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We examine the effect of gravity and (rotational) inertia on the inertial focusing of
spherical non-neutrally buoyant particles suspended in flow through curved microfluidic
ducts. In the neutrally buoyant case, examined in Harding et al. (J. Fluid Mech., vol.
875, 2019, pp. 1–43), the gravitational contribution to the force on the particle is exactly
zero and the net effect of centrifugal and centripetal forces (due to the motion around
the curved duct) is negligible. Inertial lift force and drag from the secondary fluid flow
vortices interact and lead to focusing behaviour which is sensitive to the bend radius of
the device and the particle size (each measured relative to the height of the cross-section).
In the case of non-neutrally buoyant particles the behaviour becomes more complex with
the two additional perturbing forces. The gravitational force, relative to the inertial lift
force, scales with the inverse square of the flow velocity, making it a potentially important
factor for devices operating at low flow rates with a suspension of non-neutrally buoyant
particles. In contrast, the net centripetal/centrifugal force scales with the inverse of the
bend radius, similar to the drag force from the secondary flow. We examine how these
forces perturb the stable equilibria within the cross-sectional plane to which neutrally
buoyant particles ultimately migrate.

Key words: microfluidics, particle/fluid flow

1. Introduction

Curved microfluidic ducts are used to separate particles/cells by size, e.g. one
application being the separation of circulating tumour cells from white blood cells in a
(pre-processed) blood sample (Warkiani et al. 2014). Studies on the migration and focusing
of spherical particles in microfluidic ducts often assume neutrally buoyant particles and
therefore neglect gravitational force (Saffman 1965; Ho & Leal 1974; Schonberg & Hinch
1989; Hood, Lee & Roper 2015; Harding, Stokes & Bertozzi 2019). Neglect of the
gravitational force is generally also assumed to be valid for particles with density close
to that of the carrying fluid. However, cells are, typically, a little more dense than blood
plasma and so there is a need to put this assumption to the test. Further, there is potential
to apply these technologies in applications in which the particle and suspending fluid have
significantly different densities.

Gravitational effects have previously been considered in the context of a spherical
particle suspended in uni-directional flow between two inclined plane parallel walls

† Email address for correspondence: brendan.harding@adelaide.edu.au
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902 A4-2 B. Harding and Y. M. Stokes

(Hogg 1994; Asmolov 1999; Asmolov, Lebedeva & Osiptsov 2009; Asmolov & Osiptsov
2009; Asmolov et al. 2018). In these works, a common configuration is where the direction
of gravity has a non-zero component in the main direction of flow (including cases in
which it is aligned with the main direction of flow) (Hogg 1994; Asmolov 1999; Asmolov
et al. 2018). In such cases gravity modifies the slip velocity of the particle (the difference
in the particle velocity in the main direction of flow compared to the velocity of the flow
in its absence), which has a significant impact on the inertial lift force. Gravity can also
have a direct contribution to the net force perpendicular to the walls if that component of
the gravitational force is non-zero as well.

A second configuration is where the gravitational force is both parallel to the walls
bounding the flow and perpendicular to main direction of flow (Asmolov & Osiptsov
2009; Asmolov et al. 2009). When the appropriate Reynolds numbers are sufficiently
small this effectively results in a superposition of the inertial lift forces resulting from
a particle suspended in Poiseuille flow and a particle settling/falling through a stationary
fluid (bounded by two walls in each case).

A third configuration is when the gravitational force aligns with the normal vector of
the walls bounding the flow (Hogg 1994; Asmolov et al. 2018). In this case gravity does
not modify the slip velocity of the particle. Instead, gravity adds to the inertial lift force
which perturbs the particle motion normal to the walls. This last case is most relevant to
our study in relation to the direction of gravity relative to the main flow and the walls.
However, our duct set-up differs significantly from that of flow between two plane parallel
walls making existing results unworkable.

There have been some limited experimental studies on the sorting of non-neutrally
buoyant particles in curved microfluidic ducts in which the density difference of the
particles relative to the fluid was less than 20 % (Oozeki et al. 2009; Ookawara et al.
2010). These studies suggest that small variations in density have very little impact on
the results. For larger density differences, interest in the application of microfluidics to
mineral processing has led to studies of different device designs and focusing mechanisms
than those considered herein (Priest et al. 2011; Yin, Nikoloski & Wang 2013). A
better understanding of the migration of non-neutrally buoyant particles having large
density differences could open up the applications of inertial microfluidics to many
more applications, including mineral processing. However, to the best of our knowledge,
detailed analytical/numerical studies of gravitational effects have not been carried out
beyond the studies of flow bounded by two plane parallel walls similar to those described
above. In the case of curved ducts, considered herein, non-neutral particle buoyancy
not only adds gravitational effects, but also modifies the net effect of centripetal and
centrifugal forces.

Motivated by advances in the understanding of inertial lift forces in straight square
microfluidic ducts (Hood et al. 2015) we derived a model of the leading-order forces
which influence the migration of solid spherical particles in curved microfluidic ducts
operating at low flow rates (Harding et al. 2019). The model was then applied to study the
specific case of neutrally buoyant particles, with several radii a, suspended in flow through
curved ducts, with a variety of bend radii R, having square, rectangular and trapezoidal
cross-sections, each with (average) height �. We identified the dimensionless parameter
κ = �4/(4a3R) which describes the relative scale of secondary flow drag on particles,
coming from the Dean vortices that develop in flow through curved ducts, to the inertial
lift force. Via a comprehensive study of the stable equilibria towards which particles
migrate we also found that κ approximately characterised the general focusing behaviour,
particularly in the case of curved ducts having a rectangular cross-section. While the model
derived therein included gravitational effects they were effectively neglected within the
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Inertial lift in curved ducts with gravity 902 A4-3

results since only neutrally buoyant particles were considered. The main aim of this paper
is to extend those results by considering the migration of non-neutrally buoyant particles.
We look specifically at the case in which gravity acts perpendicular to the plane in which
the duct is curved. This means that gravity does not modify the slip velocity of the particle
in the main direction of flow so that the scaling and perturbation analysis is unchanged.
Additionally, in order to reduce/simplify the parameter space, we focus on the specific
example of curved ducts with rectangular cross-section having an aspect ratio of two (i.e.
the cross-section has width equal to twice the height).

In this work we do not consider flow effects near the inlet and outlet. Entry and
exit flows for curved pipes were considered by Ault et al. (2017) in which they found
the entry length (at which 99 % of the fully developed fluid velocity is reached) to be
approximately 0.0975Re times the pipe diameter, Re being the pipe Reynolds number.
Most curved microfluidic ducts used in practice have a bend radius which is O(100)
times the duct height such that the entry length constitutes less than 1/6 of a full
rotation even at a relatively high flow rate for which Re = 1000. This leaves a large
portion of the duct for migration to occur as predicted by our model. For more typical
flow rates at which Re = O(100) the entry length becomes an insignificant portion of
a full rotation of the curved duct. Observe that changes in the flow near the exit also
seem to be relatively unimportant as experimental work generally shows that particles
have sufficient inertia to be carried through gently designed bifurcations at the duct
exit in a predictable fashion, see for example Bhagat, Kuntaegowdanahalli & Papautsky
(2008).

2. Force model for non-neutrally buoyant particles

For completeness we briefly describe the model here, noting that a detailed derivation
may be found in Harding et al. (2019).

Let D denote the interior of a curved duct (in the absence of the particle). The
cross-section of D is taken to be rectangular with width W and height H. The duct is curved
with a bend radius R measured from the z axis to the cross-section centreline (which lies
in the x–y plane). A characteristic length scale for the duct is taken to be � = min{W, H}.
Although not a necessary constraint, of principal interest are cases in which W ≥ H (and
thus � = H). The set-up is depicted in figure 1.

Let P := {x : |x − xp| < a} denote the volume/space occupied by a spherical particle
with radius a centred at xp (and is such that P ⊂ D). The fluid domain in the presence
of the particle is denoted F := D\P and is non-static as it depends on the location of the
particle. The fluid is bounded by the duct walls, denoted as ∂D, and the particle boundary,
denoted as ∂P .

Let p, u be the pressure and velocity, respectively, of the fluid flow through the
curved duct in which the spherical particle is suspended. Then, p, u are modelled by the
Navier–Stokes equations

∇ · σ( p, u) = ρ

(
∂u
∂t

+ u · ∇u − g
)

for x ∈ F , (2.1a)

∇ · u = 0 for x ∈ F , (2.1b)

u = 0 for x ∈ ∂D, (2.1c)

u = up + Ωp × (x − xp) for x ∈ ∂P, (2.1d)
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902 A4-4 B. Harding and Y. M. Stokes
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FIGURE 1. Curved duct with rectangular cross-section containing a spherical particle located
at xp = x(θp, rp, zp). The enlarged view of the cross-section around the particle illustrates the
origin of the local r, z coordinates at the centre of the duct. The bend radius R is with respect
to the centreline of the duct and is quite small here for illustration purposes. Gravity acts in the
−ez direction. The rotating reference frame is obtained by counter-rotating the device about the
z axis. Note that we do not consider the flow near the inlet/outlet. Adapted from Harding et al.
(2019).

where

σ( p, u) := −pI + μ(∇u + ∇uᵀ) (2.2)

is the fluid stress tensor, ρ,μ denote the density and viscosity of the fluid, respectively,
g := −gk is the gravitational body force and up,Ωp denote the (linear) velocity of the
particle and its spin (about its centre xp), respectively. Observe that for simplicity we only
consider the case where gravity acts perpendicular to the plane in which the duct is curved.

Coordinates in the duct are most naturally described in a cylindrical coordinate system
(r, θ, z), specifically

x(r, θ, z) = (R + r) cos(θ)i + (R + r) sin(θ)j + zk, (2.3)

in which the particle’s centre may be expressed as xp = x(rp, θp, zp). The primary motion
of the particle through the curved duct is with respect to its angular coordinate θp. It
is convenient introduce a coordinate system which is rotating about the z axis at a rate
Θ := ∂θp/∂t such that the angular coordinate of the particle remains fixed in this reference
frame. This rotating frame of reference is described in cylindrical coordinates using
primed variables (r′, θ ′, z′) for which

x ′(r′, θ ′, z′) = (R + r′) cos(θ ′ + θp)i + (R + r′) sin(θ ′ + θp)j + z′k. (2.4)

In this frame of reference the particle centre is located at x ′
p = x ′(rp, 0, zp), its (linear)

velocity is u′
p = up − Θ(k × xp) and its spin is Ω ′

p = Ωp − Θk. In the rotating frame
the fluid pressure and velocity are denoted p′, u′ respectively. Any remaining variables are
similarly denoted with primes in this reference frame.

Rotational symmetry of the curved duct means that it is unchanged by the rotating frame,
in particular D′ is independent of t. We assume that rp, zp change at a sufficiently slow rate
that the flow can be reasonably well approximated by treating them as constant, in which
case P ′ and F ′ can be treated as static/fixed also. Consequently, we are able to, and do,
consider p′, u′ to be steady.
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Inertial lift in curved ducts with gravity 902 A4-5
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FIGURE 2. Cross-sections of the duct depicting the components of the background flow and
the forces on the particle in the curved rectangular duct. (a) The primary component of the
background flow through the main axis of the duct; (b) the secondary component of the
background flow which consists of two vertically symmetric counter-rotating vortices, where
the right wall is on the outside of the bend; (c) a spherical particle and the different forces
acting within the cross-sectional plane which drive its migration. Here, F g is the gravitational
component, F c is the net centripetal/centrifugal component, F S is the drag from the secondary
component of the background flow and F L is the inertial lift component. The magnitude and
direction of each vector are for illustration only. In particular, F g is always vertical, F c is always
radial and the directions of F S and F L depend on the position of the particle in the cross-section.

The fluid flow is then separated into a background flow and a disturbance flow, that is

p′ = p̄′ + q′, u′ = ū′ + v′. (2.5a,b)

Here p̄′, ū′ denote the pressure and velocity, respectively, of the background flow; and q′, v′

denote the pressure and velocity, respectively, of the disturbance flow. The background
flow describes the (steady, laminar) fluid flow through the duct in the absence of a particle,
whereas the disturbance flow describes how the presence of the particle modifies/changes
the background flow. Given the curved geometry of the duct the background flow is
sometimes referred to as a Dean flow in the literature.

The background fluid velocity in the rotating frame is given by ū′ = ū − Θk × x where
p̄, ū are the background pressure and velocity, respectively, in the stationary reference
frame which satisfies

∇ · σ(p̄, ū) = ρ(ū · ∇ū − g) for x ∈ D, (2.6a)

∇ · ū = 0 for x ∈ D, (2.6b)

ū = 0 for x ∈ ∂D. (2.6c)

Assuming the background flow is driven by a pressure gradient through the duct centreline
it can be deduced that p̄ = −Pθ/R − gz + f (r, z), where R is the bend radius at the duct
centreline and −gz is the hydrostatic pressure. Additionally, the background flow velocity
ū is independent of θ can be decomposed into two distinct parts. The axial component,
denoted ūa, is the primary flow component through the duct in the eθ = ∂x/∂θ direction.
The secondary flow component, denoted ūs, describes the counter-rotating vortex motion
of the flow which occurs within the cross-sectional plane (orthogonal to ūa). Figure 2(a,b)
depicts these two components of the background flow. Additionally, cross-section (c)
depicts the forces driving the migration of a non-neutrally buoyant particle which we
ultimately aim to approximate.
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902 A4-6 B. Harding and Y. M. Stokes

The disturbance flow, in the rotating frame, can be shown to satisfy

∇ · σ(q′, v′) = ρ(v′ · ∇ū + Θk × v′ + (v′ + ū − Θk × x ′) · ∇v′) for x ′ ∈ F ′,
(2.7a)

∇ · v′ = 0 for x ′ ∈ F ′, (2.7b)

v′ = 0 for x ′ ∈ ∂D′, (2.7c)

v′ = u′
p − ū + Θk × x ′ + Ω ′

p × (x ′ − x ′
p) for x ′ ∈ ∂P ′. (2.7d)

Furthermore, the net force and torque on the particle, in the rotating frame, are given by

F ′ = −mpΘ
2k × (k × x ′

p) + ρ

∫
P ′

ū · ∇ū dV ′

+ (mf − mp)gk +
∫

∂P ′
(−n) · σ(q′, v′) dS′, (2.8a)

T ′ = −IpΘ(k × Ω ′
p) + ρ

∫
P ′

(x ′ − x ′
p) × (ū · ∇ū) dV ′

+
∫

∂P ′
(x ′ − x ′

p) × ((−n) · σ(q′, v′)) dS′, (2.8b)

respectively, where mp := (4/3)πa3ρp is the mass of the spherical particle (assumed to
have uniform density ρp), mf := (4/3)πa3ρ is the mass of fluid displaced by the particle
and Ip := (2/5)a2mp is the moment of inertia of the spherical particle.

We introduce the dimensionless parameter ρs := ρr − 1 where ρr := ρp/ρ is the relative
density of the particle compared to the surrounding fluid. It is convenient to decompose
F ′, T ′ into their neutrally buoyant components (i.e. corresponding to the case ρs = 0)
which we denote as F ′

nb, T ′
nb, respectively, plus the remaining parts which depend on ρs.

Specifically, (2.8) is reduced to

F ′ = F ′
nb − 4π

3
a3ρρs(gk + Θ2k × (k × x ′

p)), (2.9a)

T ′ = T ′
nb − 8π

15
a5ρρsΘ(k × Ω ′

p). (2.9b)

The problem is non-dimensionalised using the characteristic velocity scale U :=
Um(a/�), the characteristic length scale a and by assuming viscous forces are dominant
for the flow. Here, Um denotes the maximum of the axial component of the background
flow ū. The resulting force and torque scales are ρU2

ma4/�2 and ρU2
ma5/�2 respectively.

This specific non-dimensionalisation also results in the Froude number

Fr2 := U2

ga
= U2

ma
g�2

. (2.10)

This leads to

F̂
′ = F̂

′
nb − 4π

3
ρs(Fr−2k + Θ̂2k × (k × x̂ ′

p)), (2.11a)

T̂
′ = T̂

′
nb − 8π

15
ρsΘ̂(k × Ω̂

′
p), (2.11b)
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Inertial lift in curved ducts with gravity 902 A4-7

where Θ̂ = Θ�/Um. The specific form of F̂
′
nb, T̂

′
nb and their perturbation expansion in

terms of the particle Reynolds number Rep := (ρ/μ)Uma2/�, are given in appendix A.
The limits of our model of F̂

′
nb, T̂

′
nb are discussed in Harding et al. (2019). To summarise,

our model is developed based on the assumption that both the particle Reynolds number
Rep = (ρ/μ)Uma(a/�) and the Dean number Dn = (ρ/μ)Um(�/2)

√
�/(2R) are much less

than 1. However, we expect the model to behave reasonably well even when one or both
of these numbers approach O(1).

For our study of the migration of non-neutrally buoyant particles considered herein
we assume that Fr−2 is no larger than O(1). Observe also that Θ̂ is proportional to
(�/R) � 1 (since Θ ∝ Um/R implies Θ̂ ∝ �/R). Consequently, the additional terms added
to F ′

nb, T ′
nb in (2.11) can be viewed as perturbations of the force and torque on a neutrally

buoyant particle. In this regime the approximation of F ′
nb, T ′

nb can be done in the same
manner as in Harding et al. (2019). Specifically, we apply a perturbation expansion
to the disturbance flow q̂′, v̂′ in terms of Rep (see appendix A). One then solves a
leading-order Stokes approximation of (2.7), and in doing so determines the axial velocity
of the particle (equivalently Θ̂) and its spin (Ω̂

′
p) such that the O(Re−1

p ) components

of F̂
′
nb, T̂

′
nb are zero. Subsequently, the O(Re0

p) components of F̂
′
nb, which perturb the

particle in the cross-sectional plane, are determined from the first-order correction to the
Stokes approximation of (2.7) (but may be estimated indirectly via the Lorentz reciprocal
theorem). The additional perturbations for a non-neutrally buoyant particle in (2.11) are
then straightforward to add as an additional step at the end. Given that O(Re0

p) components

of T̂
′
nb may be neglected, then the (small) perturbation to T̂

′
for ρs /= 0 in (2.11b) may also

be neglected. For the details and a convergence analysis of the finite element method code
used to solve these problems we refer the reader to Harding (2019).

3. Relative magnitude of gravitational and centrifugal contributions

In this section we examine the relative magnitude of the gravitational and
centripetal/centrifugal forces compared to the other forces affecting particle migration.
Recall that the leading-order approximation of the inertial lift force scales as ρU2

ma4/�2.
Relative to this, the drag force from the secondary component of the background flow
scales with κ = �4/(4a3R) for sufficiently small flow rates (Harding et al. 2019). In
contrast, the (dimensionless) gravitational and centripetal/centrifugal forces, which will
be denoted as F̂ g, F̂ c, respectively, are

F̂ g := −4
3
πρsFr−2k =⇒ |F̂ g| ∝ ρs

g�2

aU2
m

, (3.1)

F̂ c := −4
3
πρsΘ̂

2k × (k × x̂ ′
p) =⇒ |F̂ c| ∝ ρs

�2

aR
. (3.2)

Note that the latter is a consequence of

|k × (k × x̂ ′
p)| = r̂′

p = rp

a
∝ R

a
, (3.3)

and also

Θ̂ = �

Um
Θ = �

Um

∂θp

∂t
∝ �

Um

Um

R
= �

R
. (3.4)
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902 A4-8 B. Harding and Y. M. Stokes

For brevity we refer to F̂ c as the (additional) centrifugal force in the remainder of this
paper. Observe that the scale of F̂ c depends on the three main length scales present in the
problem, similar to κ , in addition to ρs. Further, its scale can be alternatively expressed as
ρs(a/�)2κ , and from this it is apparent that its effect is expected to be much smaller than
the secondary flow drag (assuming |ρs| � (�/a)2).

In contrast, the relative scale of gravitational contribution F̂ g does not depend on R
but instead depends on the flow velocity Um in addition to ρs, a, � and the constant of
acceleration due to gravity g. For most practical purposes we can consider g ≈ 9.81 ms−2

to be fixed and that changes in F̂ g are due to changes in the remaining parameters. A
consequence of F̂ g ∝ (Um)−2 is that gravity becomes much more important when the flow
rate is small. This is not unexpected, since particles would have more time to settle/float
compared to the timescale over which inertial focusing takes place, but is a particularly
important point because our current model of the inertial lift force assumes that the flow
rate is reasonably small. In other words, operating at a low flow rate means gravity may
play a greater role than initially expected even if the difference in particle and fluid density
are only small.

It can be helpful to consider some typical values in a microfluidic cell sorting context.
The difference in cell densities and the working fluid can be up to 10 %, so |ρs| ≈ 0.1
is a reasonable upper limit (noting generally the cells are slightly heavier than the fluid).
Consider representative experiments (Rafeie et al. 2019) with duct height, cell radius and
bend radius values of order 150 μm, 5 μm and 1 cm, respectively. Assuming Um ≈ 1 ms−1,
and that the particle velocity is close to this, one has

|F̂ g| = 4
3
π|ρs| g�2

aU2
m

≈ 1.849 × 10−2, (3.5a)

|F̂ c| � 4
3
π|ρs| �

R + rp

�

a
≈ 1.885 × 10−1. (3.5b)

Both forces are reasonably small in this case, although F̂ c may be large enough to have a
small influence on the stable equilibria towards which particles migrate.

Consider now what happens with particles having a different density. Suppose the
particle is now either a ‘rigid bubble’ or a particle twice as dense as the suspending fluid,
i.e. with |ρs| ≈ 1 such that the magnitude of both perturbing forces becomes 10 times
larger. In particular, |F̂ c| ≈ 1.885 is now reasonably significant (while |F̂ g| ≈ 0.1849 may
have a small influence). At the extreme end, consider the effect of these forces on heavy
metallic/alloy particles. Bronze, copper and nickel suspended in water have ρs ≈ 8, and
thus these forces are amplified by another factor 8. The large centrifugal contribution will
drive a significant change in particle focusing location and gravity will certainly also have
some effect.

On the other hand, we can make significant changes to the gravitational contribution by
changing the flow rate. Decreasing the flow rate by a factor 10, that is Um ≈ 0.1 ms−1,
will increase the gravitational contribution 100-fold, i.e. so even with |ρs| ≈ 0.1 then
F̂ g ≈ 1.849. In contrast, increasing the flow rate by a factor 10, that is Um ≈ 10 ms−1

will decrease the gravitational contribution 100-fold making it effectively negligible even
for particles made of the densest of natural elements on Earth. In a similar way, changes
to the bend radius will modify F̂ c (in addition to the secondary flow drag) without
modifying F̂ g. Decreasing the bend radius to R = 0.1 cm leads to a 10-fold increase in the
centrifugal force making its effects significant even when |ρs| ≈ 0.1, whereas increasing
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Inertial lift in curved ducts with gravity 902 A4-9

it to R = 10 cm would decrease the centrifugal force 10-fold so that its effects may only
be noticeable with very dense particles.

4. Effect of small perturbations on stable equilibria

Here we examine the way in which small perturbations to the force on a particle within
the cross-sectional plane influence the location of stable equilibria towards which particles
migrate. For this purpose it is useful to restrict our view to two-dimensional vector fields
over the cross-section containing the particle centre. Given the assumptions made in § 2,
the forces acting on the particle within the cross-sectional plane are independent of θp and
thus depend only on rp, zp when all physical parameters are fixed.

We use bold Greek letters to denote two-dimensional vectors and differentiate
from three-dimensional vectors for clarity. Additionally, we change the spatial
non-dimensionalisation by taking �/2 as the characteristic length scale (since the duct
dimensions in x̂ ′ coordinates scale with �/a making it difficult to compare results for
different a). Let χ be the particle centre in this new scale, specifically

χ = (χr, χz) := 2a
�

(x̂p · êr(θp), x̂p · k) = 2a
�

(rp, zp), (4.1)

where êr(θp) := cos(θp)i + sin(θp)j. Let α = W/H ≥ 1 be the aspect ratio of the
cross-section, then

χ ∈
[
−α + 2a

�
, α − 2a

�

]
×

[
−1+ 2a

�
, 1 − 2a

�

]
⊂ [−α, α] × [−1, 1], ∀ 0 < a < �/2.

(4.2)

Additionally, let Φnb(χ) denote the net force on a neutrally buoyant particle within the
cross-sectional plane, specifically

Φnb(χ) = (Φnb,r(χr, χz),Φnb,z(χr, χz))

:=
(

F̂
′
nb

(
�

2a
χr,

�

2a
χz

)
· êr(θp), F̂

′
nb

(
�

2a
χr,

�

2a
χz

)
· k

)
. (4.3)

The analogous force on a non-neutrally buoyant particle is denoted by

Φ := Φnb + δ, (4.4)

where the two components of δ = (δr, δz) are the centrifugal and gravitational
contributions, respectively, which perturb Φnb. From (2.11a) it can be inferred that the
sign of these components satisfy sign(δr) = sign(ρs) (since −k × (k × x̂ ′

p) points in the
+êr(θp) direction) and sign(δz) = −sign(ρs).

Now suppose χ∗ (∈ R
2) is an equilibrium of Φnb, that is Φnb(χ

∗) = (0, 0). It follows
from a first-order Taylor expansion that Φ(χ) can be approximated in a neighbourhood of
χ∗ via

Φ(χ) = δ + J [Φnb](χ∗) · (χ − χ∗) + O(‖χ − χ∗‖2), (4.5)

where J [· · · ] denotes the Jacobian operator. Consequently, if ξ ∗ is an equilibrium of Φ
(i.e. Φ(ξ ∗

) = (0, 0)) near χ∗ (and therefore expected to be a modification of χ∗ resulting
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902 A4-10 B. Harding and Y. M. Stokes

from the perturbation δ), then

ξ ∗ ≈ χ∗ − (J [Φnb](χ∗))−1 · δ

=
[
χ∗

r

χ∗
z

]
−

⎡⎢⎢⎣
∂Φnb,r

∂χr
(χ∗)

∂Φnb,r

∂χz
(χ∗)

∂Φnb,z

∂χr
(χ∗)

∂Φnb,z

∂χz
(χ∗)

⎤⎥⎥⎦
−1 [

δr

δz

]

=
[
χ∗

r

χ∗
z

]
+ δr

det(J [Φnb])(χ∗)

⎡⎢⎢⎣−∂Φnb,z

∂χz
(χ∗)

∂Φnb,z

∂χr
(χ∗)

⎤⎥⎥⎦+ δz

det(J [Φnb])(χ∗)

⎡⎢⎢⎣
∂Φnb,r

∂χz
(χ∗)

−∂Φnb,r

∂χr
(χ∗)

⎤⎥⎥⎦ ,

(4.6)

where

det(J [Φnb]) = ∂Φnb,r

∂χr

∂Φnb,z

∂χz
− ∂Φnb,z

∂χr

∂Φnb,r

∂χz
. (4.7)

Unsurprisingly, the sensitivity of the equilibrium χ∗ to perturbations depends on
the partial derivatives of Φnb at χ∗. Specifically, the overall sensitivity is inversely
proportional to det(J [Φnb])(χ∗). Furthermore, notice that the sensitivity with respect
to the radial perturbation δr depends on the gradients of the vertical component of
Φnb. Similarly, the sensitivity with respect to the vertical perturbation δz depends on
the gradients of the radial component of Φnb. While straightforward, this approximation
is helpful to explain some of the behaviour observed in § 5 which may at first seem
counter-intuitive.

5. Results

5.1. Modification of focusing location for moderate to large Froude numbers
Figures 3, 5 and 6 show the location of the stable focusing equilibria, each for a different
particle size, over a range of different relative densities and Froude numbers. Each figure
contains three different views of the four-dimensional data. Figures 3(a,c), 5(a,c) and
6(a,c) show the location of the stable equilibria, i.e. ξ ∗

z versus ξ ∗
r , where each pair

depicts the equilibria in the upper and lower halves of the duct. Figures 3(b,d), 5(b,d)
and 6(b,d) show the vertical location ξ ∗

z versus the relative density difference ρs and each
pair similarly depicts equilibria in the upper and lower halves of the duct. Figures 3(e),
5(e) and 6(e) show the relative density difference ρs versus the horizontal/radial location
ξ ∗

r . Observe that the orientation of the ξ ∗
r and ξ ∗

z axes in the latter plots are made to be
consistent with the first plot. In each plot the stable equilibria in the upper and lower halves
of the duct are further differentiated by × and + markers, respectively. Additionally, the
neutrally buoyant case (ρs = 0) is highlighted by the intersection of the horizontal and
vertical grey lines on each plot. In this case the stable equilibria, which always occur in a
symmetric pair for the examples considered herein, are unaffected by changes in Froude
number and give results consistent with those in Harding et al. (2019). Changes in focusing
location will be discussed relative to these points. The limiting case Fr2 → ∞ shows
what happens when the effect of gravity is negligible independent of ρs. This effectively
demonstrates how the centrifugal force influences the equilibria in isolation.

We start by discussing figure 3 in detail. Figure 3(a,c) shows the equilibria locations
for a particle with radius 2a/� = 0.05 over ρs = −1,−0.5, 0, 0.5, . . . , 8 and all of the Fr2
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FIGURE 3. Modified focusing location ξ∗ = (ξ∗
r , ξ∗

z ) for particles with radius a = 0.05 and
relative density difference ρs when suspended in flow through a curved rectangular duct having
width 4, height 2 and bend radius 160 at a variety of Froude numbers Fr2. The ×, + markers
differentiate the equilibria in the upper and lower halves of the cross-section respectively. The
intersection of grey lines indicates the neutrally buoyant case, i.e. χ∗±.

shown in the legend. In order to elucidate the general trends here we first discuss how
ρs and Fr2 modify the horizontal location by examining the bottom plot which shows ρs
versus ξ ∗

r over all of the Fr2. Recall that in the case Fr2 → ∞ any changes in focusing
location are driven only by the relative centrifugal force. With increasing relative density
ρs both equilibria shift very slightly toward the outside wall (and toward the inside wall
with decreasing ρs). Observe that both the upper and lower equilibria are affected in the
same way. In contrast, for finite Froude numbers we observe that the horizontal location of
the stable equilibria in the upper and lower halves diverge showing the breaks in symmetry
of the equilibria pair. For the equilibrium in the upper half, decreasing Fr2 (i.e. increasing
effect of gravity) causes a shift toward the outer wall for ρs > 0 (and toward the inside
wall for ρs < 0). The opposite occurs for the lower equilibrium which, for decreasing Fr2,
shifts toward the inside wall for ρs > 0 (and toward the outside wall for ρs < 0). Each of
these trends are approximately linear with respect to ρs. The total range of motion is a little
over 10 % of the duct width over the Fr2 and ρs considered.

Next we discuss the effect of ρs and Fr2 on the vertical location of the equilibria in
figure 3 by examining the right plot pair which show ξ ∗

z versus ρs. There is a clear, and
approximately linear, anti-symmetric trend for the equilibria to move away from the centre
(vertically) for increasing ρs (and conversely for decreasing ρs), although the range of
motion is relatively small (roughly 2 % of the duct height). Consequently, for the case
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0
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53.4
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0

21.2
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0

21.2
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63.6

84.8
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(e)

(b)(a)

(c) (d )

( f )

FIGURE 4. Force and trajectories plots which illustrate changes in equilibria for select cases
from figure 3 (with particle size 2a/� = 0.05): (a,b) ρs = 0, Fr2 = ∞; (c,d) ρs = 8, Fr2 = ∞;
(e,f ) ρs = 8, Fr2 = 10. Panels (a,c,e) show the magnitude of the cross-sectional force on the
particle with zero level contours of the horizontal and vertical components in black and white,
respectively. The black and white arrows indicate the sign of the horizontal and vertical locations,
respectively, at that particular location (noting the sign changes whenever the respective zero
contour is crossed). The red arrows in (a,c) indicate the direction the stable equilibria will move
going into (c,e), respectively. Panels (b,d, f ) show superimposed particle trajectories obtained
using a first-order trajectory model. Green and yellow markers show the location of stable and
saddle equilibria, respectively, and have size equal to that of the particle.

Fr2 → ∞, in which the shift in horizontal location of the equilibria pair is the same, the
overall symmetry of the pair is maintained. Interestingly, and somewhat counter-intuitively
at first glance, the Froude number has no appreciable effect on the vertical location of the
stable equilibria (the Fr2 = 10 markers lie over the others).

To understand why the equilibria behave in this manner we can examine the components
of the Jacobian of Φ∗

nb. For a neutrally buoyant particle the two equilibria lie at
approximately χ∗

± ≈ (−0.2783,±0.4353) for which we then estimate

J [Φnb](χ∗
±) ≈

[−0.5436 ∓311.1
±16.31 −11.79

]
, (5.1)

and det(J [Φnb](χ∗
±)) ≈ 5081. Consequently, from (4.6), small perturbations result in the

modified equilibria

ξ ∗
± ≈ χ∗

± + δr

5081

[
11.79

±16.31

]
+ δz

5081

[∓311.1
0.5436

]
. (5.2)

The large determinant means that the equilibria are generally not very sensitive to
buoyancy. However, it is clear that they are most sensitive to the vertical component of
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FIGURE 5. Modified focusing location ξ∗ = (ξ∗
r , ξ∗

z ) for particles with radius a = 0.10 and
relative density difference ρs when suspended in flow through a curved rectangular duct having
width 4, height 2 and bend radius 160 at a variety of Froude numbers Fr2. The ×, + markers
differentiate the equilibria in the upper and lower halves of the cross-section respectively. The
intersection of grey lines indicates the neutrally buoyant case, i.e. χ∗±.

δ which leads to perturbations to the horizontal (or radial) component of χ∗. In other
words, the equilibria are most sensitive to the addition of the gravitational term F̂ g which
primarily leads to a modification of χ∗

r . The reasonably large value of ∂Φnb,r/∂χz ≈ 311.1
in relation to the others is a consequence of the force on the particle being dominated by
the secondary flow drag (since κ = 200 is reasonably large) and χ∗

± being relatively close
to the centre of the secondary/Dean flow vortices (where |∂(êr · ūs)/∂z| is largest). Lastly,
observe that changes to the vertical location of equilibria are dominated by the horizontal
component of δ, i.e. the most significant driver of change to ξ ∗

z is the centrifugal force F̂ c.
The behaviour can also be understood by examining figure 4. Figures 4(a), 4(c) and

4(e) show the magnitude of the force driving particle motion in the cross-sectional
plane and include the zero level contours of the horizontal and vertical components in
black and white, respectively. Figures 4(b), 4(d) and 4(f ) show super-imposed trajectories
that have been approximated from a simple first-order model of particle motion within
the cross-sectional plane. Figures 4(a) and 4(b) show the neutrally buoyant case with
2a/� = 0.05, ρs = 0 and Fr2 = ∞. These results are identical to those from Harding et al.
(2019). In figures 4(c) and 4(d), we increase the particle density to ρs = 8 while keeping
Fr2 = ∞. This means that there is an additional contribution to the force on the particle
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FIGURE 6. Modified focusing location ξ∗ = (ξ∗
r , ξ∗

z ) for particles with radius a = 0.15 and
relative density difference ρs when suspended in flow through a curved rectangular duct having
width 4, height 2 and bend radius 160 at a variety of Froude numbers Fr2. The ×, + markers
differentiate the equilibria in the upper and lower halves of the cross-section respectively. The
intersection of grey lines indicates the neutrally buoyant case, i.e. χ∗±.

from F̂ c, but none from F̂ g. Any change in stable equilibria due to the addition of F̂ c
must therefore lie on the zero level contour of the vertical component of Φnb. Specifically,
any perturbation of the stable equilibria must remain on the white contour in figure 4(a)
corresponding to Φnb,z = 0. Further, since the perturbation δr (due to F̂ c) is positive, the
black contour in (a) will encroach on the regions with negative Φnb,r and consequently
the stable equilibria must move along the white contour in the directions indicated by the
red arrows. The difference in figures 4(a,b) and 4(c,d) is somewhat subtle, particularly
the small movement of the equilibria, but notice the difference in maximum magnitude of
the force is larger in figure 4(c) than in figure 4(a), and also the in-spiralling of particles
towards the stable equilibria is a little tighter in figure 4(d) than in figure 4(b). Figures 4(e)
and 4(f ), the only additional change relative to the figures 4(c) and 4(d) is the addition
of a non-zero F̂ g by reducing the Froude number to Fr2 = 10 (thus the Φr = Φnb,r + δr
is identical to that in figures 4c and 4d). As a consequence, any further change in the
stable equilibria from figure 4(c) must follow the zero level contour of Φr (in black) and,
further, must be in the directions indicated by the red arrows (since δz < 0 and so the
white contour will encroach into regions with positive Φz). In particular, this makes it
clear why the stable equilibria do not move vertically under perturbations to the vertical
component of the force in this case, i.e. because their vertical position is constrained by
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Inertial lift in curved ducts with gravity 902 A4-15

the zero contour of the horizontal component of the force. Figure 4( f ) clearly shows the
staggering in horizontal location of the equilibria pair and the in-spiralling of trajectories
is a little tighter again compared to figure 4(c).

The set-up for figure 5 is identical to figure 3 with the exception that the particle
radius has increased to a = 0.10 (from a = 0.05). This has the following effects: (a)
the magnitude of κ , and therefore the secondary flow drag, has decreased 8-fold, (b) F̂ c

has decreased 2-fold (for fixed ρs) and (c) F̂ g has decreased 2-fold (for fixed ρs, Um, g).
However, for the latter it is important to point out that, since we have provided results
with the same Fr2 values, increasing a by a factor 2 requires a decrease in Um by a factor
1/

√
2. It is evident from figure 5(a,c) that changes to equilibria location are no longer

linear in nature and cover a much larger range of the duct width and height. To understand
these trends we again first look at the change in horizontal location with respect to ρs and
Fr2 as shown in figure 5(e). For Fr2 → ∞ the effect of the increasing ρs (i.e. increasing
centrifugal force) is to push the equilibria pair toward the outer wall, that is increasing ξ ∗

r ,
and conversely for decreasing ρs. This is consistent for both equilibria and therefore does
not break the symmetry of the pair. For finite and decreasing Fr2 the two stable equilibria
again diverge, the upper one shifting further to the right while the lower one shifts left.
The range of motion is approximately 60 % of the duct width in this case over the Fr2 and
ρs considered. Interestingly, it appears that for some Fr2 ∈ [10, 20] the effect of F̂ c and F̂ g
on ξ ∗

r roughly cancel each other for the lower of the two stable equilibria.
Consider now figure 5(b,d). Here, we see that changes to Fr2 are beginning to have

some effect on ξ ∗
z , albeit it is still somewhat smaller than the effect of changing ρs.

This is a strong indication that the vertical location of the equilibria is more sensitive
to F̂ c than F̂ g. In the case Fr2 → ∞ both equilibria again shift away from the centre
in a symmetric manner, such that when combined with the consistent horizontal shift,
the overall symmetry of the pair is maintained. For finite Fr2 and sufficiently large ρs we
observe that both equilibria are pulled down slightly towards the bottom of the duct (which
breaks the symmetry of the pair). Further, the bottom equilibrium appears to be affected by
changes in Fr2 more than the upper one. The total range of motion in the vertical position
of the equilibria is approximately 10 % and 7.5 % of the duct height for the lower and
upper equilibrium, respectively.

We again examine the components of the Jacobian to explain these trends. The two
equilibria in the neutrally buoyant case lie at approximately χ∗

± ≈ (−1.001,±0.4388) and
for these we estimate

J [Φnb](χ∗
±) ≈

[
0.03309 ∓22.37
±5.036 −9.352

]
, (5.3)

and det(J [Φnb](χ∗
±)) ≈ 112.3. Consequently, from (4.6), we have

ξ ∗
± ≈ χ∗

± + δr

112.3

[
9.352

±5.036

]
+ δz

112.3

[ ∓22.37
−0.03309

]
. (5.4)

The much smaller determinant makes the equilibria more sensitive to the perturbations
(the coefficients of the Jacobian have also decreased, but not as much). The dominant
component is again ∂Φnb,r/∂χz, which drives changes to ξ ∗

r proportional to F̂ g, but by a
much smaller margin in this case. The significant decrease is largely due to the decrease
in the influence of the secondary flow by a factor of 8 (with κ = 25), and additionally
because the equilibria pair in the neutrally buoyant case has shifted significantly toward
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902 A4-16 B. Harding and Y. M. Stokes

the inside wall (and away from the vortex centres). Changes to equilibria with respect to δr,
or F̂ c, are reasonably consistent with those observed for suitably small |ρs|. On the other
hand, the small value of ∂Φnb,r/∂χr suggests that F̂ g should have even less influence on
the vertical location of equilibria than would appear from the figure. This is an instance
where the first-order Taylor expansion about χ∗

± is not enough to understand the full range
of perturbations. In particular, as ρs increases and F̂ c shifts the equilibria to the right,
then ∂Φnb,r/∂χr evaluated at ξ ∗

± becomes more significant. For example, when ρs ≈ 4
then ξ ∗

± ≈ (−0.7444,±0.5086) and ∂Φnb,r(ξ
∗
±)/∂χr ≈ −0.9909 which is a significant

increase in magnitude. This demonstrates that the sensitivity to F̂ g can sometimes depend
on whether the equilibria are also significantly perturbed by F̂ c.

Figure 6 shows the modified focusing location for a particle with radius a = 0.15. The
increase in a further decreases the magnitude of κ and the influence of the secondary
flow drag on particle migration. Further, both F̂ c, F̂ g also become less influential given
fixed ρs, Um, g (although we again emphasise that for fixed Fr2 we require an appropriate
decrease in Um to balance the larger a). Figure 6(e) shows that with Fr2 → ∞ the effect of
the increasing ρs (i.e. increasing centrifugal force) is to push the equilibria pair toward the
outer wall (and conversely for decreasing ρs) as per usual, albeit by a much more significant
amount than observed for smaller particles. In particular this effect is strong enough to
push particles well into the right half of the cross-section for ρs ≥ 4. Additionally, for
ρs < 0, particles are migrating closer to the inside wall. Decreasing Fr2 then leads to
a divergence in the horizontal location of the upper and lower equilibria similar to that
observed previously. Interestingly, over the range of Fr2 shown, and for ρs > 0, the effect
of F̂ g on ξ ∗

r is never enough to overcome the effect of F̂ c. Also observe that for Fr2 = 10
and ρs > 4 there is no marker for a stable equilibrium in the upper half of the duct because
it has disappeared leaving only the one stable equilibrium residing in the lower half of the
cross-section. This is also the case for Fr2 = 20 and ρs > 6 (some examples illustrating
this at even smaller Fr2 are provided in the § 5.2).

Consider now the change in ξ ∗
z with ρs in figure 6(b,d). For Fr2 → ∞ we see the

usual trend of a symmetric migration away from the centre (vertically) for increasing ρs.
For ρs < 0 we see the usual migration towards the centre, however, this is much more
significant than usual and can be attributed to the horizontal location of the particle
moving into the region near the left wall where the zero contour of Φnb,z in the upper
and lower halves curve inwards to meet in the centre. For finite and decreasing Fr2, and
with ρs > 0, we observe that the particle is pulled downwards compared to its location if
gravity were absent. The effect of F̂ g is more significant than that previously observed as
is demonstrated best by the upper equilibrium in the Fr2 = 10 case which has ξ ∗

z < χ∗
z for

ρs > 1. The effect of F̂ g when ρs = −1 is also quite extreme and provides a significant
perturbation towards the top of the duct. In the case Fr2 = 10 (and ρs = −1) the lower
of the two equilibria disappears entirely leaving only one stable equilibrium in the upper
half of the duct. The total range of each of ξ ∗

r , ξ ∗
z is slightly larger than that observed for

a = 0.10.
We again examine the components of the Jacobian to explain these trends. The two

equilibria in the neutrally buoyant case lie at approximately χ∗
± ≈ (−0.9935,±0.5089)

and for these we estimate

J [Φnb](χ∗
±) ≈

[−0.9676 ∓1.017
±1.754 −17.99

]
, (5.5)
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Inertial lift in curved ducts with gravity 902 A4-17

and det(J [Φnb](χ∗
±)) ≈ 19.19. Consequently, from (4.6), we have

ξ ∗
± ≈ χ∗

± + δr

19.19

[
17.99

±1.017

]
+ δz

19.19

[∓1.754
0.9676

]
. (5.6)

The smaller determinant again makes the equilibria even more sensitive to the
perturbations, particularly in the most dominant component which is now ∂Φnb,z/∂χr. This
component drives changes to ξ ∗

r proportional to F̂ c and its reasonably large magnitude is
consistent with the observation of significant changes in ξ ∗

r with respect to ρs. The signs of
the δz component of the perturbation are consistent with what we expect, although we note
that the specific values are not reflective of the observed behaviour due to the large changes
in ξ ∗

r with ρs. In particular, the effect of F̂ g on ξ ∗
r relative to ξ ∗

z is generally observed to be
larger than 1.754/0.9676 ≈ 1.813.

Figure 7 shows a few samples from figure 6, analogous to figure 4. Recall that
figure 4 illustrated how the location of equilibria change upon adding the centrifugal
and gravitational forces to the migration force of a neutrally buoyant particle. First,
adding the centrifugal force causes the equilibria to follow the zero level contour of the
vertical component of the migration force. Then, adding the gravitational force causes the
equilibria to follow the zero level contour of the horizontal component of the migration
force. Similar observations can be made in figure 7 through this sequence, first with the
neutrally buoyant case in (a,b), then ρs = 2.5 and Fr2 = ∞ in (c,d) and lastly ρs = 2.5
and Fr2 = 10 in (e, f ). The red arrows in figures 7(a) and 7(c) illustrate the contours that
the (stable) equilibria follow going into figures 7(c) and 7(e), respectively. However, notice
that the significantly different zero level contours in figure 7(a) compared to figure 4(a)
result in a radically different perturbation of the stable equilibria upon adding first F̂ c and
then F̂ g. Also observe that in figure 7(e) if we were to increase ρs much more then the
closed white contour in the upper half will shrink further and no longer intersect the black
contour such that the upper of the two stable equilibria disappears (along with the nearby
saddle equilibrium).

Additional results for the case a = 0.20 were found to follow qualitatively similar trends
to that of a = 0.15. For completeness these results are provided in appendix B.

Our results generally suggest that small density differences between the particle and the
surrounding fluid do not result in significantly different behaviour when Fr2 � 1. This
is consistent with the results of Ookawara et al. (2010) who conducted experiments with
particles suspended in flow through a half-turn curved rectangular duct. They used three
different density fluids which differed from the density of the particle by no more than
±12 % and observed similar results in each case.

5.2. Significant changes in focusing when Fr2 = O(1)

Here we describe some of the significant changes in particle focusing that occur when
Fr2 = O(1), specifically using Fr2 = 1 as an illustrative example. In figures 8–10 we show
estimated particle trajectories for ρs ∈ {−1, 0, 1, 3} with a fixed bend radius of 2R/� =
160. In each of these cases the effect of gravity is quite large leading to significantly
different behaviour from that discussed in the preceding section where Fr2 ≥ 10.

In figure 8 we consider a particle with size 2a/� = 0.05 for which the secondary flow
drag is the dominant force within the cross-section, as is evident since the trajectories
no longer spiral around the Dean vortex centres. The most obvious effect of non-neutral
particle buoyancy is a significant difference in horizontal location of the upper and lower

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

58
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.589


902 A4-18 B. Harding and Y. M. Stokes
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7.6
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16.0

20.0(e)

(b)(a)

(c) (d )

( f )

FIGURE 7. Force and trajectories plots which illustrate changes in equilibria for select cases
from figure 6 (with particle size 2a/� = 0.15): (a,b) ρs = 0, Fr2 = ∞; (c,d) ρs = 2.5,
Fr2 = ∞; (e,f ) ρs = 2.5, Fr2 = 10. Panels (a,c,e) show the magnitude of the cross-sectional
force on the particle with zero level contours of the horizontal and vertical components in
black and white, respectively. The black and white arrows indicate the sign of the horizontal
and vertical locations, respectively, at that particular location (noting the sign changes whenever
the respective zero contour is crossed). The red arrows in (a,c) indicate the direction the stable
equilibria will move going into (c,e), respectively. Panels (b,d, f ) show superimposed particle
trajectories obtained using a first-order trajectory model. Green and yellow markers show the
location of stable and saddle equilibria, respectively, and have size equal to that of the particle.

stable equilibria which, from earlier discussion, can be attributed to the addition of the
gravitational force. Because the effect of the centrifugal force is relatively small it can be
seen that the results for ρs = ±1 are quite similar up to a vertical reflection. Observe that
for ρs = −1 there are some trajectories that begin in the lower half of the cross-section
but end up migrating towards the upper equilibrium as a result of buoyancy, and vice
versa for ρs = 1. Further increasing the particle density to ρs = 3 leads to an even larger
divergence in the horizontal location of the two stable equilibria. Additionally, the number
of trajectories that migrate towards the lower stable equilibrium becomes much more than
those migrating to the upper stable equilibrium.

Observe that the inertial lift force on the particle gets stronger as the particle nears the
bottom wall and this acts as a re-suspension mechanism to elevate the particle a little from
the bottom wall. This is also observed in much simpler studies of the combined effects of
gravity and inertial lift force on a spherical particle suspended in flow between two plane
parallel walls (Asmolov et al. 2018). Further, although to a lesser extent, the secondary
component of the background flows acts to pull the particle up from the bottom wall in
the half of the duct adjacent to the inside wall (relative to the centre of the duct bend).
Analogous observations can be made for a buoyant particle. A very heavy particle (e.g.
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Inertial lift in curved ducts with gravity 902 A4-19

(b)(a)

(c) (d )

FIGURE 8. Estimated particle trajectories for ρs = −1, 0, 1, 3 (a,b,c,d) with 2R/� = 160 and
Fr2 = 1 for a particle with radius 2a/� = 0.05. Green and yellow markers show the stable and
saddle equilibria, respectively, with size matching that of the particle.

(b)(a)

(c) (d )

FIGURE 9. Estimated particle trajectories for ρs = −1, 0, 1, 3 (a,b,c,d) with 2R/� = 160 and
Fr2 = 1 for a particle with radius 2a/� = 0.10. Green and yellow markers show the stable and
saddle equilibria, respectively, with size matching that of the particle.

with much larger ρs) would eventually overcome both of these re-suspension mechanisms
and simply roll along the bottom wall as it makes its way around the curved duct. However,
we note that our computations involve an extrapolation near the walls and such extreme
cases may require more careful treatment.

In figure 9 we consider a particle with size 2a/� = 0.10. The relative effect of the
secondary flow drag is smaller in this case which is evident in the trajectories no longer
spiralling around the Dean vortex centres. For ρs = ±1 we again observe similar results
up to vertical reflection which again indicates a relatively small effect from centrifugal
force. Further, the reduced effect of the secondary flow drag has increased the relative
effect of the gravitational force as is evident by the majority of particle trajectories going
towards the upper equilibrium for ρs = −1 (figure 9a) and lower equilibrium for ρs = 1
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(b)(a)

(c) (d )

FIGURE 10. Estimated particle trajectories for ρs = −1, 0, 1, 3 (a,b,c,d) with 2R/� = 160 and
Fr2 = 1 for a particle with radius 2a/� = 0.15. Green and yellow markers show the stable and
saddle equilibria, respectively, with size matching that of the particle.

(figure 9c). For an even denser particle with ρs = 3 (figure 9d) the upper equilibrium
disappears entirely leaving only one stable equilibrium at the bottom near the inside wall,
towards which particles migrate from any initial position. Observe that this is situated
slightly above where the particle would be touching the bottom wall as a consequence
of the relatively strong wall effect. Further increasing ρs (or decreasing Fr2) would soon
result in the stable equilibrium making contact with the wall.

Figure 10 shows analogous results for a particle with size 2a/� = 0.15. For each of
ρs = −1, 1, 3, the gravitational force dominates the vertical component of the force on the
particle which results in only one stable equilibrium. For ρs = −1 this is located near (but
not touching) the top wall of the duct, whereas for ρs = 1, 3 this is located near (but not
touching) the bottom wall of the duct. Additionally, the stable equilibrium is approximately
1/4 of the width of the duct away from the inside wall in each case, excepting ρs = 3,
where it is a little closer towards the centre (and also almost touching the bottom wall).
Results for 2a/� = 0.20 were found to be qualitatively similar in the non-neutrally buoyant
cases and are provided in appendix B for completeness.

5.3. Particle separation by size at different bend radii
In this section we study how the focusing of non-neutrally buoyant particles changes
depending on the bend radius of the duct. In order to make a fair comparison for different
particle sizes it is necessary to treat Fr2 a little differently. Recall that in the context of the
dimensionless scaling used to estimate the inertial lift force we defined Fr2 := U2

ma/(g�2)
(see (2.10)). If one wishes to examine focusing behaviour for different particle sizes with
fixed Um, �, g then each particle size will have a different Fr2. To simplify the discussion
we introduce

F̃r
2

:= U2
m

g�
, (5.7)

which could be interpreted as the ‘duct Froude number’, noting that one then has Fr2 =
(a/�)F̃r

2
. This is useful because F̃r

2
does not depend on the particle size and is therefore

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

58
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.589


Inertial lift in curved ducts with gravity 902 A4-21
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FIGURE 11. The perturbed horizontal location of (stable) equilibria ξ∗
r versus ε−1 when F̃r2 =

200 for each ρs = −1, 1, 4, 8 in (a,b,c,d), respectively. The red, orange, lime and blue markers
in each plot correspond to 2a/� = 0.05, 0.10, 0.15, 0.20, respectively. Additionally, × markers
denote equilibria in the upper half of the duct and + markers denote equilibria in the lower half.

more useful when comparing focusing behaviour of different size particles suspended in
flow through a specific duct (with the same flow rate and gravitational constant).

Figure 11(a) shows variation in horizontal focusing position ξ ∗
r when ρs = −1 and

F̃r
2 = 200. This corresponds to the case of a ‘rigid bubble’ with a moderate flow rate

(e.g. Um ≈ 0.443 ms−1 with g ≈ 9.81 ms−2 and � = 10−4 m). From earlier discussions,
compared to a neutrally buoyant particle we expect the focusing location to be little closer
to the inside wall, and additionally, we expect a small difference in the horizontal location
of the equilibria in the upper and lower halves of the duct (although this appears to be
indistinguishable in most cases). Apart from these small differences the overall trends in
figure 11(a) are similar to those of a neutrally buoyant particle (Harding et al. 2019).

Figure 11(b) shows the variation in horizontal focusing position ξ ∗
r when ρs = 1 and

F̃r
2 = 200. This corresponds to the case of particles with twice the density of the

surrounding fluid. Compared to a neutrally buoyant particle we expect the focusing
location to be little closer towards the outside wall, and a similar divergence in the upper
and lower equilibria as in figure 11(a) (albeit in the opposite direction). In fact, it is
observed that the change in behaviour for the two smaller particle sizes is quite small,
whereas the two larger particles are no longer located within one unit of the inside wall.
The largest particle in particular now has ξ ∗

r which only covers a range only ≈ 1/8 of the
duct width over the ε−1 shown, specifically remaining in a small region slightly left of
centre. As a result, we can see that there is no longer a good choice of ε−1 (or equivalently
R) which will separate the largest particle from the others, unlike in say figure 11(a) where
20 ≤ ε−1 ≤ 40 provides a small amount of separation.
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902 A4-22 B. Harding and Y. M. Stokes

In figure 11(c) we consider a much larger particle density, specifically ρs = 4, but still
with F̃r

2 = 200. There are two main differences in this plot compared to the previous two.
First is that the centrifugal force has a much more significant effect in pushing particles
towards the outside wall. The second is that the divergence of equilibria in the upper and
lower halves of the duct due to the gravitational force is much more noticeable. While
the former of these differences is potentially good for particle separation, by spreading
particles over a larger range of the duct, the latter hinders the ability to obtain a good
separation of particles because each size now focuses towards two distinct horizontal
locations. That said, for small ε−1 � 80 there is reasonably good separation of the largest
particle while for ε−1 � 1000 there is reasonably good separation of the smallest particle.

Lastly, in figure 11(d) we consider the relatively extreme case of very heavy particles
having ρs = 8 and with F̃r

2 = 200. This leads to some markedly different focusing
behaviour and, in particular, for sufficiently large ε−1 it is observed that the upper of the
two equilibria disappears leaving only the lower equilibrium. It is observed that the ε−1 at
which this first occurs is decreasing for increasing a. When only one equilibrium is present
it eliminates the potential issue caused by the usual divergence of the horizontal location
of the equilibria pair due to the gravitational force. This then potentially provides another
opportunity in which separation of very heavy particles in microfluidic sorters may be
very effective. For example figure 11(d) shows that very good separation of the smaller
particle is possible for ε−1 � 640.

5.4. Particle focusing behaviour versus κ

In Harding et al. (2019) the parameter κ = �4/(4a3R) was identified as describing the
relative magnitudes of the inertial lift force and secondary flow drag. It was also observed
that plotting the horizontal component of the stable equilibria pair, that is (2a/�)χ∗

r ,
against κ led to an approximate collapse of curves for each particle size. Figure 12 provides
analogous plots of ξ ∗

r against κ for different ρs with fixed F̃r
2 = 200. Note that these plots

show the same data as in figure 11 only plotted against κ rather than ε−1.
First we examine figure 12(a) for which ρs = −1. Interestingly, the approximate collapse

of ξ ∗
r against κ for the different a appears to be reasonably consistent throughout.

Compared to the results of a neutrally buoyant particle in Harding et al. (2019) the
approximate collapse is better for larger κ in this particular case, but also a little worse
for smaller κ . One other difference is that the smaller particles no longer exhibit a third
equilibrium near the centre of the inside wall for small κ (recall that additional equilibria
occur for small particles near the centre of both of the shorter walls in a straight rectangular
duct and that in curved ducts the one near the outside wall disappears while the one near
the inside wall only remains for reasonably large bend radius R albeit having a small basin
of attraction).

Figure 12(b) shows the case with ρs = 1. The behaviour of the two larger particles has
changed significantly compared to figure 12(a) leading to a degradation in the approximate
collapse was observed. However, the two smaller particles continue to behave similarly
with respect to κ . Additionally, observe that there is still a collapse of the curves towards
ξ ∗

r = 0 at both ends.
Figure 12(c) exhibits a more extreme degradation in the ability of κ to predict focusing

behaviour for different size particles with relative density ρs = 4. Interestingly, however,
there appears to be some structure in the increasing value of ξ ∗

r with a for fixed κ .
Larger particles generally focus closer to the outside wall than smaller ones, owing to
the centrifugal force. Additionally, for each particle size, the combined effect of gravity
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FIGURE 12. The perturbed horizontal location of (stable) equilibria ξ∗
r versus κ when F̃r2 =

200 for each ρs = −1, 1, 4, 8 in (a,b,c,d), respectively. The red, orange, lime and blue markers
in each plot correspond to 2a/� = 0.05, 0.10, 0.15, 0.20, respectively. Additionally, × markers
denote equilibria in the upper half of the duct and + markers denote equilibria in the lower half.

and the secondary flow causes the upper equilibria pair to shift towards the outside wall
relative to the lower equilibria.

Lastly, figure 12(d) shows the case with extremely heavy particles for which ρs = 8.
The divergence of equilibria is much more extreme than in figure 12(c). In particular,
observe that the upper equilibrium vanishes over a large range of κ . Furthermore, the
upper equilibrium vanishes at approximately the same value of κ ≈ 24 for each particle
size (excepting the smallest particle for which this occurs around κ ≈ 56).

5.5. Particle separation by density at different bend radii
The plots in figure 11 explored the focusing position of particles with different size but the
same relative density. Here, we consider the reverse, specifically the difference in focusing
position for particles with the same size but having different relative density. Figure 13
shows the horizontal location ξ ∗

r of stable equilibria versus ε−1 = 2R/�. In figure 13(a)
the particle size is fixed at 2a/� = 0.05 while the colour of the markers correspond to the
different values of ρs = 0, 2, 4, 6. The remaining subplots are similar but for the different
particle sizes as indicated. Plots of ξ ∗

r versus κ are not provided in this instance since, given
a is fixed and only ε−1 changes in each subplot, no new information would be provided.
Recall that ρs = 0 is a neutrally buoyant particle, and thus the usual stable equilibria pair
are vertically symmetric in each case.

In figure 13(a), where 2a/� = 0.05, we see that increasing ε−1 leads to an increasing
spread in the horizontal location of particles, and beyond a value of 80 the location is
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FIGURE 13. The perturbed horizontal location of (stable) equilibria ξ∗
r versus ε−1 = 2R/� for

particles with size 2a/� = 0.05, 0.10, 0.15, 0.20 in (a,b,c,d), respectively, and with F̃r2 = 200.
The red, orange, lime and blue markers correspond to the relative densities ρs = 0, 2, 4, 6,
respectively, and additionally, × markers denote equilibria in the upper half of the duct and
+ markers denote equilibria in the lower half. The legend in (a) applies to all four plots.

generally getting closer to the inside wall. Equilibria in the upper half are perturbed to the
right/outside of the neutrally buoyant case while those in the lower half are perturbed to
the left/inside. For small ε−1 the small particle focuses near the centre of the Dean vortices
irrespective of ρs. The stable equilibria never enter the right half of the cross-section
over this range of ε−1. For very large ε−1 we would expect the stable equilibria pair
to eventually shift back towards the centre (for all ρs) as the effect of secondary flow
and centrifugal force vanishes (and equilibria near the centre of the left and right walls
will appear). In figure 13(b), where 2a/� = 0.10, we similarly observe particles of each
density quite close to the location of the Dean vortex centres for ε−1 < 40. There is an
increasing spread up to ε−1 ≈ 320 and then a decreasing spread converging near the centre.
Additionally, we observe for ε−1 > 640 the appearance of an additional equilibrium near
the centre of the inside wall only for ρs = 0 (which is a feature that occurs for small
neutrally buoyant particles in straight ducts as discussed in Harding et al. 2019). Again,
the stable equilibria never enter the right half of the cross-section over this range of ε−1.
In contrast to (a), the perturbed location of stable equilibria for each ρs = 2, 4, 6 is to the
right/outside of the neutrally buoyant case and this continues to be the case in figures 13(c)
and 13(d).

In figure 13(c), where 2a/� = 0.15, there is already some spread in particle location for
small ε−1 and this increases (for increasing ε−1) and reaches a maximum at approximately
ε−1 ≈ 100 after which the spread decreases with horizontal location of stable equilibria
converging towards the centre. Unlike the previous two cases (featuring smaller particles),
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the denser particles now have enough additional centrifugal force to focus within the
right half of the duct cross-section. Lastly, in figure 13(d), there is again a significant
spread in horizontal location for small ε−1 which increases up to ε−1 ≈ 50 and then
begins to decrease, again converging towards the centre for large ε−1. Interestingly, for
ε−1 between roughly 50 and 160 the upper equilibrium disappears for ρs = 6. In this range
the combined effect of gravity and centrifugal force is enough to remove this equilibrium
leaving only one stable equilibrium in the lower half. Observe that for ε−1 < 160 there is
a reasonable degree of separation between the particles with density ρs = 0 and ρs = 2
from the others. This is also true, although by a smaller margin, in figure 13(c) for ε−1

between roughly 60 and 160. This provides a good opportunity for separating larger sized
particles by density.

6. Conclusions

Non-neutral buoyancy adds a significant degree of complexity to the problem of
understanding the focusing of particles suspended in flow through curved microfluidic
ducts. Generally one would expect the centrifugal force to push particles toward the
outside wall, and gravitational force to pull particles downwards. However, we have
demonstrated that this is not always the case, for example the additional gravitational
force on the smallest particle considered in our study made negligible difference to the
vertical coordinate of the stable equilibria but instead perturbed the horizontal/radial
coordinate. On the other hand, the change in behaviour of large particles is more
consistent (qualitatively) with intuition. A first-order perturbation analysis of the force on
a particle supports these findings and can be useful for understanding the effect of small
perturbations more generally. The effect of larger perturbations are not so well described
by first-order perturbations and vary such that it becomes difficult to provide a general
description of any value.

We also examined the case with a unit Froude number to illustrate what might
happen when the gravitational effects are significant. With increasing particle radius, and
increasing ρs, there is an increasing divergence in the horizontal location of the upper and
lower equilibria and an increasing preference for trajectories to migrate towards one over
the other (e.g. for ρs > 0 the preferred equilibrium is in the lower half of the duct and
vice versa for ρs < 0). Further, we observe that eventually the less preferred of the two
equilibria disappears leaving only the one stable equilibrium (which is almost in contact
with the bottom wall for ρs > 0).

We then examined the effect of bend radius on the horizontal location of the stable
equilibria for several ρs /= 0 and Fr2 = 200(a/�). For ρs = −1 the general behaviour is
qualitatively similar to that observed for neutrally buoyant particles, and in particular, an
approximate collapse of the curve of ξ ∗

r against κ for each a is still observed. On the other
hand, for ρs = 1, 4, 8 we see an increasing divergence of the equilibria pair, increasingly
significant perturbations towards the outer wall of the duct, and an increasing breakdown
of the approximate collapse of the curve of ξ ∗

r against κ for different a which occurs for
neutrally buoyant particles.

Lastly, we examined the effect of relative particle density ρs on the horizontal location
of the stable equilibria for each of our particle sizes, and again with Fr2 = 200(a/�).
Here, we observed some potential to separate larger particles by density over a reasonably
large range of practical bend radii.

Generally speaking, non-neutral buoyancy effects appear to hinder the ability to separate
particles by size, due to both the divergence of the horizontal location of the two equilibria
and also the less predictable behaviour more generally. However, there is a possibility that
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at the extreme end, where only one stable equilibrium remains, there may be opportunities
for enhanced separation by size. A more promising possibility is the separation of equal
size particles by density. We finally note that our results confirm that for |ρs| < 1/10,
which is typical for cell sorting applications, and provided the injected solution is well
mixed and flow rate is not too small, the additional gravitational and centrifugal forces have
sufficiently small influence on the location of stable equilibria that they may be considered
negligible.
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Appendix A. Expansion of the neutrally buoyant force and torque

Observe that the neutrally buoyant force and torque components in (2.11) are

F̂
′
nb = −4π

3
Θ̂2k × (k × x̂ ′

p) +
∫
P̂ ′

ˆ̄u · ∇̂′ ˆ̄u dV̂ ′ + Re−1
p

∫
∂P̂ ′

(−n) · σ̂ ′(q̂′, v̂′
) dŜ′, (A 1a)

T̂
′
nb = −8π

15
Θ̂(k × Ω̂

′
p) +

∫
P̂ ′

(x̂ ′ − x̂ ′
p) × ( ˆ̄u · ∇̂′ ˆ̄u) dV̂ ′

+ Re−1
p

∫
∂P̂ ′

(x̂ ′ − x̂ ′
p) × ((−n) · σ̂ ′(q̂′, v̂′

)) dŜ′, (A 1b)

where ∇̂′
and σ̂ ′ are the gradient and fluid stress tensor with respect to the dimensionless

spatial coordinates in the rotating reference frame. We apply a perturbation expansion to
the disturbance flow v̂

′
, q̂′ in terms of Rep, specifically

v̂
′ = v0 + Repv1 + O(Re2

p), (A 2a)

q̂′ = q0 + Repq1 + O(Re2
p). (A 2b)

The leading-order velocity v0 satisfies the Stokes equation with the boundary
conditions

v0 = Ω̂
′
p × (x̂ ′ − x̂ ′

p) + Θ̂(ez × x̂ ′
) − ˆ̄u, (A 3)

on the particle surface ∂P ′ and v0 = 0 on all other surfaces. The first-order velocity
correction v1 also satisfies the Stokes equation but with a forcing term given by the inertia
from v0 and with v1 = 0 on all boundaries. Substituting (A 2) into (A 1a) we find that F̂

′
nb

can be decomposed as

F̂
′
nb = Re−1

p F nb,−1 + F nb,0 + O(Rep), (A 4)
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where

F nb,−1 :=
∫

∂P̂ ′
(−n) · σ̂ ′(q0, v0) dŜ′, (A 5a)

F nb,0 := −4π

3
Θ̂2k × (k × x̂ ′

p) +
∫
P̂ ′

ˆ̄u · ∇̂′ ˆ̄u dV̂ ′ +
∫

∂P̂ ′
(−n) · σ̂ ′(q1, v1) dŜ′. (A 5b)

An analogous expansion also applies to T̂
′
nb, the most significant term being

T nb,−1 :=
∫

∂P̂ ′
(x̂ ′ − x̂ ′

p) × ((−n) · σ̂ ′(q0, v0)) dŜ′. (A 6)

The surface integral in (A 5b) can be calculated without explicitly solving for q1, v1 by
using a variant of the Lorentz reciprocal theorem. Each of q0, v0, F nb,−1, T nb,−1, F nb,0 can
also be further decomposed into parts depending on the axial and secondary components
of the background flow, that is ūa and ūs, respectively. This is necessary in order to fully
separate the axial contributions to the force on the particle from those contributions that
perturb its location within the cross-sectional plane. We refer the interested reader to
Harding et al. (2019) for the complete details.

It is instructive to examine the centripetal and centrifugal components of (A 5b). By
substituting ˆ̄u = ˆ̄u′ + Θ̂(k × x̂ ′

) it can be shown that

− 4π

3
Θ̂2k × (k × x̂ ′

p) +
∫
P̂ ′

ˆ̄u · ∇̂ ˆ̄u dV̂ ′ =
∫
P̂ ′

ˆ̄u′ · ∇̂′ ˆ̄u′ + 2Θ̂(k × ˆ̄u′) dV̂ ′. (A 7)

The right-hand side is quite small, for example, given a particle slip velocity of magnitude
(a/�)Um (in a dimensional setting), this term is proportional to �/R. The main takeaway is
that −(4π/3)Θ̂2k × (k × x̂ ′

p) exactly cancels with the
∫
P̂ ′(Θ̂k × x̂ ′

) · ∇(Θ̂k × x̂ ′
) dV̂ ′

that appears in the integral on the left-hand side as a result of the substitution. This
explains why the net centripetal and centrifugal force for a neutrally buoyant particle has
no apparent effect. A similar argument can be applied to the appropriate terms in T̂

′
nb, but

these terms are small regardless and ultimately neglected.

Appendix B. Modified particle focusing location for a = 0.20

Figure 14, which shows the modified focusing location for a particle with radius a =
0.20, exhibits similar trends as in figure 6. Observe that the neutrally buoyant equilibria
have shifted closer towards the centre in this case, in particular χ∗

± ≈ (−0.4666,±0.5128).
A consequence of this is that the particle does not get so close to the inside wall for ρs < 0
and so the large perturbation in vertical position is not observed (and both equilibria still
exist for ρs = −1 and Fr2 = 10 unlike the situation for a = 0.15). The effect of gravity
remains significant in this case and there are many more cases where the equilibrium in
the upper half disappears, specifically for Fr2 = 10 and ρs ≥ 3, for Fr2 = 20 and ρs > 4,
for Fr2 = 40 and ρs ≥ 6 and lastly for Fr2 = 80 and ρs > 7. For completeness we note that
for this particle size the Jacobian gives the approximation

ξ ∗
± ≈ χ∗

± + δr

27.62

[
26.05

±0.1554

]
+ δz

27.62

[∓1.089
1.054

]
, (B 1)

in which ∂Φnb,z/∂χr remains the dominant component.
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FIGURE 14. Modified focusing location ξ∗ = (ξ∗
r , ξ∗

z ) for particles with radius a = 0.20 and
relative density difference ρs when suspended in flow through a curved rectangular duct having
width 4, height 2 and bend radius 160 at a variety of Froude numbers Fr2. The ×, + markers
differentiate the equilibria in the upper and lower halves of the cross-section respectively. The
intersection of grey lines indicates the neutrally buoyant case, i.e. χ∗±.

(b)(a)

(c) (d)

FIGURE 15. Estimated particle trajectories for ρs = −1, 0, 1, 3 (a,b,c,d) with 2R/� = 160 and
Fr2 = 1 for a particle with radius 2a/� = 0.20. Green, yellow and red markers show the stable,
saddle and unstable equilibria, respectively, with size matching that of the particle.
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Figure 15 shows the modified focusing locations when Fr = 1 and ρs = −1, 0, 1, 3 for a
particle with size 2a/� = 0.20. In the non-neutrally buoyant cases (ρs /= 0) the behaviour
is qualitatively similar to that of figure 10 excepting the stable equilibria are a little closer
to the centre of the duct horizontally.
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