherent vortices lying between the jets, then this will tend
to result in a jet spacing that is closer than the estimate (3.7).

4. Energy partition

As discussed in § 2, it is not generally possible to obtain an a priori estimate for the kinetic
energy from the energy equation alone, regardless of whether the dissipation operator
represents frictional or thermal dissipation. In the limit of Lg,/Lp — oo and complete
mixing of potential vorticity between jets, however, we can follow arguments like those
of § 3 to obtain a relation between potential energy and jet spacing, and hence obtain the
ratio of kinetic to potential energies.

Temporarily ignoring jet meanders, for the simplest configuration of uniformly spaced
straight jets, located at y = &b, £2b, ..., where b = L;/2, the potential energy (per unit
area) Po may then be evaluated by integrating in y over the interval [0, b]

1
2Py = . / Ly dy. (4.1)
0

Making use of (5.4) in DMOS, the integral can be evaluated exactly to give
2Py = B*H*L3G(b/Lp), 4.2)
I

where G is a combination of hyperbolic functions with the property that G(s) — 3 as
s — 00. Thus in the limit of large b/Lp of interest here we obtain

2P = 1B°D*L),. 4.3)

The integral can be simplified at the outset by taking advantage of the approximation that,
outside the jet cores, V> < Ll_)zw and so the potential vorticity anomaly ¢’ = g — By is
dominated by ngt//. Then in the interval [0, b]

¥ ~ LjBy. (4.4)

In the case of meandering jets, we can consider a similar calculation but with the upper
limit of the integral replaced by b + d,,,(x), where d,, represents the departure of the jet
location from y = b due to the meander, and followed by a second integration in the
x-direction. Now using (4.4) we have

1 Ly b+dpm(x)
2P & e /O /0 L2 °y* dydx. (4.5)

The integral over y results in powers of d,, up to d;,. However, if meanders are random
about y = b then, in a suitable ensemble average, terms in odd powers of d,,, must vanish.
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The remaining even powers give
LTI I
2P ~ =B“b°Lp + B°Lp d,, (x)dx. (4.6)
3 Lo Jo

The integral over x depends on the form of the meanders but an idea of its size may be
obtained from a consideration of simple cases. For a sinusoidally varying jet of amplitude
b, thus filling the available y-range, with d,,,(x) = b sin kx, the integral evaluates to %Lob2,
regardless of the wavenumber k. For a square-wave limit, again of amplitude b, the value
doubles to Lob?. We thus find that

2P ~ CB2PLY = LCBPLILY, (4.7)

where the constant C is numerically close to 1: % or ‘3—‘ for the sinusoidal and square-wave
limits. Thus the jet meanders induce an approximately threefold increase in potential
energy over the straight-jet value.

The corresponding straight-jet kinetic energy, 7o, is just a rearrangement of (3.6)
obtained by expanding Lgy,

27 = 1B7LiL5, (4.8)

As was shown in § 3, the corresponding kinetic energy is simply twice the straight-jet
value,

T =27, (4.9)

Combining these results, a crude estimate for the ratio of kinetic to potential energy in
the meandering case is therefore
T 2Lp
—=—=—, (4.10)
P CL;
again with C close to unity. The ratio of kinetic to potential energy decreases with
increasing jet separation. We note that this result is not far from that which would be
obtained by ignoring jet meanders entirely, with the straight-jet estimate being

Ty Lp
— =3, 4.11
P() Lj ( )

Thus, the effect of jet meanders is simply to reduce the ratio of kinetic to potential energy

by a factor of around % from that of the straight-jet case, while preserving the inverse
scaling with jet separation.

5. Comparison with numerical simulations
5.1. Numerical configuration

We have carried out a range of numerical simulations of (2.1) to test the estimates obtained
above. Here we report quasi-stationary simulations with no explicit large-scale dissipation;
other simulations with dissipation operators representing frictional and thermal damping,
as discussed in § 2, were also performed to verify the quasi-stationary results. With a
constant energy input, no damping (D = 0) implies that Lg;, grows slowly as 7'/4 and
the flow may be considered as moving gradually through a series of quasi-equilibrium
states, punctuated by isolated more rapid changes due to jet mergers. The quasi-stationary
simulations have the advantage of not restricting applicability of the results to a particular
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situation in which either form of damping is the dominant physical mechanism. An
additional, practical advantage is that because energy (and hence Lg;,) grows continually,
a single integration of the forced undamped equations sweeps out a one-dimensional
line in the two-dimensional parameter space. Thus a one-parameter family of numerical
integrations can cover the entire parameter space, representing a significant saving in
computational resources.

In all calculations, the domain of integration is |x|, |y| < Lo/2 = = with periodic
boundary conditions applied in both x and y. Equations (2.1) are integrated from a state of
rest, ¢ = By, at t = 0 and are forced with random isotropic perturbations, delta-correlated
in time, in a narrow shell of wavenumbers centred on k¢, with kr > kp = LBI. Beyond
this requirement, our results are insensitive to details of the forcing, as may be anticipated
from Burgess & Scott (2018) where the properties of the emergent vortex population in
two-dimensional isotropic turbulence were demonstrated to be broadly independent of
forcing correlation time and its distribution in spectral space.

The energy input rate of the forcing is fixed at rate e. Numerical parameters have
been chosen carefully to meet the requirements Ly < Lp < Lgp, Lj < Lo, with Lgy/L,
large enough that the strong-stair limit is attained. For the quasi-equilibrium experiments
these are ky = 96, kp =24, f = 1 and ¢ =29 x 10~8 with a = —8, -7,...,—1,0,0.72
varied across simulations. A grid of size N> with N = 1024 is used and a scale-selective
bi-harmonic diffusion is included to remove enstrophy at the smallest scales. The relatively
modest spatial resolution is partly necessitated by the long length of the integrations in
time, with dimensionless run time 78/Lo in the range 10° to 107.

5.2. Summary of the jet parameter dependence

To illustrate the relevant region in parameter space, figure 2 shows the two measures
of staircase development defined in Scott & Dritschel (2012) vs Lgp/Le and Lg,/Lp.
Simulations begin at ¢ = 0 at the origin, when the flow is at rest and Lg, = 0. The slopes
of the lines are determined by the forcing strength through L./Lp. Black/red indicates
weak jets and no staircase, blue indicates strong jets and a well-defined staircase; white
can be considered as approximately defining the onset of the staircase. In the barotropic
limit, Lp — oo (Scott & Dritschel 2012) established that the strong-stair regime is reached
when Lgy /L. exceeds approximately 6. Here, we find that for non-zero Lgy,/Lp, strong
staircasing occurs at progressively smaller values of Lgj, /L., saturating at an onset value of
approximately Lgy, /L. =~ 3 when Lgy,/Lp exceeds one. Jets are predominantly meandering
when Lg,/Lp > 1, although it should be borne in mind that even when Lg,/Lp < 1, jets
in this system tend not to be perfectly straight, but rather wavy (see, for example Scott &
Dritschel 2012).

As an aside, our numerical simulations demonstrate clearly how the inverse cascade
at small Lp proceeds very differently in B-plane and f-plane turbulence. Whereas on
the f-plane the cascade halts at Lp, on the f-plane it may proceed further through the
mixing of potential vorticity between jets. Essentially, on the f-plane the cascade is halted
isotropically (giving vortices), whereas on the S-plane it is halted in one dimension only
(giving narrow jets, but the spacing between jets may continue to grow).

Figure 2 also indicates the difficulty in reaching the region of parameter space required
to verify the estimates obtained in § 3, obtained under the assumption that L;/Lp and
hence Lgy/Lp is large. Equation (3.7) implies L;/Lp ~ 2(LRh/LD)4: the fourth power
helps, but Lgy,/Lp must still significantly exceed unity, which it does only for the strongest
forcing cases. At these stronger forcing levels, on the other hand, the domain scale is
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(a) 3 T T T

Lpi/L,

Figure 2. The degree of staircase development in the two-dimensional parameter space spanned by
Lgn/Le Lrn/Lp. Colours indicate the values of the quantities 1 — /1 //> and I3/, defined in Scott & Dritschel
(2012, (4.1) therein), measuring the closeness of fit to a notional perfect staircase, with a value of 1 representing
an exact fit.

eventually reached. In other words, there is a relatively narrow range of L; that can be
accommodated in the relation Lp < L; < Ly with present computational resources.

Figure 3 shows three examples of potential vorticity (a) and speed (b), taken from the
single simulation with a = —2, of the jet structure during the approach to the strong-stair
regime of interest. As time increases, left to right, the energy and hence both Lg;, /L. and
Lgn/Lp increase at the same rate. Strong jets and a clear staircase structure begin to emerge
around Lgy, /L, = 3 (middle panel) and become more clearly defined as Lgy, /L, increases
further. Jets meander significantly in all cases. In the strong-stair regime (right panel) the
kinetic energy is concentrated increasingly in the meandering jet cores. However, a number
of other flow features are also evident, including closed loops resulting from extreme
meanders breaking off the main jet, and coherent vortices, which occur both in isolation
and within the loops. The formation of loops seen here is not dissimilar to the frequently
observed generation of warm core rings from Gulf Stream meanders in the North Atlantic
(e.g. Olson 1991). Often the loops are formed through a complicated interaction between a
strong isolated vortex and a pronounced jet meander. The focus of the current paper is not
on such interactions but their presence is noted as a factor that will potentially violate the
estimates obtained in § 3 above. In the right panel, approximately 50 %—70 % of the total
kinetic energy is contained within the jet cores. We return to discuss the amount of kinetic
energy contained within the different coherent structures further below.
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(@) Lg/L, =265  Lyg/Lp=121  Lp/L =300  Lg/L,=137  Lg/L,=327  Lp/L,=150

Figure 3. Snapshots of the potential vorticity (top row) and speed (bottom row) from the simulation with
a = —2, at values of Lgy /L. and Lgy,/Lp as indicated in the figure.

5.3. Verification of the estimates

Figure 4(a) shows the values of L;/Lgy, and Lg;,/Lp from the three simulations with forcing
index a = —2, 0, along with the predictions (3.7). The restriction to the strong forcing
cases is necessary to ensure Lg,/Lp (and hence L;/Lp) is large enough. Here the jet
separation L; has been obtained from an integer count of the number of jets obtained
from equivalent-latitude plots of the potential vorticity field, divided by the length of the
domain. While this is a relatively crude measure of jet spacing, that neglects along-jet
variations, it is at a consistent level of approximation with the assumptions of regular jet
spacing underlying the estimates. On average points move up and to the right as time
increases, but in the quasi-stationary picture we regard each point as a distinct point
in parameter space. Some banding of the data is due to the fact that as Lgy, increases
continuously, the number of jets may remain constant for prolonged intervals between jet
mergers.

Considering the crudeness of the approximations leading to (3.7) and the complexities
in the evolving flows (e.g. right panel of figure 3), the distribution of jet separations is in
some ways surprisingly close to the estimate. Within a single simulation, the distribution
of points follows broadly the cubic dependence on Lg;/Lp. There is an offset from the
estimate that increases at weaker forcing, corresponding to a pre-factor different from
unity. Recall that configurations in which jets are unequally spaced or in which potential
vorticity is incompletely mixed between steps, but in which kinetic energy remains
concentrated in the jet cores, should have wider jet separation than predicted. This would
lead to points lying always to the left of the line. Conversely, a low proportion of kinetic
energy residing in jet cores would result in a narrower separation than the prediction. Thus
an offset to the left may be associated with incomplete or irregular staircasing, while an
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L /Ly,

L/Ly,
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5 6 7 8 9 10 11 12 13 14 15

(L3, /L) (Ly/L,)

Figure 4. (a) Jet separation L;/Lgy, against L?eh/l} ; the prediction (3.7) is indicated by the solid line. (b) Jet
separation against (L??h /Lf)) (Lp/Le).

offset to the right may be associated with a higher fraction of energy contained in non-jet
structures such as coherent vortices.

It turns out that the rightward shift of the offset with increasing forcing strength is
consistent with an increasing fraction of the kinetic energy contained in the background
turbulent flow. Figure 5 shows the amount of kinetic energy, as a fraction of the total,
contained within jets, closed loops and coherent vortices for the two cases a = —2 and
a = 0. To calculate the kinetic energy, the potential vorticity field is contoured and all
contours are identified whose average speed exceeds the r.m.s. value. Of these contours,
those that traverse the domain in the x-direction are classified as belonging to jet cores,
contours not traversing but longer than a threshold proportional to Lp are classified
as loops, while shorter contours are classified as vortices. The kinetic energy in each
structure is then computed as the squared speed integrated over the structure. Note that the
calculation of jet separation is based on equivalent latitude, in which both jets and loops
are considered on an equal footing; indeed loops result from jet meanders that pinch off
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Figure 5. Fraction of the total kinetic energy contained with distinct flow features: jets which traverse the
domain in the x-direction, jets which form closed (non-traversing) loops, and isolated vortices.

and may recombine with the original jet at any time. While for a = —2 most Kkinetic energy
is indeed contained within jets and loops, this is no longer the case for a = 0. The stronger
forcing in the latter case essentially results in a much more variable and complex flow.
An example is shown in figure 6, which illustrates in particular the substantial fraction of
kinetic energy contained in coherent vortices at progressively higher forcing strength for a
given value of Lgy/L,.

The greater kinetic energy fraction contained within vortices may be partly explained in
phenomenological terms. In particular, vortex formation may be related to the separation
between the anisotropy scale L, and deformation radius Lp. Whereas at large Lp, Rossby
waves become important when the inverse energy cascade reaches the scale L, (Maltrud
& Vallis 1991), at small Lp, the inverse energy cascade is more typically associated
with the formation of strong coherent vortices at the scale Lp (Tran & Dritschel 2006).
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Ly/L,=1.66 Lp/L,=1.50

Lpy/L,=2.19

Figure 6. Snapshots of the flow speed from the simulations with a = —2, a = 0 and a = 0.72, (left to right)
at values of Lp /L, as indicated in the figure; Lgy /L. = 3.5 in all cases.

A decrease in the kinetic energy fraction contained within the jets compared with vortices
might therefore be expected as the ratio L,/Lp increases, as can be seen moving left to
right in figure 6. A simple correction to the original prediction (3.7) may be envisioned
that takes into account an additional dependence on L./Lp. While we lack a theory for
such a correction, figure 4(b) shows the simplest possibility introducing a linear factor
into the scaling relation for the jet separation, which improves the collapse of the data, at
least for the @ = —2 and @ = 0 cases. The collapse could be improved still further using a
correction (L;/Lp)* with @ > 1, but it would require significantly more data to determine
o empirically to any degree of accuracy.

We note that our other main assumption that the structure of the jet meanders are such
that the x- and y-lengths of each meander are approximately equal is reasonably well
satisfied. To calculate the meander lengths in the simulations, the potential vorticity field is
contoured and contours associated with jet cores are identified as above. The total jet length
is obtained as the arclength of all potential vorticity contours of the jet core (calculated
using two-point Gaussian quadrature), divided by the number of contours within the core.
The x- and y-lengths are simply the projections of the total arclength in each direction.
Figure 7 shows total jet length and the contributions in both directions, again for the two
cases a = —2 and a = 0. The assumption holds well in both cases, with particularly good
agreement at the stronger forcing.

Finally, figure 8 shows the computed ratio of kinetic to potential energy from the
numerical simulations, along with the estimate (4.10). In the plot, points move down and
to the left as time increases (since L; increases). The slope of the data is shallower than
the estimate (4.10) predicts, by around a factor of two. In other words, as L; increases, the
potential energy exceeds the kinetic energy by an amount larger than the simple meander
considerations of § 4 suggest. Again, however, to the level of the approximations made, the
agreement is not unreasonable.

6. Conclusions

We have shown how simple assumptions on the structure of jet meanders in the combined
limit of a strong potential vorticity staircase and a small deformation radius provide
an estimate for the dependence of jet spacing on Rhines scale. The procedure extends
to provide a further estimate for the partition between kinetic and potential energy. In
summary, the principal assumptions are: (i) that all kinetic energy resides within the jet
cores, (ii) that jet meanders are such as to fill the domain while minimizing their radius
of curvature and (iii) that the staircase (in an appropriate equivalent-latitude definition)
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Figure 7. The x-length and y-length of jets: (@) a = —2, (b) a = 0.

is perfectly mixing and regularly spaced. Implicit is the additional requirement that the
domain scale, forcing scale, and (hyper) viscous scales may all be neglected, so that the
system can be described to leading order by the two dimensionless parameters Lg, /L. and
Lgy/Lp. If these conditions are satisfied, then the estimate (3.7) will be satisfied exactly,
while the estimate (8) will be satisfied approximately, according to the details of the
individual jet meanders. If condition (iii) is relaxed, then the estimate for jet spacing
becomes a lower bound on the actual jet spacing that can be attained for irregularly
spaced jets. It should be borne in mind that typical turbulent flows, either in nature, in
the laboratory, or numerically simulated, will in general fail to satisfy the assumptions,
often substantially. Nonetheless, the estimates may provide some guide to the anticipated
behaviour in idealized and limiting cases.
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Figure 8. Ratio of kinetic to potential energy for cases @ = 0, —1, —2 as a function of Lp/L;; the prediction
(4.10) with C = 1 is indicated by the solid line.

The degree to which the estimates might hold in fully nonlinear evolving flows has been
tested, over a wide range of parameters, within a series of extended numerical simulations.
The weak dependence of Lg;, on kinetic energy allows the parameter space to be efficiently
explored by a one-parameter set of simulations in which the ratio L. /Lp is varied via the
forcing strength. The numerical simulations indicate that the threshold for the emergence
of a strong potential vorticity staircase structure is Lgp/Ls > 3, significantly lower than
found at infinite Lp. This goes some way to making a numerical validation possible,
although satisfying the requirements Lo > Lg, > L. and Lp > Ly > L, still presents
a formidable computational challenge.

Overall, the numerical simulations are in reasonable agreement with the theoretical
estimates, for both the jet spacing and energy ratio. Considering the level of
approximations behind the estimates and the complexity of the simulated flows, it is
remarkable that the agreement is as good as it is. That said, there are some systematic
differences that can be explained by further examination of the flow fields. In particular, the
kinetic energy fraction contained with the jet cores was found to decrease somewhat with
increasing forcing strength (for a given Lgj,) as the flow becomes increasingly complex.
The formation of jets at the stronger forcing values considered is typically accompanied
by the formation of strong coherent vortices, which in turn can induce jet meanders
to pinch off forming closed loops. The kinetic energy contained within such vortices
increases with forcing strength, resulting in a systematic reduction in the jet separation
compared with the estimated value. We have put forward a possible correction based on
the further parameter Lp/L.; but note that an empirical verification of such a correction
would require a larger range of numerical simulations. While theoretically consistent on
phenomenological grounds, a rigorous justification is currently missing, while as forcing
strength is increased still further, the concept of jet spacing may itself become poorly
defined.

The application of the present results to observed geophysical flows is limited by many
factors, such as the degree to which the staircase limit is approached, or the importance
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of three-dimensional effects or lateral boundaries. Nonetheless, it is hoped that the
estimates obtained here may provide some constraints on actual flows in more complicated
settings. For example, it would be relatively straightforward to reproduce the bounds
implied by strong meanders in spherical geometry, given appropriate assumptions about jet
distribution across latitude. Similarly, one might replace the strong-stair assumption with a
model of partial mixing, at least to the extent that kinetic energy is still concentrated within
the jets. Suitable extensions to the analysis could even be developed for baroclinic jets in
two or more layers, with assumptions of meander structure based on more comprehensive
modelling studies.
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