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We study lower bounds for the number of vertices in a PL-triangulation of a given
manifold M . While most of the previous estimates are based on the dimension and
the connectivity of M , we show that further information can be extracted by
studying the structure of the fundamental group of M and applying techniques from
the Lusternik-Schnirelmann category theory. In particular, we prove that every
PL-triangulation of a d-dimensional manifold (d � 3) whose fundamental group is
not free has at least 3d + 1 vertices. As a corollary, every d-dimensional homology
sphere that admits a combinatorial triangulation with less than 3d vertices is
PL-homeomorphic to Sd. Another important consequence is that every triangulation
with small links of M is combinatorial.
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1. Introduction and results

A triangulation of a topological space M is a simplicial complex K together with
a homeomorphism M ≈ |K| between M and the geometric realization of K. If
M is a closed d-dimensional manifold then we are particularly interested in com-
binatorial triangulations, where we require that the link of every simplex in K
is PL-homeomorphic to a sphere (cf. [4]). A manifold admitting a combinatorial
triangulation is called a PL-manifold.

Given a PL-manifold M , what is the minimal number of vertices in a combinato-
rial triangulation of M? This is a difficult question because there are no standard
constructions for triangulations with few vertices of a given manifold, nor there are
sufficiently general methods to prove that some specific triangulation is in fact min-
imal. Apart from classical results on minimal triangulations of spheres and closed
surfaces, and a special family of minimal triangulations for certain sphere bundles
over a circle (so-called Császár tori - see [13]), there exists only a handful of exam-
ples for which the minimal triangulations are known. An exhaustive survey of the
results and the existing literature on this problem can be found in [14]. See also the
recent article [12] which discusses a more general question of the number of faces
in triangulations of manifolds and polytopes.
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Generally speaking, one may expect that the minimal number of vertices in a tri-
angulation of a space increases with its complexity. Most results that can be found
in the literature use dimension, connectivity or Betti numbers of M to express
lower bounds for the number of vertices in a triangulation of M . In this paper, we
have been able to exploit the fundamental group and the Lusternik-Schnirelmann
category to improve several estimates of the minimal number of vertices in a
triangulation of a manifold.

In the rest of this section, we state our main results. In § 2, we introduce and
explain prerequisites on triangulations, Lusternik-Schnirelmann category and the
covering type. Finally, in § 3, we give the proofs of the theorems presented below.

Let us begin with a slight improvement of the theorem first proved by Brehm
and Kühnel [3]. Our approach is based on the notion of covering type [8] and is
much simpler than the original one. Recall that Poincaré duality together with
the positive answer to the Poincaré conjecture imply that every simply-connected
closed d-manifold, whose reduced homology is trivial in dimensions less or equal to
d/2 is homeomorphic to the d-sphere. For the remaining cases, the minimal number
of vertices in a triangulation can be estimated as follows.

Theorem 1.1. Let M be a simply-connected d-dimensional closed PL-manifold,
and let i be the minimal index for which H̃i(M) �= 0.

(a) If i = d/2 then every combinatorial triangulation of M has at least 3d/2 +
k + 2 vertices, where k is the minimal integer for which

(
i+k
i+1

)
� rankHi(M).

Moreover, k can be equal to 1 only if d ∈ {4, 8, 16}.
(b) If i < d/2 then every combinatorial triangulation of M has at least 2d − i + 4

vertices.

In particular, every combinatorial triangulation of a closed, simply-connected d-
manifold with at most 3d/2 + 2 vertices represents the d-dimensional sphere.

The main contribution of this paper is the following theorem and its corollaries.
In particular, we obtain considerable improvements of estimates by Brehm-Kühnel
[3] and Bagchi-Datta [1] of the number of vertices in PL-triangulations of homol-
ogy spheres. By [3, corollary 2] every PL-triangulation of a non simply-connected
d-manifold (d � 3) has at least 2d + 3 vertices. That the value cannot be improved
in general is shown by Kühnel who constructed a family of Sd−1-bundles over
the circle S1 that admit PL-triangulations with 2d + 3 vertices. However, if the
fundamental group of M is not free, then we obtained a better estimate:

Theorem 1.2. If M is a d-dimensional (d � 3) closed manifold whose fundamental
group is not free, then every combinatorial triangulation of M has at least 3d + 1
vertices.

It is worth noting that closed 3-manifolds whose fundamental group is free are
quite special, being either the 3-sphere or connected sums of tori S2 × S1 and
twisted tori S2×S1. All the other closed 3-manifolds (in particular, all closed
hyperbolic 3-manifolds) satisfy the assumptions of the above theorem.
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An important family of examples whose fundamental group is not free are the
homology spheres, that is, manifolds, whose homology groups vanish except in
the top dimension, where the homology group is Z. A simply-connected homol-
ogy sphere is homeomorphic to a sphere by the positive answer to the Poincaré
conjecture but for every d � 3 there exist d-dimensional homology spheres that are
not homeomorphic to Sd. As the fundamental group of a homology sphere must be
a perfect group, it cannot be free (unless it is trivial), therefore theorem 1.2 implies
the following improvement of the estimate in [3, corollary 4].

Corollary 1.3. Every d-dimensional homology sphere that admits a combinatorial
triangulation with at most 3d vertices is a PL-sphere.

Bagchi and Datta [1] obtained an estimate of the minimal number of vertices in
PL-triangulations of Z2-homology spheres, that is, manifolds whose Z2-homology
is isomorphic to that of a sphere (non-trivial examples include 3-dimensional odd
lens spaces). Their results are improved in some cases by the following:

Corollary 1.4. Let M be a d-dimensional Zp-homology sphere that admits a com-
binatorial triangulation with at most 3d vertices. Then M is simply-connected and
its homology groups Hi(M) for 0 < i < d are torsion and prime to p. In particular,
if d � 4, then M is a PL-sphere.

We conclude with a useful recognition criterion for combinatorial triangulations.
By definition, in order to prove that a given triangulation is combinatorial, we
must show that the link of each simplex in the triangulation is a PL-sphere. But
the question whether a given finite simplicial complex is homeomorphic to a sphere
is in general undecidable because a recognition algorithm would have to be able
to determine whether a group given by generators and relators (namely the funda-
mental group of the link) is trivial. Since this is not possible, there is a proliferation
of heuristic methods that can give an answer under favourable conditions (see [10]
for a report on the current status of the field). Typically, one begins by checking
if the homology of the simplicial complex is that of a sphere. If this test is passed,
then one tries to reduce the size of the triangulation and simplify the presentation
of the fundamental group (e.g. by randomized use of so-called bistellar flips). corol-
laries 1.3 and 1.4 allow to bypass the computation of the fundamental group if the
simplified triangulation is sufficiently small.

Our recognition criterion comes in two flavours, one for arbitrary triangulations,
and another for triangulations of manifolds. Since the conclusion is the same in
both cases we combine them in a single theorem.

Theorem 1.5. Let K be a d-dimensional simplicial complex, such that the link
of every simplex of codimension k + 1 in K has the homology of a k-dimensional
sphere. This is true in particular if K is a triangulation of a d-dimensional manifold.

If for every k � 3 the link of each simplex of codimension k + 1 in K has at most
3k vertices, then the triangulation K is combinatorial and |K| is a d-dimensional
PL-manifold.
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2. Preliminaries

In this section, we recollect concepts and results that are needed in the proofs of
the above theorems.

2.1. Simplicial complexes and PL-triangulations

Here we describe two special constructions and refer the reader to the article of J.
Bryant [4] for the definitions of triangulations, skeleta, open and closed stars, links,
joins, combinatorial triangulations and other standard concepts of PL-topology.

Given a triangulation M ≈ |K| we identify the set of vertices of the triangulation
with the 0-skeleton K0 of the simplicial complex K. For a subset V ⊆ K0, let K(V )
denote the full subcomplex of K spanned by V , that is, the maximal subcomplex
of K whose 0-skeleton is V . It is easy to check that for every vertex v ∈ K0 the
subcomplex K(V ∪ {v}) can be obtained as the union of K(V ) and the join of v
with the part of the link of v contained in K(V ), which can be expressed by the
following formula:

K(V ∪ {v}) = K(V ) ∪ v ∗ (lk(v) ∩ K(V )) (2.1)

Furthermore, let us denote by N(V ) ⊆ |K| the union of open stars (with respect
to K) of vertices in V . Clearly, the geometric realization |K(V )| is a subspace of
N(V ), and we have the following standard fact (cf. proof of [15, corollary 3.3.11]).

Lemma 2.1. N(V ) = |K| − |K(K0 − V )|, therefore N(V ) is an open neighbourhood
of |K(V )| in |K|. Moreover, |K(V )| is a deformation retract of N(V ).

Proof. The first statement is obvious. In order to obtain a deformation retraction
observe that every point x ∈ |K| can be written uniquely in terms of barycentric
coordinates

x =
∑

v∈K0

λv(x) · v.

By definition, for every x ∈ N(V ) there is at least one v ∈ V for which λv(x) > 0,
so we may define the retraction

r : N(V ) → |K(V )| as r(x) :=

(∑
v∈V

λv(x) · v
)/(∑

v∈V

λv(x)

)
,

which can be extended to a deformation retraction of N(V ) to |K(V )| through a
straight-line homotopy. �

In particular, if K0 is partitioned into two disjoint subsets V, V ′ then N(V ) and
N(V ′) form an open cover of |K| and

N(V ) ∩ N(V ′) = N(V ) − |K(V )| = N(V ′) − |K(V ′)|.
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Lemma 2.2. Let K be a triangulation of a closed d-dimensional manifold. If V ⊆ K0

spans a d-dimensional simplex in K then for every i < d

Hi(K(K0 − V )) ∼= Hi(K) and Hi(K(K0 − V )) ∼= Hi(K)

((co)homology is with integer coefficients unless |K| is non-orientable and i = d − 1,
in which case one should use Z2-coefficients).

Proof. First observe that by lemma 2.1 N(V ) � |K(V )| is contractible, therefore

H̃i(N(V ) − |K(V )|) ∼= Hi+1(N(V ), N(V ) − |K(V )|) .

On the other hand, by a version of Poincaré-Lefshetz duality (see [9, proposition
3.46]) we have

Hi+1(N(V ), N(V ) − |K(V )|) ∼= Hd−i−1(K(V )) .

By combining the two isomorphisms we conclude that Hi(N(V ) − |K(V )|) ∼=
Hi(Sd−1) for all i.

Denote V ′ = K0 − V and consider the following portion of the Mayer-Vietoris
sequence

Hi(N(V ) ∩ N(V ′)) → Hi(N(V )) ⊕ Hi(N(V ′)) → Hi(K) → Hi−1(N(V ) ∩ N(V ′))

Observe that Hi(N(V )) = 0, that Hi(N(V ) ∩ N(V ′)) = Hi(Sd−1) = 0 for i < d −
1, and that Hd(|K|) → Hd−1(N(V ) ∩ N(V ′)) is surjective (with Z2-coefficients if
|K| is non-orientable). By exactness of the above sequence

Hi(K) ∼= Hi(N(V ′)) ∼= Hi(K(V ′))

for i < d. The proof for cohomology groups is similar. �

2.2. Lusternik-Schnirelmann category

A subset A ⊆ X of a topological space X is said to be categorical if the inclusion
map A ↪→ X is null-homotopic (i.e., if there exists a homotopy between the inclusion
and the constant map). The minimal cardinality of an open categorical cover of X
is denoted cat(X) and is called the Lusternik-Schnirelmann category of X. For
example, the category of a space is 1 if, and only if, it is contractible, and the
category of a (non-contractible) suspension is 2, because every suspension has a
natural cover by two contractible cones. See [5] for a comprehensive survey of the
results and the vast literature about Lusternik-Schnirelmann category and related
topics. (Keep in mind when comparing the results, the survey [5] and the article [6]
use the normalized value of cat(X) which is one less than in our definition so that
contractible spaces have category 0 and non-contractible suspensions have category
1.) Lusternik-Schnirelmann category is tightly related to other homotopy invariants,
for example, a well-known result states that if cat(X) � 2 then the fundamental
group of X is free (see [5, p. 44]).

We will base our results on a similar but much deeper theorem proved by Dranish-
nikov, Katz and Rudyak [6, corollary 1.2]: if M is a closed d-dimensional manifold
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(d � 3) and if cat(M) � 3 then the fundamental group of M is free. Their proof is
based on the notion of category weight which we briefly recall. Roughly speaking,
a non-zero class u ∈ H̃∗(M) (here we omit the coefficients for cohomology from the
notation) has category weight at least k if the restriction of u to any union of k
categorical subsets of M is trivial. A recise definition is slightly more technical -
see [5, § 2.7] or [6, § 3]. Clearly, if we can find classes u, v ∈ H̃∗(M) of weight k

and l respectively, and such that 0 �= u · v ∈ H̃∗(M), then cat(M) > k + l. We can
summarize the main result of [6, § 4] as follows:

Theorem 2.3. Let M be a closed d-dimensional (d � 3) manifold M whose fun-
damental group is not free. Then there exist suitable systems of coefficients on M
and cohomology classes u ∈ H2(M) of weight 2 and v ∈ Hd−2(M) of weight 1, such
that 0 �= u · v ∈ Hd(M). As a consequence, cat(M) � 4.

2.3. Homotopy triangulations and covering type

Let us denote by Δ(X) the minimal number of vertices in a triangulation of a
compact polyhedron. Clearly, Δ(X) is a topological invariant of compact polyhedra
but it is in general very far from being a homotopy invariant. As an easy example
let X1 := S1 ∨ S1 ∨ S1, the one-point union of three circles, let X2 be the graph
with two vertices and four parallel edges between them and let X3 := Δ(1)

3 , the
1-skeleton of the tetrahedron. All three spaces have the same homotopy type and
yet easy geometric reasoning shows that Δ(X1) = 7, Δ(X2) = 5, Δ(X3) = 4. To
obtain a homotopy invariant notion recall that a homotopy triangulation of X is
a simplicial complex K together with a homotopy equivalence X � |K|. Then the
minimal number of vertices among all possible homotopy triangulations of X is
not only a homotopy invariant of X but it also provides a link to the concept of
covering type that was recently introduced by M. Karoubi and C. Weibel [11].

Recall that a cover U of a space X is said to be good if all finite non-empty
intersections of elements of U are contractible. Standard examples are covers by
convex sets, covers of polyhedra by open stars of vertices and covers of Riemannian
manifolds by geodesic balls. One of the main facts about good covers is the Nerve
theorem (see [9, corollary 4.G3]): if U is a good open cover of a paracompact space
X, then X � |N(U)|, where |N(U)| is the geometric realization of the nerve of U .
Karoubi and Weibel defined the covering type of X as the minimum cardinality of
a good open cover of a space that is homotopy equivalent to X.

If X admits a homotopy triangulation X � |K|, where the simplicial complex
K has n vertices, then the open stars of the vertices form a good cover for |K|,
therefore ct(X) � n. Conversely, if there exists a homotopy equivalence X � Y
where Y has a good open cover U with n elements, then X � Y � |N(U)| is a
homotopy triangulation of X with n vertices. Thus we have proved the following
result (cf. [8, theorem 1.2]):

Proposition 2.4. If X has the homotopy type of a compact polyhedron, then ct(X)
equals the minimal number of vertices in a homotopy triangulation of X.

For every compact polyhedron X there is the obvious relation Δ(X) � ct(X) and
we have seen previously that Δ(X) can be in fact much bigger that ct(X). However,
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if M is a closed triangulable manifold then there is some evidence that Δ(M) are
ct(M) close and often equal. Notably, Borghini and Minian [2] showed that for
closed surfaces Δ(M) and ct(M) coincide, with the sole exception of the orientable
surface of genus 2, where the two quantities differ by one.

There are several useful estimates of ct(X) based on other homotopy invariants
of X. For example, let hdim(X) denote the homotopy dimension of X, that is, the
minimal dimension of a homotopy triangulation of X. Then we have the following
estimate (cf. [11, proposition 3.1]):

Proposition 2.5. If ct(X) = hdim(X) + 2, then X is homotopy equivalent to the
sphere Shdim(X), otherwise ct(X) � hdim(X) + 3.

Proof. If ct(X) � n, then Nerve theorem implies that X admits a homotopy tri-
angulation by a subcomplex of Δn−1. There is only one subcomplex of Δn−1

whose homotopy dimension equals n − 2, namely its boundary |∂Δn−1| ≈ Sn−2.
Indeed, |Δn−1| is contractible, so its homotopy dimension is 0, while all sub-
complexes of ∂Δn−1 have homotopy dimension at most n − 3. As a consequence
ct(X) − hdim(X) is at least 3, unless X is homotopy equivalent to a sphere. �

Govc, Marzantowicz and Pavešić [8] applied techniques from Lusternik-
Schnirelmann category to obtain further estimates of the covering type of a space
and proved the following two results. For the sake of completeness, we reproduce
here the proof of the first statement.

Theorem 2.6 [8, theorem 4.1]. The covering type of a r-fold wedge of spheres of
dimension i equals the minimal integer n for which

(
n−1
i+1

)
� r.

Proof. The case i = 1 is covered by [11, proposition 4.1], so we may assume i > 1.
Let us first compute the homology of Δ(i)

n−1, the i-th skeleton of the (n − 1)-
dimensional simplex. The simplicial chain complex of Δ(i)

n−1 is obtained by
truncating the simplicial chain complex for Δn−1 at degree i:

Ci(Δn−1)
∂i−→ Ci−1(Δn−1) −→ · · · · · · −→ C0(Δn−1)

∂0−→ C−1 = Z

The homology of Δn−1 is trivial, so the above chain complex is exact, except at the
beginning. The rank of each Ck(Δn−1) is

(
n

k+1

)
, and the rank of Hi(Δ

(i)
n−1) = ker ∂i

can be computed by exploiting the exactness:

rank(ker ∂i) =
(

n

i + 1

)
−
(

n

i

)
+ . . . + (−1)i

(
n

1

)
+ (−1)i+1

(
n

0

)
=
(

n − 1
i + 1

)
.

We conclude that Δ(i)
n−1 is the wedge of

(
n−1
i+1

)
spheres of dimension i.

It is obvious from the definition of simplicial homology that the rank of Hi(Δ
(i)
n−1)

is maximal among all sub-complexes of Δn−1. Therefore, if r >
(
n−1
i+1

)
, then the

r-fold wedge of i-dimensional spheres cannot be represented by a subcomplex of
Δn−1.

To show the converse, note that im(∂i) is
(
n−2
i+1

)
-dimensional, so we may find up to(

n
i+1

)− (n−2
i+1

)
=
(
n−1
i+1

)
i-simplices in Δ(i)

n−1 whose removal does not alter the image
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of ∂i. In particular, if r �
(
n−1
i+1

)
, then we may remove

(
n−1
i+1

)− r simplices of dimen-
sion i, so that the remaining simplices form a r-fold wedge of i-dimensional spheres.
We conclude that the r-fold wedge of i-dimensional spheres can be represented by
a subcomplex of Δn−1 if, and only if

(
n−1
i+1

)
� r, which proves our claim. �

The next theorem relates the covering type (and thus the size of a minimal
triangulation) of a closed manifold to its Lusternik-Schnirelmann category.

Theorem 2.7 [8, corollary 2.4]. Let M be a d-dimensional closed manifold. Then
every triangulation of M has at least

1 + d +
1
2

cat(M)(cat(M) − 1)

vertices.

Observe that by theorem 2.3 the category of a 3-dimensional closed manifold M
with non-free fundamental group is at least 4. As a consequence one needs at least
1 + 3 + 4 · 3/2 = 10 vertices to triangulate M , so we obtain the estimate of theorem
1.2 for d = 3.

3. Proofs

In this section, we provide the proofs for the results stated in § 1.

Proof of theorem 1.1. Observe that M is by assumption simply-connected and
hence orientable, which implies that Poincaré duality holds with arbitrary coef-
ficients. Moreover, the statement of the theorem is trivial for d = 2 since the only
simply-connected close 2-manifold is S2, so we assume henceforth that d > 2.

Let K be a combinatorial triangulation of M . Since M is d-dimensional, there
exists a (d + 1)-element subset V ⊂ K0 spanning a simplex. Lemma 2.2, together
with Seifert-van Kampen theorem imply that K(K0 − V ) is simply connected and
that Hj(K(K0 − V )) = Hj(K) for j < d.

Under the assumption (a) d = 2i and Hi(M) is the first non-trivial homology
group of M , therefore M is an (i − 1)-connected 2i-dimensional manifold. It is well-
known (see [16]) that such a manifold is homotopy equivalent to a CW-complex
obtained by attaching a 2i-dimensional cell to a wedge of r = rankHi(M) spheres
of dimension i. By the previous paragraph the homology of K(K0 − V ) is free
and concentrated in dimension i, and Hi(K(K0 − V )) = Hi(M). It follows that
K(K0 − V ) is homotopy equivalent to a wedge of r copies of i-dimensional spheres.
By theorem 2.6 the covering type of K(K0 − V ) is equal to i + k + 1 where k is the
minimal integer satisfying

(
i+k
i+1

)
� r. We conclude that K0 has at least (d + 1) +

(d/2 + k + 1) = 3d/2 + k + 2 elements.
Moreover, if k = 1 then clearly rankHi(M) = 1, therefore M is homotopy equiv-

alent to a CW-complex with three cells in dimensions 0, i and d = 2i, respectively.
The i-dimensional skeleton is the sphere Si and the d-dimensional cell is attached to
Si by a map with Hopf invariant 1 (see [7, §§ 5 and 6] for details). By the celebrated
theorem of Adams, this is possible only if i ∈ {2, 4, 8}.
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Under the assumption (b) Hi(M) �= 0 for some i < d/2. If Hi(M) ∼= Z, then
Poincaré duality and the Universal Coefficients theorem imply that Hd−i(M) ∼= Z.
On the other hand, if Hi(M) �∼= Z, then by Poincaré duality Hd−i(M) �∼= 0 or Z.
Lemma 2.2 yields Hk(K(K0 − V )) ∼= Hk(M) for k < d, which in both cases implies
that hdim(K(K0 − V )) � d − i, and that the cohomology of K(K0 − V ) is not that
of a sphere. By proposition 2.5 the covering type of K(K0 − V ) is at least d − i + 3.
We conclude that K0 has at least (d + 1) + (d − i + 3) = 2d − i + 4 elements. �

Proof of theorem 1.2. Let K be a combinatorial triangulation of M . Since M is
d-dimensional, its triangulation must contain at least one d-simplex, and so there
exist vertices v1, . . . , vd+1 ∈ K0 that span a d-dimensional simplex in K. Let us
enumerate the remaining vertices so that K0 = {v1, . . . , vd+1, . . . , vn}.

By adding one vertex at a time we obtain a sequence of subcomplexes

Δd = Kd+1 < . . . < Kk < Kn = K,

where Kk = K(v1, . . . , vk) � K. Since π1(M) is non-trivial, there exists a minimal
l, such that π1(|K(v1, . . . , vl)|) is non-trivial. By expressing Kl as in formula (2.1)

Kl = Kl−1 ∪ vl ∗ (lk(vl) ∩ Kl−1),

we see that Kl is a union of two simply-connected subcomplexes. By Seifert-van
Kampen theorem its fundamental group can be non-trivial only if (the geomet-
ric realization of) the intersection L := lk(vl) ∩ K(v1, . . . , vl−1) has at least two
components. Let us denote L′ := lk(vl) ∩ K(vl+1, . . . , vn). Then L and L′ are
full subcomplexes of lk(vl) and their vertices determine a partition of the ver-
tices of lk(vl). By lemma 2.1 |L′| is a deformation retract of | lk(vl)| − |L|. Since
| lk(vl)| ≈ Sd−1, we can apply Alexander duality [9, theorem 3.44] and obtain that
Hd−2(|L′|) ∼= H̃0(|L|) �= 0. By proposition 2.5 there exist d − 1 vertices, which we
may label as vl+1, . . . , vl+d−1, that span a simplex in L′. Since these vertices are
contained in lk(vl), they can be joined to vl in K, therefore vertices vl, . . . , vl+d−1

span a simplex in K.
Let us denote A := {v1, . . . , vd+1} and B := {vl, . . . , vl+d−1}. A and B are disjoint

and together contain 2d + 1 vertices of K0. To conclude the proof, we must show
that K0 − A − B contains at least d vertices.

Since π1(M) is not free, theorem 2.3 states that there exist cohomology classes
u ∈ H2(M) of weight 2 and v ∈ Hd−2(M) of weight 1, such that u · v �= 0. Both
K(A) and K(B) are contractible, therefore N(A ∪ B) = N(A) ∪ N(B) is a union
of two categorical sets. It follows that u|N(A∪B) = 0, and so the restriction of v
to N(K0 − A − B) cannot be trivial, as it would contradict u · v �= 0. Therefore
Hd−2(N(K0 − A − B)) �= 0, hence proposition 2.5 implies that K0 − A − B must
contain at least d vertices, as claimed. �

Proof of corollary 1.3. Every 1- or 2-dimensional homology sphere is a PL-sphere so
we may assume d � 3. If there is a PL-triangulation of M with less than 3d + 1 ver-
tices, then π1(M) is free by theorem 1.2. Therefore, assumption H1(M) = 0 implies
that M is simply-connected, and so it is homeomorphic to Sd by the positive answer
to the Poincaré conjecture. It is known that for d �= 4 every combinatorial triangu-
lation of a d-dimensional sphere is a PL-sphere (see [4, § 9]). The remaining case
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follows from the result of Bagchi and Datta [1, corollary 3] who used combina-
torial methods to show that every combinatorial triangulation of a 4-dimensional
homology sphere with at most 12 vertices is PL. �

Proof of corollary 1.4. Similarly as in the proof of the previous corollary
H1(M ; Zp) = 0 implies that M is simply-connected. Moreover, since Hi(M ; Zp) =
Hi(Sd; Zp) the homology of M is torsion and prime to p for 0 < i < d. In particular,
as the homology of a simply-connected d-manifold is free if d � 4, it follows that a
simply-connected Zp-homology sphere is actually an integral homology sphere. By
corollary 1.3 we conclude that M is a PL-sphere. �

Proof of theorem 1.5. We begin by showing that links of simplices in a triangulation
of a manifold are always homology spheres. Assume that K is a triangulation of
a d-dimensional manifold and let σ be a simplex in K of codimension k + 1. If
x ∈ |K| is a point lying in the interior of σ, then we may use excision and homology
sequence of the pair to relate the homology of lk(σ) to the local homology of |K|
at x:

Z ∼= Hd(|K|, |K| − x) ∼= Hd(σ ∗ lk(σ), ∂σ ∗ lk(σ))

∼= Hd−1(∂σ ∗ lk(σ)) = Hd−1(Σd−k−1 lk(σ)) ∼= H̃k(lk(σ)).

It follows that lk(σ) is a k-dimensional homology sphere.
Let us now continue the proof under the assumption that links of simplices in K

are homology spheres of suitable dimensions. If codimension of σ is at most 3, then
dim lk(σ) � 2, therefore lk(σ) is a combinatorial triangulation of a sphere. We will
use this as a base for induction.

Let σ be a simplex of codimension k + 1, and assume that for each v ∈ lk(σ)
the link lk(v, lk(σ)) = lk({v} ∪ σ) is combinatorially equivalent to Sk−1. It follows
that lk(σ) is a combinatorial triangulation of a k-dimensional homology sphere.
By assumption lk(σ) has at most 3k vertices, so corollary 1.3 implies that lk(σ) is
a combinatorial triangulation of Sk. We conclude that links of all simplices in K
are homeomorphic to spheres of suitable dimensions, hence the triangulation K is
combinatorial. �
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