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We consider the stationary equations of a general viscous fluid in an infinite
(periodic) slab supplemented with Navier’s boundary condition with a friction term
on the upper part of the boundary. In addition, we assume that the upper part of the
boundary is described by a graph of a function φε, where φε oscillates in a specific
direction with amplitude proportional to ε. We identify the limit problem when
ε → 0, in particular, the effective boundary conditions.

1. Introduction

Recent developments in microfluidic and nanofluidic technologies have renewed
interest in the influence of surface roughness on the slip behaviour of viscous flu-
ids (see [19] and the references cited therein). As a matter of fact, this issue has
been subjected to discussion for over two centuries by many distinguished scientists
who developed the foundations of fluid mechanics, including Bernoulli, Coulomb,
Navier, Couette, Poisson and Stokes, to name but a few.

Consider a viscous fluid confined to a domain Ω in the Euclidean physical space
R3, the boundary of which represents a solid wall. Assuming impermeability of the
wall we have

u · n = 0 on ∂Ω, (1.1)

where u is the fluid velocity and n denotes the (outer) normal vector to ∂Ω.
The mostly accepted hypothesis states that there is no relative motion between

a viscous fluid and the solid wall ∂Ω, which means that

[u]τ = 0 on ∂Ω, (1.2)

where [u]τ denotes the tangential component of u, provided that the wall is at rest.
The no-slip boundary condition expressed by (1.2), together with (1.1), has been
the most successful hypothesis for reproducing velocity profiles for macroscopic
flows.
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In postulating his slip hypothesis, Navier suggested replacing (1.2) by

β[u]τ + [Sn]τ = 0 on ∂Ω, (1.3)

where S is the deviatoric viscous stress tensor and β is the friction coefficient.
Note that, formally, condition (1.3) reduces to (1.2), provided that β → ∞. In the
presence of slip, the liquid motion is opposed by a force proportional to the relative
velocity between the fluid and the solid wall.

Although it is intuitively clear that (1.3) is much closer to the observed real-
ity than (1.2) whenever the rate of flow is sufficiently strong (turbulent regimes),
there has been a common belief that, even if the Navier slip conditions are correct,
the corresponding slip length is likely to be too small to influence the motion of
macroscopic fluids (for relevant discussion see [19, § 1]).

Recently, numerous experiments and simulations as well as theoretical studies
have shown that the classical no-slip assumption can fail when the walls are suffi-
ciently smooth (see, for example, [20,21]). Strictly speaking, the slip length charac-
terizing the contact between a fluid and a solid wall in relative motion is influenced
by many different factors, among which the intrinsic affinity and commensurabil-
ity between the liquid and solid molecular size as well as the macroscopic surface
roughness caused by imperfections and tiny asperities play a significant role.

From the purely mathematical point of view, the Navier (partial) slip bound-
ary conditions yield a correct solution for problems on domains with sharp cor-
ners, where the no-slip condition (1.2) yields spurious solutions (see [7, 14]). More-
over, they are relevant on rough walls, where the presence of microscopic asperities
reduces considerably the shear stress, leading to a perfect slip on the boundary
(see [12]). Given this perspective, there have been several attempts to justify the
no-slip boundary behaviour (1.2) as an inevitable consequence of fluid trapping by
surface roughness. Richardson [22] showed that the no-slip condition emerges as
the effective boundary condition for a Stokes flow on domains with periodically
undulating boundary (for more general results see also [12]). On the other hand,
in order to avoid the complicated description of the fluid behaviour in a boundary
layer adjacent to a rough wall on which the no-slip condition (1.2) is imposed, the
Navier law (1.3) with a variable coefficient β is prescribed on the mean (flat) surface
to facilitate numerical computations (see [11,15]).

After a series of recent studies by Amirat et al . [1, 2] and Casado-Dı́az et al .
[6], it has become clear that the mathematical problems involved are intimately
related to the pointwise behaviour of Sobolev functions on ‘tiny’ sets and may be
studied independently of any particular system of equations. Moreover, the weak
convergence methods involving the Young measures and their generalizations by
Gerard [10] and Tartar [23] have turned out to be a useful tool for describing the
influence of roughness on the effective boundary conditions [4, 5].

In line with the preferential setting used in many computational studies, we
consider a fluid between two horizontal surfaces periodic with respect to the plane
coordinates (x1, x2). More specifically, we consider a spatial domain Ω determined
by

Ω = {(x1, x2, x3) | (x1, x2) ∈ T 2, 0 < x3 < 1 + Φ(x1, x2)}, (1.4)
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where T 2 = (0, 1)|{0,1} denotes the two-dimensional torus. We define the two com-
ponents of the boundary ∂Ω by

Γbot = {(x1, x2, 0) | (x1, x2) ∈ T 2}, (1.5)

Γtop = {(x1, x2, x3) | (x1, x2) ∈ T 2x3 = 1 + Φ(x1, x2)}. (1.6)

We assume that the bottom wall moves with a constant velocity V = (V1, V2, 0)
and that the fluid sticks to it, i.e.

u|Γbot = V . (1.7)

On the other hand, we assume impermeability of the upper wall,

u · n|Γtop = 0, (1.8)

together with the Navier slip condition

β[u]τ + [Sn]τ |Γtop = 0, (1.9)

where the coefficient β � 0 may vary with the horizontal coordinates (x1, x2).
The viscous stress tensor S = S(D),

S : R3×3
sym → R3×3

sym

is a function of the symmetric velocity gradient

D[u] = 1
2 (∇xu + ∇t

xu), (1.10)

satisfying the standard coercivity hypothesis

S(D) : D � d1|D|p, d1 > 0 for all D ∈ R3×3
sym , (1.11)

together with a technical growth restriction

|S(D)| � d2(1 + |D|p−1) for all D ∈ R3×3
sym (1.12)

for a certain p � 2. In addition, we require S to be strictly monotone:

(S(D1) − S(D2)) : (D1 − D2) > 0 for any D1 �= D2. (1.13)

The best known example is the so-called linearly viscous fluid, where S is deter-
mined through Newton’s rheological law S = 2µD, p = 2. More examples as well as
the relevant mathematical background may be found in [13].

If the fluid is incompressible and in a stationary (time-independent) state, the
velocity u and the pressure p satisfy the Navier–Stokes system of equations

div(u ⊗ u) + ∇xP = div S(D[u]) + f in Ω, (1.14)

supplemented with the standard incompressibility constraint

div u = 0. (1.15)

Motivated by Priezjev et al . [20] and Qiang and Wang [21], we consider a family
of solutions {uε, pε}ε>0 of problem (1.14), (1.15), supplemented with the boundary
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conditions (1.7)–1.9), posed on spatial domains {Ωε}ε>0 given by (1.4) for Φ =
Φε. The functions Φε depend only on a single spatial variable, say, Φε = Φε(x1),
x1 ∈ T 1 = (0, 1)|{0,1}, mimicking a ribbed surface, with the amplitude and typical
wavelength of oscillations approaching zero for ε → 0.

We will show (see theorem 3.1, below) that {uε, pε}ε>0 possesses a limit {u, p}
solving the Navier–Stokes system (1.14), (1.15) on the ‘flat’ domain Ω = T 2 ×(0, 1)
and satisfying the no-slip boundary conditions (1.7) on the bottom wall Γbot. In
addition, the tangent velocity field [u]τ on the upper wall Γtop = {x3 = 1} is parallel
to the riblets direction, that means, [u]τ = (0, u2, 0), and satisfies a directional
Navier slip condition

β̃u2 + S2,3 = 0 on {x3 = 1}. (1.16)

The friction coefficient β̃ depends only on a weak limit of {βε}ε>0, and on σ, a
positive quantity which can be computed explicitly in terms of a Young measure
associated to horizontal deviations of the normals on ∂Ωε. In particular, we show
that the concrete value and even shape of β̃ can be ‘tuned’ choosing a specific
distribution of riblets on ∂Ωε, as predicted for similar models by the molecular
dynamics approach (cf. [20, 21]). In the particular case when βε = β are constant,
we get

β̃ > β,

provided that the amplitude and the frequency of oscillations of Γ ε
top are of the

same order.
Our method is based on the concept of parametrized rugosity measure introduced

in [5], which is nothing other than a Young measure associated to the family of
gradients {∇Φε}ε>0. Furthermore, we exploit the well-developed theory of Sobolev
functions, in particular, the properties of their traces on the boundary. Accordingly,
we consider the weak (distributional) solutions to problem (1.14), (1.15). This so-
called variational approach seems inevitable in the present situation, as all the
refined elliptic estimates yielding regularity of solutions are quite sensitive to the
topology of the boundary. Finally, our approach relies on the pressure estimates
that can be obtained via a generalized inverse of the div operator. One of the
fundamental issues addressed below is the uniformity of these estimates with respect
to the parameter ε → 0.

The paper is organized as follows. In § 2 we recall some preliminary material,
including the function spaces framework and a variational formulation of the prob-
lem. The main result illustrated by several concrete examples is formulated in § 3.
In § 4, we introduce the concept of rugosity measure associated to the family
{Ωε}ε>0 in order to identify the boundary conditions to be satisfied in the asymp-
totic limit for ε → 0. Section 5 is devoted to the basic properties of the so-called
Bogovskii operator, div−1. The proof of the main result is completed in § 6 by means
of the theory of monotone operators.

2. Preliminaries

To begin with, let us introduce the concept of variational solutions to the problem
on Ωε.
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Definition 2.1. We shall say that functions uε ∈ W 1,p(Ωε; R3), Pε ∈ Lp′
(Ωε),

1/p + 1/p′ = 1, represent a weak solution to the Navier–Stokes system (1.14),
(1.15), supplemented with the boundary conditions (1.7)–(1.9), if u satisfies (1.7),
(1.8) in the sense of traces, together with the incompressibility constraints (1.15)
almost any (a.a.) in Ωε, and the integral identity

∫
Ωε

((uε ⊗ uε) : ∇xϕ + Pε div ϕ) dx

=
∫

Ωε

S(D[uε]) : ∇xϕ dx +
∫

∂Ωε

βεuε · ϕ dσ −
∫

Ωε

f · ϕ dx (2.1)

holds for any test function ϕ ∈ W 1,p(Ωε; R3) such that

ϕ|Γbot = 0, ϕ · n|Γ ε
top

= 0.

Note that we have tacitly assumed that the driving force f is defined on all do-
mains Ωε say; f is a restriction of a fixed function belonging to the class L∞(R3; R3).
Note also that, by means of the classical Krasnoselskii theorem, if S : R3×3

sym → R3×3
sym

is continuous, then the associated Nemytskii operator is continuous on the Lebesgue
space Lp(Ωε; R3×3

sym) with values in Lp′
(Ωε; R3×3

sym) provided that S satisfies hypoth-
esis (1.12). Finally, for the traces of Sobolev functions on Γ ε

top to be well defined,
we must assume that Φε are Lipschitz functions on T 2.

Similarly, solutions of the limit problem are defined as follows.

Definition 2.2. A couple {u, P} is termed a weak solution to problem (1.14),
(1.15) on Ω = T 2 × (0, 1), supplemented with the boundary conditions (1.7), (1.8),
and

u1 = 0, β̃u2 + S(D[u])2,3 = 0 on Γtop = {x3 = 1} (2.2)

if u ∈ W 1,p(Ω; R3), P ∈ Lp′
(Ω), u satisfies (1.7), u1 = u3 = 0 in the sense of traces

on Γtop and the integral identity
∫

Ω

((u ⊗ u) : ∇xϕ + P div ϕ) dx

=
∫

Ω

S(D[u]) : ∇xϕ dx +
∫

∂Ω

β̃u · ϕ dσ −
∫

Ω

f · ϕ dx (2.3)

holds for any test function ϕ ∈ W 1,p(Ω; R3) such that

ϕ|Γbot = 0, ϕ1|Γtop = ϕ3|Γtop = 0.

A remarkable property of both (2.1) and (2.3) is that uε − Ṽ and u − Ṽ respec-
tively represent admissible test functions. This is, of course, related to the fact
that the ‘convective’ terms uε ⊗ uε, u ⊗ u belong to the Lebesgue space Lp′

, pro-
vided that p � 9

5 . Here, Ṽ denotes a suitable extension on Ω of the vector field V
appearing in the boundary condition (1.7). We can take

Ṽ = ψ(x3)V for ψ ∈ C∞[0, 1], ψ(0) = 1, ψ(1) = 0. (2.4)

In particular, the norm of Ṽ can be made arbitrarily small in the Lebesgue space
Lp′

(Ω; R3) through a suitable choice of ψ.
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3. Main result

The main result of the present paper reads as follows.

Theorem 3.1. Let {Ωε}ε>0 be a family of domains given by (1.4) with Φ = Φε(x1),
where Φε are Lipschitz functions on T 1 such that

0 � Φε � ε, |Φ′
ε| � L on T 1, (3.1)

with the Lipschitz constant L independent of ε. Furthermore, assume that S :
R3×3

sym → R3×3
sym is a continuous mapping satisfying hypotheses (1.11)–(1.13), with

p � 2. Let {uε, Pε}ε>0 ⊂ W 1,p(Ωε; R3) × Lp′
(Ωε), p � 2, be a family of weak

solutions to problem (1.14), (1.15), (1.7)–(1.9) specified in definition 2.1. Finally,
assume that

βε → β weakly-∗ in L∞(T 2), (3.2)

and
|Φ′

ε| → |Φ′| weakly-∗ in L∞(T 1), where |Φ′| > 0 a.a. on T . (3.3)

Then, passing to a suitable subsequence as the case may be, we have

uε → u in W 1,p(Ω; R3), Pε → P in Lp′
(Ω), (3.4)

where the {u, P} solve problem (1.14), (1.15), (1.7), (1.8), (2.2) on Ω in the sense
of definition 2.2, where

β̃ = L∞ − weak-∗ lim
ε→0

βε

√
1 + |Φ′

ε|2. (3.5)

Note that, in accordance with (3.2), (3.4), the friction coefficient β̃ for the limit
problem is always greater than a weak limit of {βε}ε>0. Moreover,

β̃ > β whenever βε → β ∈ L1(Ω). (3.6)

As Φε → 0 uniformly on T 1, we have

Φ′
ε → 0 weakly-∗ in L∞(T 1), (3.7)

while hypothesis (3.3) requires the convergence in (3.7) not to be strong on any
subdomain of T 1. In other words, the oscillations of the normal vectors to Γ ε

top
persist in the asymptotic limit ε → 0.

A sufficient condition for (3.3) to hold reads

lim inf
ε→0

∫ b

a

|Φ′
ε| dz � r(b − a) for any a � b, (3.8)

where r > 0 is a constant independent of ε. Observe that

∫ b

a

|Φ′
ε| dz = varb

a[Φε] = sup
a�z1<···<zn�b

n−1∑
i=1

|Φε(zi+1) − Φε(zi)|, (3.9)

where the rightmost expression corresponds intuitively to the degree of roughness
of Γ ε

top.
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Even more interesting example is provided by the co-area formula (see [8, § 3.4.2,
theorem 1]): ∫ b

a

|Φ′
ε| dz =

∫ ε

0
#[(a, b) ∩ Φ−1

ε (y)] dy, (3.10)

where #[(a, b) ∩ Φ−1
ε (y)] denotes the number of points x ∈ (a, b) (non-negative

integer or ∞) where Φε(x) = y, in other words, the number of points where the
graph (x, Φε(x)) intersects the straight line (x, y), x ∈ T 1.

Formulae (3.8)–(3.10) give rise to a number of examples, which are listed below.

(i) Periodically oscillating boundaries. The most frequently studied situation
takes

Φεk
(x1) = εkΦ

(
x1

εk

)
with

1
εk

a positive integer, (3.11)

where Φ ∈ W 1,∞(T 1). It is easy to check that

|Φ′
ε| →

∫
T 1

|Φ′(z)| dz weakly in L1(T 1);

whence (3.3) holds unless Φ is constant.

(ii) The crystalline case. Assume that Φ′
ε ∈ K a.a. on T 1, where K ⊂ R1 is a

finite set 0 /∈ K. Then we can take

r = min
K

|Φ′
ε| > 0

in (3.8) in order to conclude that (3.3) holds.

(iii) The generalized crystalline case. As a matter of fact, we only need

ess inf
T 1

|Φ′
ε| � r > 0 for all ε > 0

to arrive at the same conclusion as in the previous case.

(iv) Oscillatory boundaries. Assume that, for any y1, y2 such that Φε(y1) =
Φε(y2) = 0, y1 < y2, there exists y3 ∈ (y1, y2) such that Φε(y3) = ε. In
agreement with (3.10), we get

∫ b

a

|Φ′
ε| dz =

∫ ε

0
#[(a, b) ∩ Φ−1

ε (y)] dy � ε#[x ∈ (a, b), Φε(x) = 0].

Consequently, the family {Φε}ε>0 satisfies (3.3) as soon as

lim inf
ε→0

{ε#[x ∈ (a, b), Φε(x) = 0]} � r(b − a)

for any a < b and a certain r > 0.

(v) Boundaries with asperities. A function A ∈ W 1,∞(T 1) is termed the asperity
of amplitude h > 0 if

0 = min
T 1

A < max
T 1

A = h. (3.12)
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Assume that
Φε =

∑
i

Aε
i ,

where Aε
i are asperities such that supp[Ai] ∩ supp[Aj ] = ∅ for i �= j.

It is easy to check that
∫ b

a

|Φ′
ε| dz =

∫ ε

0
#[(a, b) ∩ Φ−1

ε (y)] dy

�
∑

h

h#[asperities Aε
i of amplitude h, suppAε

i ∩ (a, b) �= ∅],

where the sum contains at most a countable number of terms. Consequently,
in order to obtain (3.3), we must assume that

lim inf
ε→0

{ ∑
h

h#[asperities Aε
i of amplitude h, suppAε

i ∩ (a, b) �= ∅]
}

� r(b − a)

for a certain r > 0.

The rest of the paper is devoted to the proof of theorem 3.1.

4. Parametrized measures of rugosity

For the time being assume that we have already shown that

sup
ε>0

∫
Ωε

(|∇xuε|p + |uε|p) dx < ∞. (4.1)

Consequently, we can assume that

uε → u weakly in W 1,p(Ω; R3), (4.2)

where u satisfies the boundary condition (1.7) on Γbot in the sense of traces.
To begin with, observe that the impermeability condition (1.1) is stable with

respect to a rather general family of converging domains {Ωε}ε>0. Note that (1.1)
can be restated in the form of an integral identity:∫

Ωε

(uε · ∇xϕ − div uεϕ) dx = 0 (4.3)

to be satisfied for any ϕ ∈ D(T 2 × (0,∞)). As a matter of fact, (4.3) holds for all
vector fields uε integrable on Ω̄ε together with div uε.

We get

0 =
∫

Ωε

(uε · ∇xϕ − div uεϕ) dx

=
∫

Ωε\Ω

(uε · ∇xϕ − div uεϕ) dx +
∫

Ω

(uε · ∇xϕ − div uεϕ) dx,
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where, up to a suitable subsequence,∫
Ωε\Ω

(uε · ∇xϕ − div uεϕ) dx → 0 as ε → 0,

∫
Ωε

(uε · ∇xϕ − div uεϕ) dx →
∫

Ω

(u · ∇xϕ − div uϕ) dx = 0 for ε → 0

provided that

Ω ⊂ Ωε for all ε > 0, |Ωε \ Ω| → 0 for ε → 0. (4.4)

Thus, we have shown the following assertion.

Lemma 4.1. Let {Ωε}ε>0 be a family of domains satisfying the hypotheses of theo-
rem 3.1. Moreover, let {uε}ε>0 be vector fields on Ωε satisfying (4.1), with p > 1,
and (4.3) for any ϕ ∈ D(T 2 × (0,∞)).

Then, passing to a subsequence as the case may be, we have

uε → u weakly in W 1,p(Ω; R3),

where u satisfies (4.3) on Ω for any ϕ ∈ D(T 2 × (0,∞)).

As the target domain Ω = T 2 × (0, 1) is smooth, the conclusion of lemma 4.1
reads

u3|Γtop = 0, (4.5)

provided that (4.1) holds.
Let us try to formulate, first intuitively, the meaning of rugosity of the surface Γε

in a certain (tangent) direction w. Very roughly indeed, one may say that such a
quantity should be proportional to probability that a normal vector to Γε is parallel
to w. Given a measurable set D ⊂ T 2 this can be expressed as

prε
D ≈ meas{y ∈ D | the normal vector at (y, Φε(y)) parallel to w}

meas(D)
.

However, the set of boundary points at which the normal is parallel to a single
vector w may be very small; in particular, its two-dimensional Hausdorff measure
could be zero. For this reason, it seems more convenient to replace w by a cone
Cδ

w, given by
Cδ

w = {v | v · w � (1 − δ)|v||w|}.

Accordingly, we take

prε
D ≈ meas{y ∈ D | the normal vector at (y, Φε(y)) belongs to Cδ

w}
meas(D)

and require this quantity to be positive uniformly with respect to ε → 0:

lim inf
ε→0

prε
D > 0 for any D ⊂ T 2. (4.6)

Formula (4.6) is reminiscent of the definition of the Young measure associated
to the family of normal vectors on Γε (see [18, ch. 1, § 2]). Motivated by the above
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discussion, we can define parametrized rugosity measure Ry, y ∈ T 2, as a Young
measure associated to the family {∇yΦε}ε>0, i.e. Ry is a probability measure on
R2 defined as

〈Ry, G〉 = G(∇yΦ)(y) for all G ∈ C(R2) and for a.a. y ∈ T 2,

where G(∇yΦ) denotes a weak limit of {G(∇yΦε)}ε>0 in L1(T 2) (see [5, § 3]). As
a direct consequence of (3.7), the centre of gravity associated to the parametrized
rugosity measure Ry is always located at the origin. Note that the vectors

(∇yΦε, 0) = (∇yΦε,−1) − (0, 0, 1) = nε − n

express the deviations of the normal vector fields on Γ ε
top from the vertical direction.

A remarkable property of the parametrized rugosity measure is the following
identity:

u(y, 1) ·
( ∫

R2
G(Z)Z dRy(Z), 0

)
= 0 for all G ∈ C(R2) and a.a. y ∈ R2, (4.7)

where u is the weak limit appearing in (4.2). Indeed, the impermeability condi-
tion (1.1) written in terms of Φε reads

uε(y, 1 + Φε(y)) · (∇xΦε(y),−1) = 0 for a.a. y ∈ T 2;

in particular,∫
T 2

ψ(y)G(∇xΦε(y))uε(y, 1 + Φε(y)) · (∇xΦε(y),−1) dy = 0 (4.8)

for any G ∈ C(R2) and all ψ ∈ D(T 2). On the other hand,
∫

T 2
|uε(y, 1 + Φε(y)) − uε(y, 1)| dy �

∫
T 2

∫ 1+Φε(y)

1
|∇xuε(y, z)| dz dy,

where the right-hand side tends to zero for ε → 0 as a consequence of (4.2). Con-
sequently, it follows from (4.8) that

lim
ε→0

∫
T 2

ψ(y)G(∇xΦε(y))uε(y, 1) · (∇xΦε(y),−1) dy = 0 (4.9)

for any G ∈ C(R2) and all ψ ∈ D(T 2). As the trace operator uε ∈ W 1,p(Ω; R3) �→
uε|{x3=1} is absolutely continuous with respect to the topology Lp({x3 = 1}),
relation (4.9) yields (4.7) (see also [5, lemma 7.1] for the case in which p = 2).

In particular, for the sequence of domains considered in theorem 3.1, hypothe-
sis (3.3) gives rise to

suppRy ⊂ {(y1, 0), y1 ∈ R}, suppRy �= (0, 0) for a.a. y ∈ T 2}. (4.10)

Thus, combining (4.7), (4.10), together with (4.5), we conclude that, under the
hypotheses of theorem 3.1,

u1|Γtop = u3|Γtop = 0 (4.11)

in accordance with (1.8), (2.2). However, the validity of (4.11) is conditioned by
the uniform bound anticipated in (4.1). After some preliminary material presented
in § 5, a rigorous justification of (4.1) will be given in § 6.
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5. Equation div v = g

5.1. Bogovskii’s operator

For the purposes of this section, we adopt a slightly more general situation than in
theorem 3.1, assuming that Φε are effective functions of both variables (y1, y2) ∈ T 2

and replacing hypothesis (3.1) by

Φε ∈ W 1,∞(T2), 0 � Φε � ε, |∇xΦε| � L, with L independent of ε > 0. (5.1)

By virtue of (5.1), there exists ω > 0 independent of ε such that the interior of
the cone

(x1, x2, 1 + Φε(x1, x2)) + K, K = {(x1, x2, x3) | x3 ∈ (−1, 0), |(x1, x2)| < ω|x3|},

is contained in Ωε for any (x1, x2) ∈ T 2. Consequently, there is a finite number of
domains Ωk

ε , k = 1, . . . , m, such that

Ωε =
m⋃

k=1

Ωk
ε ,

and each Ωk
ε is star shaped with respect to any point of a ball of a radius r > 0

contained in Ωk
ε , where both m and r can be chosen independent of ε (for the

relevant definition of a star-shaped domain see [9, ch. III.3]).
Consider an auxiliary problem.

Problem 5.1. Given

g ∈ Lq(Ωε),
∫

Ωε

g dx = 0, 1 < q < ∞, (5.2)

find a vector field v = Bε[g] such that

v ∈ W 1,q
0 (Ωε; R3), div v = g a.a. in Ωε. (5.3)

We report the following result (see [9, ch. III.3, theorem 3.1]).

Proposition 5.2. For each ε > 0 there is a solution operator Bε associated to
problem (5.2), (5.3) such that

‖Bε[g]‖W 1,q
0 (Ωε;R3) � c(r, m, q)‖g‖Lq(Ωε); (5.4)

in particular, the norm of Bε is independent of ε.

Remark 5.3. The construction of the operator B used in [9] is due to Bogovskii [3].
Clearly, the parameters r and m depend solely on the value of the Lipschitz constant
L in (5.1).

5.2. Korn’s inequality

The so-called Korn inequality yields a bound on the full velocity gradient ∇xu in
terms of its symmetric part D[u] introduced in (1.10). The uniform estimates stated
in proposition 5.2 can be used in order to establish a version of Korn’s inequality
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depending solely on the value of the Lipschitz constant L in (5.1). To this end, we
adapt the approach in [16].

Initially, we apply the standard Korn inequality on the domain Ω to obtain

‖v‖W 1,q(Ω;R3) � c(q)‖D[v]‖Lq(Ω;R3×3
sym ) � c(q)‖D[v]‖Lq(Ωε;R3×3

sym ) (5.5)

for any v ∈ W 1,q(Ωε; R3), q > 1, such that v|Γbot = 0.
On the other hand, it is a routine matter to express

∇x(∂xivj) = Ai,jD[v] for any i, j,= 1, . . . , 3, (5.6)

where Ai,j are linear differential operators of first order with constant coefficients.
By virtue of proposition 5.2, any function h ∈ Lq′

(Ωε), 1/q′ + 1/q = 1, of zero
integral mean can be expressed as a divergence of a vector field Bε[h] belonging to
W 1,q′

0 (Ωε, R
3). Consequently, we deduce from (5.6) that

‖∇xv‖Lq(Ωε;R3×3) � c(q, L)(‖D[v]‖Lq(Ωε;R3×3
sym ) +‖∇xv‖L1(Ωε;R3×3)), q > 1, (5.7)

for any v as in (5.5).
Finally,

‖∇xv‖L1(Ωε;R3×3) = ‖∇xv‖L1(Ω;R3×3) + ‖∇xv‖L1(Ωε\Ω;R3×3), (5.8)

where, by means of Hölder’s inequality,

‖∇xv‖L1(Ωε\Ω;R3×3) � |Ωε \ Ω|1/q′‖∇xv‖Lq(Ωε;R3×3). (5.9)

Combining estimates (5.5) and (5.7)–(5.9) we may infer that

‖∇xv‖Lq(Ωε;R3×3) � c(q, L)‖D[v]‖Lq(Ωε;R3×3
sym ), 1 < q < ∞, (5.10)

for any
v ∈ W 1,q(Ωε; R3), v|Γbot = 0, (5.11)

provided that 0 < ε < εq,L is small enough.

Remark 5.4. The fact that the constant in Korn’s inequality depends only on L
was observed by Nitsche [17] in the case in which q = 2.

6. Proof of theorem 3.1

6.1. Uniform estimates

Our first goal is to establish bounds on the solutions uε and Pε independent of
ε → 0. To this end, we use the quantities uε − Ṽ as test functions in (2.1), where
Ṽ is a suitable extension of the boundary velocity field V introduced in (2.4). In
accordance with hypothesis (1.11), we get

d1‖D[uε]‖p

Lp(Ωε;R3×3
sym )

+
∫

∂Ωε

βε|uε|2 dσ

�
∫

Ωε

S(D[uε]) : D[uε] dx +
∫

∂Ωε

βε|uε|2 dσ

=
∫

Ωε

(f · (uε − Ṽ ) − (uε ⊗ uε) : ∇xṼ + S(D[uε]) : D[Ṽ ]) dx. (6.1)
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Seeing that∫
Ωε

(uε ⊗ uε) : ∇xṼ dx = −
∫

Ωε

(uε ⊗ Ṽ ) : ∇xuε dx

= −
∫

Ωε

(uε ⊗ Ṽ ) : ∇x(uε − Ṽ ) dx,

we obtain∣∣∣∣
∫

Ωε

(f · (uε − Ṽ ) − (uε ⊗ uε) : ∇xṼ + S(D[uε]) : D[Ṽ ]) dx

∣∣∣∣
� ‖f‖L∞(Ωε;R3)‖uε − Ṽ ‖L1(Ωε;R3)

+ ‖Ṽ ‖L4(Ω;R3)‖uε − Ṽ ‖L4(Ω;R3)‖∇x(uε − Ṽ )‖L2(Ω;R3×3)

+ ‖Ṽ ‖2
L4(Ω;R3)‖∇x(uε − Ṽ )‖L2(Ω;R3×3)

+ +‖∇xṼ ‖L∞(Ω;R3)‖S(D[uε])‖L1(Ω;R3×3
sym ), (6.2)

while

‖D[uε]‖p

Lp(Ωε;R3×3
sym )

� 1
2 (‖D[uε]‖p

Lp(Ωε;R3×3
sym )

+ ‖D[uε − Ṽ ]‖p

Lp(Ωε;R3×3
sym )

)

− c(p)‖∇xṼ ‖p
Lp(Ω;R3×3). (6.3)

As already pointed out in (2.4), the extension Ṽ can be made arbitrarily small in
the Lebesgue space L4(Ω; R3). Consequently, it is possible to use estimates (6.1)–
(6.3) and hypothesis (1.12), together with Korn’s inequality (5.10) applied to v =
uε − Ṽ , in order to conclude that

sup
ε>0

∫
Ωε

|∇xuε|p + sup
ε>0

∫
∂Ωε

βε|uε|2 dσ < ∞, (6.4)

and, by virtue of (1.7),

sup
ε>0

∫
Ωε

|uε|p dx < ∞. (6.5)

Finally, taking ϕ = Bε[h] for h ∈ Lp(Ωε; R3) as a test function in (2.1) and using
(6.4), (6.5), together with proposition 5.2, we obtain

sup
ε

‖Pε‖Lp′ (Ωε) < ∞, provided that
∫

Ωε

Pε dx = 0. (6.6)

6.2. Weak convergence

Seeing that the family {uε}ε>0 satisfies (4.1), we may assume that

uε → u weakly in W 1,p(Ω; R3), (6.7)

where, in accordance with (4.11), the limit vector field u satisfies the boundary
conditions

u|Γbot = V , u1|Γtop = u3|Γtop = 0. (6.8)
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Similarly, in agreement with (6.6),

Pε → P weakly in Lp′
(Ω),

∫
Ω

P dx = 0. (6.9)

In order to perform the limit ε → 0 in the variational formula (2.1), observe
first that any test function for the target problem (2.3) may also be used in (2.1).
Indeed, the class of functions

ϕ = (ϕ1, ϕ2, ϕ3), ϕ1, ϕ3 ∈ D(Ω), ϕ2 ∈ D(T 2 × (0,∞)), (6.10)

form a dense subset of test functions for (2.3) in W 1,p(Ω; R3).
Plugging a function ϕ satisfying (6.10) in (2.1) and letting ε → 0, we get
∫

Ω

((u ⊗ u) : ∇xϕ + P div ϕ) dx

=
∫

Ω

S(D[u]) : ∇xϕ dx + lim
ε→0

∫
∂Ωε

βεuε · ϕ dσ −
∫

Ω

f · ϕ dx, (6.11)

where
S(D[u]) → S(D[u]) weakly in Lp′

(Ω; R3×3
sym). (6.12)

In order to identify the limit of the boundary term, we write∫
∂Ωε

βεuε · ϕ dσ =
∫

T 2
βε(y)uε(y, 1 + Φε(y)) · ϕ(y, 1 + Φε(y))

√
1 + |Φ′

ε(y1)|2 dy,

(6.13)
where

uε(y, 1 + Φε(y)) − uε(y, 1) =
∫ 1+Φε(y)

1
∂x3uε(y, z) dz for a.a. y ∈ T 2.

Thus, by virtue of Jensen’s inequality, we get

|uε(y, 1 + Φε(y)) − uε(y, 1)|2 � Φε(y)
∫ 1+Φε(y)

1
|∂x3uε(y, z)|2 dz,

whence we obtain∫
T 2

|uε(y, 1 + Φε(y)) − uε(y, 1)|2 dy � ε

∫
Ωε

|∇xuε|2 dx. (6.14)

Relations (6.13), (6.14) give rise to
∫

∂Ωε

βεuε · ϕ dσ →
∫

∂Ω

β̃u · ϕ dy (6.15)

for any ϕ satisfying (6.10), where

β̃ = L1-weak lim
ε→0

βε

√
1 + |Φ′

ε|2, (6.16)

in complete agreement with (2.3), (3.5).
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6.3. Strong convergence

In order to complete the proof of theorem 3.1, it is sufficient to establish the
strong convergence of the velocity gradients as well as of the pressure as claimed
in (3.4). Note that, as soon as this is achieved, we obtain S(D[u]) = S(D[u]), which
converts (6.11) to the desired identity, (2.3).

To this end, we use the classical monotonicity argument. Note that, since p �
2 � 9

5 , we are allowed to use the quantity uε − Ṽ as a test function in (2.1), which
facilitates the analysis considerably.

Accordingly, we get
∫

Ωε

S(D[uε]) : ∇x(uε − Ṽ ) dx +
∫

∂Ωε

βε|uε|2 dσ

=
∫

Ωε

f · uε dx −
∫

Ωε

(uε ⊗ uε) : ∇xṼ dx.

Letting ε → 0 and using (6.14) we have

lim
ε→0

∫
Ωε

S(D[uε]) : ∇xuε dx =
∫

Ω

f · u dx −
∫

Ω

(u ⊗ u) : ∇xṼ dx

+
∫

Ω

S(D[uε]) : ∇xṼ dx −
∫

∂Ω

β̃|u|2 dσ. (6.17)

On the other hand, setting ϕ = u − Ṽ in (6.11) we can compute the right-hand
side in (6.17) in order to conclude that

lim
ε→0

∫
Ωε

S(D[uε]) : ∇xuε dx =
∫

Ω

S(D[u]) : ∇xu dx; (6.18)

in particular,

lim
ε→0

∫
Ω

(S(D[uε]) − S(D[u])) : (D(uε) − D(u)) dx = 0. (6.19)

As S satisfies hypotheses (1.11)–(1.13), relations (6.18), (6.19) imply that

D[uε] → D[u] in Lp(Ω; R3×3
sym),

yielding
uε → u in W 1,p(Ω; R3). (6.20)

The last step is to establish the pointwise convergence of the pressure {Pε}ε>0.
To this end, we consider test functions of the form

ϕε = B
[
|Pε|p

′−2Pε −
∫

Ω

|Pε|p
′−2Pε dx

]
,

where B is the Bogovskii operator constructed in proposition 5.2 associated to Ω.
Note that, by virtue of (6.6),

|Pε|p
′−2Pε are bounded in Lp(Ω)

uniformly for ε → 0.
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Similarly, we take

ϕ = B
[
|P |p′−2P −

∫
Ω

|P |p′−2P dx

]
.

Using ϕε, ϕ as test functions in (2.1), (2.3, respectively, we conclude that

lim
ε→0

∫
Ω

|Pε|p
′
dx =

∫
Ω

P |P |p′−2P dx, (6.21)

whence we obtain
Pε → P in Lp′

(Ω).

Theorem 3.1 has been proved.
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4 D. Bucur, E. Feireisl and Š. Nečasová. On the asymptotic limit of flows past a ribbed
boundary. J. Math. Fluid Mech. (In the press.)
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