
Canad. J. Math. 2025, pp. 1–28
http://dx.doi.org/10.4153/S0008414X24001056
© The Author(s), 2025. Published by Cambridge University Press on behalf of
Canadian Mathematical Society

A variational principle of scaled entropy for
amenable group actions
Yu Liu and Zhiming Li
Abstract. We study scaled topological entropy, scaled measure entropy, and scaled local entropy in
the context of amenable group actions. In particular, a variational principle is established.

1 Introduction

Entropy is one of the most widely used notions in the characterization of the com-
plexity of topological dynamical systems. In 1965, Adler et al. [1] defined topological
entropy. In 1973, Bowen [4] introduced the topological entropy of any subsets resem-
bling Hausdorff dimension. Later in 1984, inspired by Bowen’s approach, Pesin and
Pitskel [25, 26] extended the notion of topological pressure to arbitrary subsets and
established a variational principle which is a generalization of classical variational
principle established by Goodwyn, Dinaburg, and Goodman [7, 13, 14].

In 1983, Brin and Katok [2] gave the topological version of the Shannon–McMillan–
Breiman theorem with a local decomposition of the metric entropy. Further, Feng
and Huang [11] introduced the notion of measure-theoretical entropy for any (not
necessarily invariant) Borel measure which is a modification of Brin and Katok’s local
metric entropy and established the variational principle between Bowen’s topological
entropy and measure-theoretical entropy for any non-empty compact subset.

In 1975, Kieffer [22] firstly introduced entropy for amenable group actions. In 2000,
Rudolph and Weiss [28], the properties of entropy for amenable group actions was
elaborately explored. In particular, the classical variational principle for sofic group
actions was established by Kerr and Li [19–21]. The variational principle of topological
entropy and measure-theoretical entropy for amenable group actions was obtained by
Huang et al. [17]. The variational principle related to the Bowen entropy and the Brin-
Katok local entropy with respect to invariant measures for amenable group actions was
established by Zheng and Chen [31]. The variational principle of packing entropy and
measure-theoretical entropy for amenable group actions was obtained by Dou et al.
[9]. For other recent related work, we refer to [4–6, 8, 15, 16–18, 20, 27, 30, 31, 32]. One
may refer to Ornstein and Weiss [24], or Kerr and Li [21] for more details on dynamics
for amenable group actions.
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In 2015, Zhao and Pesin [33] defined the scaled topological entropy and scaled
measure entropy. In this paper, we will work in the frame of countable discrete
amenable group actions and introduce scaled measure entropy and scaled local
entropy for any Borel measure. In particular, we prove a variational principle between
scaled topological entropy and scaled local entropy:

EK({Fn}, a) = sup{hμ({Fn}, a) ∶ μ ∈M(X), μ(K) = 1},

where K is any non-empty compact subset of X. It is a scaled version of the variational
principles obtained by Feng and Huang for continuous maps [11] and by Huang et al.
[17] for amenable group actions. It worth to point out that the variational principle
in [25, 26] is not true for scaled entropies with respect to nontrivial sequences, we
refer to [33, Example 4.3] for the counter examples. Meanwhile, our result also holds
for continuous maps, we would like to directly present this result in a more general
setting.

The paper is organized as follows. In Sections 2 and 3, we introduce the notions
of scaled topological entropy, scaled weighted topological entropy, scaled measure
entropy Eμ and scaled local entropy hμ for amenable group actions and investigate
their properties. We also give the definitions of equivalent scaled sequences and
equivalent Følner sequences. In Section 4, a variational principle is established, i.e.,
the scaled topological entropy is the supremum over all Borel probability measure of
the scaled local entropy.

2 Scaled topological entropy

In this section, we give the definitions of scaled topological entropy, lower and upper
scaled topological entropies on an arbitrary subset and some related properties. Let
(X , G) be a topological dynamical system, where X is a compact metric space and
G is a discrete countable amenable group. A group G is amenable if it admits a left
invariant mean. This is equivalent to the existence of a sequence of finite subsets {Fn}
of G which are asymptotically invariant, i.e.,

lim
n→+∞

∣Fn △ gFn ∣
∣Fn ∣

, for all g ∈ G .

Such sequences are called Følner sequence. One may refer to Ornstein and Weiss [24],
or Kerr and Li [21] for more details on dynamics for amenable group actions.

Let {Fn} be a Følner sequence in G. Throughout this paper, we always let the Følner
sequence {Fn} be fixed.

2.1 Scaled topological entropy

We follow the approach described in [25]. Let U be an open cover of X. Denote by
WFn(U) the collection of families U = {Ug}g∈Fn of length m(U) = ∣Fn ∣ with Ug ∈ U
and by W(U) = ⋃n≥1 WFn(U). For U ∈WFn(U) define

X(U) = ⋂
g∈Fn

g−1Ug

= {x ∈ X ∶ gx ∈ Ug for g ∈ Fn}.
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Let Z ⊂ X be a subset of X. We say that a collection of strings Γ ⊂W(U) covers Z if
⋃U∈Γ X(U) ⊃ Z.

We call a sequence of positive numbers a = {a(n)}n≥1 a scaled sequence if it is
positive and monotonically increasing to infinity. We denote by SS the set of all scaled
sequences.

Let N = {1, 2, 3, ⋅ ⋅ ⋅ }. Given a subset Z ⊂ X, s ≥ 0, N ∈ N and a scaled sequence
a ∈ SS, let

M(Z , s, N , {Fn},U, a) = inf
Γ
∑
U∈Γ

exp(−sa(m(U))),

where the infimum is taken over all covers Γ ⊂ ⋃n≥N WFn(U) of Z. It is easy to see that
M(Z , s, N , {Fn},U, a) is monotone in N. Define

M(Z , s, {Fn},U, a) = lim
N→∞

M(Z , s, N , {Fn},U, a).

By the construction of Carathéodory dimension characteristics one can show that
when s goes from −∞ to +∞, M(Z , s, {Fn},U, a) jump from +∞ to 0 at a unique
critical value. Hence, let

EZ({Fn},U, a) = inf{s ∶ M(Z , s, {Fn},U, a) = 0}
= sup{s ∶ M(Z , s, {Fn},U, a) = +∞}.

Definition 2.1 Let (X , G) be a topological dynamical system. For a ∈ SS, Z ⊂ X,

EZ({Fn}, a) = sup{EZ({Fn},U, a)∣ U is a finite open cover of X}

is called the scaled topological entropy of (X , G) on the set Z (with respect to the
sequence a ∈ SS and the Følner sequence {Fn}).

Given a subset Z ⊂ X, s ≥ 0, N ∈ N and a scaled sequence a ∈ SS, define

R(Z , s, N , {Fn},U, a) = inf
Γ
∑
U∈Γ

exp(−sa(m(U))),

where the infimum is taken over all covers Γ ⊂WFN (U) of Z. We set

r(Z , s, {Fn},U, a) = lim inf
N→∞

R(Z , s, N , {Fn},U, a),

r(Z , s, {Fn},U, a) = lim sup
N→∞

R(Z , s, N , {Fn},U, a),

and define the critical values of r(Z , s,U, {Fn}, a) and r(Z , s,U, {Fn}, a) as

EZ({Fn},U, a) = inf{s ∶ r(Z , s, {Fn},U, a) = 0}
= sup{s ∶ r(Z , s, {Fn},U, a) = +∞},

EZ({Fn},U, a) = inf{s ∶ r(Z , s, {Fn},U, a) = 0}
= sup{s ∶ r(Z , s, {Fn},U, a) = +∞},

respectively. For existences of the above critical values, we refer to [25, page 16].

Definition 2.2

EZ({Fn}, a) = sup{EZ({Fn},U, a) ∶ U is a finite open cover of X}
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and

EZ({Fn}, a) = sup{EZ({Fn},U, a) ∶ U is a finite open cover of X},

are called the lower and upper scaled topological entropy of (X , G) on the set Z.

LetU be an open cover of X and ∣U∣ = max{diam(U) ∶ U ∈ U} denote the diameter
of the cover U. In what follows we use the notation E for either E, E , or E.

Proposition 2.1 Let a ∈ SS and U be an open cover of X. Then lim
∣U∣→0

EZ({Fn},U, a)
exists and is equal to EZ({Fn}, a).

Proof Let V be a finite open cover of X with diameter smaller than the Lebesgue
number of U. Each element V ∈ V is contained in some element U(V) ∈ U.
For any n ∈ N and any string V = {Vg}g∈Fn ∈WFn(V), there exists a correspond-
ing string U(V) = {U(Vg)}g∈Fn ∈ WFn(U). If Γ ⊂WFn(V) covers a set Z ⊂ X,
then U(Γ) = {U(V) ∶ V ∈ Γ} also covers Z. By definition of the scaled topologi-
cal entropy, M(Z , s, N , {Fn},U, a) ≤ M(Z , s, N , {Fn},V, a). Then, EZ({Fn},U, a) ≤
EZ({Fn},V, a). Therefore, EZ({Fn},U, a) ≤ lim inf

∣V∣→0
EZ({Fn},V, a), hence

lim sup
∣U∣→0

EZ({Fn},U, a) ≤ lim inf
∣V∣→0

EZ({Fn},V, a).

This implies that

EZ({Fn}, a) = lim
∣U∣→0

EZ({Fn},U, a).

EZ({Fn}, a) = lim
∣U∣→0

EZ({Fn},U, a) and EZ({Fn}, a) = lim
∣U∣→0

EZ({Fn},U, a) can be

proved in a similar manner. ∎

Now, we describe the second equivalent definition of scaled topological entropy. Let
X be a compact metric space. Given ε > 0, n ∈ N and x , y ∈ X, denote by dFn(x , y) =
maxg∈Fn d(gx , g y) and BFn(x , ε) the open Bowen ball of radius ε > 0 in the metric dFn

around x, i.e., BFn(x , ε) = {y ∈ X ∶ dFn(x , y) < ε}. We follow the approach described
in [25], for each subset Z ⊂ X, a ∈ SS, N ∈ N and ε, s > 0, set

M(Z , s, N , {Fn}, ε, a) = inf{∑
i

exp(−sa(∣Fn i ∣)) ∶

⋃
i

BFni
(x i , ε) ⊃ Z , x i ∈ X and n i ≥ N f or al l i}.

We note that M(⋅, s, N , {Fn}, ε, a) is an outer measure on X.
Since M(Z , s, N , {Fn}, ε, a) is monotonically increasing with respect to N,

M(Z , s, {Fn}, ε, a) = lim
N→∞

M(Z , s, N , {Fn}, ε, a),

It is easy to show that there is a jump-up value

EB2
Z ({Fn}, ε, a) = inf{s ∶ M(Z , s, {Fn}, ε, a) = 0}

= sup{s ∶ M(Z , s, {Fn}, ε, a) = +∞}.
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Let

EB2
Z ({Fn}, a) = lim

ε→0
EB2

Z ({Fn}, ε, a).

For any subset Z ⊂ X and a ∈ SS, let ℵ(Z , n, ε) denote the smallest number of
Bowen’s balls {BFn(x , ε)} whose union covers the set Z,

EB2
Z ({Fn}, ε, a) = lim inf

n→∞

1
a(∣Fn ∣)

logℵ(Z , n, ε),

and

EB2
Z ({Fn}, ε, a) = lim sup

n→∞

1
a(∣Fn ∣)

logℵ(Z , n, ε).

Set

EB2
Z ({Fn}, a) = lim

ε→0
EB2

Z ({Fn}, ε, a),

and

EB2
Z ({Fn}, a) = lim

ε→0
EB2

Z ({Fn}, ε, a).

We have the following result.

Proposition 2.2 For any subset Z ⊂ X and a ∈ SS, we have
(a) EZ({Fn}, a) = EB1

Z ({Fn}, a) = EB2
Z ({Fn}, a);

(b) EZ({Fn}, a) = EB2
Z ({Fn}, a); EZ({Fn}, a) = EB2

Z ({Fn}, a).

Proof We only give the proof of (a). (b) can be proved in a similar manner as
Proposition 2.3.

Firstly, we prove EB1

Z ({Fn}, a) ≤ EZ({Fn}, a). Let U be a finite open cover of X. If s
satisfies M(Z , s, {Fn},U, a) = 0, then by definition for every ε > 0, there exists N

′ ∈ N
such that for each N ∈ N with N > N

′

,

inf
Γ
∑
U∈Γ

exp(−sa(m(U))) < ε
2

,

where the infimum is taken over all covers Γ ⊂ ⋃n≥N WFn(U) of Z. So there exists ΓN
that satisfies ΓN ⊂ ⋃n≥N WFn(U) and ΓN covers Z, such that

∑
U∈ΓN

exp(−sa(m(U))) < ε.

For any n ∈ N and U ∈WFn(U), n{Fn}
U

(X(U)) ≥ ∣Fn ∣. Then

∑
U∈ΓN

exp(−sa(n{Fn}
U

(X(U)))) ≤ ∑
U∈ΓN

exp(−sa(m(U))) < ε

and

exp(−sa(n{Fn}
U

(X(U)))) ≤ ∑
U∈ΓN

exp(−sa(m(U))) < ε.

https://doi.org/10.4153/S0008414X24001056 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24001056


6 Y. Liu and Z. Li

This implies that

M{Fn},U(Z , s, a) = 0,

and hence

EB1
Z ({Fn}, a) ≤ EZ({Fn}, a).

Next, we prove EZ({Fn}, a) ≤ EB1
Z ({Fn}, a). Let U be a finite open cover of X. If

s satisfies M{Fn},U(Z , s, a) = 0, then by definition for every ε > 0, there exists k
′ ∈ N

such that for each k ∈ N with k > k
′

,

inf
D∈G(G ,U,Z ,k)

∑
D∈D

exp(−sa(n{Fn}
U

(D))) < ε
4

.

Thus there exists D = {D i}∞i=1 ∈ G(G ,U, Z , k) such that

∑
D∈D

exp(−sa(n{Fn}
U

(D))) < ε
2

.

Without loss of generality, we can assume that each D i ∈D is open with

∑
D∈D

exp(−sa(n{Fn}
U

(D))) < ε.

Indeed, if n{Fn}
U

(D i) < ∞, we can take D̂ i = X(U), where X(U) = ⋂g∈Fn g−1Ug and
for each g ∈ Fn , gD i ⊂ Ug . It is easy to see that n{Fn}

U
(D i) = n{Fn}

U
(D̂ i) and D i ⊂ D̂ i .

If n{Fn}
U

(D i) = ∞, we can take n ∈ N sufficiently large and D̂ i = X(U), where X(U) =
⋂g∈Fn g−1Ug and for each g ∈ Fn , gD i ⊂ Ug , so that exp(−sa(n{Fn}

U
(D̂ i))) < ε

2i+1 .
Then we can assume that there exists an open cover D = {D i}∞i=1 of Y, such that for

every D i ∈D, there exists Ui ∈WFn(U) with D i = X(Ui) and

∑
D∈D

exp(−sa(n{Fn}
U

(D))) < ε.

Then Z ⊂ ⋃∞i=1 D i = ⋃∞i=1 X(Ui) and ∑∞i=1 exp(−sa(m(U))) < ε. By the arbitrari-
ness of ε, we get M(Z , s, {Fn},U, a) = 0 and EZ({Fn}, a) ≤ EB1

Z ({Fn}, a). So

EZ({Fn}, a) = EB1
Z ({Fn}, a).

Let δ(U) be the Lebesgue number of U. Clearly, for every x ∈ X and n ∈ N, if
x ∈ X(U) for some string U ∈WFn(U), then BFn(x , δ(U)) ⊂ X(U) ⊂ BFn(x , ∣U∣). By
Proposition 2.1, this implies that

EZ({Fn}, a) = lim
δ→0

EB2
Z ({Fn}, δ, a) = EB2

Z ({Fn}, a).

Therefore, EZ({Fn}, a) = EB1
Z ({Fn}, a) = EB2

Z ({Fn}, a). ∎

2.2 Properties of scaled topological entropy

For any subset Z ⊂ X, any open cover U of X and a ∈ SS, let ℵ(U, Z) denote the
number of sets in a finite subcover of U with the smallest cardinality. We have the
following equivalent definition of the lower and upper scaled topological entropy.
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Proposition 2.3 Let Z ⊂ X, a ∈ SS and U be an open cover of X, then

EZ({Fn},U, a) = lim inf
n→∞

1
a(∣Fn ∣)

logℵ
⎛
⎝ ⋁

g∈Fn

g−1U, Z
⎞
⎠

,

EZ({Fn},U, a) = lim sup
n→∞

1
a(∣Fn ∣)

logℵ
⎛
⎝ ⋁

g∈Fn

g−1U, Z
⎞
⎠

.

Proof We will prove the first equality, the second one can be proved in a similar
fashion. Let us put

β = EZ({Fn},U, a), γ = lim inf
n→∞

1
a(∣Fn ∣)

logℵ
⎛
⎝ ⋁

g∈Fn

g−1U, Z
⎞
⎠

.

Given η > 0, one can choose a subsequence {n i} such that

0 = r(Z , β + η, {Fn},U, a) = lim
i→∞

R(Z , β + η, n i , {Fn},U, a).

When i ∈ N is sufficiently large, we have

ℵ
⎛
⎝ ⋁

g∈Fni

g−1U, Z
⎞
⎠

exp(−(β + η)a(∣Fn i ∣)) ≤ 1,

and hence

1
a(∣Fn i ∣)

logℵ
⎛
⎝ ⋁

g∈Fni

g−1U, Z
⎞
⎠
≤ β + η.

Let i →∞, we have γ ≤ β + η, therefore, γ ≤ β.
Let us choose a subsequence {n i} such that

+∞ = r(Z , β − η, {Fn},U, a) = lim
i→∞

R(Z , β − η, n i , {Fn},U, a).

When i ∈ N is sufficiently large, we have

ℵ
⎛
⎝ ⋁

g∈Fni

g−1U, Z
⎞
⎠

exp(−(β − η)a(∣Fn i ∣)) ≥ 1,

and hence

1
a(∣Fn i ∣)

logℵ
⎛
⎝ ⋁

g∈Fni

g−1U, Z
⎞
⎠
≥ β − η.

Let i →∞, we have γ ≥ β − η, therefore, γ ≥ β.
So γ = β, i.e.,

EZ({Fn},U, a) = lim inf
n→∞

1
a(∣Fn ∣)

logℵ
⎛
⎝ ⋁

g∈Fn

g−1U, Z
⎞
⎠

.

∎
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Given two open coversU andV of X, we say thatU is finer thanV if for every U ∈ U
there is an element V ∈ V such that U ⊂ V . We denote by U ⪰ V. Set

U ∨Vo = {U ∩ V ∶ U ∈ U, V ∈ V}, g−1U ∶= {g−1U ∶ U ∈ U}.

In what follows, we use the notation E for either E or E or E. The following
Propositions describe some basic properties of scaled topological entropy and lower
(upper) scaled topological entropies.
Proposition 2.4 Let U and V be two open covers of X, Z ⊂ X and a ∈ SS, the following
properties hold:
(1) If U ⪯ V, then EZ({Fn},U, a) ≤ EZ({Fn},V, a);
(2)

EZ({Fn},U, a) ≤ EZ({Fn},U, a) ≤ EZ({Fn},U, a)
and

EZ({Fn}, a) ≤ EZ({Fn}, a) ≤ EZ({Fn}, a).

Proof (1) Since U ⪯ V, each element V ∈ V is contained in some element in U

which we denote by U(V). Therefore, for each string V ∈WFn(V) there exists a
corresponding string U(V) ∈ WFn(U). This yields that

ℵ
⎛
⎝ ⋁

g∈Fn

g−1U, Z
⎞
⎠
≤ ℵ

⎛
⎝ ⋁

g∈Fn

g−1V, Z
⎞
⎠

,

and hence
EZ({Fn},U, a) ≤ EZ({Fn},V, a)

and
EZ({Fn},U, a) ≤ EZ({Fn},V, a).

Let Γ ⊂W(V) be a collection of strings that covers Z. The corresponding
collection of strings {U(V) ∶ V ∈ Γ} ⊂W(U) also covers Z. This implies that
M(Z , s, N , {Fn},U, a) ≤ M(Z , s, N , {Fn},V, a) for each s ≥ 0 and N > 0. Thus,
M(Z , s, {Fn},U, a) ≤ M(Z , s, {Fn},V, a). The first statement follows.

(2) The last statement follows immediately from the definitions. ∎
The following proposition shows that the scaled topological entropy as well as lower

and upper scaled topological entropies for amenable group actions are invariant under
a topological conjugacy. Its proof is similar to the proofs of [25, Theorems 1.3 and 2.5].

Definition 2.3 [21, Definition 1.3] Two continuous actions G ↷ X1 and G ↷ X2 of
the same group on compact metric spaces are said to be topologically conjugate if
there is a homeomorphism ϕ ∶ X1 → X2 such that ϕ(gx) = gϕ(x) for all x ∈ X1 and
g ∈ G.

Proposition 2.5 Given two topologically conjugate actions G ↷ X1 and G ↷ X2 and
a ∈ SS, then for each Z ⊂ X1 and each open cover U of X2 we have

EZ({Fn}, ϕ−1U, a) = Eϕ(Z)({Fn},U, a).

In particular, EZ({Fn}, a) = Eϕ(Z)({Fn}, a).
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Proposition 2.6 The following statements hold:
(1) If Z1 ⊂ Z2, then EZ1({Fn},U, a) ≤ EZ2({Fn},U, a), hence EZ1({Fn}, a) ≤

EZ2({Fn}, a);
(2) If Z i ⊂ X, i ≥ 1 and Z = ⋃i≥1 Z i , then EZ({Fn}, a) = supi≥1 EZ i ({Fn}, a),

EZ({Fn}, a) ≥ supi≥1 EZ i
({Fn}, a) and EZ({Fn}, a) ≥ supi≥1 EZ i ({Fn}, a).

Proof (1) The statements follow directly from the definitions.
(2) By (1), EZ i ({Fn}, a) ≤ EZ({Fn}, a) and hence supi≥1 EZ i ({Fn}, a) ≤

EZ({Fn}, a).
Now we are left to show that EZ({Fn}, a) ≥ supi≥1 EZ i ({Fn}, a). In fact, sup-

pose EZ i ({Fn}, a) < s(i = 1, 2, ⋅ ⋅ ⋅ ), it follows that M(Z i , s, {Fn},U, a) = 0, and
hence M(⋃i≥1 Z i , s, {Fn},U, a) = 0. Then EZ=⋃i≥1 Z i ({Fn}, a) < s. This implies that,
EZ({Fn}, a) ≤ supi≥1 EZ i ({Fn}, a). ∎

2.3 Equivalent scaled sequences and equivalent Følner sequences

We call two scaled sequences a, b ∈ SS equivalent and we write a ∼ b if the following
condition holds

0 < lim inf
n→∞

b(∣Fn ∣)
a(∣Fn ∣)

≤ lim sup
n→∞

b(∣Fn ∣)
a(∣Fn ∣)

< ∞.

Obviously, ∼ defines an equivalence relation on SS. Let a ∈ SS, we denote its equiv-
alence class by [a] ∶= {b ∈ SS ∶ b ∼ a} and we let A ∶= SS/ ∼. Given two equivalence
classes [a], [b] ∈ A, we say that [a] ⪯ [b] if for each a ∈ [a] and b ∈ [b] the following
holds

lim sup
n→∞

a(∣Fn ∣)
b(∣Fn ∣)

= 0.

The following result is immediate.

Proposition 2.7 For a, b ∈ SS, Z ⊂ X and each open cover U of X, the following
properties hold:
(1) If a(∣Fn ∣) ≤ b(∣Fn ∣) for all sufficiently large n ∈ N, then EZ({Fn},U, a) ≥

EZ({Fn},U, b) and EZ({Fn}, a) ≥ EZ({Fn}, b);
(2) For each K > 0 we have that

K ⋅ EZ({Fn},U, Ka) = EZ({Fn},U, a), K ⋅ EZ({Fn}, Ka) = EZ({Fn}, a),

where Ka = {K ⋅ a(∣Fn ∣)};
(3) If there exists a constant C > 0 such that 1

C ⋅ b(∣Fn ∣) ≤ a(∣Fn ∣) ≤ C ⋅ b(∣Fn ∣) for all
sufficiently large n ∈ N, then

1
C
⋅ EZ({Fn},U, b) ≤ EZ({Fn},U, a) ≤ C ⋅ EZ({Fn},U, b)

and
1
C
⋅ EZ({Fn}, b) ≤ EZ({Fn}, a) ≤ C ⋅ EZ({Fn}, b).
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Remark 2.1 By Statement (3) of Proposition 2.7, for each equivalence class
[a] ∈ A and for each a1 , a2 ∈ [a] we have that EZ({Fn}, a1) = EZ({Fn}, a2) = 0, or
EZ({Fn}, a1) = EZ({Fn}, a2) = ∞ or both EZ({Fn}, a1) and EZ({Fn}, a2) are pos-
itive and finite. In the first two cases, we write EZ({Fn}, [a]) = 0 and EZ({Fn}, [a]) =
∞ respectively and in the third case, we say thatEZ({Fn}, [a]) is positive and finite. In
this sense, entropy depends not on the scaled sequence but on its class of equivalence.

By Statement (1) of Proposition 2.7, we have EZ({Fn}, [a]) ≤ EZ({Fn}, [b])
whenever [a] ⪰ [b].
Theorem 2.1 If there is [a] ∈ A such that EZ({Fn}, [a]) is positive and finite, then

EZ({Fn}, [b]) =
⎧⎪⎪⎨⎪⎪⎩

0, if [a] ⪯ [b],
∞, if [b] ⪯ [a].

In particular, there may exist at most one element in (A, ⪯) such that the correspond-
ing scaled topological entropy is positive and finite. Similar results hold for lower and
upper scaled topological entropy.

Proof We shall prove the result for the scaled topological entropy EZ({Fn}, [a]), the
arguments for the lower and upper scaled topological entropies are similar.

Suppose there is [a] ∈ A such that EZ({Fn}, [a]) is positive and finite. Then for
each [b] ⪰ [a],

lim sup
n→∞

a1(∣Fn ∣)
b1(∣Fn ∣)

= 0,

for arbitrary a1 = {a1(∣Fn ∣)} ∈ [a] and b1 = {b1(∣Fn ∣)} ∈ [b]. Let us fix such two
scaled sequences a1 and b1. Given a small number β > 0, for all sufficiently
large n ∈ N we have that a1(∣Fn ∣) < βb1(∣Fn ∣) and hence, M(Z , s, {Fn},U, a1) ≥
M(Z , s, {Fn},U, βb1). This implies that

EZ({Fn}, a1) ≥ EZ({Fn}, βb1) =
1
β

EZ({Fn}, b1),

i.e., βEZ({Fn}, a1) ≥ EZ({Fn}, b1). Since β is arbitrary, we conclude that

EZ({Fn}, b1) = 0,

and hence

EZ({Fn}, [b]) = 0.

On the other hand, if [b] ⪯ [a], then

lim sup
n→∞

b2(∣Fn ∣)
a2(∣Fn ∣)

= 0,

for arbitrary a2 = {a2(∣Fn ∣)} ∈ [a] and b2 = {b2(∣Fn ∣)} ∈ [b]. Given a small num-
ber β > 0, for all sufficiently large n ∈ N we have that b2(∣Fn ∣) < βa2(∣Fn ∣) and
hence, M(Z , s, {Fn},U, b2) ≥ M(Z , s, {Fn},U, βa2). It follows that EZ({Fn}, b2) >
1
β EZ({Fn}, a2). Again since β is arbitrary,

EZ({Fn}, b2) = ∞,
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then

EZ({Fn}, [b]) = ∞. ∎

Next we discuss the equivalence of Følner sequence. Let (X , G) be a topological
dynamical system, we denote by SF(G) the set of all Følner sequences in G. We call
two Følner sequences {Fn}, {Qn} ∈ SF(G) equivalent with respect to a ∈ SS and we
write {Fn} a∼ {Qn} if the following condition holds:

0 < lim inf
n→∞

a(∣Qn ∣)
a(∣Fn ∣)

≤ lim sup
n→∞

a(∣Qn ∣)
a(∣Fn ∣)

< ∞.

Obviously, {Fn} a∼ {Qn} defines an equivalence relation on SF(G). Let
{Fn} ∈ SF(G), we denote its equivalence class by [{Fn}]

a
∶= {{Qn} ∈ SF(G) ∶

{Qn}{Fn} a∼ {Qn}{Fn}} and we let F(G)a ∶= SF(G)/ a∼. Given two equivalence

classes [{Fn}]
a
, [{Qn}]

a
∈ F(G)a, we say that [{Fn}]

a
⪯[{Qn}]

a
if for each

{Fn} ∈ [{Fn}]
a

and {Qn} ∈ [{Qn}]
a

the following holds:

lim sup
n→∞

a(∣Fn ∣)
a(∣Qn ∣)

= 0.

The following result is immediate.

Proposition 2.8 For {Fn}, {Qn} ∈ SF(G), a ∈ SS, Z ⊂ X, and each open cover U of
X, the following properties hold:
(1) If a(∣Fn ∣) ≤ a(∣Qn ∣) for all sufficiently large n ∈ N, then EZ({Fn},U, a) ≥

EZ({Qn},U, a) and EZ({Fn}, a) ≥ EZ({Qn}, a);
(2) If there exists a constant C > 0 such that 1

C ⋅ a(∣Qn ∣) ≤ a(∣Fn ∣) ≤ C ⋅ a(∣Qn ∣) for all
sufficiently large n ∈ N, then

1
C
⋅ EZ({Qn},U, a) ≤ EZ({Fn},U, a) ≤ C ⋅ EZ({Qn},U, a)

and
1
C
⋅ EZ({Qn}, a) ≤ EZ({Fn}, a) ≤ C ⋅ EZ({Qn}, a).

Remark 2.2 By Statement (2) of Proposition 2.8, for each a ∈ SS, equivalence
class [{Fn}]

a
∈ F(G)a and {F∗n}, {F∗∗n } ∈ [{Fn}]

a
, we have that EZ({F∗n}, a) =

EZ({F∗∗n }, a) = 0, or EZ({F∗n}, a) = EZ({F∗∗n }, a) = ∞ or both EZ({F∗n}, a) and
EZ({F∗∗n }, a) are positive and finite. In the first two cases, we write EZ([{Fn}]

a
, a) =

0 and EZ([{Fn}]
a
, a) = ∞, respectively, and in the third case, we say that

EZ([{Fn}]
a
, a) is positive and finite. In this sense, entropy depends not on the Følner

sequence but on its class of equivalence.
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By Statement (1) of Proposition 2.8, we have EZ([{Fn}]
a
, a) ≤ EZ([{Qn}]

a
, a)

whenever [{Fn}]
a
⪰ [{Qn}]

a
.

Theorem 2.2 Let a ∈ SS. If there is [{Fn}]
a
∈ F(G)a such that EZ([{Fn}]

a
, a) is

positive and finite, then

EZ([{Qn}]
a
, a) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, if [{Fn}]
a
⪯ [{Qn}]

a
,

∞, if [{Qn}]
a
⪯ [{Fn}]

a
.

In particular, there may exist at most one element in (F(G)a , ⪯) such that the
corresponding scaled topological entropy is positive and finite. Similar results hold for
lower and upper scaled topological entropy.

Proof We shall prove the result for the scaled topological entropy EZ([{Fn}]
a
, a),

the arguments for the lower and upper scaled topological entropies are similar.
Suppose there is [{Fn}]

a
∈ F(G)a such that EZ([{Fn}]

a
, a) is positive and finite.

Then for each [{Qn}]
a
⪰ [{Fn}]

a
,

lim sup
n→∞

a(∣F∗n ∣)
a(∣Q∗n ∣)

= 0,

for arbitrary {F∗n} ∈ [{Fn}]
a

and {Q∗n} ∈ [{Qn}]
a
. Let us fix such two Følner

sequences {F∗n} and {Q∗n}. Given a small number β > 0, for all sufficiently large n ∈ N
we have that a(∣F∗n ∣) < βa(∣Q∗n ∣) and hence, M(Z , s, {F∗n},U, a) ≥ M(Z , s,
{Q∗n},U, βa). By (2) of Proposition 2.7,

EZ({F∗n}, a) ≥ EZ({Q∗n}, βa) = 1
β

EZ({Q∗n}, a),

i.e., βEZ({F∗n}, a) ≥ EZ({Q∗n}, a). Since β is arbitrary, we conclude that

EZ({Q∗n}, a) = 0,

and hence

EZ([{Qn}]
a
, a) = 0.

On the other hand, if [{Fn}]
a
⪰ [{Qn}]

a
, then

lim sup
n→∞

a(∣Q∗∗n ∣)
a(∣F∗∗n ∣) = 0

for arbitrary {F∗∗n } ∈ [{Fn}]
a

and {Q∗∗n } ∈ [{Qn}]
a
. Given a small number

β > 0, for all sufficiently large n ∈ N we have that a(∣Q∗∗n ∣) < βa(∣F∗∗n ∣) and
hence, M(Z , s, {Q∗∗n },U, a) ≥ M(Z , s, {F∗∗n },U, βa). It follows that EZ({Q∗∗n }, a) >
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1
β EZ({F∗∗n }, a). Again since β is arbitrary,

EZ({Q∗∗n }, a) = ∞,

then

EZ ([{Qn}]
a
, a) = ∞. ∎

Remark 2.3 As is shown in Theorem 2.2, the scaled entropy depends on the choice
of Følner sequence.

2.4 Scaled weighted topological entropy

For any positive function f ∶ X → [0,∞), N ∈ N, ε > 0 and a ∈ SS, we define

W( f , s, N , ε, {Fn}, a) = inf ∑
i

c i exp(−sa(∣Fn i ∣)),

where the infimum is taken over all finite or countable families {(BFni
(x i , ε), c i)}

such that x i ∈ X , n i ≥ N , 0 < c i < ∞ and ∑i c i χB i ≥ f , where B i = BFni
(x i , ε). We

note that W(⋅, s, N , ε, {Fn}, a) is an outer measure on X.
For Z ⊂ X , f = χZ , set W(Z , s, N , ε, {Fn}, a) = W(χZ , s, N , ε, {Fn}, a). Clearly,

the function W(Z , s, N , ε, {Fn}, a) does not decrease as N increases and ε decreases.
So the following limits exist:

W(Z , s, ε, {Fn}, a) = lim
N→∞

W(Z , s, N , ε, {Fn}, a),

W(Z , s, {Fn}, a) = lim
ε→0

W(Z , s, ε, {Fn}, a).

It’s not difficult to prove that there exists a critical value of parameter s, which we will
denote by hW

top(Z , {Fn}, a), such that

W(Z , s, {Fn}, a) = {0, s > hW
top(Z , {Fn}, a),

∞, s < hW
top(Z , {Fn}, a).

We call hW
top(Z , {Fn}, a) scaled weighted topological entropy of (X , G) on the set

Z (with respect to the sequence a ∈ SS and the Følner sequence {Fn}).

2.5 Examples

Example 2.1 [33, Example 4.1] Suppose X is a compact metric space and G = Z. Let
(X , G) is a topological dynamical system induced by an expansive homeomorphism
f ∶ X → X. Let Fn = [0, n − 1] ∩Z for each n ∈ N and V be a generating open cover of
X. Then {Fn} is a Følner sequence. For a ∈ SS, let Z ⊂ X with
(1) EZ({Fn}, a) = 0;
(2) There is an open cover U of X such that U is finer than V and ℵ(⋁g∈Fn g−1U, Z) →

∞ as n →∞. By [33, Proposition 2.2], if lim
n→∞

a(n)
a(n+1) = 1, then

EZ({Fn}, a) = lim inf
n→∞

1
a(∣Fn ∣)

logℵ
⎛
⎝ ⋁

g∈Fn

g−1U, Z
⎞
⎠
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and

EZ({Fn}, a) = lim sup
n→∞

1
a(∣Fn ∣)

logℵ
⎛
⎝ ⋁

g∈Fn

g−1U, Z
⎞
⎠

.

If a(∣Fn ∣) = ℵ(⋁g∈Fn g−1U, Z) increases monotonically, then

EZ({Fn}, a) = EZ({Fn}, a) = 1.

Example 2.2 For k, d , n ∈ N, let X = {0, 1, . . . , k}G , G = Z
d , Fn = [−n + 1, n − 1]d ∩

Z
d and σg ∶ X → X be the natural shift action for g ∈ G, then {Fn} is a Følner sequence.

Suppose x = (xg)g∈G , y = (yg)g∈G ∈ X and a ∈ SS with a(n) = log n, set n(x , y) =
min{n ∈ N ∶ xg = yg for all g ∈ Fn and xg ≠ yg for some g ∈ Fn+1/Fn}, then d(x , y) =
exp(−a(∣Fn(x , y)∣)) is a compatible metric and (X , G) is a topological dynamical
system.

We claim that for any Z ⊂ X, EZ({Fn}, a) = dimH(Z), where dimH(Z) is the
Hausdorff dimension in (X , d). Moreover, by [23, Theorem 8.19], for any 0 ≤ t ≤
dimH(X), there exists a compact subset Zt ⊂ X such that EZ t({Fn}, a) = t.

In fact, for any n ∈ N and x ∈ X, let Cn(x) = {y ∈ X ∶ xg = yg , g ∈ Fn} be the
cylinder set. For any s ≥ 0, one can show that

Hs(Z) ∶= lim
ε→0

inf
C

diam(Ck i (x i))s ,

where Hs(Z) is the s-Hausdorff outer measure of Z and the infimum is
taken over all finite or countable family C ∶= {Ck i (x i)} which covers Z with
supi diam(Ck i (x i)) < ε. For any sufficiently small ε > 0, there exists n ∈ N such
that exp(−a(∣Fn+1∣)) ≤ ε < exp(−a(∣Fn ∣)). By the choice of the metric d, we have
BFk(x , ε) = Ck+n−1(x) and diam(Ck(x)) = exp(−a(∣Fk+1∣)) for all k ∈ N and x ∈ X .
The desired conclusion follows exactly by the definitions of EZ({Fn}, a) and
dimH(Z), we refer to [29, Theorem 4.2] for a similar and detailed proof.

3 Scaled measure entropy

In this Section, we introduce different types of scaled measure entropy and study their
properties .

3.1 Scaled measure entropy

Let X be a compact Hausdorff space, (X , G) be a measurable dynamical system.
Denote by M(X) the set of all Borel probability measures on X. Denote by M(X , G)
(respectively, Me(X , G)) the set of all G-invariant (respectively, ergodic G-invariant)
Borel probability measure on X. We follow the approach described in [25] and
introduce the notion of scaled measure entropy using the inverse variational principle.
Given μ ∈M(X , G) and a ∈ SS, let

Eμ({Fn},U, a) = inf{EZ({Fn},U, a) ∶ μ(Z) = 1}
= lim

δ→0
inf{EZ({Fn},U, a) ∶ μ(Z) ≥ 1 − δ}.
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The fact that the second equality holds can be proven in the same way as [25, p. 22],
and for that reason we shall omit its proof.

Let

Eμ({Fn}, a) = sup{Eμ({Fn},U, a)∣ U is a finite open cover of X}.

We call the quantity Eμ({Fn}, a) the scaled measure entropy of (X , G) with respect
to μ and a ∈ SS. Let further

Eμ({Fn},U, a) = lim
δ→0

inf{EZ({Fn},U, a) ∶ μ(Z) ≥ 1 − δ},

Eμ({Fn},U, a) = lim
δ→0

inf{EZ({Fn},U, a) ∶ μ(Z) ≥ 1 − δ}.

We call the quantities

E μ({Fn}, a) = sup{E μ({Fn},U, a)∣ U is a finite open cover of X},

E μ({Fn}, a) = sup{E μ({Fn},U, a)∣ U is a finite open cover of X},

respectively the lower and upper scaled measure entropy of (X , G) with respect to μ
and a ∈ SS.

We describe another equivalent definition of scaled measure entropy. Given μ ∈
M(X , G) and a ∈ SS, let

EB2
μ ({Fn}, ε, a) = inf{EB2

Z ({Fn}, ε, a) ∶ μ(Z) = 1}
= lim

δ→0
inf{EB2

Z ({Fn}, ε, a) ∶ μ(Z) ≥ 1 − δ}

and then let

EB2
μ ({Fn}, a) = lim

ε→0
EB2

μ ({Fn}, ε, a).

Let further

EB2
μ ({Fn}, ε, a) = lim

δ→0
inf{EB2

Z ({Fn}, ε, a) ∶ μ(Z) ≥ 1 − δ},

EB2
μ ({Fn}, ε, a) = lim

δ→0
inf{EB2

Z ({Fn}, ε, a) ∶ μ(Z) ≥ 1 − δ}.

Set

EB2
μ ({Fn}, a) = lim

ε→0
EB2

μ ({Fn}, ε, a),

and

EB2
μ ({Fn}, a) = lim

ε→0
EB2

μ ({Fn}, ε, a).

It is easy to see that

EB2
μ ({Fn}, ε, a) ≤ EB2

μ ({Fn}, ε, a) ≤ EB2
μ ({Fn}, ε, a)

and

EB2
μ ({Fn}, a) ≤ EB2

μ ({Fn}, a) ≤ EB2
μ ({Fn}, a).

We have the following result.
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Proposition 3.1 For any μ ∈M(X , G) and a ∈ SS, we have
(a) Eμ({Fn}, a) = EB1

μ ({Fn}, a) = EB2
μ ({Fn}, a);

(b) Eμ({Fn}, a) = EB2
μ ({Fn}, a); Eμ({Fn}, a) = EB2

μ ({Fn}, a).

This proof is similar to the proof of Proposition 2.2, so we omit it.

3.2 Properties of the scaled measure entropy

In what follows, we use the notation Eμ for either Eμ , E μ or E μ . The following
Propositions describe some basic properties of scaled measure entropy and lower and
upper scaled measure entropies.

The following Proposition is a direct consequence of the definition of scaled
measure entropy and Proposition 2.4.

Proposition 3.2 Let U and V be two open covers of X, μ ∈M(X , G) and a ∈ SS, the
following properties hold:
(1) If U ⪯ V, then Eμ({Fn},U, a) ≤ Eμ({Fn},V, a);
(2)

Eμ({Fn},U, a) ≤ Eμ({Fn},U, a) ≤ Eμ({Fn},U, a)

and

Eμ({Fn}, a) ≤ Eμ({Fn}, a) ≤ Eμ({Fn}, a).

The following Proposition shows that the scaled measure entropy as well as lower
and supper scaled measure entropies for amenable group actions are invariant under
a measure conjugacy.

Definition 3.1 [21, Definition 1.4] Two probability measure preserving actions G ↷
X1, G ↷ X2 of the same group are said to be measure conjugate if there are conull
sets X

′

1 ⊂ X1 and X
′

2 ⊂ X2 with GX
′

1 ⊂ X1 and GX
′

2 ⊂ X2 and an equivariant measure
isomorphism φ ∶ X

′

1 → X
′

2.

Proposition 3.3 Given two measure conjugate actions G ↷ X1 and G ↷ X2. For any
a ∈ SS and μ ∈M(X , G), we have

Eμ({Fn}, a) = Eφ∗μ({Fn}, a),

where φ is the equivariant measure isomorphism and φ∗μ = μ ○ φ−1.

3.3 Scaled measure entropy for equivalent sequences and equivalent Følner
sequences

Following the discussion on scaled topological entropy for equivalent scaled sequence
and equivalent Følner sequencesin Section 2.3, we introduce a similar notion of
equivalence for the scaled measure entropy.

The following Proposition is a direct consequence of Proposition 2.7.

Proposition 3.4 Let a, b ∈ SS, for every G-invariant measure μ ∈M(X , G), the fol-
lowing properties hold:
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(1) If a(∣Fn ∣) ≤ b(∣Fn ∣) for all sufficiently large n ∈ N, then Eμ({Fn},U, a) ≥
Eμ({Fn},U, b) and Eμ({Fn}, a) ≥ Eμ({Fn}, b);

(2) For each K > 0 we have that

K ⋅ Eμ({Fn},U, Ka) = Eμ({Fn},U, a), K ⋅ Eμ({Fn}, Ka) = Eμ({Fn}, a),

where Ka = {K ⋅ a(∣Fn ∣)};
(3) If there exists a constant C > 0 such that 1

C ⋅ b(∣Fn ∣) ≤ a(∣Fn ∣) ≤ C ⋅ b(∣Fn ∣) for all
sufficiently large n, then

1
C
⋅ Eμ({Fn},U, b) ≤ Eμ({Fn},U, a) ≤ C ⋅ Eμ({Fn},U, b)

and
1
C
⋅ Eμ({Fn}, b) ≤ Eμ({Fn}, a) ≤ C ⋅ Eμ({Fn}, b).

Remark 3.1 By Statement (1) of Proposition 3.4, we have that Eμ({Fn}, a) ≥
Eμ({Fn}, b) whenever [a] ⪯ [b] and by Statement (3) of Proposition 3.4, for each
equivalence class [a] ∈ A and for each a1 , a2 ∈ [a] we have that Eμ({Fn}, a1) =
Eμ({Fn}, a2) = 0 or Eμ({Fn}, a1) = Eμ({Fn}, a2) = ∞ or both Eμ({Fn}, a1) and
Eμ({Fn}, a2) are positive and finite.

Theorem 3.1 For every μ ∈M(X , G), if there is [a] ∈ A such that Eμ({Fn}, [a]) is
positive and finite, then

Eμ({Fn}, [b]) =
⎧⎪⎪⎨⎪⎪⎩

0, if [a] ⪯ [b],
∞, if [b] ⪯ [a].

Similar results holds for lower and upper scaled measure entropy.

Proof Suppose there is [a] ∈ A such that Eμ({Fn}, [a]) is positive and finite. Then
for each [b] ⪰ [a],

lim sup
n→∞

a1(∣Fn ∣)
b1(∣Fn ∣)

= 0

for arbitrary a1 = {a1(∣Fn ∣)} ∈ [a] and b1 = {b1(∣Fn ∣)} ∈ [b]. Let us fix such two scaled
sequences a1 and b1. Given a small number β > 0, for all sufficiently large n ∈ N we
have that a1(∣Fn ∣) < βb1(∣Fn ∣). By Proposition 3.4, we have that

Eμ({Fn}, a1) ≥ Eμ({Fn}, βb1) =
1
β

Eμ({Fn}, b1),

i.e., βEμ({Fn}, a1) ≥ Eμ({Fn}, b1). Since β is arbitrary, we conclude that

Eμ({Fn}, b1) = 0,

and hence

Eμ({Fn}, [b]) = 0.
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On the other hand, if [b] ⪯ [a] then

lim sup
n→∞

b2(∣Fn ∣)
a2(∣Fn ∣)

= 0

for arbitrary a2 = {a2(∣Fn ∣)} ∈ [a] and b2 = {b2(∣Fn ∣)} ∈ [b]. Given a small number
β > 0, for all sufficiently large n ∈ N we have that b2(∣Fn ∣) < βa2(∣Fn ∣). It follows that
Eμ({Fn}, b2) > 1

β Eμ({Fn}, a2). Again since β is arbitrary,

Eμ({Fn}, b2) = ∞,

and hence

Eμ({Fn}, [b]) = ∞. ∎

And the following proposition is a direct consequence of Proposition 2.8.

Proposition 3.5 Let {Fn}, {Qn} ∈ SF(G). For a ∈ SS and every G-invariant measure
μ ∈M(X , G), the following properties hold:

(1) If a(∣Fn ∣) ≤ a(∣Qn ∣) for all sufficiently large n ∈ N, then Eμ({Fn},U, a) ≥
Eμ({Qn},U, a) and Eμ({Fn}, a) ≥ Eμ({Qn}, a);

(2) If there exists a constant C > 0 such that 1
C ⋅ a(∣Qn ∣) ≤ a(∣Fn ∣) ≤ C ⋅ a(∣Qn ∣) for all

sufficiently large n ∈ N, then

1
C
⋅ Eμ({Qn},U, a) ≤ Eμ({Fn},U, a) ≤ C ⋅ Eμ({Qn},U, a)

and
1
C
⋅ Eμ({Qn}, a) ≤ Eμ({Fn}, a) ≤ C ⋅ Eμ({Qn}, a).

Remark 3.2 By Statement (1) of Proposition 3.5, we have that Eμ({Fn}, a) ≥
Eμ({Qn}, a) whenever [{Fn}]

a
⪯ [{Qn}]

a
and by Statement (2) of Proposition 3.5,

for each equivalence class [{Fn}]
a
∈ F(G)a and for each {F∗n}, {F∗∗n } ∈ [{Fn}] we

have thatEμ({Fn}, a) = Eμ({Fn}, a) = 0 orEμ({F∗n}, a) = Eμ({F∗∗n }, a) = ∞or both
Eμ({F∗n}, a) and Eμ({F∗∗n }, a) are positive and finite.

Theorem 3.2 Let μ ∈M(X , G) and a ∈ SS. If there is [{Fn}]
a
∈ F(G)a such that

Eμ([{Fn}]
a
, a) is positive and finite, then

Eμ([{Qn}]
a
, a) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, if [{Fn}]
a
⪯ [{Qn}]

a
,

∞, if [{Qn}]
a
⪯ [{Fn}]

a
.

Similar results hold for lower and upper scaled measure entropy.

https://doi.org/10.4153/S0008414X24001056 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24001056


A variational principle of scaled entropy for amenable group actions 19

Proof Suppose there is [{Fn}]
a
∈ F(G)a such that Eμ([{Fn}]

a
, a) is positive and

finite. Then for each [{Qn}]
a
⪰ [{Fn}]

a
,

lim sup
n→∞

a(∣F∗n ∣)
a(∣Q∗n ∣)

= 0

for arbitrary {F∗n} ∈ [{Fn}]
a

and {Q∗n} ∈ [{Qn}]
a
. Let us fix such two Følner

sequences {F∗n} and {Q∗n}. Given a small number β > 0, for all sufficiently large n ∈ N,
we have that a(∣F∗n ∣) < βa(∣Q∗n ∣). By (2) of Proposition 3.4, we have that

Eμ({F∗n}, a) ≥ Eμ({Q∗n}, βa) = 1
β

Eμ({Q∗n}, a),

i.e., βEμ({F∗n}, a) ≥ Eμ({Q∗n}, a). Since β is arbitrary, we conclude that

Eμ({Q∗n}, a) = 0,

and hence

Eμ([{Qn}]
a
, a) = 0.

On the other hand, if [{Fn}]
a
⪰ [{Qn}]

a
then

lim sup
n→∞

a(∣Q∗∗n ∣)
a(∣F∗∗n ∣) = 0

for arbitrary {F∗∗n } ∈ [{Fn}]
a

and {Q∗∗n } ∈ [{Qn}]
a
. Given a small number β > 0,

for all sufficiently large n ∈ N we have that a(∣Q∗∗n ∣) < βa(∣F∗∗n ∣). It follows that
Eμ({Q∗∗n }, a) > 1

β Eμ({F∗∗n }, a). Again since β is arbitrary,

Eμ({Q∗∗n }, a) = ∞,

then

Eμ([{Qn}]
a
, a) = ∞.

∎

3.4 Scaled local entropy

In this Section, we introduce the scaled local entropy following the approach of Brin
and Katok defined for amenable group actions as follows:

Definition 3.2 For any a ∈ SS, ε > 0 and μ ∈M(X), define

hμ({Fn}, a) = ∫ hμ({Fn}, a, x) dμ(x),

hμ({Fn}, a) = ∫ hμ({Fn}, a, x) dμ(x),

where

hμ({Fn}, a, x) = lim
ε→0

lim inf
n→+∞

− 1
a(∣Fn ∣)

log μ(BFn(x , ε)),
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hμ({Fn}, a, x) = lim
ε→0

lim sup
n→+∞

− 1
a(∣Fn ∣)

log μ(BFn(x , ε)).

We call hμ({Fn}, a), hμ({Fn}, a) the lower and upper scaled local entropy of
(X , G) (with respect to the sequence a ∈ SS, the Følner sequence {Fn} and μ ∈
M(X)).

Remark 3.3 It is pointed out in [12] that Dan Rudolph showed that for an amenable
group G, the generic measure-preserving action of G on a Lebesgue space has zero
entropy. Indeed, this is extended to nonamenable groups by Lewis Bowen in [3]
in which the proof shows that every action is a factor of a zero entropy action.
In this sense, for generic measure-preserving actions, if we can find certain sub-
exponential scaled sequences, then the scaled measure entropy could be positive.
Thus the scaled measure entropy is a possible candidate to classify generic measure-
preserving actions. For more examples of scaled measure entropies for Z or N actions,
we refer to [33, 4 Examples].

4 Variational principle

The notion of scaled weighted topological entropy is introduced, which is important
to prove the variational principle.

4.1 Equivalence of EB2
Z ({Fn}, a) and hW

top(Z , {Fn}, a).

Lemma 4.1 [23, Theorem 2.1] Let (X , d) be a compact metric space and B =
{B(x i , r i)}i∈I be a family open of (or closed) balls in X. Then there exists a finite or
countable subfamily B

′ = {B(x i , r i)}i∈I′ of pairwise disjoint balls in B such that

⋃
B∈B

B ⊆ ⋃
i∈I′

B(x i , 5r i).

Theorem 4.1 For any a ∈ SS, Borel set L ⊂ X, μ ∈M(X) and s ≥ 0, we have
(1) If hμ({Fn}, a, x) ≤ s for all x ∈ L, then EL({Fn}, a) ≤ s;
(2) If hμ({Fn}, a, x) ≥ s for all x ∈ L and μ(L) > 0, then EL({Fn}, a) ≥ s.

Proof (1) For a fixed r > 0 and k ∈ N, let

Lk = {x ∈ L ∶ lim inf
n→∞

− log μ(BFn(x , ε))
a(∣Fn ∣)

< s + r for all ε ∈ (0, 1
k
)} .

Then we have L = ⋃∞k=1 Lk , since hμ({Fn}, a, x) ≤ s for all x ∈ L.
Now fix k ≥ 1 and 0 < ε < 1

5k . For each x ∈ Lk , there exists a strictly increasing
sequence {n j}∞j=1(depending on the point x) such that

μ(BFn j
(x , ε)) ≥ exp(−(s + r)a(∣Fn j ∣)) for all j ≥ 1.

For any N ∈ N, the set Lk is contained in the union of the sets in the family

F = {BFn j
(x , ε) ∶ x ∈ Lk , n j ≥ N}.
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By Lemma 4.1, there exists a finite or countable subfamily B = {BFni
(x i , ε)}i∈I ⊂ F

of pairwise disjoint balls such that

Lk ⊂ ⋃
i∈I

BFni
(x i , 5ε).

The subfamily is at most countable since μ is a probability measure and the elements
in B are pairwise disjoint and have positive μ-measure. Note that

μ(BFni
(x i , ε)) ≥ exp(−(s + r)a(∣Fn i ∣)) for all i ∈ I.

The disjointness of {BFni
(x i , ε)}i∈I yields that

M(Lk , s + r, N , {Fn}, 5ε, a) ≤ ∑
i∈I

exp(−(s + r)a(∣Fn i ∣)) ≤ ∑
i∈I

μ(BFni
(x i , ε)) ≤ 1.

It follows that

M(Lk , s + r, {Fn}, 5ε, a) = lim
N→∞

M(Lk , s + r, N , {Fn}, 5ε, a) ≤ 1.

Hence,

ELk({Fn}, 5ε, a) ≤ s + r,

which implies that

ELk({Fn}, a) ≤ s + r for all k ≥ 1.

Hence,

EL({Fn}, a) = E⋃∞k=1 Lk({Fn}, a) = sup
k≥1

ELk({Fn}, a) ≤ s + r.

Since r can be arbitrary, this implies that EL({Fn}, a) ≤ s.
(2) For a fixed r > 0 and k ∈ N, let

Lk = {x ∈ L ∶ lim inf
n→∞

− log μ(BFn(x , ε))
a(∣Fn ∣)

> s − r for all ε ∈ (0, 1
k
)} .

Since hμ({Fn}, a, x) ≥ s for all x ∈ L, we have that Lk ⊂ Lk+1 and L = ⋃∞k=1 Lk . Fix
a sufficiently large k ≥ 1 with μ(Lk) > 1

2 μ(L) > 0. For each N ∈ N, set

Lk ,N = {x ∈ Lk ∶
− log μ(BFn(x , ε))

a(∣Fn ∣)
> s − r for all n ≥ N , ε ∈ (0, 1

k
)} .

It is easy to see that Lk ,N ⊂ Lk ,N+1 and Lk = ⋃∞N=1 Lk ,N . Thus we can pick N∗ ≥ 1
such that μ(Lk ,N∗) > 1

2 μ(Lk) > 0. For simplicity of notation, let L∗ = Lk ,N∗ and ε∗ =
1
k . By the choice of L∗, we have that

μ(BFn(x , ε)) ≤ exp(−(s − r)a(∣Fn ∣)) for all x ∈ L∗ , 0 < ε < ε∗ , n ≥ N∗ .

Fix a sufficiently large N > N∗. For each cover F = {BFni
(y i , ε

2 )}i≥1 of L∗ with
0 < ε < ε∗ and n i ≥ N ≥ N∗ for each i ≥ 1. Without loss of generality, assume that
L∗⋂BFni

(y i , ε
2 ) ≠ ∅ for all i. Thus, for each i ≥ 1 pick a point x i ∈ L∗⋂BFni

(y i , ε
2 )
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so that

BFni
(y i ,

ε
2
) ⊂ BFni

(x i , ε).

It follows that

∑
i≥1

exp(−(s − r)a(∣Fn i ∣)) ≥ ∑
i≥1

μ(BFni
(x i , ε)) ≥ μ(L∗).

Therefore,

M(L∗ , s − r, N , {Fn}, ε
2

, a) ≥ μ(L∗) > 0.

Consequently,

M(L∗ , s − r, {Fn}, ε
2

, a) = lim
N→∞

M(L∗ , s − r, N , {Fn}, ε
2

, a) ≥ μ(L∗) > 0,

which implies that EL∗({Fn}, a) ≥ s − r.
It follows that

EL({Fn}, a) ≥ EL∗({Fn}, a) ≥ s − r.

Since r can be arbitrary, this implies that EL({Fn}, a) ≥ s completing the proof of
the theorem. ∎

We need to emphasize that the following proof uses the similar idea as [11,
Proposition 3.2].

Proposition 4.1 For any a ∈ SS, s ≥ 0, ε, δ > 0 and Z ⊂ X. If lim inf
n→+∞

a(∣Fn ∣)
n > 0, we

have

M(Z , s + δ, N , {Fn}, 6ε, a) ≤ W(Z , s, N , ε, {Fn}, a) ≤ M(Z , s, N , {Fn}, ε, a)

for large enough N ∈ N, and then EB2
Z ({Fn}, a) = hW

top(Z , {Fn}, a).

Proof Let Z ⊂ X , s ≥ 0, ε, δ > 0, set f = χZ , c i ≡ 1 in the definition of scaled weighted
topological entropy, we have

W(Z , s, N , ε, {Fn}, a) ≤ M(Z , s, N , {Fn}, ε, a) f or ever y N ∈ N.

Next, we prove M(Z , s + δ, N , {Fn}, 6ε, a) ≤ W(Z , s, N , ε, {Fn}, a) for large
enough N ∈ N.

There are ξ > 0 and N1 such that a(∣Fn ∣) ≥ nξ for all n ≥ N1. Let N > max{N1 , 2}
such that n2e−nδ ξ ≤ 1 for all n ≥ N . Let {(BFni

(x i , ε), c i)}i∈I be a family so that I ⊂
N, x i ∈ X , 0 ≤ c i < ∞, n i ≥ N and

∑
i

c i χB i ≥ χZ ,

where B i ∶= BFni
(x i , ε). We claim that

M(Z , s + δ, N , {Fn}, 6ε, a) ≤ ∑
i∈I

c i exp(−sa(∣Fn i ∣))(4.1)

and hence M(Z , s + δ, N , {Fn}, 6ε, a) ≤ W(Z , s, N , ε, {Fn}, a).
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We denote

In = {i ∈ I ∶ n i = n},

and

In ,k = {i ∈ In ∶ i ≤ k}

for n ≥ N , k ∈ N. We write B i ∶= BFni
(x i , ε), 5B i ∶= BFni

(x i , 5ε) for i ∈ I. Obviously,
we may assume B i ≠ B j for i ≠ j. For t > 0, set

Zn ,t =
⎧⎪⎪⎨⎪⎪⎩

x ∈ Z ∶ ∑
i∈In

c i χB i (x) > t
⎫⎪⎪⎬⎪⎪⎭

and

Zn ,t ,k =
⎧⎪⎪⎨⎪⎪⎩

x ∈ Z ∶ ∑
i∈In ,k

c i χB i (x) > t
⎫⎪⎪⎬⎪⎪⎭

.

We divide the proof of (4.1) into the following three steps.
Step 1. For each n ≥ N , k ∈ N and t > 0, there exists a finite set Jn ,k ,t ⊂ In ,k such

that the ball B i(i ∈ Jn ,k ,t) are pairwise disjoint, Zn ,t ,k ⊂ ∪i∈Jn ,k ,t 5B i , and

ℵ(Jn ,k ,t) exp(−sa(∣Fn i ∣)) ≤
1
t ∑

i∈In ,k

c i exp(−sa(∣Fn i ∣)).

We will use the method of Federer [10, 2.10.24] and Mattila [23, Lemma 8.16] for
amenable group actions. Since In ,k is finite, by approximating the c i ’s from above, we
may assume that each c i is a positive rational, and then by multiplying with a common
denominator we may assume that each c i is a positive integer. Let m be the least integer
with m ≥ t. DenoteB = {B i , i ∈ In ,k}, and define u ∶ B→ Z, by u(B i) = c i . Since B i ≠
B j for i ≠ j, so u is well defined. We define by introduction integer-valued functions
v0 , v1 , ⋅ ⋅ ⋅ , vm on B and sub-families B1 ,B2 , . . . ,Bm of B starting with v0 = u. Using
Lemma 4.1 repeatedly, we define inductively for j = 1, ⋅ ⋅ ⋅ , m, disjoint subfamilies Bi
of B such that

B j ⊂ {B ∈ B ∶ v j−1(B) ≥ 1},

Zn ,k ,t ⊂ ∪B∈B j 5B,

and the functions v j such that

v j(B) = { v j−1(B) − 1, for B ∈ B j ,
v j−1(B), for B ∈ B/B j .

This is possible for j < m,

Zn ,k ,t ⊂ {x ∶ ∑
B∈B∶B∋x

v j(B) ≥ m − j} ,
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whence every x ∈ Zn ,k ,t belongs to some ball B ∈ B with v j(B) ≥ 1. Thus

m
∑
j=1
ℵ(B j) exp(−sa(∣Fn ∣)) =

m
∑
j=1

∑
B∈B j

(v j−1(B) − v j(B)) exp(−sa(∣Fn ∣))

≤ ∑
B∈B

m
∑
j=1
(v j−1(B) − v j(B)) exp(−sa(∣Fn ∣))

≤ ∑
B∈B

u(B) exp(−sa(∣Fn ∣))

= ∑
i∈In ,k

c i exp(−sa(∣Fn ∣)).

Choose j0 ∈ {1, ⋅ ⋅ ⋅ , m} so that ℵ(B j0) is the smallest. Then

ℵ(B j0) exp(−sa(∣Fn ∣)) ≤
1
m ∑

i∈In ,k

c i exp(−sa(∣Fn ∣)) ≤
1
t ∑

i∈In ,k

c i exp(−sa(∣Fn ∣)).

So Jn ,k ,t = {i ∈ I ∶ B i ∈ B j0} is desired.
Step 2. For each n ∈ N and t > 0, we have

M(Zn ,t , s + δ, N , {Fn}, 6ε, a) ≤ exp(−δa(∣Fn ∣))
t ∑

i∈In

c i exp(−sa(∣Fn ∣)).(4.2)

Assume Zn ,t ≠ ∅, otherwise (4.2) is obvious. Since Zn ,k ,t ↑ Zn ,t , Zn ,k ,t ≠ ∅ for
large enough k ∈ N. Let Jn ,k ,t be the sets constructed in Step 1. Then Jn ,k ,t ≠ ∅ for
large enough k ∈ N. Set En ,k ,t = {x i ∶ i ∈ Jn ,k ,t}. Note that the family of all non-
empty compact subsets of X is compact with respect to Hausdorff distance(Federer
[10, 2.10.21]). It follows that there is a subsequence (k j) of natural numbers and a
non-empty compact set En ,t ⊂ X such that En ,k j ,t converges to En ,t in the Hausdorff
distance as j →∞. Since any two points in En ,k ,t have a distance (with respect to
dFn ) not less than ε, so do the points in En ,t . Thus En ,t is a finite set, moreover,
ℵ(En ,k j ,t) = ℵ(En ,t) when j ∈ N is large enough.

Hence

⋃
x∈En ,t

BFn(x , 5.5ε) ⊃ ⋃
x∈En ,k j ,t

BFn(x , 5ε) = ⋃
i∈Jn ,k j ,t

5B i ⊃ Zn ,k j ,t

when j ∈ N is large enough, and thus ⋃x∈En ,t BFn(x , 6ε) ⊃ Zn ,t . By the way, since
ℵ(En ,k j ,t) = ℵ(En ,t) when j ∈ N is large enough, we have

ℵ(En ,t) exp(−sa(∣Fn ∣)) ≤
1
t ∑

i∈In

c i exp(−sa(∣Fn ∣)).

Therefore,

M(Zn ,t , s + δ, N , {Fn}, 6ε, a) ≤ ℵ(En ,t) exp(−(s + δ)a(∣Fn ∣))

≤ exp(−δa(∣Fn ∣))
t ∑

i∈In

c i exp(−sa(∣Fn ∣))
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≤ exp(−δnξ)
t ∑

i∈In

c i exp(−sa(∣Fn ∣))

≤ 1
n2 t ∑

i∈In

c i exp(−sa(∣Fn ∣)).

Step 3. For any t ∈ (0, 1), we have

M(Z , s + δ, N , {Fn}, 6ε, a) ≤ 1
t ∑i∈I

c i exp(−sa(∣Fn i ∣)),

which implies (4.1). In fact, fix t ∈ (0, 1). Note that ∑∞n=N n−2 < 1. Then Z ⊂
⋃∞n=N Zn ,n−2 t . Also note that M(Z , s, N , {Fn}, ε, a) is an outer measure of X, so we
get

M(Z , s + δ, N , {Fn}, 6ε, a) ≤
∞

∑
n=N

M(Zn ,n−2 t , s + δ, N , {Fn}, 6ε, a)

≤
∞

∑
n=N

1
t ∑i∈In

c i exp(−sa(∣Fn ∣)) =
1
t ∑i∈I

c i exp(−sa(∣Fn i ∣)).

∎
We will give a Frostman’s lemma in dynamical system, which is important to our

proof.

Lemma 4.2 Suppose K is a non-empty compact subset of X. Let s ≥ 0, N ∈ N, ε > 0.
If c ∶= W(K , s, N , ε, {Fn}, a) > 0, then there exists a Borel probability measure μ on X
such that μ(K) = 1 and

μ(BFn(x , ε)) ≤ 1
c

exp(−sa(∣Fn ∣)).

Proof Clearly c < ∞. We define a function p on the space C(X) of continuous real-
valued functions on X by

p( f ) = 1
c

W(χK ⋅ f , s, N , ε, {Fn}, a).

Let 1 ∈ C(X) denote the constant function 1(x) ≡ 1. It is easy to verify that:
(1) p(t f ) = tp( f ) for f ∈ C(X) and t ≥ 0,
(2) p( f + g) ≤ p( f ) + p(g) for f , g ∈ C(X),
(3) p(1) = 1, 0 ≤ P( f ) ≤∥ f ∥∞ for f ∈ C(X), and p(g) = 0 for g ∈ C(X), g ≤ 0.

By the Hahn–Banach theorem, we can extend the linear functional
t → tp(1), t ∈ R, from the subspace of constant functions to a linear functional
L ∶ C(X) → R satisfying

L(1) = p(1) = 1 and − p(− f ) ≤ L( f ) ≤ p( f ) for any f ∈ C(X).

If f ∈ C(X) with f ≥ 0, then p(− f ) = 0 and so L( f ) ≥ 0. Hence we can use the Riesz
representation theorem to find a Borel probability measure μ on X such that L( f ) =
∫ f dμ for f ∈ C(X).

https://doi.org/10.4153/S0008414X24001056 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24001056


26 Y. Liu and Z. Li

Next, we prove μ(K) = 1. For any compact set E ⊂ X/K, by Urysohn lemma
there exists f ∈ C(X) such that 0 ≤ f ≤ 1, f (x) = 1 for x ∈ E and f (x) = 0 for x ∈ K.
Then f ⋅ χK = 0 and thus p( f ) = 0. Hence μ(E) ≤ L( f ) ≤ p( f ) = 0. This shows
μ(X/K) = 0, that is μ(K) = 1.

In the end, we prove μ(BFn(x , ε)) ≤ 1
c exp(−sa(∣Fn ∣)) for any x ∈ X , n ≥ N . In

fact, for any compact set E ⊂ BFn(x , ε), by Urysohn lemma again, there is f ∈ C(X),
such that 0 ≤ f ≤ 1, f (y) = 1 for y ∈ E and f (y) = 0 for y ∈ X/BFn(x , ε). Then μ(E) ≤
L( f ) ≤ p( f ). Since χK ⋅ f ≤ χBFn (x ,ε) and n ≥ N , we get W(χK ⋅ f , s, N , ε, {Fn}, a) ≤
exp(−sa(∣Fn ∣)) and hence p( f ) ≤ 1

c exp(−sa(∣Fn ∣)). Therefore, we have μ(E) ≤
1
c exp(−sa(∣Fn ∣)). It follows that

μ(BFn(x , ε)) = sup{μ(E) ∶ E is a compact subset of BFn(x , ε)} ≤ 1
c

exp(−sa(∣Fn ∣)).

∎
Now we are in a position to present our main result: the variational principle

between scaled topological entropy and scaled local entropy.
Theorem 4.2 Let (X , G) be a topological dynamical system, a ∈ SS and K be a non-
empty compact subset of X. If lim inf

n→+∞
a(∣Fn ∣)

n > 0, then

EK({Fn}, a) = sup{hμ({Fn}, a) ∶ μ ∈M(X), μ(K) = 1}.

Proof Firstly, we prove EB2
K ({Fn}, a) ≥ hμ({Fn}, a), for any μ ∈M(X), μ(K) = 1.

We set

hμ({Fn}, a, x , ε) = lim inf
n→∞

− 1
a(∣Fn ∣)

log μ(BFn(x , ε))

for x ∈ X , n ∈ N, ε > 0. It’s easy to see that hμ({Fn}, a, x , ε) is nonnegative and
increases as ε decreases. By the monotone convergence theorem, we get

lim
ε→0∫ hμ({Fn}, a, x , ε)dμ(x) = ∫ hμ({Fn}, a, x)dμ(x) = hμ({Fn}, a).

Thus to show EB2
K ({Fn}, a) ≥ hμ({Fn}, a), we only to show

EB2
K ({Fn}, a) ≥ ∫ hμ({Fn}, a, x , ε)dμ(x) for any ε > 0.

Now we fix ε > 0, l ∈ N, set u l = min{l , ∫ hμ({Fn}, a, x , ε)dμ(x) − 1
l }, then exist

a Borel set A l ⊂ X , μ(A l) > 0, N ∈ N such that

μ(BFn(x , ε)) ≤ exp(−u l a(∣Fn ∣)), for all x ∈ A l , n ≥ N .(4.3)

Let {BFni
(x i , ε/2)} ba a finite or countable family such that x i ∈ X , n i ≥ N and K ∩

A l ⊂ ⋃i BFni
(x i , ε/2). We may as well assume that for each i ∈ N, BFni

(x i , ε/2)⋂(K ∩
A l) ≠ ∅, and select y i ∈ BFni

(x i , ε/2)⋂(K ∩ A l). Then by (4.3), we have

∑
i

exp(−u l a(∣Fn i ∣)) ≥ ∑
i

μ(BFni
(y i , ε))

≥ ∑
i

μ(BFni
(x i , ε/2))

≥ μ(K ∩ A l) = μ(A l) > 0.
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So, we get

M (K , u l , {Fn}, ε
2

, a) ≥ M(K , u l , N , {Fn}, ε
2

, a)

≥ M(K ∩ A l , u l , N , {Fn}, ε
2

, a)

≥ μ(A l) > 0.

Therefore, EB2
K ({Fn}, a) ≥ u l . Letting l →∞, we get

EB2
K ({Fn}, a) ≥ ∫ hμ({Fn}, a, x , ε)dμ(x).

Thus EB2
K ({Fn}, a) ≥ hμ({Fn}, a).

We next prove EB2
K ({Fn}, a) ≤ {hμ({Fn}, a) ∶ μ ∈M(X), μ(K) = 1}. We may as

well assume EB2
K ({Fn}, a) > 0, otherwise the conclusion is obvious. By Proposition 4.1,

EB2
K ({Fn}, a) = hW

top(K , {Fn}, a). Suppose 0 < s < hW
top(K , {Fn}, a), then there exists

ε > 0 and N ∈ N, such that c = W(K , s, N , ε, {Fn}, a) > 0. By Lemma 4.2, there exists
μ ∈M(X), μ(K) = 1, such that

μ(BFn(x , ε)) ≤ 1
c

exp(−sa(∣Fn ∣))

for any x ∈ X , n ≥ N . And then hμ({Fn}, a, x) ≥ s for each x ∈ X. Therefore,
hμ({Fn}, a) ≥ ∫ hμ({Fn}, a, x)dμ(x) ≥ s. By Proposition 2.2, the proof is
completed. ∎
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