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Abstract

Studies of creativity have tended to focus on isolated individuals, under the assumption that it can be defined as a
characteristic of an extraordinary person, product, or process. Existing computational models of creative behavior have
inherited this emphasis on independent generative processes. However, an increasing multidisciplinary consensus
regards creativity as a systems property, and extends the focus of inquiry to include the interaction between generative
individuals and evaluative social groups. To acknowledge the complementarity of evaluative processes by social
groups, experts, and peers, this paper presents experimentation with a framework of design as a social activity. This
model is used to inspect phenomena associated with creativity in the interaction between designers and their societies.
In particular, this paper describes the strength of social ties as a mechanism of social organization, and explores its
potential relation to creativity in a computational social simulation. These experiments illustrate ways in which the role
of designers as change agents of their societies can be largely determined by how the evaluating group self-organizes
over time. A key potential implication is that the isolated characteristics of designers may be insufficient to formulate
conclusions about the nature and effects of their behavior. Instead, causality could be attributed to situational factors
that define the relationship between designers and their evaluators.
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1. INTRODUCTION

Design is considered a creative activity. It is also consid-
ered a source of innovation and a foundation for social
change ~Gero, 2000!. However, our current understanding
of creativity in general and in relation to design, innova-
tion, and social change is rather limited. The last 50 years
of research in creativity have been highly speculative with
a vague level of theorizing, and inconclusive empirical evi-
dence ~Sternberg, 1999!. The present challenge in the study
of creativity is to use a combination of research metho-
dologies to move from speculation to specification and
explanation.

The term creativity is polysemous and ambiguous. In the
literature it often refers to different ideas including aes-
thetic appeal, novelty, quality, unexpectedness, uncommon-
ness, peer recognition, influence, intelligence, learning, and

popularity ~Runco & Pritzker, 1999!. A useful and well-
accepted definition is that of historical or H-creativity
~Boden, 1994! or creativity with a big C ~Gardner, 1993!.
This definition highlights the importance of social evalua-
tion. Namely, historical creativity refers to “the generation
of ideas that are both novel and valuable; and values are
negotiated by social groups” ~Boden, 1999!. Social consen-
sus constitutes a kind of Turing test, where creativity is
determined by an evaluative group interacting with the
designer over time, and is not limited to the isolated gener-
ative process or its product.

In design, creativity can be determined by the relation
between the design process and a set of complementary
social factors including evaluation by a target population,
selection by opinion leaders, and colleague recognition.
Innovation can be defined by the diffusion of design solu-
tions across a social group ~Rogers, 1995!. Thus, as a
precursor of innovation, creativity can be defined as a
property socially ascribed to individuals that generate solu-
tions that are considered to be novel and useful by mem-
bers of their society.
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The canonical approach to the study of creativity in
design to date is based on an individualistic premise under
which creativity is assumed to be an extraordinary capac-
ity, trait, or generative process. However, such an approach
has yet to present evidence of a single or a consistent set
of individual characteristics associated with creative design-
ers or creative design solutions. In everyday discourse,
these types of explanations are often circular: people tend
to attribute exceptional performance to talent and to ex-
plain talent by exceptional performance ~Howe et al., 1999!.
An increasingly accepted approach of inquiry focuses on
the relation between individual–generative and group–
evaluative processes. Under this view, creativity is seen as
a social construct or a communal judgment ~Feldman et al.
1994!, where a creative designer is necessarily defined in
relation to an environment of social and epistemological
dimensions.

This paper presents an experimental test bed where qual-
itative generalizations about the nature of creative behav-
ior in design can be explored. This framework is based on
the domain–individual–field interaction model ~DIFI; Feld-
man et al., 1994!, which locates creativity in the interrela-
tions of three main parts of a system: domain, field, and
individual. This supports a view of creativity as a systems
property in the same way that other constructs such as
consensus or negotiation cannot take place within a single
person; they are a result of group interaction. In the DIFI
model, a domain consists of the set of solutions, knowl-
edge, techniques, and evaluation criteria shared by the mem-
bers of a given community. Fields include groups of
individuals who share a common domain. The key poten-
tial implication of the DIFI model is that, situated in a
dynamic environment, creative designers are those who
generate “the right product at the right place and at the
right time,” where “rightness” is largely defined by evolv-
ing social standards.

The motivation of the research presented in this paper is
to extend our understanding of how certain individual actions
in design can be determined by collective conditions and,
as a result, trigger social changes.

2. METHOD OF STUDY

One way to investigate creative design as a social construct
is to define and implement computer simulations of the
different actors and components of a system, and the rules
that may determine their behavior and interaction. This
enables the systematic study of characteristics, conditions,
and effects of interest as the simulation unfolds. By manip-
ulating the experimental variables of the system at initial-
ization, the experimenter is able to extract patterns from the
observed results over time and build hypotheses in relation
to the target system.

Multiagent-based simulation of social phenomena is the
primary method of inquiry used with these types of systems
~Gilbert & Troitzsch 1999!. In this paper, we define a frame-
work of social agency based on the DIFI model, which
includes a small number of competing designer agents, a social
group of clients or adopter agents, and a cumulative reposi-
tory of design solutions or artifacts that represent the design
domain, as shown in Figure 1. This architecture supports
experimentation with the types of interactions between these
system components, which have been described in general
as transmission from domain to individual, variation from
individual to field, and selection from field to domain, draw-
ing from evolutionary systems ~Feldman et al., 1994!.

The canonical architecture of rational agency divides a
system into two explicit parts: agent and environment ~Wool-
dridge, 2000!. For that type of agent, changes in the envi-
ronment reflect the impact of actions by other agents or
external effects. According to the interpretation of indi-
vidual autonomy in rational agency, social interaction is
limited to indirect communication via an external state. How-
ever, the behavior of socially aware individuals cannot be
expected to be hardwired as a reaction to environmental
stimuli. In social agency, individual determinants can be
expected to be complemented by interaction with a social
environment ~Castelfranchi, 2001!.

In our framework of design, social agency implies that
the evaluation and adoption of design solutions by mem-
bers of a social group are not entirely determined internally,

Fig. 1. Creativity as a system’s property: the DIFI map. @A color version of this figure can be viewed online at www.journals.
cambridge.org#
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but are subject to social influence. In other words, designer
and adopter agents are represented as socially interdepen-
dent. Agents in this system, adapt their behavior to contin-
uous changes triggered by the generation of new solutions
and by an iterative process of social influence ~Sosa & Gero,
2003!. In this paper, this generative–evaluative coupling is
analyzed by manipulating some of the characteristics of
social interaction and observing consistent effects on design
behavior and domain configurations. To support a social
system of design, our agent architecture includes individual
and social behaviors, as illustrated by the mechanisms of
collective agency of the field, depicted in Figure 2: the
architecture of a multiagent implementation based on the
DIFI model of creativity.

The social behavior of an agent ~M ! in an environment
~E !, can be defined as the following:

M �( $mn @S~mn , E ' !#%, ~1!

where agent behavior ~M ! is determined by the sum of
internal state components ~mn! and construed situation ~S!.
Internal state components ~mn! may include goals, percep-
tions, preferences, skills, knowledge, and actions. Environ-
ment ~E ! is perceived by a bounded agent as interpreted
external state ~E '!. Situation ~S! is, in this sense, a function
of the combination of internal and interpreted states.

For a social agent, an external state ~E !may be, for exam-
ple, a measure of group pressure to adopt an innovation.
Group pressure by itself would not determine individual
behavior ~M ! because it is a passive contextual feature. It
becomes perceived group pressure ~E '! when it is part of a
social situation, if construed in combination with a relevant
internal state ~m!, such as a degree of certainty, or a pref-
erence threshold to express an opinion or take an adoption
decision ~Asch, 1955!. In this way, equivalent group pres-
sure perceived by a group of social agents with different
internal states would lead to the construction of different
social situations ~S!, for example, compliance or assertive-
ness with others’ decisions. Thus, the same context may

generate different evaluation and adoption outcomes within
different social situations. When situational factors are strong
determinants, agent behavior can be expected to be normal-
ized; in systems where personal factors dominate, behavior
would be more differentiated across a population.

A situation can be defined at the individual level, and it
can also be shared by a group. A shared situation is per-
ceived by a group of agents as a result of the combination
of internal states and a shared perceived state. Extending
the previous example, at the individual level, a social situ-
ation could be one of compliance, while at the group level it
could be one of unanimity ~Asch, 1955!. The latter requires,
by definition, the aggregate action of a group. These two
levels of social situations are corresponding effects of one
common contextual structure, that is, group pressure.

Individual behavior under this view is defined as a func-
tion of the agent and the situation ~Ross & Nisbett, 1991!.
The main implication of this approach is that it supports
equivalent agents acting differently within different situa-
tions, and different agents acting similarly within similar
situations. In a system of designer and adopter agents, this
implies that given a common design solution, different deci-
sions to adopt are possible from members of a social group.
Conversely, given a state of social adoption, different design
decisions are possible. The multiagent system is described
in detail in the next sections. A complete list of variables is
given in Table 1.

3. ADOPTION FRAMEWORK

Adopter behavior consists of evaluating solutions gener-
ated by designers, and deciding to adopt or abstain. Design
solutions or artifacts are described in a simple, two-
dimensional linear representation, as shown in Figure 3a.
This representation is chosen because it supports evalua-
tion functions based on intuitive visual geometric features.
It also supports multiple interpretations by adopters and
shape emergence. As a result, it enables experimentation
with some of the key aspects of design problems in multi-
objective decision making. The particular mechanisms and

Fig. 2. A multiagent implementation based on the DIFI model of creativity.
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values implemented in this system do not replicate previous
findings; they are mostly hypotheses based in the literature
and practice. However, this is often rather ambiguous because
observations of social phenomena are usually not specific
enough to be directly implemented. In such cases, we set
parameters to explore a range of possible options and their
effects. When these parameter ranges are set to extreme
values, we do not assume them to be necessarily realistic;
we are more interested in the transition values, which are
more likely to capture real situations.

Clients or adopters of design solutions in this system
evaluate them according to individual thresholds of percep-
tion and preference. Variation of perception across a popu-
lation is used to support different interpretations of artifacts,
as shown in Figure 3b, where a number of shapes ~features!
can be extracted ~perceived! from the sample artifact. Like-
wise, variation of preferences enables different adoption
decisions based on shared interpretations. In other words,
differences of perception support adoption decisions based
on different interpretations of an artifact, while differences
of preference support adoption decisions based on different
evaluations of an artifact.

The process of perception by adopter agents is imple-
mented here by a shape–recognition algorithm executed by
every adopter with a side limit called perception threshold
~m!. Starting from every vertex in the artifact representa-
tion, adopters conduct a search for artifact features ~shapes!
following all possible paths until a number ~m! of points is
reached. This search produces a set ~s! of singular closed
shapes of ~m! number of segments, which stands for the
artifact’s features as perceived by each adopter. As Figure 4

illustrates, the artifact shown in Figure 3~a! can be per-
ceived differently when perception is based on different
thresholds. The artifact perception shown in Figure 4a is
conducted by adopters with a threshold m� 10; the feature
in Figure 4b is perceived by adopters with m� 9. However,
to allow for a more realistic overlap of perceptions in a
society, a tolerance ~m�62! is defined.

A m is assigned to every adopter agent from a Gaussian
distribution at initial time ~t0!. As the process of perceiving
artifacts is computationally expensive, it is scheduled at
intervals of adoption. We assume that, although adopters
take decisions continuously, they only update their percep-
tions periodically. This is consistent with the notion that
social agents base their decisions on approximations that
they update regularly. The perception of artifacts in our
system refers to the idea that in human populations there
may be a number of distinct but overlapping views of a
design artifact’s features, a notion illustrated by market
segmentation.

Variation of m across a population is controlled by the
standard deviation of the percept distribution. Different stud-

Table 1. Nomenclature

Symbol Description Type and Range

t Iteration step ~time! Integer, �0
m Perception threshold Random integer,

mean � 8, SD � 4
s Set of perceived features Array of 2-dimensional shapes
r Artifact performance Double
f Geometric relation criterion Integer
wmax Criterion for adoption Integer
b Criterion preference or bias Double, 0 , b . 1
B Adoption preferences Array of bn

P Social space Array of adopters’ locations
T Social tie strength Double, 0 , T . 1
H Neighborhood size Integer
d Influence dominance Integer
N Group size, population Integer
g Gini coefficient Double, 0 , g . 1
x Extroversion threshold Double, 0 , x . 1
« Domain entry threshold Double
a Domain decay mechanism Double
SDI Strategic differentiation index Double
l Design rule Array
f Social net density Double

Fig. 3. ~a! Sample artifact representation and ~b! a range of features ~shapes!
that adopters may perceive. @A color version of this figure can be viewed
online at www.journals.cambridge.org#
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ies may consider different percept variance assuming more
subjective or more normalized interpretation across a target
population.

3.1. Adoption decision

The adoption decision process consists of a multivariate
evaluation function where adopters seek to maximize con-
flicting geometric objectives. These criteria include num-
ber of shapes, shape alignment in horizontal and vertical
axes, preferred number of sides, overlapping of shapes, and
shape bounds. The evaluation or performance ~r! of a design
artifact is individually estimated by adopters:

r �(
i, j

n

$f~si ,sj !%, ~2!

where artifact evaluation is based on an individualized set
of geometric relations ~f! between pairs of perceived fea-
tures ~si , sj!. Evaluation ratings ~r! of artifacts are com-
pared by each adopter to determine an adoption decision,
where the criterion for adoption ~fmax!, is defined by the
difference between evaluations along each criterion. Namely,

fmax � ~rmax � rmean!~bi !, ~3!

where the criterion for adoption ~fmax! refers to the geo-
metric relationship with the largest difference from the mean
~rmax �rmean! weighted by an individual preference or bias
~bi ! between 0.0 and 1.0 assigned to adopters at t0. This
adoption decision process captures novelty preference
because adopters in this system tend to choose artifacts that
they perceive to have the highest differentiation from the
rest. Adoption in this system is, therefore, a function of how
competing features of design solutions compare at a given

time. To be adopted, a design solution or artifact needs to
perform better in a criterion ~f! that other artifacts do not
meet; and it helps if that criterion is positively biased by
adopters’ preferences.

The set of adoption preferences ~B! of an agent evolves
over time following a mechanism of habituation where the
bi for each criterion increases marginally as a function of
fmax. Namely, as adopters decide to adopt artifacts, their
preference for the geometric criterion best satisfied by an
artifact is gradually increased. This mechanism “pulls” group
preferences toward criteria that artifacts best satisfy. The
set of B of an agent is defined as the set of bi for each
evaluation criterion:

B � $bi{{{n %. ~4!

3.2. Adoption satisfaction

Adopter satisfaction is computed in this system, as a post-
adoption coefficient of quality. It indicates agreement
between adopters’ preferences and artifacts’ features. In the
adoption decision, if the choice criterion ~fmax! equals the
leading preference of an adopter ~bmax!, its satisfaction level
is set to a maximum in a scale of discrete values that rep-
resents “very satisfied with the current adoption decision.”
If the choice criterion is 1 standard deviation above the
mean of the adopter’s preferences, then the satisfaction level
is set to a medium level or “satisfied with current adoption
decision.” Otherwise, the adoption has been based in a cri-
terion that is of little relevance to the adopter, and its satis-
faction level is set to a minimum or “not satisfied with
adoption decision.”

Finally, an adopter may abstain from adoption if no dif-
ference is perceived between artifacts, that is, if ri�n is
equal for all artifacts and fmax � 0.

Fig. 4. Perception of features ~shapes! of artifacts based on thresholds of ~a! m� 10 and ~b! m� 9.
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3.3. Social interaction

To represent social groups, adopters are defined in a num-
ber of social spaces or configurations, that is, they form
neighborhoods, or have adjacency relations to other agents
in simultaneous social environments. For instance, individ-
uals have different positions in kinship and work structures
within a society. Other approaches, such as cellular automata
of social influence, tend to conflate physical and social loca-
tion into a notion of 2-dimensional neighborhoods. In this
system, agents have n sets of neighbors in m social spaces.
Such spaces are modeled with different parameters: social
tie strength and number of ties are two structural properties
defined in this paper.

At every iteration step ~t !, adopters rely on social inter-
action to validate their perceptions, spread their prefer-
ences, and in general to conduct their adoption decisions.
To this end, different social spaces ~P! are defined where
adopters interact. In this system, a social space is imple-
mented in a social network where nodes represent adopter
agents of a social group, and links represent between them
~Wasserman & Faust, 1994!. At t0, adopter agents are ran-
domly assigned a location on each social net. These social
spaces have different rules of interaction and development.
Two aspects addressed in this paper are social tie strength
~T ! and neighborhood size ~H !. Ties are defined as inter-
action links between nodes in a social network and repre-
sent the relationship between adopter agents ~nodes! in a
social space ~Wasserman & Faust, 1994!.

The T is associated with the probability that connected
nodes may interact over a period of time ~Granovetter, 1973!.
Strong social ties usually exist between nodes in a kinship
network, while weak ties characterize networks where casual
encounters occur between strangers or acquaintances. The
H is determined by the number of links from a node, also
called ego-centered networks ~Wasserman & Faust, 1994!.

In our framework, we implement a basic notion of tie
strength as a probability 0.0 � T � 1.0 that any possible
pair of adopter agents will remain in adjacent positions at
the next time step ~t �1!. When a social space has a strength
T' 0.0, it supports higher social mobility. This means that
adopter agents are shuffled more often and have more oppor-
tunity to interact with different adopters over any given
period. In contrast, when strength is T ' 1.0, relations
between adopters remain unchanged, causing a decrease in
social mobility, that is, adopters interact with the same neigh-
bors for long periods of time.

3.4. Influence dominance

A social space ~P1! is set in this framework where adopters
exchange preferences ~b!. Within a second social space
~P2!, perception thresholds ~m! are traded. A third space
~P3! is set where agents exchange fmax. The strength of
social ties ~T ! is a property of social spaces, and it is the
main control variable discussed in this paper. Neighbor-

hood size ~H ! has a constant initial value of 2 at t0, and it
varies during a system run according to the influence that
each adopter exerts on others. In this system, more influen-
tial adopters increase the size of their neighborhoods. These
assumptions can be changed by experimenters according to
the hypothesis under inspection. For instance, the purchase
of cars may be shaped by influence interaction in small
kinship networks, while the adoption of products like mobile
phones may be strongly influenced by large peer networks.

Figure 5 illustrates different structures of social influ-
ence in this system. Adopters are represented by circles and
influence of preferences, percepts, or decisions by arrows.
Vertical axis plots relative influence dominance; neighbor-
hood size increases with influence. Figure 5a shows a pos-
sible influence structure where a few adopters have high
influence and large neighborhoods. In Figure 5b, all adopt-
ers have similar influence and neighborhood sizes.

The distribution of influence dominance ~d! in a social
space is measured in this framework by the Gini coeffi-
cient, which is a summary statistic of inequality. The Gini
coefficient ~g! is used in studies of wealth distribution,
where limited group resources are exchanged among mem-
bers of a population. Influence can be seen here as analo-
gous to wealth, in that it is generated by the interaction
between two agents where one may increase its share at
the expense of another. The Gini coefficient ranges from a
minimum value of g � 0.0, where influence between all
individuals is equal, to a theoretical maximum of g � 1.0,
in a population where one individual concentrates all influ-
ence dominance. The Gini coefficient is calculated by the
following:

g �

(
i, j

n

6di � dj 6

2n2N
, ~5!

where the average difference of every possible pair of influ-
ence values ~di � dj! is divided by two times the average
squared ~n2! of the mean group size ~N; Dorfman, 1979!. The
larger the coefficient is, the higher the degree of dispersion.

To determine the direction of influence between neigh-
boring adopter agents, they are assigned random extrover-
sion thresholds ~x! in every social space at t0. An adopter
agent is assigned different x values in different social spaces
~Pn!. Extroversion values are not fixed during a system
run, but change as a result of exerting influence over other
agents.

Exchange between any pair of adopters starts by a com-
parison of their xs. In the social space where bs are
exchanged, the adopter agent with the higher extroversion
of the pair influences the less extrovert adopter on the cri-
terion with the highest preference. A negotiation process
occurs by which the influenced adopter increases its pref-
erence by a ratio of the difference between their prefer-
ences. However, if the chosen artifact of both adopters is
the same and their preferences are too similar, the more
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extrovert adopter changes its own focus of attention by
shifting its preference to another criterion. This is a way to
implement uniformity-avoidance and novelty-seeking behav-
ior, that is, “bi is an adopter’s top preference until it per-
ceives that bi is commonplace.” Within other social spaces,
different content is exchanged following a similar approach.
Influence ~d! between adopters i and j is of the form

di, j 6xi � xj 6 ] bj � ~bi � bj !� 0.5, ~6!

where the more extrovert adopter xi influences the less
extrovert xj . Negotiation occurs as the target preference
b of agent j approaches agent i by a ratio of their differ-
ence, in this case 0.5. The exchange of ms and fmaxs in
their corresponding social spaces takes place in the same
form.

Although the details of this interaction can be fine tuned
to match other assumptions, the key idea is that adopter
agents exchange building blocks of their adoption process.
However, even if an influential adopter is successful in
spreading its preferences or percepts, the adoption deci-
sions of a group need not converge. Namely, adopters with
equal top preferences may still perceive artifacts differently
and therefore reach different adoption decisions.

In ergodic systems such as 2-dimensional cellular
automata, a population converges from any initial random
configuration. In contrast, when exchange occurs in more
than one social space, the population may not converge as
t0r t` due to random walks being transient ~Sosa & Gero,
2003!.

3.5. Opinion leadership and gatekeeping

As a result of social interaction, adopter populations form
aggregate hierarchical social structures. In this framework,
these structures are determined by exchanges of prefer-
ences, percepts, and adoption decisions. Opinion leaders
are defined as adopter agents with high influence ~d! values
as a result of social interaction. At t0, the set of opinion
leaders is empty. The role of opinion leader is given to
adopters whose influence is greater than 1 standard devia-
tion above the mean of group influence. The role of opinion
leaders in this framework is to enable interaction between
adopters and designers. First, leaders serve as adoption mod-
els providing designers with positive feedback for reinforce-
ment learning. Second, they become gatekeepers of the field
by selecting artifacts for entry into the domain or reposi-
tory, that is, a collection of artifacts that defines the mate-
rial culture of a population ~Feldman et al., 1994!.

Because the number of opinion leaders is, by definition,
a small ratio of the adopter population, they are more likely
to spend more real and computational resources in analyz-
ing available artifacts. With an adopter background, leaders
follow the standard adoption decision process described
above, complemented by additional geometric evaluation
criteria including rotation, reflection, and uniform scale.

The domain of solutions, or artifact repository, is initial-
ized with an entry threshold ~«! of 0. During a system run,
« is increased, enabling a notion of group progress by which
the entry bar is raised with every entry. Two possible entry
modes are addressed in this paper. Opinion leaders in their
role as gatekeepers select artifacts that either increase the

Fig. 5. Influence structures in societies where ~a! a few concentrate high levels of influence and ~b! influence is distributed and
neighborhoods are small.
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population’s threshold of « or perform well in different eval-
uation criteria ~f! than existing entries.

The nomination of artifacts by gatekeepers occurs at a
control rate specified by the experimenter. Figure 6 shows
sample repository entries as selected based on their geomet-
ric relationships. Geometric relationships can be recog-
nized within these artifact shapes including scale, rotation,
and symmetry. Entry threshold ~«! to repositories has a
decay mechanism ~a! of the form

a � «� ~0.05«!, ~7!

where « decays marginally over time when gatekeepers fail
to nominate qualified entries above «.

The last domain mechanism described in this section is a
measure of difference between artifacts as perceived by
adopters. The strategic differentiation index ~SDI! is an index
estimated collectively by adopters that reflects the per-
ceived differentiation across the available artifacts ~Natter-
mann, 2000!. With a design system initialized in a converged
state, SDI � 0.0. As designers seek to generate artifacts that
differ from other available artifacts, SDI . 0.

SDI � (
i{{{n

~fvar!, ~8!

where SDI is the mean performance variance for all evalu-
ation criteria as estimated by every adopter agent in the
population.

Adopters and opinion leaders provide the first elements
for the definition of creativity in this system. In this frame-
work, a creative design must exhibit novelty and fitness

values to a social group at a certain period of time, and
be adopted as a result. Cumulative adoption of artifacts
addresses a notion of popularity ~Simonton, 2000!. An arti-
fact must also be selected by gatekeepers, that is, experts
representative of their social group ~Amabile & Hennessey,
1999!. This selection is based on rules of entry that evolve
as artifacts and societies change. Critics’ choice addresses
the idea that creativity is judged by relevant arbiters ~Gard-
ner, 1993!. Adoption categories enable classification on the
basis of when in the diffusion process, adopters choose an
artifact ~Rogers, 1995!.

4. DESIGN BEHAVIOR

The size of a group of designer agents is determined by the
experimenter as a ratio of the adopter population. At t0,
artifacts are configured and assigned to each designer.
Designer agents are given a set of standard constraints to
which their artifacts must comply. Designers’ knowledge
and adopter bases, recognition levels, and repository entries
are all set to zero at the beginning of a system run. Knowl-
edge base refers to simple domain rules that designer agents
apply during a simulation. Adopter base is defined by cumu-
lative adoption. Recognition is given by peer designers that
imitate features of an existing solution.

The role of designer agents in this system is to generate
and present their artifacts for assessment by adopters and
gatekeepers. The details of the design task are determined
by the adopter group decisions, and by the ability of com-
peting designers to generate solutions. The goal of design-
ers in this system is to consistently generate artifacts that
are chosen by adopters, are selected by critics, and are imi-
tated by their peers.

Fig. 6. Sample entries to the repository and their perceived geometric functions: ~a! uniform scale, ~b! rotation, ~c! rotation,
~d! reflection, ~e! uniform scale, and reflection. @A color version of this figure can be viewed online at www.journals.cambridge.org#
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In this framework, design update and adoption rates are
assumed to be periodic. Design takes place in these exper-
iments at constant intervals during which adopters execute
their decisions and interact socially. Variations of these
assumptions are required to model different product mar-
kets and industries, requiring particular experimentation
scenarios.

Designers may engage in different types of behavior,
depending on a number of internal and external factors.
Contingent design strategies can be seen as the product of
the confluence of these conditions. The term strategy is
used as adaptation of behavior that appears to serve a func-
tion in achieving the goal of generating artifacts that are
adopted, selected by experts, and influential. As deter-
mined by a strategy, design behavior seeks to increment
adopters’ satisfaction levels and extend adopter base by cap-
italizing on relative superiority ~competition!, or by maxi-
mizing differences to other artifacts ~differentiation!.

Designer agents seek a type of contingent strategy where
they learn a design rule, that is, an instance of domain knowl-
edge tied to the artifact representation. In this case, condi-
tion r action rules are made by artifact feature r target
criterion. Domain rules are generated based on the designer’s
model of the population’s adoption process, construed by
retrieving preferences and choices of opinion leaders. This
is a way to implement positive feedback, because other-
wise, a designer would not have access to target criteria and
target perception, that is, an opinion leader may be an adopter
of a competing artifact or may be abstaining from adopting.
A designer can emulate the collective decision process by
generating hypotheses of possible alternative artifacts ~i.e.,
informed random changes to existing solutions!.

Designers formulate hypotheses in this system, by eval-
uating and changing the configuration of their artifacts to
improve performance along the modeled adoption criteria
retrieved from opinion leaders. Namely, designers sort the
lines of their artifacts according to their contribution to the
formation of perceived shapes ~s!. Designers are able to
delete or generate new lines as a function of adopter per-
ception ~m!. Hypotheses consist here of rules to change a
current artifact. Features that do not contribute to good per-
formance are replaced at random. They are then evaluated
following the multicriteria adoption function of Eqs. ~2!
and ~3! above.

A design rule ~l! consists of artifact changes that increase
its performance along a target criterion.

l � ~fhr Dr!, ~9!

where a hypothesized feature ~fh! results in an increment
of artifact performance ~r!. A positive value of D stands for
the improvement ratio of l.

Individual differences between competing designers are
addressed as differences in processing and synthetic abili-
ties assigned at t0. Processing refers to the capacity of design-
ers to generate and retrieve domain rules; synthesis stands

for the number of hypotheses that designers can generate
before having to transform their artifacts. In this paper,
designers are assigned constant abilities at t0. However,
abilities gradually increase as a function of design behav-
ior. This enables experimentation with the impact of indi-
vidual factors on creativity, which is beyond the scope of
this paper.

If during the design of a new artifact a designer is not
able to generate new domain knowledge, it seeks a strategy
to apply existing ls. Here, two assumptions can be explored:
domain knowledge may have private or public access. If
private, every designer agent only has access to their own
rules, while in public mode all designers have access to all
existing rules. In this paper, public access is constant across
all experiments. Existing knowledge is applied by the
following:

apply: lr Dr~f!, ~10!

where an existing rule l that improves performance ~r! in
a target criterion ~f! is applied to an artifact.

If a designer is not able to generate or apply relevant
knowledge, the last option is to imitate other designers.
Imitation is the simplest form of collective learning, that is,
blind learning, because information about features, criteria,
and perception is missing. Imitation is defined here as the
transfer of random artifact features. Imitation is chosen as
the last option because designers seem to be fixated to
“reinvent the wheel” ~Purcell & Gero, 1996!. This type of
imitation is rather simplistic in our model; it would be of
interest to explore in the future how relaxing this assump-
tion would change the observed effects.

Designers whose artifacts have low adoption rates imi-
tate the features of artifacts with higher rates. This is
acknowledged by a mechanism where peer recognition is
given to the designer of the source artifact. Recognition
from colleagues indicates the influence of a designer.

Designers may address the perceived group’s choice cri-
terion or they may determine an alternative target criterion.
This choice is a function of perceived adopter preferences
~b '! and estimated artifact performance ~r '!. If a designer
“determines” that its artifact’s performance is competitive
~defined as equal or above mean adopter preference!, cap-
italization is chosen and design rules are built or applied to
improve performance on the choice criterion ~exploit rela-
tive superiority!. If estimated performance is instead low
on perceived adopter preferences, then designers seek to
differentiate their artifacts in a highly competitive industry
by selecting their best performing criterion. Strategies of
competition and differentiation are defined as

competition: r ' � bmean
' , ~11!

differentiation: r ' � bmean
' , ~12!

where r ' and b ' are estimated by the designer agent.
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Designer agents in this system are not equipped with
creative abilities per se. The aim is not to introduce special
traits to assess the effects of agents’ creativeness as defined
by the experimenter ~Heck & Ghosh, 2000!. Instead, all
designers are given equivalent sets of mechanisms. No
extraordinary process within the individual is hardwired,
but in time, agent interaction renders a social self-organized
construct of how a designer may exhibit behavior consid-
ered creative within its society.

These framework mechanisms encapsulate in a simple
way some of the characteristics of design problems, includ-
ing poor structure and interpretation; incremental solutions,
hypothesis generation, nomological constraints, no right or
wrong answers, and delayed feedback ~Goel, 1994!.

Design behavior complements the definition of creativ-
ity in this system. Adoption rate is a trend measure used to
determine what designer is imitated at a particular time
step. Peer recognition is considered a key element in the
creativity literature ~Runco & Pritzker, 1999!. The contri-
bution of each designer to domain knowledge is interpreted
as transformation of the design space ~Gero, 2000!, learn-
ing, and experience ~Runco & Pritzker, 1999!. The number
of hypotheses generated resembles idea productivity. The
number of entries selected by gatekeepers gives a measure
of a designer’s contribution to the repository or domain
~Feldman et al., 1994!.

Experimentation with this framework consists of explor-
ing the effects that the described individual and situational
factors have on determining the creativity of designers. A
designer is considered creative by its social group in this
framework when its artifacts reach large adopter groups, its
artifacts are entered into the repository, other designers imi-
tate its artifacts, it transforms the design space by formu-
lating knowledge, and its adopters have high satisfaction
levels.

The framework has been implemented in a system built
in Java 1.4.2 using the following libraries: Colt 1.3 ~Hoschek,
2002! for array operators and random number generators,
Jxl ~Khan, 2004! for output data management, and JGraph
~Alder, 2004! for visualization.

5. EXPERIMENT: SOCIAL TIES

The aim of this experiment is to assess the potential effects
of different types of social interaction in the definition of
creativity in design. It addresses the role of social ties in the
formation of influence structures and the associated effects
on design behavior. Tie strength ~T ! is implemented as the
frequency of contact between adopters ~Marsden & Camp-
bell, 1984!. A series of simulations are run where the initial
configuration of adopters and designers is kept constant
and the strength of social ties ~T ! is the experimental vari-
able. Monte Carlo runs are conducted to explore the range
0.0 � T � 1.0 in populations of 100 adopter agents and 3
designer agents, which represents the range where adopters

remain in their social location at all times, to where they
change locations on every step, respectively.

In social networks with weak ties ~T ' 0!, connections
between adopters are reconfigured more often and they have
the opportunity to interact with different adopters over a
period of time. In contrast, in social groups where agents
have strong ties ~T ' 1!, adopters are bound, causing a
decrease in social mobility, that is, adopter agents interact
within the same groups for longer periods.

Cases are run over 7500 iterations, as preliminary runs
showed that dependent variables stabilize between around
5000 iterations in most cases. The resulting data set is fil-
tered to exclude outliers, defined here as 1.5 standard devi-
ations from the mean. All the following results represent
means of 30 simulation runs. Each simulation run is initial-
ized in a converged state to avoid biases in the form of
random initial artifact configurations. Therefore, at t0, adopt-
ers perceive no differentiation between artifacts and all
abstain from adopting. It is only after designers first modify
their artifacts that adoption commences.

5.1. Influence hierarchies results

The result of varying ~T ! from 0.0 to 1.0 shows that influ-
ence concentration increases with social tie strength. In soci-
eties with strong ties ~T'1!, a few opinion leaders become
dominant ~higher g!. In contrast, as social ties become
weaker ~T ' 0!, social mobility increases and agents have
contact within a varying neighborhood causing structures
of influence to be more distributed ~lower g!. Figure 7
shows a scatter plot on a logarithmic scale of the relation of
T and gwith fitness � 0.92. Although cases with very strong
social ties yield a high g, most strength values in the range
yield comparatively low results. It is particularly interest-
ing to obtain an exponential distribution by linear incre-
ments of an experimental variable, a type of pattern that is
prevalent in biological and social phenomena ~Barabasi et al.,
2001!.

This result suggests that in most cases in these types of
systems, influence hierarchies can be expected to be rather
flat or egalitarian, the exception being only when adopter
agents tend to remain in stable social positions over long
periods. In social groups with strong ties, there is lower
mobility and hierarchical structures of influence exist
between adopters. As a result, in such groups influence hier-
archies guarantee that a few individuals become dominant
in the spread of adoption opinions. In contrast, in weaker
social settings, adopters can be expected to influence their
peers to a lesser degree. Influence is more diffused in these
groups.

Small amounts of social mobility in societies of strong
ties rapidly reduce disparities. As tie strength decreases fur-
ther, influence becomes more egalitarian up to a point at
which even large changes in social tie strength and mobility
do not have a significant impact. Figures in the following
sections plot only the ends ~T � 0! and ~T � 1!, because
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most ~T ! values yield similar results until ~T'1!, at which
point effects vary significantly.

5.2. Gatekeeping effects results

At the domain level, the formation of structures of influ-
ence has effects that may be unexpected: an inverse corre-
lation is shown between the T and number of entries to the
repository. In other words, in cases where influential opin-
ions concentrate in a few adopters, designer agents are able
to generate less creative solutions. Lower values of T are
correlated with larger repositories as shown in Figure 8
~Pearson � 0.67, N � 30, p � 0.001!. In societies with weak
social ties ~T ' 0!, a mean of 97 artifacts with a standard

deviation of 43.4 are selected by gatekeepers. In societies
with strong social ties ~T'1!, a mean of 16 artifacts with a
standard deviation of 11.7 are selected.

From the result discussed previously it can be seen that
in societies with strong ties, a constant set of adopter agents
tends to remain in the role of gatekeepers. Namely, gate-
keeping is more stable and controlled by a small unchang-
ing group of influential experts. Therefore, evaluation criteria
remain constant over time. As a consequence, domains or
repositories tend to be smaller. In contrast, in societies with
lower tie strength and therefore where influence is distrib-
uted rather than concentrated, there is a higher change rate
of gatekeepers. The gatekeeper group is constantly com-
posed of different adopters. Consequently, more diverse eval-

Fig. 7. Exponential function for tie strength ~T ! and the Gini coefficient ~g!. @A color version of this figure can be viewed online at
www.journals.cambridge.org#

Fig. 8. Social spaces with high tie strengths tend to produce smaller repositories. @A color version of this figure can be viewed online
at www.journals.cambridge.org#
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uations support a larger number and a higher variety of
domain artifacts.

5.3. Differentiation effects results

The differentiation of design artifacts is measured by the
SDI as an aggregate measure of differences perceived by
adopters. These experiments show that SDI is inversely cor-
related with the strength of T, as seen in Figure 9. Designer
agents operating on strong social spaces where influence
structures are stable, tend to generate more similar artifacts.
The same designers operating on wider distributed influ-
ence social spaces, have a tendency toward higher differen-
tiation ~Pearson � 0.57, N � 30, p � 0.004!.

This effect on design behavior can be explained by the
normative nature of strong social ties. In societies where a
few influential opinion leaders exist, adoption choices can
be expected to be more similar. As a result, designers repeat-
edly engage in competition to improve their artifacts. In
contrast, in societies with weaker links, adoption opinions
are expected to diverge and provide designers with a wider
range of preferences. In such cases, different artifacts are
adopted.

5.4. Prominence effects results

Last, effects on the size and nature of adopter groups are
addressed. Results show that tie strength ~T ! is positively
correlated with adopter group size ~Pearson � 0.608, N �
26, p � 0.001!. The standard deviation of adoption in weak
ties ~1718! is also significantly higher than in strong ties
~726!. This illustrates that weak social ties increase absten-
tion and make adoption less predictable. This is a consistent
result with the notion that in more rigid societies there is a
higher agreement of adoption opinions.

Adoption variance, on the other hand, is given by the
distribution of adopters by designer agent. When adoption
variance is high, most adopters choose the artifacts of one
designer, whereas a low adoption variance indicates that
adopters distribute their choices among all designers. The
strength of social ties ~T ! is correlated with adoption vari-
ance as shown in Figure 10 ~Pearson � 0.68, N � 26, p �
0.001!. Namely, in social spaces with weak ties adoption
choices tend to be more distributed across designers. In
contrast, strong ties ~T ' 1! increase total adoption and
concentration of choices around a few designers.

This result has an interesting potential implication from
the designers’ point of view. Designer agents with the same
individual characteristics but operating in two extremes of
social tie strength can expect different outcomes. When
within a society with weak links ~T' 0!, their popularity is
likely to be lower and more unstable, although prominence
among peers is harder to obtain. In this framework, the
popularity of designers is given by the size of their adopter
groups and prominence by the distribution of adoption
choices. In contrast, when the same designers operate within
a society with strong ties ~T'1!, one should expect higher
and more consistent popularity levels, and a higher concen-
tration of prominence, that is, a few designers concentrat-
ing most adoption choices.

5.5. Summary of results

According to the shape of the relationship between tie
strength ~T ! and influence distribution ~g!, lower popular-
ity and lower concentration of prominence can be expected
to be the norm in these types of generative–evaluative social
systems. Under exceptional social conditions, the effects of
otherwise equivalent designer agents have a sudden change,
as the critical point at which influence concentrates is

Fig. 9. The effects of the social tie strength ~T ! in the strategic differentiation index. @A color version of this figure can be viewed
online at www.journals.cambridge.org#
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reached. Within such rare situational conditions, one designer
agent is likely to concentrate the choices of a majority of
adopters.

Within a society with strong ties, significant effects occur
throughout the system. Adopters converge in their deci-
sions, artifacts are perceived as more different, and domain
sizes are smaller and more predictable.

5.6. Verification

A key aspect of this experiment has been replicated using
an alternative implementation, to demonstrate this frame-
work’s validity beyond a specific computational represen-
tation. This replication makes use of the social net library in
a well-known multiagent simulation toolkit for Java ~Col-
lier, 2004!. A social network is defined here by configura-
tions of nodes connected by directional links. In a simple
example of how the structure of a social network is created,
random links or ties are added between nodes. The nodes
are placed in an array, and their ties constitute the social
network. Link directionality makes it possible to dispense
with the extroversion threshold in the mechanism of social
influence between adopters. With 1-directional link, source
nodes always exert influence over destination nodes. A den-
sity parameter ~ f ! is included where 0.0 � f � 1.0, which
determines the ratio of connections between nodes in the
social net. Figure 11a depicts a social net of 25 agents and
f � 0.5 in a circular configuration ~Freeman, 1998!.

The behavior of this social net is limited to the exchange
of influence between adopter agents described in our frame-
work. At initial time, a value of influence is given to all
nodes, equal to zero. During a simulation run, source nodes
increment this value by one unit as they exert influence
over those nodes to which they are linked. The probability
of tie replacement between a node pair in this network is a
function of T, specified as an experimental condition for

each case. In networks with strong ties ~T'1!, ties remain
constant during a simulation ~they change with probabil-
ity � 0!; in contrast, in networks with weak ties, these are
changed more often until ~T' 0!, when ties between nodes
are reconfigured at random at every iteration step ~with
probability � 1!. Monte Carlo runs are conducted to ex-
plore the range 0.0 � T � 1.0 in social nets of 100 agents,
f � 0.5. The distribution of influence in a social net is again
measured by the Gini coefficient.

Results are consistent with those shown in Figure 7: as
the scope of contact between nodes extends, influence dis-
tribution rapidly decreases, up to a level after which large
differences of tie strength have only marginal effects on
influence distribution. As Figure 11b shows, most tie strength
values generate low Gini coefficients. This reinforces the
suggestion that social situations where the decisions of a
few opinion leaders affects the creators’ patterns are rather
unlikely in systems of collective evaluation.

6. DISCUSSION

In this paper, a social framework for the study of creativity
and innovation in design has been introduced and used to
experiment ~to a limited extent! with a specific situational
factor of creativity in design. Factors that regulate aggre-
gate behavior of a population of evaluators are shown to
affect the way creators operate, and their impact as change
agents of their societies.

The results presented in this paper illustrate one way in
which creativity can transcend the individual domain. This
is a significant contribution to the ongoing discussion on
the relationship between creators and their societies. For
instance, based on a biographic and historical analysis of
several creative individuals, Gardner ~1994! suggests that
in more hierarchical fields ~i.e., “where a few powerful
critics render influential judgments about the quality of

Fig. 10. Strong ties ~T ' 1.0! produce higher variation of adoption between adopter groups. @A color version of this figure can be
viewed online at www.journals.cambridge.org#
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Fig. 11. Replication of influence hierarchies using social nets. ~a! The marker represents link directionality between nodes. ~b!Most
tie strength values ~T ! generate low Gini coefficients, except when T ' 1. @A color version of this figure can be viewed online at
www.journals.cambridge.org#
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work”!, it has been easier for a small number of creators to
gain recognition and influence. These studies of creative
figures suggest that social characteristics may determine
who is considered creative, and when. Individuals who are
characterized as extraordinary creators, may exhibit simi-
larities of personality traits and abilities, or there may be
similarities between the structures of the fields within which
they operate. While in the cases analyzed by Gardner ~1994!
personalities vary significantly across creators, in most cases
a few powerful critics rendered influential judgments about
the quality of their work.

This paper has shown in a computational simulation of
design as a social activity that agent societies with strong
social ties are likely to develop uneven hierarchies that sup-
port powerful opinion leaders. As a result, a few prominent
creators are likely to emerge in more static societies. In
contrast, in social networks with weak ties, influence is
distributed, expert judgments tend to vary over time, and
they tend to have a lesser impact in the evaluation of new
works. Likewise, creators will be less differentiated in
dynamic societies where exchange of opinions is open and
frequent between different members of society. These find-
ings are limited to the assumptions and restrictions of the
system implemented, but they show consistency with Gard-
ner’s ~1994! observations. They reinforce the idea that social
structures of evaluation can significantly affect the distri-
bution of prominence, and therefore, how individual cre-
ators are perceived by their societies.

These experiments illustrate a key idea about the likely
nature of creativity and innovation: a situational factor that
regulates the way in which adopters interact may have a
significant effect on how both designers and social groups
operate. Nonetheless, there is an alternative interpretation
of the relation between authority and creativity. Rudowicz
~2003! presents a review of several empirical studies that
support the idea that educational practices in hierarchically
organized societies tend to promote behavior that is incom-
patible with creativity, that is, conformism and conven-
tional thinking. As a number of evolutionary models have
shown, novelty in a society may be facilitated by a balance
between dissent or diversity, and the converging effect of
imitation ~Boyd & Richerson, 1995; Gabora, 1995!. This
discrepancy indicates that further research is necessary to
fully understand the role of structures of authority in cre-
ativity and innovation.

The concept of situations seems an adequate unit of analy-
sis to model the link between design cognition and social
change. A creative situation ~i.e., one within which design-
ers with different characteristics are likely to trigger a social
change!, could be typified in design to complement the dom-
inance of studies that focus on the creative personality.

The key potential implication of this research is that it
may not be possible to put forward conclusions about human
designers or computational design generators by limiting
inquiry to their characteristics in isolation. A number of
situational factors depict a close interdependence of design-
ers with their social groups. A corollary of these types of

studies is that the understanding of creativity will require
the extension of the unit of study outside the cognitive realm
of the design process, and into the social psychology of
design. Computational simulation has a fundamental role in
supporting experimentation of sociocognitive interactions.
These in silico studies can provide new ways to think about
the phenomenon of creativity and new ways to study it with
in vitro ~laboratory! and in vivo ~biographic! tools of inquiry.
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